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The Weibull lifetime model with randomised
failure-free time

Piotr Sulewski1, Magdalena Szymkowiak2

ABSTRACT

The paper shows that treating failure-free time in the three-parameter Weibull distribution
not a constant, but as a random variable makes the resulting distribution much more flexible
at the expense of only one additional parameter.

Key words: Weibull lifetime model, randomised failure-free time, compound Weibull dis-
tributions.

1. Introduction

In the reliability domain we routinely treat time to failure of a particular technical prod-
uct as a random variable. Finding the proper model that fits the reliability data is the main
problem of reliability engineers and applied statisticians. The Weibull distribution, which
has a particular significance in the reliability theory, is named after the Swedish physicist
Waloddi Weibull, who was the first to promote the usefulness of the distribution to model
reliability data sets of widely differing character (see, e.g. Weibull, 1951, and Murthy et al.,
2004).

Recall that the two-parameter Weibull distribution (2pW ) has the following cumulative
distribution function (cdf)

F2pW (t;a,b) = 1− exp
[
−
( t

a

)b
]

for t > 0 (1)

and the probability density function (pdf), based on (1), equal to

f2pW (t;a,b) =
b
a

( t
a

)b−1
exp
[
−
( t

a

)b
]

for t > 0, (2)

where a > 0 and b > 0 are the scale and shape parameters, respectively. The hazard (failure)
rate function (hrf) h(t) = f (t)

P(T>t) =
f (t)

1−F(t) , interpreted as the instantaneous failure rate of a
particular product occurring immediately after the time point t, given that the product has
survived until the time point t, has for 2pW , using (1) and (2), the following form

h2pW (t;a,b) = ba−btb−1 for t > 0.
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It can be increasing, decreasing or constant depending on b > 1, b < 1 or b = 1, respec-
tively. It is easy to note that in the last mentioned case, when b = 1, we get the exponential
distribution, the most standard distribution in the reliability theory, with a constant hazard
rate. It is a well-known fact that the constant hazard rate function h(t) = 1

a characterizes the
family of exponential distribution with scale parameter a.

Further, let us define another reliability function known as the aging intensity function
(aif) in the form

L(t) =
h(t)

1
t
∫ t

0 h(u)du
=

−t f (t)
[1−F(t)] ln[1−F(t)]

for t > 0, (3)

being the ratio of the instantaneous hazard rate to its average and expressing the product
average aging behaviour (see, e.g., Szymkowiak, 2018a). For 2pW it is constant

L2pW (t;a,b) = b for t > 0. (4)

This constant aging intensity L(t) = b characterizes the subfamily of the family of 2pW
with a fixed shape parameter b and varying scale parameter a ( Szymkowiak, 2020). More-
over, the aif equal to 1, L(t) = 1, characterizes the family of exponential distributions.

However, certain lifetime data (i.a., human mortality, machine life-cycles and some bi-
ological studies) require non-monotonic shapes of the hazard rate, e.g., a bathtub shape or a
unimodal (upside-down bathtub) shape. Therefore, many researchers have developed vari-
ous modified forms of the Weibull distribution to achieve non-monotonic shapes of hazard
function, i.a., Drapella, 1993, introduced the complementary Weibull distribution (2pCW ),
known also as the inverse Weibull distribution, with the following cdf

F2pCW (t;a,b) = exp
[
−
(a

t

)b
]

for t > 0.

Further extensive literature is also available on modifications of the standard Weibull
(see, e.g., Murthy et al., 2004, Almaki and Nadarajah, 2014, Lai, 2014), which in some
cases involve one or more additional parameters. For example, the exponentiated Weibull
distribution (2pEW ) with a bathtub hazard rate function has the following cdf

F2pEW (t;a,b,d) =
{

1− exp
[
−
( t

a

)b
]}d

for t > 0

with d > 0 being a new shape parameter ( Mudholkar and Srivastava, 1993).

To be precise, Waloddi Weibull introduced his distribution as a three-parameter model
3pW (known also as the shifted Weibull distribution) with an additional location parameter
τ ≥ 0 and the following cdf

F3pW (t;a,b,τ) = 1− exp

[
−
(

t − τ

a

)b
]

for t > τ, (5)
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pdf, based on (5), equal to

f3pW (t;a,b,τ) =
b
a

(
t − τ

a

)b−1

exp

[
−
(

t − τ

a

)b
]

for t > τ, (6)

and hrf, based on (5) and (6), equal to

h3pW (t;a,b,τ) = ba−b (t − τ)b−1 for t > τ.

Note that for a distribution with support (τ,+∞) we use a modified version of aif, known
as the support dependent aif (see Szymkowiak, 2018b)

Ls(t) =
h(t)

1
t−τ

∫ t
τ

h(u)du
=

(τ − t) f (t)
[1−F(t)] ln[1−F(t)]

, (7)

which for τ = 0 corresponds to the classical definition (3). Then, the subfamily of 3pW
distributions with fixed shape parameter b and location parameter τ , and varying scale pa-
rameter, a is characterized by constant support dependent aif

Ls
3pW (t;a,b,τ) = b for t > τ,

(compare formula (4)).
Figure 1 presents hrf (on the left) and support dependent aif (on the right) of the 3pW (a,b,τ)
for the scale parameter a = 1 and the location parameter τ = 1, and different values of shape
parameter b. As one can note hrf is decreasing for b< 1 and increasing if b> 1. When b= 1,
we get the shifted exponential distribution (see, e.g., Szymkowiak, 2020) with the constant
hrf. On the other hand, the support dependent aging intensity functions, shown in the figure
on the right, are constant, equal to b, for all b > 0.

Figure 1: hrf and aif of the 3pW

Under the assumption of 3pW distribution, none failure of the analysed product can
possibly occur prior to the time τ , therefore the location parameter τ is also referred to as
failure-free time or minimum life.
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In lifetime data analysis, first we try to find the proper model that best fits the data.
Parameter estimation is the second step of our modeling process. In three-parameter Weibull
distribution, the determination of a suitable location parameter τ is not a simple task.

The first and simplest τ estimate is τ̂ = t(1), where t(1) is the smallest value in the order
data set, or τ̂ = t(1)− 1

n , where n is a sample size (see, e.g., Murthy et al., 2004). O’Connor,
2012, suggested an alternative procedure to estimate the location parameter given by

τ̂ = t(2)−
(
t(3)− t(2)

)(
t(2)− t(1)

)(
t(3)− t(2)

)
−
(
t(2)− t(1)

) ,
where further on t(2) and t(3) are the second and third value in the order data set. Drapella,
1999, improved this method and also Kececioglu, 1991, discussed two other methods to
obtain estimates of τ .

In our paper, apart from the fact that we assume that the time to failure follows 3pW dis-
tribution, we also suggest that the failure-free time (location parameter) can be considered
as a new random variable. It allows this parameter to vary and makes the estimation model
more complex.

It is well-known fact (see, e.g., Qutb and Rajhi, 2016) that if X is a random variable
following the known parametrized distribution with pdf fX , and one of its parameters θ is
considered as a new random variable Y with a specified pdf fY then a compound random
variable T has a distribution with the following pdf

fT (t) =
∫

θ

fX (t|θ) fY (θ)dθ for t > 0, (8)

where fX (t|θ) is a conditional density function depending on the parameter θ .
The compound Weibull distribution with random parameters was introduced earlier, e.g.,

by Dubey, 1968, and Qutb and Rajhi, 2016, but as far as we know, its location parameter
has not yet been considered as being random.

The rest of our paper is organized as follows. In Section 2 the compound Weibull life-
time model with random failure free time is defined. In Section 3 four candidates for being
the distribution of the random location parameter are presented. Section 4 contains analysis
of three real lifetime data that compares the defined compound Weibull distributions with
the standard three-parameter one. The conclusions are presented in Section 5.

2. Failure-free time as random variable

In this section the Weibull lifetime model with random failure-free time denoted as
4pWY is defined. Its pdf, according to formula (8), has a form of the convolution integral,
namely

f4pWY (t;a,b,c,d) =
∫ t

0
f3pW (t;a,b,τ) fY (τ;c,d)dτ for t > 0, (9)

where fY is pdf of the failure-free time distribution with parameters c and d. For details
related to the above formula please consult any advanced textbook on probability theory,
e.g. Rossberg et al., 1985.
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Cdf of the 4pWY , based on (9), is given by

F4pWY (t;a,b,c,d) =
∫ t

0

[
1− exp

(
−
(

t − τ

a

)b
)]

FY (τ,c,d)dτ for t > 0, (10)

where FY is cdf of the failure-free time distribution with parameters c and d.
Hrf of the 4pWY , using (9) and (10), is obviously defined as

h4pWY (t;a,b,c,d) =
f4pWY (t;a,b,c,d)

1−F4pWY (t;a,b,c,d)
for t > 0, (11)

and aif of the 4pWY using (11) is given by

L4pWY (t;a,b,c,d) =
h4pWY (t;a,b,c,d)

1
t
∫ t

0 h4pWY (u;a,b,c,d)du
for t > 0. (12)

Regarding the calculations, unfortunately, there will not always be analytical formulas
to which (9)-(12) would be transformed. All applications of the 4pWY lifetime model will
often be numerical. Fortunately, this is not an obstacle these days. Anyone who decides to
use 4pWY to evaluate reliability must be equipped with a powerful computing environment.
Fortunately, we have Excel, Mathcad, Matematica, Matlab, Scilab, and maybe a few other
powerful, less known computing environments.

3. Four candidates for the failure-free time model

Now, four compound Weibull random variables with different distributions of the ran-
dom location parameter will be presented. As the first distribution of the random location
parameter we propose the Uniform distribution U(c,d) giving a smooth transformation from
3pW to the compound Weibull-Uniform distribution 4pWU . As the second very natural
candidate – we propose the Weibull distribution W (c,d). The next one will be the very
popular two-parameter Gamma distribution G(c,d) being the generalization of exponential,
Erlang and chi-square distributions. As the last one we use the Normal distribution N(c,d)
with possibly positive support.

For all the proposed models, their hrf and aif for different parameters are determined
and plotted (using formulas (11) and (12)). Determination of statistical measures of the
presented random variables, such as their ordinary and central moments, quantiles, etc., be-
cause of their complex distribution forms, is possible only with the numerical calculations.

3.1. Compound Weibull-Uniform distribution

The first candidate for the failure-free time model is a Uniform distribution on interval
[c−d,c+d] denoted U (c−d,c+d). For the purposes of the convolution integral (9) we
can write pdf of the U (c−d,c+d) using the Heaviside step function H in the form

fU (t;c,d) =
H (t − c+d)−H (t − c−d)

2d
for t > 0,c ≥ d



64 P. Sulewski, M. Szymkowiak: The Weibull lifetime model...

where c > 0 and d > 0 are the position and scale parameters, respectively, as well as

H (x) =


0 for x < 0
0.5 for x = 0
1 for x > 0.

The Heaviside step function we can write as H (x) =
∫ x
−∞

δ (s)ds, where δ (x) is the
Dirac function. Let us define the Dirac function δ (t;τ) as

δ (t;τ) =

{
0 for t = τ

∞ for t ̸= τ.

The Dirac function fulfils, as any probability distribution, Normalization condition∫
∞

−∞
δ (t;τ)dt = 1. This function can also be defined as the limit of the sequence of

τ - centered Normal distributions, namely

lim
d→0

1√
2πσ

exp

{
−0.5

(
t − τ

σ

)2
}
.

Cdf of the U (c−d,c+d) calculated in the Mathematica software is defined as

FU (t;c,d) = I1 + I2,

where

I1 =
c+d − t − (c+d)H (−c−d)

2b
H (t − c−d) ,

I2 =
−c+d + t +(c−d)H (d − c)

2b
H (t − c+d) .

Let 4pWU(a,b,c,d) denotes the four parameters compound Weibull-Uniform distribu-
tion. Then pdf of this distribution, based on (9), is given by

f4pWU (t;a,b,c,d) =
b

2abd

∫ t

0

H (τ − c+d)−H (τ − c−d)

(t − τ)1−b exp
[( t−τ

a

)b
] dτ for t > 0. (13)

The integral in (13) is possible to be calculated, namely

f4pWU (t;a,b,c,d) = I1 + I2,

where

I1 =
b

2abd

∫ t

0

H (τ − c+d)

(t − τ)1−b exp
[( t−τ

b

)b
]dτ, (14)

I2 =
b

2abd

∫ t

0

H (τ − c−d)

(t − τ)1−b exp
[( t−τ

b

)b
]dτ. (15)
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Using the Mathematica software by (14) we obtain

I1 =
H (t +d − c)

[
1+ exp

[
−
( t+d−c

a

)b
]
[H (d − c)−1]− exp

[
−
( t

a

)b
]

H (d − c)
]

2d

and by (15), we get

I2 =
H (t −d − c)

[
1+ exp

[
−
( t−d−c

a

)b
]
[H (−c−d)−1]− exp

[
−
( t

a

)b
]

H (−c−d)
]

2d
.

It turns out that we can pass from 3pW (6) to 4pWU (13) smoothly. If d → 0, then the
4pWU tends to the 3pW (see Figure 2).

Figure 2: pdf of the 3pW and 4pWU

Cdf of the 4pWU , based on (13), is given by

F4pWU (t;a,b,c,d) =
1

2d

∫ t

0

[
1− exp

[
−
(

t − τ

b

)b
]]

× [H (τ − c+d)−H (τ − c−d)]dτ for t > 0.

Figure 3 presents hrf of the 4pWU(a,b,c,d) for various parameter values. For b = 0.5
(Figure 3, left) hrf increases very quickly and then decreases very slowly. The maximum
shifts to the right as d increases. For d = 0.75 (Figure 3, right) hrf increases slowly and then
decreases very quickly. The maximum shifts to the left as b increases.

Figure 4 presents aif of the 4pWU(a,b,c,d) for various parameter values. For a = 1,
b = 0.5, c = 1 regardless of the parameter d (Figure 4, left), aif (after some fluctuations for
small t) tends to a constant function. For a = 1, c = 1, d = 0.75 regardless of the parameter
b (Figure 4, right), aif decreases for small t and then also tends to a constant function.

To generate data that follows a compound Weibull-Uniform distribution we provide
that if T4pWU ∼ 4pWU (a,b,c,d) and TU ∼U (c−d,c+d) ,T2pW ∼ 2pW (a,b) ,R∼U (0,1)
then generator of T4pWU is given by the formula

T4pWU = T2pW +TU = a [− ln(1−R)]1/b +(c−d)+2dR.
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Figure 3: hrf of the 4pWU

Figure 4: aif of the 4pWU

3.2. Compound Weibull-Weibull distribution

The second candidate for the failure-free time model is the Weibull distribution with pdf
given by formula (2). Let 4pWW (a,b,c,d) denotes the four parameters compound Weibull-
Weibull distribution. Pdf of this distribution, based on (9), is given by

f4pWW (t,a,b,c,d) =
bd
∫ t

0
( t−τ

a

)b−1 ( τ

c

)d−1 exp
[
−
( t−τ

a

)b −
(

τ

c

)d
]

dτ

ac
t > 0. (16)

Cdf of the 4pWW , based on (16), is given by

F4pWW (t,a,b,c,d) =
b
∫ t

0

[
1− exp

[
−
(

τ

c

)d
]]( t−τ

a

)b−1exp
[
−
( t−τ

a

)b
]

dτ

a
t > 0

Figure 5 presents hrf of the 4pWW (a,b,c,d) for various parameter values. For d = 0.5
(see Figure 6, left) the hrf is a decreasing function. In other cases, the hrf increases strongly
and then slowly decreases. The larger the d, the higher the maximum. For b = 2 (see Figure
5, right) we obtain the inverse-bathtub hrf. For b = 1 the hrf is initially an increasing func-
tion and then remains constant.
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Figure 5: hrf of the 4pWW

Figure 6: aif of the 4pWW

Figure 6 presents aif of the 4pWW (a,b,c,d) for various parameter values. For a = 1,
b = 0.5, c = 1 regardless of the parameter d (Figure 6, left), aif decreases for small t and
tends to a constant function. Also, for a = 1, b = 2 or b = 1 and c = 1, regardless of the
parameter d (Figure 6, right), aif decreases for small t and then tends to a constant function.

To generate data that follows a compound Weibull-Weibull distribution we provide that
if T4pWW ∼ 4pWW (a,b,c,d), T2pW1 ∼ 2pW (a,b) ,T2pW2 ∼ 2pW (c,d) ,R ∼ U (0,1) then
the generator of T4pWW is given by the formula

T4pWW = T2pW1 +T2pW2 = a [− ln(1−R)]1/b + c [− ln(1−R)]1/d .

3.3. Compound Weibull-Gamma distribution

The third candidate for the failure-free time model is the Gamma distribution with pdf

fG (t;c,d) =
1

cdΓ(d)
td−1 exp

(
− t

c

)
for t > 0,

where c > 0,d > 0 are the scale and shape parameters, respectively.
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Let 4pWG(a,b,c,d) denote the four-parameters compound Weibull-Gamma distribu-
tion then pdf of this distribution, based on (9), is given by

f4pWG (t;a,b,c,d) =
b
∫ t

0 (t − τ)b−1
τd−1 exp

[
− τ

c −
( t−τ

a

)b
]

dτ

abcdΓ(d)
for t > 0. (17)

Cdf of the 4pWG, based on (17), is given by

F4pWG (t;a,b,c,d) =

∫ t
0 τd−1 exp

[
− τ

c

][
1− exp

[
−
( t−τ

a

)b
]]

dτ

cdΓ(d)
for t > 0.

Decades pass, but the Weibull plotting technique remains irreplaceable in failure data
analysis. Therefore, Figure 7 shows appropriately transformed cdf of the 2pW , 3pW and
4pWG plotted on the Weibull probability paper. Of course, the transformed cdf of 2pW
appears as straight lines. In contrast, both transformed cdf of 3pW and of 4pWG appear
as curves convex upward. As a rule the transformed cdf of 4pWG is less convex then the
transformed cdf of 3pWG.

Figure 7: cdf of the 2pW , 3pW and 4pWG plotted on the Weibull probability paper

Figure 8 has been prepared to express artificiality the stepwise 3pW (denoted as ps0)
and compared it with the smooth 4pWG. Table 1 contains parameter values of the Gamma
component of the 4pWG used in Figure 8.

The 2pW and 3pW offer monotonic hazard rate functions, strictly decreasing or increas-
ing ones, always convex downward. In contrast, 4pWG offers much more flexible hrf that
may be non-monotonic and may have even two points of inflection. The main competitors
of the 4pWG are the Complementary Weibull distribution (see Rossberg et al., 1985) and
LogNormal distribution (see O’Connor, 2012). But they have two-parameter only. Let us
look closely at Figure 8. One can pick up something resembling Moivre-Laplace limit pro-
cess. Let us remember that when p → 0, n → ∞ and pn remains constant, the Binomial
distribution tends to the Poisson distribution. By similarity, when c → 0, d → ∞ and cd
remains constant, then 4pWG tends to 3pW (see Table 1).
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Table 1. Sets of parameters of the Gamma component of the 4pWG

Set of parameters ps0* ps1 ps2 ps3 ps4 ps5 ps6 ps7
c 0.2 0.2 0.1 0.05 0.033 0.025 0.02 0.01
d - 1 2 4 6 8 10 20

Figure 8: hrf of the 4pWG

Figure 9: aif of the 4pWG

Figure 9 presents aif of the 4pWG(a,b,c,d) for various parameter values. For a = 1,
b = 0.5 (Figure 9, left) or a = 1, b = 3 (Figure 9, right), regardless of the parameters c and
d, aif decreases for small t and tends to a constant function.

To generate data that follow a compound Weibull-Gamma distribution we provide that
if T4pWG ∼ 4pWG(a,b,c,d) and TG ∼ G(c,d) ,T2pW ∼ 2pW (a,b) then the generator of
T4pWG is given by the formula

T4pWG = T2pW +TG = a [− ln(1−R)]1/b +TG

The generator of TG, implemented in R software, for d ⩾ 1 and 0 < d < 1 is described
in Ahrens and Dieter, 1982, and Ahrens and Dieter, 1974, respectively.
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3.4. Compound Weibull-Normal distribution

Many researchers may be tempted to replace the Gamma distribution with the Normal
distribution with pdf

fN (t;c,d) =
1√
2πd

exp

[
−0.5

(
t − c

d

)2
]

for t > 0,

where c > 0,d > 0 are the position and scale parameters, respectively (to ensure that Nor-
mal distribution has positive support – the failure-free time should not be negative – using
the three-sigma rule we assume that c > 3.3d). The argument was that when the shape
parameter d increases, then the Gamma distribution tends to the Normal distribution. It
directly proceeds from Lindeberg-Levy Limit theorem. Such a replacement of the Gamma
distribution with the Normal one, has both advantages and disadvantages.

The advantages are:

• Firstly, one can skip this strong assumption that between-two-portions time interval
follows the exponential distribution. Taking the Central Limit Theorem of Lapunov
as a base, one can admit that particular intervals follow different distributions.

• Secondly, applying the Normal distribution as that between-two-portions time interval
distribution, one makes 4pWN more flexible. It is because the mean value E (t) and
variance D(t) of the Gamma distribution are strongly interrelated because E (t) = cd,
D(t) = cd2.

• Thirdly, the problem of interpretation of non-integer d value disappears.

The disadvantages are:

• Firstly, the moments mentioned above are to some extent interrelated. It is because
the value of the coefficient of variation γ0 = D(t)/E (t) has to be carefully chosen
for probability of negative t values to be negligible, for instance γ0 has to be kept not
greater than 1/3.

• Secondly, it is true that the left-censored Normal distribution can alternatively be
applied, and values of E(t) and D(t) can be freely set, but then the threshold function,
that we wanted to eliminate, returns.

Let 4pWN(a,b,c,d) denotes the four-parameters compound Weibull-Normal distribu-
tion. Then, pdf of this distribution, based on (9), is given by

f4pWN (t;a,b,c,d) =
b√

2πad

∫ t

0

(
t − τ

a

)b−1

(18)

× exp

[
−1

2

(
τ − c

d

)2

−
(

t − τ

a

)b
]

dτ for t > 0, c > 3.3d.
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Cdf of the 4pWN, using (18), is given by

F4pWN (t;a,b,c,d) =
b
∫ t

0 Φ
(

τ−c
d

)( t−τ

a

)b−1exp
[
−
( t−τ

a

)b
]

dτ

a
for t > 0, c > 3.3d,

where Φ is cdf of the standard Normal distribution.

Figure 10: hrf of the 4pWN

Figure 11: aif of the 4pWN

Figure 10 presents hrf of the 4pWN(a,b,c,d) for various parameter values. For b = 0.5
(see Figure 10, left) hrf increases very quickly and then decreases very slowly. The maxi-
mum shifts to the right as d increases. Figure (10,right) presents an upside-down bathtub-
shaped hrf except the case b = 1. Then, initially hrf increases and then remains constant.

Figure 11 presents aif of the 4pWN(a,b,c,d) for various parameter values. For a = 1,
b = 0.5, c = 1, regardless of the parameter d (Figure 11, left), aif (after some fluctuations
for small t) tends to the constant function. For a = 1, c = 1, d = 0.25, regardless of the
parameter b (Figure 11, right), aif decreases for small t and tends to the constant function.

To generate data that follows a compound Weibull-Normal distribution we provide that
if T4pWN ∼ 4pWN (a,b,c,d) and TN ∼ N (c,d) ,T2pW ∼ 2pW (a,b) ,R ∼ U (0,1) then the
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generator of T4pWN is given by the formula

T4pWN = T2pW +TN = a [− ln(1−R)]1/b +Φ
−1 (R,c,d) ,

where Φ−1 is the inverse cdf of the Normal distribution implemented in R software (see
Wichura, 1988).

At the end of this section, let us mention that any infinitely divisible (stable) probability
distribution (see Seidel, 2010) with the positive support would be a good candidate for the
failure-free time model. The only problem is to determine basic statistical functions for
such a candidate.

4. Real lifetime data analysis

To demonstrate the flexibility and applicability of the new compound models in lifetime
data analysis we consider three real data examples. Among the known random variables, the
standard 3pW distribution seems to be the most natural choice for comparing the goodness-
of-fit approach of the proposed models.

Example 1 is devoted to 33 operating times (in hours) of the first phase of the construc-
tion machine: 0.25, 9.25, 17.75, 22, 22.25, 22.5, 22.5, 23, 23.25, 30.25, 35.75, 41.75, 42.5,
48.75, 49.75, 51, 58.75, 63, 68.25, 72.5, 75.5, 127.5, 138.5, 140.5, 141, 146.5, 173, 193.5,
218.25, 237.5, 257.75, 312, 352 (see, e.g., Mahmood, 2021, Saffawy and Algmal, 2006).

Example 2 concerns leukaemia free survival times (in months) of 51 autologous trans-
plant patients: 0.658, 0.822, 1.414, 2.500, 3.322, 3.816, 4.737, 4.836, 4.934, 5.033, 5.757,
5.855, 5.987, 6.151, 6.217, 6.447, 8.651, 8.717, 9.441, 10.329, 11.480, 12.007, 12.007,
12.237, 12.401, 13.059, 14.474, 15.000, 15.461, 15.757, 16.480, 16.711, 17.204, 17.237,
17.303, 17.644, 18.092, 18.092, 18.750, 20.625, 23.158, 27.730, 31.184, 32.434, 35.921,
42.237, 44.638, 46.480, 47.467, 48.322, 56.086 (see, e.g., LaiXie, 2006).

Example 3 refers to survival times (in days from diagnosis) of 43 patients suffering
chronic granulocytic leukaemia: 7, 47, 58, 74, 177, 232, 273, 285, 317, 429, 440, 445, 455,
468, 495, 497, 532, 571, 579, 581, 650, 702, 715, 779, 881, 900, 930, 968, 1077, 1109,
1314, 1334, 1367, 1534, 1712, 1784, 1877, 1886, 2045, 2056, 2260, 2429, 2509 (see, e.g.,
Lai and Xie, 2006).

To estimate parameters of the considered models, in addition to commonly known es-
timation tools such as the maximum likelihood (not quite adequate in the case of three-
parameter Weibull distribution, (see e.g. Murthy et al., 2004, Lam, 2010, Ramakrishnan,
2017, Park, 2018) or least squares methods, also goodness-of-fit tests can be used. For ex-
ample, Kendall and Stuart, 1961 presented the minimum chi-square test statistic method in
parameter estimation. Moreover, Weber, 2006, used the minimum Kolmogorov–Smirnov
test statistic method to estimate the distribution parameters. In our analysis we apply the
latter tool.

To avoid local maxima, the optimization routine was run with several different starting
values that are widely scattered in the parameter space. The p-values for a given model
were calculated as follows. Let Θ be the vector of model parameters. Having estimated
parameters vector Θ̂ for a given sample of size n, we calculate test statistics T

(
Θ̂,n

)
. Next,
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we generate 104 samples of size n for the given model with the estimated parameters vector
Θ̂. For each obtained sample s, we calculated the T s

i

(
Θ̂,n

)
. Finally, the p-value is given

by (see e.g. Balakrishnan and Ristic, 2016)

p ≈ #
{

i : T s
i

(
Θ̂,n

)
> T

(
Θ̂,n

)}
10−4

Tables 2–4 present the estimated parameters of the analysed models, test statistics and
p-values (in parentheses) calculated by the Kolmogorov-Smirnow (KS), Anderson-Darling
(AD) and Cramer von Mises (CVM) tests. The lowest statistics values (the highest p-
values) are noted in bold. The determined values show that for all the exemplary lifetime
data sets, there are some compound Weibull distributions that fit better to the data then the
standard three-parameter Weibull distribution 3pW . For the first data set, two tests point
to the compound Weibull-Gamma distribution, 4pWG, as the distribution that best fits the
data, and one test points to the compound Weibull-Weibull distribution, 4pWW , as the best
one (see Table 2). Further, for the second data set, all the tests point to the compound
Weibull-Weibull distribution, 4pWW , as the distribution that best fits the data (see Table 3).
Finally, for the third data set, two tests point to the compound Weibull-Uniform distribution,
4pWU , and one test points at the compound Weibull-Weibull distribution, 4pWW , as the
best models (see Table 4).

Table 2. Goodness-of-fit tests. Example 1
Model Estimated parameters KS AD CVM
3pW â = 96.91, b̂ = 1.045, τ̂ = 0.06 0.1(0.864) 0.543(0.698) 0.082(0.673)

4pWU â = 90.48, b̂ = 0.92, ĉ = 5.76, d̂ = 5.81 0.094(0.910) 0.513(0.727) 0.062(0.810)
4pWW â = 90.90, b̂ = 0.93, ĉ = 4.71, d̂ = 0.79 0.095(0.901) 0.496(0.747) 0.067(0.764)
4pWG â = 80.90, b̂ = 0.69, ĉ = 4.99, d̂ = 2.87 0.083(0.962) 0.660(0.586) 0.045(0.901)
4pWN â = 91.15, b̂ = 0.93, ĉ = 5.55, d̂ = 0.92 0.094(0.913) 0.994(0.359) 0.064(0.793)

Table 3. Goodness-of-fit tests. Example 2
Model Estimated parameters KS AD CVM
3pW â = 15.92, b̂ = 1.20, τ̂ = 0.64 0.076(0.910) 0.673(0.580) 0.071(0.746)

4pWU â = 15.56, b̂ = 1.29, ĉ = 0.48, d̂ = 0.50 0.071(0.945) 0.542(0.713) 0.065(0.797)
4pWW â = 13.90, b̂ = 1.32, ĉ = 0.36, d̂ = 0.28 0.070(0.946) 0.469(0.778) 0.062(0.802)
4pWG â = 14.64, b̂ = 1.12, ĉ = 1.77, d̂ = 0.99 0.074(0.928) 0.573(0.678) 0.066(0.776)
4pWN â = 15.50, b̂ = 1.17, ĉ = 1.03, d̂ = 0.21 0.075(0.921) 0.836(0.459) 0.070(0.759)

Table 4. Goodness-of-fit tests. Example 3
3pW â = 993.19, b̂ = 1.18, τ̂ = 4.37 0.08(0.928) 0.435(0.812) 0.048(0.891)

4pWU â = 984.62, b̂ = 1.18, ĉ = 4.85, d̂ = 4.5 0.077(0.949) 0.431(0.834) 0.047(0.908)
4pWW â = 993.61, b̂ = 1.18, ĉ = 0.96, d̂ = 1.5 0.077(0.943) 0.392(0.866) 0.046(0.901)
4pWG â = 957.54, b̂ = 1.18, ĉ = 3.55, d̂ = 0.4 0.088(0.863) 0.403(0.847) 0.047(0.892)
4pWN â = 991.98, b̂ = 1.17, ĉ = 4.94, d̂ = 0.6 0.077(0.941) 0.428(0.817) 0.046(0.904)
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5. Conclusions

In the paper, the failure-free time, being the location parameter of the shifted Weibull
distribution, was proposed to be treated as a random variable. We defined four compound
Weibull distributions with the location parameter having Uniform, Weibull, Gamma and
Normal distribution, respectively. Using these proposed models the analysis of three real
lifetime data sets were performed. The received results showed that the new models fit
better the data under consideration that the standard three-parameter Weibull distribution.

However, anyone who will decide to use any of the proposed compound Weibull dis-
tributions in data analysis has to be equipped with a powerful computational environment.
Luckily, nowadays it is not a problem since we have Excel, Mathcad, Mathematica, Matlab,
Scilab and maybe some other not so widely known computational tools.
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