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Zero-modified Poisson-Modification of Quasi Lindley
distribution and its application

Ramajeyam Tharshan1, Pushpakanthie Wijekoon2

ABSTRACT

The Poisson-Modification of Quasi Lindley (PMQL) distribution is a newly introduced mixed
Poisson distribution for over-dispersed count data. The aim of this article is to introduce the
Zero-modified PMQL (ZMPMQL) distribution as an alternative to the PMQL distribution
in order to accommodate zero inflation/deflation. The method of obtaining the ZMPMQL
distribution jointly with some of its important properties, namely the probability mass and
distribution functions, mean, variance, index of dispersion, and quantile function are pre-
sented. Furthermore, some of its special cases are discussed. The maximum likelihood
(ML) estimation method is used for the unknown parameter estimation. A simulation study
is conducted in order to evaluate the asymptotic theory of the ML estimation method and
to show the superiority of the ML method over the method of moments estimation. The
applicability of the introduced distribution is illustrated by using a real-world data set.

Key words: over-dispersion, mixed Poisson distribution, PMQL distribution, zero modifi-
cation, maximum likelihood estimation

1. Introduction

The Poisson distribution is the most commonly used distribution for modelling count
data. One of the important properties of the Poisson distribution is that the mean and vari-
ance of the random variable are equal. This property is commonly referred as to equidisper-
sion. However, in some real-world applications, especially actuarial, biomedical, engineer-
ing, ecological sciences, and others, observed data do not obey the equidispersion property.
Here, the variance of the observed data exceeds the mean. This phenomenon is called over-
dispersion (Greenwood and Yule, 1920). In such a situation, the mixed Poisson distributions
are often adopted for modelling the count data as an alternative to the Poisson distribution.
The literature provides various mixed Poisson distributions as negative binomial/Poisson-
gamma (Greenwood and Yule, 1920), Poisson-Gamma product ratio (Irwin, 1975), Poisson-
Generalized gamma (Albrecht, 1984), Poisson-Lindley (Sankaran, 1970), Poisson-Sujatha
(Shanker, 2016c), Poisson-Quasi Lindley (Grine et al., 2017) distributions, among others.

Even though such mixed Poisson distributions can accommodate the longer right-tails
and observed over-dispersion by heterogeneous populations, they do not perform well for
observed over-dispersion by zero-inflation/deflation. To tackle this problem, the researchers
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have proposed several zero-modified mixed Poisson distributions. Here, we point out some
notable examples for the zero-modified mixed Poisson distributions. Greenwood and Yule
(1920) described the zero-inflated negative binomial (ZINB) distribution; Ghitany et al.
(2008) proposed the Zero-truncated Poisson-Lindley distribution; Silva et al. (2018) intro-
duced the Zero-modified Poisson-Sujatha distribution; Xavier et al. (2018) proposed the
Zero-modified Poisson-Lindley (ZMPL) distribution.

Recently, Tharshan and Wijekoon (2021) introduced a lifetime distribution, namely the
Modification of Quasi Lindley (MQL) distribution. Its probability density function (pdf) is
given as

fY (y;θ ,α,δ ) =
θe−θy

(α3 +1)Γ(δ )

(
Γ(δ )α3 +(θy)δ−1

)
;y > 0,θ > 0,α3 >−1,δ > 0, (1)

where α and δ are shape parameters and θ is a scale parameter, and y is the respective
random variable. Equation (1) presents the mixture of two non-identical distributions, ex-

ponential (θ), and gamma (δ ,θ) with the mixing proportion, p =
α3

α3 +1
. Then, the same

authors (Tharshan and Wijekoon, 2022) obtained the Poisson-Modification of Quasi Lindley
(PMQL) distribution by amalgamating the Poisson distribution and the MQL distribution.
Its explicit form of the probability mass function (pmf) and some other important statistics
are given in Section 2.

This paper aims to modify the PMQL distribution at zero probability to adopt the sit-
uation with an excessive number of zeros or a smaller number of zeros. The new distri-
bution will be called the Zero-modified PMQL (ZMPMQL) distribution. The ZMPMQL
distribution’s unknown parameters will be estimated by the maximum likelihood estimation
method. Further, the asymptotic property of the estimation method will be evaluated by a
Monte Carlo simulation study.

This paper is structured as follows. Section 2 briefly presents the PMQL distribution
and some of its statistical properties. In Section 3, we introduce the ZMPMQL distribution
with some of its important structural properties. Its quantile function is discussed in Section
4. Section 5 covers the simulation of the random variables and the maximum likelihood
estimator (MLE) for the ZMPMQL distribution. Section 6 studies the asymptotic property
of the MLE and the applicability of the ZMPMQL distribution by designing a Monte Carlo
simulation study and using a real-world data set, respectively.

2. PMQL distribution

Suppose the random variable X |Λ is said to have the Poisson distribution with parameter
λ . Then, its pmf can be written as

fX |Λ(x|λ ) =
e−λ λ x

x!
; x = 0,1,2, ..., λ > 0. (2)

As defined by Tharshan and Wijekoon (2022), the PMQL distribution is the resultant
distribution of X by assuming the Poisson parameter λ to be followed the MQL distribution.
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Its pmf is given as

fX (x) =
θ

(
Γ(δ )Γ(x+1)α3(1+θ)δ−1 +θ δ−1Γ(x+δ )

)
x!(α3 +1)(1+θ)x+δ Γ(δ )

; (3)

x = 0,1,2, ...,θ > 0,δ > 0,α3 >−1.

It can be shown that equation (3) represents a two-component mixture of geometric ( θ

1+θ
)

and negative binomial (δ , 1
1+θ

) with the mixing proportion p = α3

α3+1 .
Its corresponding cumulative distribution function (cdf) is given as

FX (x) =
x

∑
t=0

f (x) =

δ (1+θ)δ−1Γ(δ )α3Γ(x+1)((1+θ)x+1 −1)+θ δ Γ(x+δ +1)2F1(1,x+δ +1;δ +1; θ

1+θ
)

(α3 +1)Γ(δ )x!δ (1+θ)x+δ+1
(4)

;x = 0,1,2, ...,θ > 0,δ > 0,α3 >−1,

where 2F1(c,d;r;w) is the Gaussian hypergeometric function defined as

2F1(c,d;r;w) =
∞

∑
i=0

(c)i(d)iwi

(r)ii!
,

which is a special case of the generalized hypergeometric function given by the expression

aFb(p1, p2, ...pa;q1,q2, ...qb;w) =
∞

∑
i=0

(p1)i...(pa)iwi

(q1)i...(qb)ii!
,

and (p)i =
Γ(p+i)

Γ(p) = p(p+1)...(p+ i+1) is the Pochhammer symbol.

Tharshan and Wijekoon (2022) showed that its rth factorial moment is given as

µ
′
(r) =

Γ(δ )Γ(r+1)α3 +Γ(δ + r)
(α3 +1)Γ(δ )θ r . (5)

By using the following relationship

µ
′
r = E(X r) =

r

∑
i=0

S(r, i)µ
′
(i) ; r = 1,2, ...,

where S(r, i) is the Stirling numbers of the second kind, which is defined as

S(r, i) =
1
i!

i

∑
j=0

(−1)i− j
(

i
j

)
jr , 0 < i < r,

they have obtained the raw moments of X . Then, they have shown that its mean and variance
are

µ(PMQL) =
α3 +δ

(α3 +1)θ
, and σ

2
(PMQL) = µ(PMQL)+µ

2
(PMQL)

(
α3(α3 +2+δ (δ −1))+δ

(α3 +δ )2

)
,



116 R. Tharshan, P. Wijekoon: Zero-modified Poisson-Modification of Quasi Lindley...

respectively. Its index of dispersion (ID) was derived as

ID(PMQL) =
σ2
(PMQL)

µ(PMQL)
= 1+

α3(α3 +2+δ (δ −1))+δ

(α3 +1)(α3 +δ )θ
. (6)

It is clear that the ID(PMQL) > 1. Then, equation (6) implies that the PMQL distribution
is an over-dispersed distribution. Further, the authors derived 2nd , 3rd , and 4th raw moments
of the PMQL distribution as

µ
′
2 =

θ(α3 +δ )+2α3 +δ (δ +1)
(α3 +1)θ 2 ,

µ
′
3 =

θ 2(α3 +δ )+3θ(2α3 +δ (δ +1))+6α3 +δ (δ +1)(δ +2)
(α3 +1)θ 3 ,

µ
′
4 =

1
(α3 +1)θ 4

(
θ

3(α3 +δ )+7θ
2(2α

3 +δ (δ +1))+6θ(6α
3 +δ (δ +1)(δ +2))

+24α3 +δ (δ +1)(δ +2)(δ +3)
)

.

3. Zero-modified PMQL distribution

The pmf of a zero-modified count distribution is given as

fX (x) =

{
φ +(1−φ)g(0) for x = 0

(1−φ)g(x) for x = 1,2, ...,

where g(.) is the pmf of the parent count distribution and the parameter φ is the zero-
modified parameter. Then, the random variable X is said to have the ZMPMQL (φ ,θ ,α,δ )

if its pmf is given as

fX (x) =


φ +(1−φ)

θ((1+θ)δ−1α3 +θ δ−1)

(α3 +1)(1+θ)δ
for x = 0

(1−φ)

θ

(
Γ(δ )Γ(x+1)α3(1+θ)δ−1 +θ δ−1Γ(x+δ )

)
x!(α3 +1)(1+θ)x+δ Γ(δ )

for x = 1,2, ...,

(7)

where δ > 0,θ > 0,α3 >−1, and θ((1+θ)δ−1α3+θ δ−1)

θ δ−(1+θ)δ−1(1+θ+α3)
≤ φ ≤ 1.

The corresponding cdf is given as

F(ZMPMQL)(x) = φ +(1−φ)FX (x), (8)
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where FX (x) is the cdf of the PMQL distribution, which is defined in equation (4).

Note that equation (7) is not a finite mixture model since φ can take negative values. Fur-
ther, various φ values adopt various zero-modifications of the PMQL distribution.

Remarks:

(i) When φ = θ((1+θ)δ−1α3+θ δ−1)

θ δ−(1+θ)δ−1(1+θ+α3)
, the ZMPMQL distribution reduces to the zero-truncat

-ed PMQL distribution. Here, φ no longer appears. The zero-truncated models are
commonly used to study the length of hospital stay.

(ii) For θ((1+θ)δ−1α3+θ δ−1)

θ δ−(1+θ)δ−1(1+θ+α3)
< φ < 0, the ZMPMQL distribution reduces to the zero-

deflated PMQL distribution, and zero-deflated models are very rare in practice.

(iii) When φ = 0, the ZMPMQL distribution is the PMQL distribution.

(iv) For 0 < φ < 1, the ZMPMQL distribution reduces to the zero-inflated PMQL distri-
bution. This can accommodate more zeros than the actual PMQL distribution.

(v) When φ = 1, the ZMPMQL distribution is degenerated at zero, i.e. all probabilities of
the distribution are concentrated at zero.

The pmf of the ZMPMQL distribution is shown in Figure 1. We can observe that the
parameter φ controls the observed counts of zeros.

The mean, variance, and index of dispersion of the ZMPMQL distribution are given,

µ(ZMPMQL) = (1−φ)µ(PMQL), σ2
(ZMPMQL) = (1−φ)

(
σ2
(PMQL)+φ µ2

(PMQL)

)
and

ID(ZMPMQL) =
σ2
(PMQL)

µ(PMQL)
+φ µ(PMQL) = ID(PMQL)+φ µ(PMQL),

respectively, where µ(PMQL), σ2
(PMQL), and ID(PMQL) are mean, variance, and index of dis-

persion of the PMQL distribution, respectively. Further, the 2nd , 3rd , and 4th raw moments
of the ZMPMQL distribution are (1−φ)µ

′
2, (1−φ)µ

′
3, and (1−φ)µ

′
4, respectively, where

µ
′
2, µ

′
3, and µ

′
4 are 2nd , 3rd , and 4th raw moments of the PMQL distribution, respectively

discussed in Section 2.
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Figure 1: The pmf of the ZMPMQL distribution at different parameter values of φ ,θ ,α,
and δ

4. Quantile function

The uth quantile of the ZMPMQL distribution can be derived by solving F(xu) = u for
0 < u < 1. It is defined as

φβ1(xu)+(1−φ)

(
β2(xu)+θ

δ
Γ(xu+δ +1)2F1((1,xu+δ +1;δ +1;

θ

1+θ

)
−uβ1(xu)= 0,

(9)
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where

β1(xu) = (α3 +1)Γ(δ )xu!δ (1+θ)xu+δ+1,

and

β2(xu) = δ (1+θ)δ−1Γ(δ )α3Γ(xu +1)((1+θ)xu+1 −1).

Since equation (9) is not a linear function with respect to xu, the estimates of quantiles
can be evaluated by using the Newton Raphson method. Further, the first three quantiles can
be found by substituting u = 0.25, 0.50, and 0.75 in equation (9) and solving the respective
non-linear equations.

5. Simulation and parameter estimation

5.1. Simulation of random variables

Here, we provide an algorithm to simulate the random variables x1,x2, ...,xn from the
ZMPMQL (φ ,θ ,α,δ ) with size n based on the inverse transform method.

Algorithm

i Simulate random variables, Ui ∼uniform(0,1); i = 1,2, ...,n.

ii Solve the non-linear equation for [xui ];

φβ1(xui)+(1−φ)

(
β2(xui)+θ δ Γ(xui +δ +1)2F1((1,xui +δ +1;δ +1; θ

1+θ

)
−uiβ1(xui)

= 0, where β1(xui) and β2(xui) are defined as in Section 4. Further, [.] denotes the integer
part.

5.2. Parameter estimation of the ZMPMQL distribution

This subsection presents the unknown parameter estimation of the ZMPMQL distribu-
tion based on the method of moments and the maximum likelihood estimation method.

5.2.1 Method of moments estimator (MME)

Let x1,x2, ...,xn be a random sample of size n from the ZMPMQL distribution. Then,
the method of moments estimators of φ ,θ ,α, and δ , abbreviated as φ̂MME , θ̂MME , α̂MME ,

and δ̂MME are found by equating the first four raw moments, µ
′
r (r = 1,2,3,4) to the sample

moments, say

n

∑
i=1

xi

n
,r = 1,2,3,4, and solving the system of non-linear equations. The

system of non-linear equations are as follows:

n(1−φ)(α3 +δ )− (α3 +1)θ
n

∑
i=1

xi = 0,
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n(1−φ)

(
θ(α3 +δ )+2α3 +δ (δ +1)

)
− (α3 +1)θ 2

n

∑
i=1

x2
i = 0,

n(1−φ)

(
θ 2(α3 +δ )+3θ(2α3 +δ (δ +1))+6α3 +δ (δ +1)(δ +2)

)

−(α3 +1)θ 3
n

∑
i=1

x3
i = 0,

n(1−φ)

(
θ 3(α3 +δ )+7θ 2(2α3 +δ (δ +1))+6θ(6α3 +δ (δ +1)(δ +2))

+24α3 +δ (δ +1)(δ +2)(δ +3)
)
− (α3 +1)θ 4

n

∑
i=1

x4
i = 0.

5.2.2 Maximum likelihood estimator (MLE)

Given a random sample x1,x2, ...,xn with size n from the ZMPMQL(φ ,θ ,α,δ ), the
likelihood function of the ith sample value xi is given as

L(φ ,θ ,α,δ |xi) =

(
φ +(1−φ)

θ((1+θ)δ−1α3 +θ δ−1)

(α3 +1)(1+θ)δ

)I(X=0)(xi)

×

(
(1−φ)

θ(Γ(δ )Γ(xi +1)α3(1+θ)δ−1 +θ δ−1Γ(xi +δ )

xi!(α3 +1)(1+θ)xi+δ Γ(δ )

)(1−I(X=0)(xi))

,

where IS(.) is the indicator function of subset S. Then, the log-likelihood function is given
as

ℓ(φ ,θ ,α,δ |x) =

n0log
(

φ +(1−φ)
θ((1+θ)δ−1α3 +θ δ−1)

(α3 +1)(1+θ)δ

)
+(n−n0)log

(
(1−φ)θ

(α3 +1)Γ(δ )

)
+

n

∑
i=1

(1− I(X=0)(xi))

(
log
(

Γ(δ )Γ(xi +1)α3(1+θ)δ−1 +θ
δ−1

Γ(xi +δ )

)
−

log
(

xi!(1+θ)xi+δ

))
,

where n0 =
n

∑
i=1

I(X=0)(xi), which is the zero counts of the sample.

The score functions are:

∂ℓ(φ ,θ ,α,δ |x)
∂φ

=
T1

T2
− n−n0

1−φ
,
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∂ℓ(φ ,θ ,α,δ |x)
∂θ

=

n0(1−φ)

(
T3 −T4

)
(1+θ)δ T2

+
n−n0

θ
+

n

∑
i=1

(1− I(X=0)(xi))
T5

T6
−

n

∑
i=1

(1− I(X=0)(xi))
(xi +δ )

1+θ
,

∂ℓ(φ ,θ ,α,δ |x)
∂α

=

T7

(α3 +1)T2
− 3α2(n−n0)

α3 +1
+

n

∑
i=1

(1− I(X=0)(xi))
3α2Γ(δ )Γ(xi +1)(1+θ)δ−1

T6
,

and

∂ℓ(φ ,θ ,α,δ |x)
∂δ

=

n0(1−φ)θ

(
T8 −T9

)
(1+θ)δ T2

− (n−n0)(ψ(δ )+ log(1+θ))+
n

∑
i=1

(1− I(X=0)(xi))
T10 +T11

T6
,

where

T1 = n0((α
3 +1)(1+θ)δ −θ((1+θ)δ−1α3 +θ δ−1)),

T2 = φ(α3 +1)(1+θ)δ +(1−φ)θ((1+θ)δ−1α3 +θ δ−1),

T3 = (1+θ)δ (α3(θ(δ −1)(1+θ)δ−2 +(1+θ)δ−1)+δθ δ−1),

T4 = θ((1+θ)δ−1α3 +θ δ−1)δ (1+θ)δ−1,

T5 = Γ(δ )Γ(xi +1)α3(δ −1)(1+θ)δ−2 +(δ −1)θ δ−2Γ(xi +δ ),

T6 = Γ(δ )Γ(xi +1)α3(1+θ)δ−1 +θ δ−1Γ(xi +δ ),

T7 = n0(1−φ)θ((α3 +1)(3α2(1+θ)δ−1)−3α2((1+θ)δ−1α3 +θ δ−1)),

T8 = (1+θ)δ (α3(1+θ)δ−1log(1+θ)+θ δ−1log(θ)),

T9 = ((1+θ)δ−1α3 +θ δ−1)(1+θ)δ log(1+θ),

T10 = Γ(xi +1)α3(Γ(δ )(1+θ)δ−1log(1+θ)+(1+θ)δ−1Γ(δ )ψ(δ )),

and

T11 = Γ(xi +δ )θ δ−1log(θ)+θ δ−1Γ(xi +δ )ψ(xi +δ ).

By setting the score functions equal to zero and solving the system of non-linear equa-
tions, the MLEs of φ , θ , α, and δ abbreviated as φ̂MLE , θ̂MLE , α̂MLE , and δ̂MLE can be
derived. The system of non-linear equations with respect to the parameters can be solved
by the Newton Raphson method. Here, the solutions of the parameter estimates will be
obtained by using the optim function in the R package stats.
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The asymptotic confidence intervals for the parameters φ , θ , α, and δ are derived
by the asymptotic theory. The estimates are asymptotic four-variate normal with mean
(φ , θ , α, δ ) and the observed information matrix is

I(φ ,θ ,α,δ ) =



− ∂ 2ℓ

∂φ 2 − ∂ 2ℓ

∂φ∂θ
− ∂ 2ℓ

∂φ∂α
− ∂ 2ℓ

∂φ∂δ

− ∂ 2ℓ

∂θ∂φ
− ∂ 2ℓ

∂θ 2 − ∂ 2ℓ

∂θ∂α
− ∂ 2ℓ

∂θ∂δ

− ∂ 2ℓ

∂α∂φ
− ∂ 2ℓ

∂α∂θ
− ∂ 2ℓ

∂α2 − ∂ 2ℓ

∂α∂δ

− ∂ 2ℓ

∂δ∂φ
− ∂ 2ℓ

∂δ∂θ
− ∂ 2ℓ

∂δ∂α
− ∂ 2ℓ

∂δ 2


at φ = φ̂MLE ,θ = θ̂MLE ,α = α̂MLE , and δ = δ̂MLE .

That is (φ̂MLE , θ̂MLE , α̂MLE , δ̂MLE) ∼ N4((φ ,θ ,α,δ ), I−1(φ ,θ ,α,δ )). Since the mathe-
matical expressions of the second order partial derivatives of the log-likelihood function are
very long, we do not present the elements of the observed information matrix, I(φ ,θ ,α,δ ).

Therefore, (1−a)100% confidence intervals for the parameters φ ,θ ,α, and δ are given
by

φ̂MLE ± za/2

√
Var(φ̂MLE), φ̂MLE ± za/2

√
Var(φ̂MLE),

α̂MLE ± za/2
√

Var(α̂MLE), δ̂MLE ± za/2

√
Var(δ̂MLE),

where the Var(φ̂MLE),Var(θ̂MLE),Var(α̂MLE), and Var(δ̂MLE) are the variance of φ̂MLE ,

θ̂MLE , α̂MLE , and δ̂MLE , respectively. They can be derived by the diagonal elements of
I−1(φ ,θ ,α,δ ) and za/2 is the critical value at a level of significance.

6. Monte Carlo simulation study and real-world application

6.1. Monte Carlo simulation study

Here, we evaluate the performance of the MLEs (φ̂MLE , θ̂MLE , α̂MLE , and δ̂MLE ) and
MMEs (φ̂MME , θ̂MME , α̂MME , and δ̂MME ) with respect to the sample size n by designing a
simulation study. We consider sample sizes of 60, 100, 200, and 300, and the simulation is
repeated 1000 times. The simulation study is designed as follows:

(i) Simulate 1000 samples of size n.

(ii) Compute the MLEs and MMEs for the 1000 samples, say (φ̂i, θ̂i, α̂i, δ̂i), i = 1,2, ...,
1000.

(iii) Compute the average MLEs, MMEs, biases, and mean square errors (MSEs) by using
the following equations:

Ŝ(n) = 1
1000 ∑

1000
i=1 Ŝi, biasS(n) = 1

1000 ∑
1000
i=1 (Ŝi −S),
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MSES(n) = 1
1000 ∑

1000
i=1 (Ŝi −S)2, for S = φ ,θ ,α,δ , and n = 60,100,200,300.

Tables A1 and A2 present the performance of the MLEs and MMEs of φ ,θ ,α, and δ for
different values of φ which are -0.4,-0.2,0.2, and 0.4. Here, the population values of θ ,α,

and δ are 0.10,0.50, and 2.50, respectively. Note that here the average MSEs are presented
in parentheses in both tables. We can observe that in both estimation methods, the biases
and MSEs decrease as n increases for all parameters in all given situations. This implies
that the maximum likelihood estimation method and the method of moments estimation
verify the asymptotic property for all given parameter estimates. Further, when comparing
the performance of the MLEs and MMEs based on the estimators’ biases and MSEs, it is
clear that the maximum likelihood estimation method is better than the method of moment
estimation.

6.2. Real-world application

This subsection is devoted to show the applicability of the ZMPMQL distribution over
the negative binomial (NB), Zero-modified NB (ZMNB), Poisson-Lindley (PL), Zero-modifi
-ed PL (ZMPL), and PMQL distributions. The best-fitted distribution is selected based on
the negative log-likelihood (−2logL), Akaike information criterion (AIC), and chi-square
goodness of fit test statistic (χ2). Further, the maximum likelihood estimation method is
used to estimate the unknown parameters of the distributions.

The example data set presents the number of units of consumers’ goods purchased by
households over 26 weeks (Lindsey, 1995). The proportion of the zeros in the data set is
80.60%, which indicates that there exists inflation of zeros. The sample dispersion index of
4.761 shows that extreme over-dispersion is present. Further, the skewness and excess kur-
tosis of the data are 3.895 and 16.306, respectively. These results imply that the distribution
of the data set is highly positively skewed having a very long right tail. Table 1 summa-
rizes the comparability of the ZMPMQL distribution with the NB, ZINB, PL, ZMPL, and
PMQL distributions. Based on the results, the ZMPMQL distribution having AIC=3419.95,
χ2 = 12.22, p-value=0.06 gives a better fit than the other distributions. Further, when we
compare the PMQL distribution and the ZMPMQL distribution, the likelihood ratio (LR)
test statistic for the hypothesis testing H0 : φ = 0 vs Ha : φ ̸= 0 for this data set is 50.50,
and it is greater than χ2

1,0.05 = 3.84. Then, the parameter estimate φ̂ is significantly different
from zero.
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Table 1. Units of consumers good

Counts Observed Expected
NB ZINB PL ZMPL PMQL ZMPMQL

0 1612 1239.62 1617.92 1272.56 1611.94 1585.72 1611.78
1 164 240.36 146.26 470.84 122.00 207.56 165.09
2 71 130.05 80.89 168.06 88.57 45.30 74.66
3 47 85.41 50.02 58.50 61.44 32.99 39.88
4 28 61.04 32.56 19.99 41.33 33.90 26.36
5 17 45.74 21.83 6.73 27.20 30.93 20.24
6 12 35.33 14.93 2.24 17.59 24.36 16.34
7 12 27.88 10.34 0.74 11.23 16.90 13.03
8 5 22.35 7.24 0.24 7.10 10.53 10.03
9 7 18.12 5.11 0.07 4.45 5.97 7.41

10 25 94.10 12.90 0.03 7.15 5.84 15.18
Total 2000 2000 2000 2000 2000 2000 2000

β̂ = 0.21 φ̂ = 0.33 θ̂ = 2.33 φ̂ = 0.73 θ̂ = 7.00 φ̂ =−0.61
(0.21) (0.30) (0.07) (0.01) (0.67) (0.03)

α̂ = 0.12 β̂ = 0.23 θ̂ = 0.75 α̂ = 2.12 θ̂ = 1.45
MLE (0.01) (0.04) (0.04) (0.07) (0.25)

α̂ = 0.20 δ̂ = 32.88 α̂ = 1.78
(0.13) (2.81) (0.11)

δ̂ = 8.51
(1.32)

χ2 311.64 18.86 17992.93 77.89 110.99 12.22
p-value 0.00 0.01 0.00 0.00 0.00 0.06
−2logL 3800.90 3427.16 4216.21 3455.33 3462.45 3411.95

AIC 3804.90 3433.16 4218.21 3459.33 3468.45 3419.95

7. Conclusion

In this article, the zero-modified Poisson-Modification of Quasi Lindley distribution was
introduced to model the over-dispersed count data having zero inflation/deflation. We de-
rived some of its structural properties. Further, in order to estimate its unknown parameters,
we derived its log-likelihood function and score functions. We showed that the maximum
likelihood estimation method is a suitable method to estimate its unknown parameters via a
Monte Carlo simulation study. The usefulness of the introduced distribution was illustrated
by fitting it to a real-world data set. The results revealed its superiority over some other
existing mixed Poisson and zero-modified mixed Poisson distributions.
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Appendix

Table A1. Performance of MLEs for ZMPMQL(φ ,θ = 0.10,α = 0.50,δ = 2.25)
n = 60 n = 100 n = 200 n = 300

MLE Bias MLE Bias MLE Bias MLE Bias
(MSE) (MSE) (MSE) (MSE)

φ =−0.40
φ -0.0313 0.3686 -0.0770 0.3229 -0.0950 0.3049 -0.1328 0.2671

(0.1402) (0.1092) (0.1043) (0.0809)
θ 0.0373 -0.0626 0.0629 -0.0370 0.0865 -0.0134 0.0916 -0.0083

(0.0040) (0.0030) (0.0026) (0.0019)
α 0.5429 0.0429 0.5359 0.0359 0.4820 -0.0179 0.4903 -0.0096

(0.0933) (0.0710) (0.0379) (0.0333)
δ 0.9333 -1.5666 1.1108 -1.3891 1.1776 -1.3223 1.2210 -1.2789

(2.6203) (2.3570) (2.0278) (1.8462)
φ =−0.20

φ -0.0566 0.1433 -0.0818 0.1181 -0.0975 0.1024 -0.1129 0.0870
(0.0242) (0.0291) (0.0118) (0.0097)

θ 0.0451 -0.0548 0.0848 -0.0151 0.0912 -0.0087 0.0961 -0.0038
(0.0035) (0.0025) (0.0018) (0.0009)

α 0.5629 0.0629 0.5900 0.0900 0.4547 -0.0452 0.4701 -0.0298
(0.1958) (0.1790) (0.0805) (0.0412)

δ 1.0944 -1.4055 1.2009 -1.2990 1.3474 -1.1525 1.4268 -1.0731
(2.2541) (1.9939) (1.6011) (1.2742)

φ = 0.20
φ 0.2582 0.0582 0.2427 0.0427 0.2257 0.0257 0.2119 0.0119

(0.0133) (0.0053) (0.0023) (0.0004)
θ 0.1473 0.0473 0.1379 0.0379 0.1193 0.0193 0.1063 0.0063

(0.0195) (0.0061) (0.0022) (0.0002)
α 0.4138 -0.0861 0.4308 -0.0691 0.4495 -0.0504 0.4891 -0.0108

(0.0953) (0.0701) (0.0565) (0.0314)
δ 2.9704 0.4704 2.7098 0.2098 2.6435 0.1435 2.5623 0.0623

(1.2737) (0.7320) (0.3341) (0.1134)
φ = 0.40

φ 0.4335 0.0335 0.4213 0.0213 0.4174 0.0174 0.4099 0.0099
(0.0105) (0.0027) (0.0016) (0.0008)

θ 0.1447 0.0447 0.1280 0.0280 0.1177 0.0177 0.1051 0.0051
(0.0121) (0.0022) (0.0013) (0.0002)

α 0.4109 -0.0890 0.4245 -0.0754 0.4309 -0.0690 0.4467 -0.0532
(0.0988) (0.0722) (0.0650) (0.0424)

δ 3.0761 0.5761 2.7313 0.2313 2.6573 0.1573 2.5932 0.0932
(1.4439) (0.7488) (0.4785) (0.2135)
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Table A2. Performance of MMEs for ZMPMQL(φ ,θ = 0.10,α = 0.50,δ = 2.25)
n = 60 n = 100 n = 200 n = 300

MME Bias MME Bias MME Bias MME Bias
(MSE) (MSE) (MSE) (MSE)

φ =−0.40
φ -0.0223 0.3776 -0.0547 0.3452 -0.0769 0.3230 -0.1062 0.2937

(0.1427) (0.1199) (0.1186) (0.1034)
θ 0.1832 0.0832 0.1649 0.0649 0.1376 0.0376 0.1335 0.0335

(0.0103) (0.0076) (0.0044) (0.0028)
α 0.7600 0.2600 0.6028 0.1028 0.5921 0.0921 0.5777 0.0777

(0.1022) (0.0843) (0.0642) (0.0440)
δ 4.5414 2.2914 4.1311 1.8811 3.6185 1.3685 3.8331 1.3331

(6.7310) (4.2928) (2.3961) (2.2493)
φ =−0.20

φ -0.3827 -0.1827 -0.3612 -0.1612 -0.3493 -0.1493 -0.3243 -0.1243
(0.0441) (0.0301) (0.0231) (0.0173)

θ 0.1967 0.0967 0.1650 0.0650 0.1492 0.0492 0.1407 0.0407
(0.0131) (0.0082) (0.0034) (0.0024)

α 0.9864 0.4864 0.9691 0.4691 0.7889 0.2889 0.7324 0.2324
(0.2694) (0.3253) (0.1238) (0.0729)

δ 5.7357 3.4857 5.1516 2.9016 3.9256 1.6756 3.6355 1.3855
(15.7459) (12.4246) (3.7138) (2.6906)

φ = 0.20
φ -0.0349 -0.2349 0.0166 -0.1833 0.0700 -0.1299 0.0993 -0.1006

(0.0706) (0.0530) (0.0216) (0.0139)
θ 0.2253 0.1253 0.1759 0.0759 0.1562 0.0562 0.1459 0.0459

(0.0246) (0.0101) (0.0047) (0.0030)
α 1.0917 0.5917 1.0101 0.5101 1.0036 0.5036 0.8582 0.3582

(0.3969) (0.3522) (0.2782) (0.1620)
δ 6.6309 4.3809 5.5530 3.3030 4.3311 2.0811 4.1850 1.9350

(27.6692) (15.6071) (5.8163) (4.5527)
φ = 0.40

φ 0.2199 -0.1800 0.2350 -0.1649 0.3151 -0.0848 0.3576 -0.0423
(0.0465) (0.0406) (0.0114) (0.0053)

θ 0.2581 0.1581 0.1962 0.0962 0.1670 0.0670 0.1553 0.0553
(0.0398) (0.0141) (0.0067) (0.0048)

α 1.0907 0.5907 1.0502 0.5502 0.9728 0.4728 0.8745 0.3745
(0.4056) (0.3492) (0.2560) (0.1674)

δ 7.5974 5.3474 6.2256 3.9756 4.6281 2.3781 4.2158 1.9658
(42.3990) (20.4941) (7.9752) (5.2737)


