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k-th record estimator of the scale parameter
of the α-stable distribution 

Michał Stachura1, Barbara Wodecka2 

ABSTRACT 

Various techniques of scale parameter estimation have been proposed in the case of alpha 
stable  distributions. In the paper, the authors present an estimation technique that involves 
the k-th record theory. Although this theory is over 40 years old, its implementation in the 
classical extreme value theory – being the other cornerstone of the presented approach – is 
quite new, and tempting. Several theoretical properties of the introduced scale parameter 
estimators are presented. With the use of Monte Carlo methods, a comparative analysis is 
performed between the approach based on k-th records and approaches based on Hill’s and 
Pickands’ estimators. Additionally, the paper uses a real-life data set to illustrate how to 
effectively apply the k-th record estimator of the scale parameter. The research indicates 
several advantages of the k-th record approach over its other counterparts, especially when 
dealing with incomplete information about the underlying sample. 
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1. Introduction

Specificity of many financial data sets (regarded as proper time-series) imposes that
the so-called heavy-tailed distributions constitute an attractive alternative way of 
modelling such data. Amongst these distributions, the class of 𝛼-stable ones gained one 
of prominent places. 

There are several methods of estimation of stability index 𝛼. However, for 
a complete recognition of a theoretical 𝛼-stable distribution that approximates 
empirical data, it is necessary to estimate the other parameters of the distribution, 
including the scale parameter 𝜎 as well. For instance, this holistic look is the most 
appropriate approach when calculating risks measures such as VaR or CVaR (see, e.g. 
Stoyanov et al. 2006, Khindanova et al. 2001). 
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Therefore, the present paper: 1) describes construction of 𝑘-th record estimators of 
parameter 𝜎, in the case of stability index 𝛼 2, and 2) reveals some theoretical 
properties of the estimators introduced in the paper. The main goal of this article is to 
compare the quality of 𝑘-th record estimators of parameter 𝜎 with the two estimators 
of this parameter that are based on Hill’s and Pickand’s estimators. Such a comparative 
analysis is conducted by simulation research concerning some arbitrarily chosen range 
of 𝛼-stable distribution parameters (1.8 𝛼 1.99, 𝛽 𝜇 0, 0.01 𝜎 100). 
Additionally, the paper is supplemented by an empirical example concerning energy 
prices quoted at the Nord Pool Spot. 

The procedure for estimating the sigma parameter of the stable distribution 
described in this paper is part of a broader research trend that explores methods 
implementing the possibility of using 𝑘-th records in estimation. In the literature on 
the subject, one can find proposals for estimating the parameters of other distributions, 
such as: Gumbel’s, Burr’s, power, Weibull’s, Rayleigh’s, logistic or Pareto’s ones 
(for instance see: Ahsanullah 1990, Malinowska et al. 2005). Moreover, 𝑘-th records, 
apart from the more classical approach, appear as a tool in Bayesian estimation 
(see: Malinowska and Szynal 2004). 

2.  Theoretical background 

From now on, let 𝑋 ,𝑋 ,𝑋 , … be independent and identically distributed (i.i.d.) 
random variables with a common cumulative distribution function (cdf) 𝐹. For any 
fixed 𝑛 ∈ ℕ , the order statistics of a sample 𝑋 ,𝑋 , … ,𝑋  are denoted by 𝑋 :

𝑋 : ⋯ 𝑋 : . 
The main theorem of the extreme value theory (EVT) states that if there exist 

constants 𝑎 0, 𝑏  for 𝑛 ∈ ℕ , and some non-degenerate distribution function 𝐺 
such that for all 𝑥 ∈ ℝ holds lim

→
ℙ : 𝐺 𝑥 , then there exists a constant 

𝛾 ∈ ℝ such that the limit distribution 𝐺 has the form: 

𝐺 𝑥 𝐺 𝑥
exp 1 𝛾𝑥 / 1 𝛾𝑥 0 𝛾 0

exp 𝑒 𝑥 ∈ ℝ 𝛾 0
. 

The parameter 𝛾 is called the extreme value index (EVI), and it impacts the right 
tail asymptotics of the common cdf 𝐹 (e.g. see de Haan and Ferreira 2006). 

Classical estimators of EVI are based on upper order statistics. Among wide variety 
of such estimators, the most popular are Pickands’ and Hill’s ones (see Gomes et al. 
2008), given respectively by formulas: 

 𝛾 log : :

: :
,     𝛾 ∑ ln𝑋 : ln𝑋 : . (1A, B) 

for any fixed 𝑘 ∈ 1,2, … 𝑛/4  (case 1A), or 𝑘 ∈ 1,2, … ,𝑛 1  (case 1B). 
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An alternative, proposed by Berred (1995), is based on the notion of 𝑘-th records, 
which were defined by Dziubdziela and Kopociński (1976). So for a fixed 𝑘 ∈ ℕ , 
the 𝑘-th record times 𝑇 , and the 𝑘-th record values 𝑅  are defined by 
recurrence relations: 

𝑇 𝑘,  𝑇 min  𝑗 ∈ ℕ ∶ 𝑗 𝑇 ,𝑋 𝑋
∶ 

, for 𝑛 2, 

𝑅 𝑋
∶ 

. 

In other words, a sequence of 𝑘-th record values 𝑅 𝑅 𝑅  …  is 
constructed by eliminating repetitions in the non-decreasing sequence of 𝑘-th order 
statistics 𝑋 : 𝑋 : 𝑋 :  … , while 𝑇 𝑇 𝑇  …  are the 
appearance numbers (the so-called record times) of the succeeding record values. 

The original Berred’s estimator based on the 𝑘-th record values is of the form: 

 𝛾 ln , ,

, ,

, (2) 

where 𝑁 𝑘,𝑛  is a random number of 𝑘-th records values in a sample of size 𝑛. 
Pickands’ and Berred’s estimators are convenient for any real 𝛾 (these estimators 

are additionally invariant under any linear transformation – with a positive slope – of 
data, which is fully concordant with the linear transformation appearing in the main 
EVT theorem), while Hill’s one is proper for 𝛾 0 only. Moreover, Berred’s estimator 
value depends on sample order, which allows resampling, since i.i.d. property is 
assumed. (The mentioned resampling makes sense only if data do not represent any 
time series.) 

We recall one of equivalent definitions of 𝛼-stable distribution in order to assume 
the parametrization we use. Thus, a random variable 𝑋 has 𝛼-stable distribution (noted 
as: 𝑋~𝑆 𝛼,𝛽, 𝜇,𝜎 ) if the logarithm of its characteristic function 𝜙 is given by the 
following formula: 

ln𝜙 𝑡
𝑖𝜇𝑡 𝜎 |𝑡| 1 𝑖𝛽sign 𝑡 tan , 𝛼 1

𝑖𝜇𝑡 𝜎𝑡 1 𝑖𝛽 sign 𝑡 ln|𝑡| , 𝛼 1
, 

where 𝛼 ∈ 0, 2⟩ is the stability index, 𝛽 ∈ 〈 1,1〉 is the skewness parameter, 
𝜎 ∈ 0,∞  is the scale parameter, 𝜇 ∈ ℝ is the location parameter. It should be also 
mentioned that in 𝛼-stable case the following relation holds: 𝛾 1/𝛼 for 𝛼 ∈ 0, 2 , 
and 𝛾 0 for 𝛼 2, which reveals discontinuous functional dependence of 𝛼-stable 
tails asymptotics on the stability parameter value. Thus, the tails of the stable 
distributions have a power decay (are the so-called “heavy tails”) if they are distinct 
from normal distribution (see Nolan 2011, Weron 2001). 
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Let 𝑍 |𝑋| for 𝑋~𝑆 𝛼,𝛽, 𝜇,𝜎 , and let 𝐺 and 𝑄 be the cdf, and quantile function 
of variable 𝑍, respectively. Moreover, let 𝑘 𝑘  be an increasing sequence of natural 
numbers such that the following condition is fulfilled: 

𝑘 → ∞    and    𝑘 /𝑛 → 0,    as 𝑛 → ∞. 

Basic properties of 𝛼-stable distribution tail yield that: 

 1 𝐺 𝑥  ~ 𝐶 𝜎 𝑥 ,    as 𝑥 → ∞, (3) 

for the constant 𝐶 Γ 𝛼 sin , and the gamma function Γ 𝑥 𝑡 𝑒 𝑑𝑡 
(see Samorodnitsky and Taqqu 1994, Nolan 2011). As a consequence (see Meraghni 
and Necir 2007) we obtain: 

 𝑄 1    
/

 →  𝜎,    as 𝑛 → ∞. (4) 

The last convergence enables straightforward construction of estimators in the 
following manner. For a given sample 𝑍 , 𝑍 , …, 𝑍  of independent copies of 𝑍, 
an unknown quantile 𝑄 1  may be substituted by the appropriate order statistic 
𝑍 :  taken out of that sample. Additionally, if parameter 𝛼 is also unknown, it may 
be substituted by any of its estimators, let us say 𝛼 , . It may be Hill’s, Pickand’s, 
Dekkers-Einmahl-de Haan’s one (e.g. see de Haan and Ferreira 2006), to mention but 
a few. In the 𝛼-stable case, owing to the formula (3), these estimators may be applied to 
sample 𝑍 , 𝑍 , …, 𝑍  instead of sample 𝑋 , 𝑋 , …, 𝑋 . 

Therefore, the estimator of the scale parameter takes the form: 

 𝜎 , 𝑍 :
,

,

/ ,

, (5) 

which is quite general, but limited for ‘order statistics’ case. 
It occurs that 𝑘-th records may be applied in the convergence (4), which leads to 

the following estimator: 

 𝜎 , 𝑅 ,
,

,

/ ,

, (6) 

as the ideas from original proofs of Meraghni and Necir (2007), concerning properties 
of the estimator (5), may be straightforwardly adapted to the ‘𝑘-th records’ case. 

To do this, it suffices to notice that 𝑅 ,   𝑍 :  (as 𝑛 → ∞) for any 
continuous probability distribution, where ‘ ’ designates equality in distribution 
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(see Wodecka 2016, Lemma 2.18). Moreover, the key is a direct consequence of the 
formula (3) that 𝑄 1 /𝑄 1 → 1 (as 𝑛 → ∞) for variable 𝑍 |𝑋| defined 
above herein. So, the replacement of a proper order statistic 𝑍 :  in (5) by one of its 
nearest neighbour 𝑅 ,  creates the formula (6). 

As a result, the estimator 𝜎 ,  is consistent if 𝑘 𝑘 ~𝑑𝑛 , as 𝑛 → ∞, for some 
constants 𝑑 0 and 𝜃 ∈ 0, 1  (see Wodecka 2016, Theorem 2.19). Additionally, 
√ log𝜎 , log𝜎 →𝒟  𝒩 0,

/  

/   
, as 𝑛 → ∞, where →𝒟 stands for 

convergence in distribution, which means that the estimator 𝜎 ,  has asymptotically 
log-normal property (see Wodecka 2016, Theorem 2.20). 

Moreover, in contrast to the order statistics, the formula (6) allows to estimate 𝜎 
even in case of unknown sample size. For this purpose, one may use, for instance, 
the following estimators of the sample size: 

 𝑛 𝜓
,

𝜓 𝑘 1,  𝑛 𝑘 𝑒𝑥𝑝
,

1. (7A, B) 

The above holds, since: a) 𝔼 𝑁 𝑘,𝑛 𝑘 ∑ 𝑘 𝜓 𝑛 1 𝜓 𝑘 , where 
𝜓 is the digamma function 𝜓 𝑥 Γ′ 𝑥 /Γ 𝑥 , and it has logarithmic asymptotics 
in infinity, and b) 𝑉𝑎𝑟 𝑁 𝑘,𝑛 𝑘 ∑ 𝑘 ∑  is relatively small, as: 
0 𝑉𝑎𝑟 𝑁 𝑘,𝑛 𝔼 𝑁 𝑘,𝑛 . 

3.  Study of the quality of estimators  

3.1.  Comparing estimators 

For a while, let us consider quite general perspective, and let 𝜃  and 𝜃  be two 
estimators of an unknown parameter 𝜃. We assume that we wish to assess which of 
these estimators is “better” than the other. One of the criteria for solving this question 
is the Pitman nearness measure (see Pitman 1937) given as: 

𝐏 𝜃 , 𝜃 𝜃 ℙ  𝜃 𝜃 𝜃 𝜃  , 

which indicates that 𝜃  is Pitman-closer estimator than 𝜃 , if ℙ 𝜃 𝜃 0, 
and 𝐏 𝜃 ,𝜃 𝜃  . The measure is very natural and intuitive, and additionally – as it 
preserves bivariate relation of both estimators, regarded as joint vector 𝜃 ,𝜃  – it is 
very advisable, in contrast to such measures that rely only on univariate (marginal) 
distributions of both compared estimators. 

Therefore, in the sequel we select Pitman nearness criterion as the main one, and we 
use it in every case that provides large enough bivariate sample size, in a sense of 
pairwise completeness. Otherwise, we decide to employ an analogue of the commonly 
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known mean square error. The chosen measure is given by 𝜂 Me 𝜃 𝜃  
for 𝑖 ∈ 1,2 , and we say that 𝜃  is better than 𝜃 , providing that 𝜂 𝜂 . We prefer 
the positional measure to classical ones since this approach is unlimited by incongruity 
to any theoretical assumptions including existence of the high order moments of 
distribution, as long as we consider the 𝛼-stable case (see: Stachura 2017). 

3.2.  Simulation study 

In order to compare estimates of parameter σ based on record value theory with 
several selected estimates based on classical order statistic approach, simulation 
research is executed as follows, in the case of stability index α 2. (The simulation 
research, and additionally all the calculations and plots presented hereunder, are 
accomplished in R environment (R Core Team 2018).) 

Firstly, for a fixed pair of parameters 𝛼 and 𝜎 – taken from arbitrarily chosen 
ranges 𝛼 ∈ 1.8, 1.82, 1.84, 1.86, 1.88, 1.9, 1.92, 1.94, 1.96, 1.98, 1.99 , 𝜎 ∈ 0.01,
0.1, 1, 10, 100  – and 𝛽 0, 𝜇 0, and for a fixed 𝑛 – out of 50, 80, 110   – pseudo-
random i.i.d. sample of size 𝑛 is generated (with the use of the R’s package stabledist by 
Wuertz et al. 2016). The choice of 𝛼’s range is motivated by the reason that the research 
by Stachura and Wodecka (2016), and Wodecka (2016) – including 𝛼’s from 0.1 to 1.9 
by 0.1 step – showed that the values of estimates were alarmingly discrepant near 
𝛼 2, so the authors decided to examine the case of 𝛼 1.8 far more accurately, 
taking a tiny step 0.02. Besides, this new range integrates with 𝛼’s detected in empirical 
research in financial data (just about 1.6 – 1.9 see e.g. Weron 2004). Next, 
a. with respect to formulas (1A), (1A), (2), and the relation 𝛼 1/𝛾, estimators 𝛼 , 

𝛼 , 𝛼  are calculated on the basis of absolute values of a sample, for each possible 
𝑘, which means 𝑘 ∈ 𝐾 1, 2, … , 𝑛/4 1  (𝑘-th records – necessary for 𝛼  – 
are calculated in the R’s package Records by Chrapek 2012) 

b. each estimate 𝛼 , 𝛼 , 𝛼  that is beyond the interval 0, 2 , is rejected and, as 
a consequence, omitted in the sequel (this is the reason why we deal with the already 
mentioned meaningful pairwise incompleteness of bivariate samples of estimates), 

c. for all the other cases – based on formulas (5), (6) – estimates 𝜎 , 𝜎 , 𝜎  are 
computed based on known sample size 𝑛, 

d. concurrently with 𝜎 , considering formulas (7A, B), two additional estimates 𝜎 , 
𝜎  are calculated as if a sample size 𝑛 was unknown. 

Secondly, the previous step is replicated 𝐽 10000 times independently, so that 
for any set of given 𝛼, 𝜎, 𝑛, 𝑘 we get five sequences 𝜎 , 𝜎 , 𝜎 , 𝜎 , 𝜎  of sizes at most 
𝐽 (because of marginal incompleteness). 

Thirdly, we perform “internal” comparative analysis of estimators 𝜎 , 𝜎 , 𝜎 , 𝜎 , 
𝜎  (within these 5 types of estimators separately) in order to indicate the best 𝑘 for any 
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given 𝑛. The Pitman nearness measure is evaluated for any pair of distinct 𝑘 , 𝑘 ∈ 𝐾 , 
given a set of 𝛼, 𝜎, and 𝑛. A demonstrative Table 1 presents values of Pitman nearness 
measure for estimates based on Berred’s approach with known sample size (𝜎 ), with 
fixed 𝑛 50, 𝛼 1.9, 𝜎 1. Tables of Pitman nearness measure for other estimators 
and other values of 𝛼, 𝜎, 𝑛 provide quite similar tables of matrices, whose dimensions 
vary depending on sample sizes. 

Next, all the indications of which 𝑘 provides better (in the sense of being Pitman-
closer estimate) within the same sample size, against other 𝑘’s, are counted up. This 
procedure leads to optimal choices of 𝑘’s for a given estimator type and sample size 𝑛, 
which is presented in Table 2. 

Table 1. Pitman-closer measures, comparing all possible 𝑘’s (order 𝑘  is assigned to the first of 
compared estimators) – selected case of for 𝜎 , 𝑛 50 𝛼 1.9, 𝜎 1. 

𝑘  
𝑘  1 2 3 4 5 6 7 8 9 10 11 

1 - 0.250 0.197 0.170 0.175 0.199 0.247 0.245 0.226 0.406 0.250 
2 0.750 - 0.300 0.295 0.239 0.255 0.290 0.242 0.262 0.346 0.400 
3 0.803 0.700 - 0.323 0.329 0.268 0.444 0.315 0.333 0.438 0.556 
4 0.830 0.705 0.677 - 0.362 0.345 0.399 0.300 0.244 0.474 0.429 
5 0.825 0.761 0.671 0.638 - 0.369 0.414 0.400 0.388 0.280 0.600 
6 0.801 0.745 0.732 0.655 0.631 - 0.517 0.458 0.412 0.478 0.875 
7 0.753 0.710 0.556 0.601 0.586 0.483 - 0.463 0.476 0.382 0.357 
8 0.755 0.758 0.685 0.700 0.600 0.542 0.537 - 0.478 0.444 0.438 
9 0.774 0.738 0.667 0.756 0.612 0.588 0.524 0.522 - 0.500 0.522 

10 0.594 0.654 0.563 0.526 0.720 0.522 0.618 0.556 0.500 - 0.588 
11 0.750 0.600 0.444 0.571 0.400 0.125 0.643 0.563 0.478 0.412 - 

Source: own study. 

Table 2. Optimal choices of 𝑘’s for 5 types of estimators. 

𝒏 50 80 110 

𝜎  5 6 7 
𝜎  10 13 15 
𝜎  8 10 12 
𝜎  10 13 14 
𝜎  10 13 14 

Source: own study. 

Fourthly, we perform “external” comparative analysis of the best estimators of each 
type. In contrast to the “internal” case, we are forced to rely on the previously 
introduced measure 𝜂. For a given sample size, and values of both parameters 𝛼 and 𝜎, 
measures 𝜂 of each estimator are calculated, and then ranked. Demonstrative values of 
these measures, for fixed 𝑛 50, 𝛼 1.9 and all five types of estimators, are gathered 



210                                               M. Stachura, B. Wodecka: k-th record estimator of the scale parameter… 

 

 

in Table 3, while Table 4 includes their corresponding ranks (from 0 – the best to 4 – 
the worst). 

Table 3.  Values of measure 𝜂 – case of 𝑛 50 𝛼 1.9, all 𝜎’s. 

𝝈 0.01 0.1 1 10 100 

𝜎  0.00897 0.08565 1.0553 8.634 85.68 
𝜎  0.00666 0.05361 0.6323 6.975 70.52 
𝜎  0.00467 0.06508 0.5912 5.935 68.1 
𝜎  0.00558 0.05985 0.5223 4.615 59.62 
𝜎  0.00541 0.05804 0.5032 4.393 57.66 

Source: own study. 

Next, within the type of estimator, single ranks are summed up in the whole range 
of σ’s and the sums are ranked (“combined ranks”) as the preconceived approach to 
estimation assumes naturally that the value of parameter 𝜎 is unknown – see the two 
last columns of demonstrative Table 4. 

Finally, within the type of estimator, “combined ranks” are summed up 
simultaneously in the range of all sample sizes and all values of parameter 𝛼 (partial 
illustration of this procedure is contained in Table 5). Again, the sums obtained in this 
way are ranked (“total ranks”). 

Table 4.  Ranks of 𝜂 values – case of 𝑛 50 𝛼 1.9, all 𝜎’s. 

𝝈 0.01 0.1 1 10 100 
sums of 

ranks 
combined 

ranks 
𝜎  4 4 4 4 4 20 4 
𝜎  3 0 3 3 3 12 3 
𝜎  0 3 2 2 2 9 2 
𝜎  2 2 1 1 1 7 1 
𝜎  1 1 0 0 0 2 0 

Source: own study. 

Table 5.  Total ranks of 𝜂 values. 

𝝈 

𝒏
𝟓
𝟎

 
𝜶

𝟏
.𝟖

 

𝒏
𝟓
𝟎

 
𝜶

𝟏
.𝟖
𝟐

 

…
 

𝒏
𝟓
𝟎

 
𝜶

𝟏
.𝟗

 

…
 

𝒏
𝟖
𝟎

 
𝜶

𝟏
.𝟗

 

…
 

𝒏
𝟏
𝟏
𝟎

 
𝜶

𝟏
.𝟗
𝟖

 

𝒏
𝟏
𝟏
𝟎

 
𝜶

𝟏
.𝟗
𝟗

 

sums of 
combined 

ranks 

total 
ranks 

𝜎  4 4 … 4 … 4 … 4 4 130 4 
𝜎  3 2 … 3 … 3 … 3 3 82 3 
𝜎  2 3 … 2 … 1.5 … 2 2 69.5 2 
𝜎  1 1 … 1 … 0 … 0 0 15 0 
𝜎  0 0 … 0 … 1.5 … 1 1 33.5 1 

Source: own study. 
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The reported procedure of making rankings shows that the ‘𝑘-th-record’ estimators 
of the scale parameter are appraised to be the best ones. Interestingly, regardless of quite 
small discrepancies in the values of measure 𝜂, especially good performance 
characterises estimators assuming unknown sample size. 

Moreover, quite similar indications may be noticed globally, with the use of scaled 
measure 𝜂. To do so, every value of 𝜂 is divided by the adequate 𝜎, which allows to carry 
out a comparative analysis of estimates that are obtained for different 𝜎’s. (It is imposed 
by a simple fact that 𝜎𝑋~𝑆 𝛼, 0,0,𝜎  for 𝑋~𝑆 𝛼, 0,0,1 , and any 𝜎 0). Within 
almost all values of 𝛼, the best estimates of the scale parameter are those based on 𝑘-th-
records (see Table 6). Additionally, the total sums of the scaled measure 𝜂 confirm 
previous insights, and accentuate approximate quality level of estimation based on 
Pickands’ and Berred’s approaches. 

Table 6.  Summed values of measure 𝜂 scaled by 𝜎 – within groups of 𝛼’s. 

𝜶 𝝈𝐇 𝝈𝐏 𝝈𝐁 𝝈𝝍 𝝈𝒍 

1.8 11.41176 10.69419 10.63437 9.02193 9.29989 
1.82 11.34495 10.10213 10.58824 9.28663 9.57081 
1.84 12.10306 10.89211 10.28613 8.56202 8.77059 
1.86 12.48158 10.64509 10.39769 8.55502 8.68862 
1.88 13.09939 10.42322 9.78006 7.89665 8.18492 
1.9 13.92617 10.54751 10.10855 9.11400 9.33091 
1.92 13.89563 10.12217 9.98363 9.08145 9.29733 
1.94 13.91820 10.44230 9.94078 8.01853 8.22405 
1.96 14.83072 10.07188 9.39138 8.93096 9.15942 
1.98 15.78266 10.75358 9.93393 8.53742 8.62024 
1.99 19.33139 10.30731 10.04061 8.06486 8.21329 
Total 152.12551 115.00149 111.08538 95.06947 97.36007 

Source: own study. 

4.  Empirical example 

To illustrate how the introduced estimation works in practice we consider electric 
energy prices in Finland quoted in euro at the Nord Pool Spot 
(www.nordpoolgroup.com). The chosen time series represents weekly prices from the 
10th week of 2018 to the 9th week of 2020, which makes the sample size to be 𝑛  104 
(time span of two years). Figure 1 illustrates the mentioned data, and suggests SARMA-
GARCH approach as an appropriate way to model the series. Such types of models are 
effectively applied for electricity market data (see for instance Aiube et al. 2013, 
Stachura and Wodecka 2016). 
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Figure 1. Week electricity prices in Finland. 

Source: own study. 

Amongst several initially estimated models (the R’s package fGarch by Wuertz et 
al. 2020), the SARMA 1,1 GARCH 1,1  occurred to be the best. Its residuals may 
be recognized as a random sample (Wald-Wolfowitz runs test 𝑝-value  0.9147 – 
calculated with use of the R’s package randtests by Caeiro and Mateus 2014) taken from 
normal distribution (Jarque-Bera test 𝑝-value  0.9201, Shapiro-Wilk test 𝑝-value  
0.9945 – both calculated with the use of the R’s package fGarch by Wuertz et al. 2020). 
The detected normality may as well indicate that residuals’ distribution is 𝛼-stable with 
the stability parameter close to 2. 

We decide to approximate the distribution of the residuals with a stable distribution 
𝑆 𝛼, 0, 0,𝜎 . To do so, we fix record order 𝑘  3. As formula (3) holds, we use formula 
(2) for absolute values of the residuals, obtaining 𝛼  1.812339. Then, formula (6) 
yields 𝜎  0.895889. It occurs that such gained approximation is accepted in view of 
two goodness of fit tests (Anderson-Darling test 𝑝-value  0.1051 – calculated with use 
of the R’s package goftest by Faraway et al. 2019, Kolmogorov-Smirnov test 𝑝-value  
0.3532). 

5.  Conclusions 

The presentation of simulation research results gives some straightforward 
conclusions, which are as follows: 
 ‘𝑘-th record’ approach to estimation of the scale parameter 𝜎 is at least as good as 

the other classical methods presented herein (also, or even especially, assuming 
unknown sample size). 

 ‘𝑘-th record’ approach gives globally quite comparable results to Pickands’ 
approach, which should not be surprising, as Berred’s estimator is an analogue of 
Pickands’ one. 
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 Estimation of 𝜎 based on Hill’s estimator is distinctly characterized by the lowest 
stability in the sense that scale parameter estimates become more and more biased 
as stability index 𝛼 tends to 2. 

 ‘𝑘-th record’ approach seems to be “unbeatable” in the region of stability index 𝛼 
very close to 2. 

Concluding in general, it must be also remarked that the insights, hereinbefore 
specified, should be perceived essentially as the advantages of the ‘𝑘-th record’ 
approach over the others presented, since the Berred’s estimator, and the scale 
parameter estimator based on it, may be employed in cases of incomplete information 
about an underlying sample. 

On the one hand, this incompleteness may be very useful if an analysed database 
must stay undisclosed, even for a researcher/statistician working on it, or more, the data 
are only partially recorded (i.e. record values of a proper order or several orders). 
On the other hand, if in contrary an analysed database is absolutely fulfilled and 
disclosed, the ‘𝑘-th record’ approach opens up opportunities to make use of 
permutation methods in order to make repeated estimation that leads to much more 
precise results. Obviously, the key to success in the latter case is that the data correspond 
to i.i.d. random sample. 

However, it should be pointed out that the ‘𝑘-th record’ approach still requires 
a complete recognition of theoretical properties of the ‘𝑘-th record’ estimator of the 
scale parameter, at least in a range of enhancing the results of Wodecka (2016) in the 
context of how fast is the ‘𝑘-th record’ estimators’ convergence. 
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