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Optimal allocation for equal probability two-stage design
Wilford Molefe1

ABSTRACT

This paper develops optimal designs when it is not feasible for every cluster to be represented
in a sample as in stratified design, by assuming equal probability two-stage sampling where
clusters are small areas. The paper develops allocation methods for two-stage sample surveys
where small-area estimates are a priority. We seek efficient allocations where the aim is
to minimize the linear combination of the mean squared errors of composite small area
estimators and of an estimator of the overall mean. We suggest some alternative allocations
with a view to minimizing the same objective. Several alternatives, including the area-only
stratified design, are found to perform nearly as well as the optimal allocation but with better
practical properties. Designs are evaluated numerically using Switzerland canton data as
well as Botswana administrative districts data.

Key words: sample designs, optimal allocation, composite estimation, mean squared error,
two-stage sampling, simple random sampling without replacement

1. Introduction

In many situations it is not feasible for every small area to be represented in a sample.
In practice, it is not possible to anticipate and plan for all possible areas (or domains) and
uses of survey data as “the client will always require more than is specified at the design
stage” (Fuller, 1999).

Longford (2006), Molefe (2011), Molefe and Clark (2015) and Molefe, Shangodoyin
and Clark (2015) derive optimal allocations for stratified sampling, which minimize weighted
sums of the MSEs of small area estimates and a grand mean estimate. In Longford (2006),
the MSEs are design-based (that is, based on repeated probability sampling from a fixed
population without reference to a model), and in Molefe (2011), Molefe and Clark (2015)
and Molefe, Shangodoyin and Clark (2015) anticipated MSEs are used. In all the references
above, stratified simple random sampling without replacement is assumed, where strata are
small areas. All find that the optimal design could sometimes have zero sample size for the
smallest areas. The authors establish numerically that simpler designs with positive stra-
tum sample sizes give near optimal anticipated MSEs. Power allocation (Bankier, 1988)
with stratum sample sizes proportional to a numerically optimized exponent of the stratum
population performs particularly well.

In this paper we consider the case of equal probability two-stage sampling design where
small areas are clusters or primary sampling units (PSUs). Two-stage sampling with equal
probabilities of selection for all clusters (at least within broad regions) are used in many
large scale sample surveys including the Australian and New Zealand labour force surveys.
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It will be assumed that a sample of small areas is selected by SRSWOR, followed by a
sample of the second stage units (units) from each selected small area, also by SRSWOR.
There are several possible reasons for this approach. There may be a list of the small areas
in the population, but not of the population units. Two stage surveys are also useful so that
the sample can be made more geographically clustered, which often reduces enumeration
costs (Cochran, Chapter 10 1977).

In optimizing this sampling design for small area estimation where small areas are clus-
ters, the fundamental question is how to choose the number of clusters (m) and the number
of subunits, referred to as just units (nd) per cluster subject to fixed cost. One approach is to
choose m and nd to optimize some criteria subject to a cost constraint based on some model
for cost.

We adopt the criterion of the weighted sum of the MSE for the small areas in-sample
and the MSE of the estimator for the small areas out-of-sample.

A question within the above setup is when it is appropriate to have some sample in every
small area. This would only be feasible when there are a relatively small number of small
areas (M), or a very large survey budget, and would usually mean that the number of units
{nd} in each small area would be fairly small. In this case the design will be a special
case of stratified design considered by Longford (2006), Molefe (2011), Molefe and Clark
(2015) and Molefe, Shangodoyin and Clark (2015).

In practice, it is not always feasible for every small area to be represented in the sam-
ple. This is clear from the fact that zero stratum sample sizes sometimes arise in Longford
(2006), Molefe (2011) and Molefe and Clark (2015). In this paper, we explicitly allow for
the sampling of small areas. It is assumed that a two-stage design is used, where clusters are
small areas. A cluster d may be selected with equal probability πd =

m
M and a different sam-

ple size nd to be selected from each selected cluster. In Section 2 we state a two-level model
and the resulting anticipated MSE of small area estimates. An objective function which is
a linear combination of anticipated MSEs is defined. A linear cost model consisting of per-
cluster and per-unit costs is assumed. The aim is then to minimize the objective function
with respect to m and nd subject to fixed expected cost for the survey. In Section 3 we de-
velop an optimal analytical solution when only small area estimates are a priority. Section 4
suggests sensible but ad-hoc designs that include equal allocation, proportional allocation,
classical optimal allocation and a combined design made up of the proportional allocation
and the classical optimal design. Section 5 is a numerical study based on the Switzerland
canton population sizes used by Longford (2006). Section 6 contains conclusions.

2. Methods

From a population of M small areas (clusters) indexed by d, denoted by U1, a first stage
sample of m small areas selected by SRSWOR is denoted s1. In the second stage of the
selection a sample of size nd elements selected by SRSWOR from area d is denoted by sd .
The set of Nd population units in a particular cluster d is denoted by Ud . Let the sampling
variances be vd = varp(ȳd) and v = varp(ȳ) respectively for the small area mean estimator
and overall mean estimator. The composite estimator is denoted ỹC

d [φd(opt)].
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Let Yj be the value of the characteristic of interest for the jth unit in the population.
The small area population mean is Ȳd and the national mean is Ȳ . Auxiliary variables x j are
assumed to be available for the full population j ∈U1.

The following two-level linear mixed model ξ will be assumed:

Yj = β T x j +ud + ε j

Eξ [ud ] = Eξ [ε j] = 0
varξ [ud ] = σ2

ud
varξ [ε j] = σ2

εd

 (1)

for d ∈U1 and j ∈Ud with mutual independence of ud and ε j for d ∈U1 and j ∈Ud . This
implies varξ [Yj] = σ2

ud +σ2
εd = σ2 for all j ∈U , and that the covariance covξ [Yi,Yj] = ρdσ2

d
for units i ̸= j in the same small area and 0 for units from different small areas, where
ρd = σ2

ud/σ2. For simplicity it will be assumed that ρd = ρ .
Following Molefe and Clark (2015), we assume a small-area composite estimator which

is a weighted mean of an approximately design unbiased estimator

ȳdr = ȳd + β̂
T (X̄d − x̄d)

recommended by Hidiroglou and Patak (2004) for small domains, and a model-based syn-
thetic estimator ˆ̄Yd(syn) = β̂ T X̄d .

The composite estimator which approximately minimizes the anticipated MSE is

ỹC
d [φd(opt)] = (1−φd)ȳdr +φd

ˆ̄Yd(syn) = β̂
T X̄d +(1−φd)

(
ȳd − β̂

T x̄d

)
where φd(opt) = (1−ρ)

[
1+(n∗d −1)ρ

]−1, assuming that n, Nd and M are all large (Molefe
and Clark, 2015). Under the same assumptions, the approximate anticipated MSE of the
optimal composite estimator of Ȳd conditional on n∗d is

Eξ MSEp
(
ỹC

d
[
φd(opt)

]
;Ȳd |n∗d

)
≈

{
n∗dρ

[
1+(n∗d −1)ρ

]−1
}2

(n∗d)
−1

σ
2(1−ρ)+

{
(1−ρ)

[
1+(n∗d −1)ρ

]−1
}2

σ
2
ρ

= σ
2
ρ(1−ρ)/

[
1+(n∗d −1)ρ

]
(2)

See Molefe (2011) for the derivation.
Small areas with no sample would have a direct estimate of zero. For these, a synthetic

estimator is used. An indirect estimator, ỹC
d = ȳ is proposed, if cluster d /∈ s1. The MSE of

ȳ is given by MSEp
(
ȳ;Ȳd

)
= v+B2

d , where Bd is the design bias of using ȳ to estimate Ȳd .
The population level mean estimator ȳ and area mean ȳd are assumed to be unbiased for

Ȳ and Ȳd respectively. The design variance of the synthetic estimator will be small relative
to the design variance of the direct estimator because it depends only on the precision of
direct estimators at a larger area level. If the number of small areas in the sample is large, v
is negligible and can be ignored. Therefore, we approximate MSEp

(
ȳ;Ȳd

)
by B2

d .
For optimal allocation of sample sizes of clusters and subunits, we search for the area-
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level sampling design that minimizes the weighted expected value of the sum of the sam-
pling variances (MSEs) for a combination of small area composite estimates for clusters
in-sample and out-of-sample and an overall estimator of the mean given by

F = ∑
d∈U1

πdNq
d AMSEd

{
ỹC

d
[
φd(opt)

]
;Ȳd
}
+ ∑

d∈U1

(1−πd)N
q
d AMSEd

[
ȳ;Ȳd

]
(3)

where the first component in (3) is due to the m clusters in-sample and the second component
is due to the remaining (M −m) clusters. The small-area population sizes Nd are weights,
that is, Nq

d for 0 ≤ q ≤ 2, where for q = 0, inference is equally important for every area.
With increasing q, relatively greater importance is ascribed to more populous areas, with
q = 2 corresponding to proportional allocation. AMSEd is the model assisted mean squared
error, that is ξ MSEd .

We can then write the model expectation of the criterion function to be minimized,
ignoring the goal of national estimation, as

F ≈ m
M ∑

d∈U1

Nq
d

σ2ρ(1−ρ)

[1+(nd −1)ρ]
+
(

1− m
M

)
σ

2
ρ ∑

d∈U1

Nq
d (4)

2.1. Cost Models and Cost Estimates

In a two stage sampling scheme the sampling variance of the estimate of the overall
population mean (ȳ) is minimized (for fixed sample size) when n̄ = 1 since this is when the
sample is most spread out. However, costs will be minimized when as few first stage units
as possible are selected. Hence, some compromise between these two extremes has to be
chosen and this is the optimal design problem in multistage sampling. As always costs and
variances are pulling in opposite directions and the task of optimal design is to choose the
optimal balance of these.

In a two-stage sample, several types of costs can be distinguished (Hansen, 1953; Cochran,
1977):

(a) Overhead costs - costs associated with planning, administration, setting up processing
systems, etc. These costs do not depend on the sample sizes used at either stage;

(b) Costs associated with the selection of clusters - these arise from drawing maps, listing
units within selected primary stage units, travel between selected primary stage units.
These costs increase as the number of clusters selected increases;

(c) Costs associated with the selection of secondary stage units - these mainly arise from
the enumeration of selected population units, e.g. the cost of time spent in inter-
viewing people and the cost of processing an individual questionnaire. These costs
increase as the number of selected units increases.

Linear cost models are commonly used by official statistics agencies (Hansen, 1953;
Sukhatme, 1954; Cochran, 1977; Foreman, 1991; Clark, 2007). A linear cost model is often
adequate for sample design, even though it cannot perfectly capture the real cost structure.
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A simple cost model for a two-stage sample is given by

CF = c0 + c1m+ c2
m
M ∑

d∈U1

nd

where m equals the number of primary sampling units (clusters) in the sample; nd is the
number of secondary sampling units (units), for example, households, in the sample from
cluster d; the coefficient c0 is the fixed costs of conducting the survey, independent of the
number of sample clusters and subunits per cluster, including costs for survey planning, de-
velopment of the survey design, preparatory work, survey management and data processing,
analysis and presentation of results; the coefficient c1 is the average cost of adding a clus-
ter to the sample, consisting of travel by interviewers and supervisors between clusters and
home base or between clusters (fuel costs, driver salaries) and interviewer salaries, includ-
ing the cost of obtaining maps and other material for the cluster, the cost of establishing the
survey in the local area, entailing, for example, meeting with and obtaining permission from
local authorities, and the cost of listing and sampling of dwelling units within the cluster;
the coefficient c2 is the average cost of including an extra household in the sample, including
the costs for locating, contacting and interviewing a household, where the costs consist of
interviewer and supervisor salaries and allowance, and also costs for travel by interviewers
and supervisors within clusters (Pettersson and Sisouphanthong, 2005).

Costs for the different components of a survey differ from survey to survey and from
country to country. The survey manager often has a good idea of the time required for
specific survey operations based on information from previous surveys of a similar nature.
Experiences from prior surveys (or from pilot surveys) could often be used for reasonable
estimates of time per household required for locating and interviewing the household. In
these cases, reasonable estimates of c2 could be compiled.

Computing a reasonable estimate of c1 is often difficult because it involves determining
the effect of additional interviewer travel when a cluster is added to the sample. The travel
depends on the size of the area being covered, the number of clusters assigned to each
interviewer, and the travel pattern of the interviewers. The travel includes between-cluster
and within-cluster travel during a data collection trip.

Cost modelling is mainly used for budgetary purposes and for finding an efficient sample
design. In this thesis, our interest is mainly in the use of cost models to find an efficient
design. We do not consider the fixed costs (c0) in trying to work out an efficient design; we
only consider the fieldwork costs. The total sampling cost function has two components;
the first part depends on how many small areas, c1m, and the other on the total number of
units sampled, namely c2 ∑d∈s1 nd . The second component will, however, vary from sample
to sample of the clusters.

Therefore, the expected total sampling cost function will then be given by

CE = c1m+ c2
m
M ∑

d∈U1

nd (5)

The aim is to minimise F with respect to nd and m subject to a cost constraint CE =CF .
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3. Area-Only Simple Two-Stage Optimal Design

The expected criterion function (4), eliminating the common σ2 and ρ terms, reduces
to

F ≈ − m
M ∑

d∈U1

Nq
d ndρ

1+(nd −1)ρ
(6)

plus constant terms which do not depend on m or nd .
We minimize (6) subject to the cost constraint (5). The Lagrangian is:

L = F +λ

(
c1m+ c2

m
M ∑

d∈U1

nd −CF

)
(7)

To obtain an optimal number of clusters and subunits to take into the sample, we take
partial derivatives of (7) with respect to nd , λ and m.

We use the partial derivatives to derive the optimal design by firstly deriving n̄opt., the
optimal average within-cluster sample size. This result will then be used to derive the opti-
mal values of nd .

We use ∂L
∂nd

= 0 to obtain the optimal value for nd as follows:

nd = N
q
2

d

√
(1−ρ)/(λc2ρ)− (1−ρ)/ρ (8)

This solution for nd given implies that the average within-cluster sample size is

n̄ = N̄
q
2

d

√
(1−ρ)/(λc2ρ)− (1−ρ)/ρ

Therefore, we can write√
(1−ρ)/(λc2ρ) =

(
N̄

q
2

d

)−1
{n̄+(1−ρ)/ρ}

Then, the optimal cluster sample sizes can be expressed as

nd = N
q
2

d

(
N̄

q
2

d

)−1
n̄+(1−ρ)/ρ

[
N

q
2

d

(
N̄

q
2

d

)−1
−1
]

We can also substitute for nd given by (8) in ∂L
∂λ

= 0 to obtain

c1m+ c2
m
M ∑

d∈U1

(
N

q
2

d

√
(1−ρ)/(λc2ρ)− (1−ρ)/ρ

)
=CF

This simplifies to

CF = γm+

√
c2

λ

m
M ∑

d∈U1

N
q
2

d

√
(1−ρ)/ρ
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where γ = c1 − c2(1−ρ)/ρ .

Similarly, we substitute for nd in ∂L
∂m = 0 and after simplifying we obtain

1
M ∑

d∈U1

Nq
d =

1
M ∑

d∈U1

N
q
2

d

√
λc2(1−ρ)/ρ +λ

(
γ +

1
M

√
c2

λ
∑

d∈U1

N
q
2

d

√
(1−ρ)/ρ

)

Removing the bracket on the right hand size, we obtain

1
M ∑

d∈U1

Nq
d = 2

1
M ∑

d∈U1

N
q
2

d

√
λc2(1−ρ)/ρ +λγ

The resulting two simultaneous equations in m and λ are:

m
M

√
c2/λ (1−ρ)/ρ ∑

d∈U1

N
q
2

d + γm =CF (9)

2
√

λc2(1−ρ)/ρ ∑
d∈U1

N
q
2

d +λγM = ∑
d∈U1

Nq
d (10)

We use (9) to write λ in terms of m as follows:

√
λ =

1
M
(
CF/m− γ

) ∑
d∈U1

N
q
2

d

√
c2(1−ρ)/ρ

Substituting for λ in (10) we obtain

∑
d∈U1

Nq
d =

2c2(1−ρ)/ρ
(

∑d∈U1 N
q
2

d

)2

M
(
CF/m− γ

) +
c2(1−ρ)/ρ

(
∑d∈U1 N

q
2

d

)2

M
(
CF/m− γ

)2 × γ

Cross-multiplying and further simplifying we obtain

0 = γ

c2(1−ρ)/ρ

(
∑

d∈U1

N
q
2

d

)2

+ γM ∑
d∈U1

Nq
d

+M
(

CF

m

)2

∑
d∈U1

Nq
d −

2
CF

m

c2(1−ρ)/ρ

(
∑

d∈U1

N
q
2

d

)2

+ γM ∑
d∈U1

Nq
d

 (11)

which is a quadratic in m−1 of the form am−2 +bm−1 + c = 0.

Define C2
q/2 the relative population variance of N

q
2

d given by

C2
q/2 = M−1

∑
d∈U1

(
N

q
2

d − N̄
q
2
)2
/
(
N̄

q
2
)2 (12)
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Then

M−1
∑d∈U1(N

q
2

d )2

(M−1 ∑d∈U1 N
q
2

d )2
=

M−1
∑d∈U1 Nq

d

(M−1 ∑d∈U1 N
q
2

d )2
= 1+C2

q/2

Hence, we write

∑
d∈U1

Nq
d = M−1

(
∑

d∈U1

N
q
2

d

)2(
1+C2

q/2

)
(13)

We substitute for ∑d∈U1 Nq
d into (11) to obtain a reduced quadratic equation in m−1:

0 =

(
CF

m

)2

(1+C2
q/2)−2

CF

m

[
c2(1−ρ)/ρ + γ

(
1+C2

q/2

)]
+ γ
[
c2(1−ρ)/ρ +

γ

(
1+C2

q/2

)]
(14)

Define n̄ = E
[ n

m

]
= 1

M ∑d∈U1 nd . There is a one-to-one relationship between m and
n̄ because CF = c1m+ c2mn̄ so that m = CF/(c1 + c2n̄). Hence finding the optimal m is
equivalent to finding n̄. Substituting for m−1 into (14) we obtain

0 = (c1 + c2n̄)2(1+C2
q/2)−2(c1 + c2n̄)

[
c2(1−ρ)/ρ + γ(1+C2

q/2)
]
+

γ

[
c2(1−ρ)/ρ + γ(1+C2

q/2)
]

which is a quadratic in n̄ of the form an̄2 +bn̄+ c.
Therefore, the optimum n̄ is:

n̄opt. =
−c2(1−ρ)/ρC2

q/2 ±
[
c1c2(1−ρ)/ρ +

{
c2(1−ρ)/ργ

}
C2

q/2

] 1
2

c2
(
1+C2

q/2

) (15)

Of primary interest will be to compare the optimal sample size using composite esti-
mation, n̄opt., with the classical two-stage optimal design given by Hansen, Hurwitz and
Madow (1953, page 173 equations 10.1 and 10.2) and Cochran (1977, page 281 equa-
tion 10.26) as n̄cl. =

√
c1/c2(1−ρ)/ρ for the purpose of drawing general conclusions on

whether the two-stage composite optimal is always more clustered or always less clustered
than the standard or classical two-stage cluster optimal.

The classical optimal for the two-stage cluster design n̄cl. coincides with n̄opt. when
q = 0.

It is not obvious whether the two-stage general optimal n̄opt. is larger or smaller than the
classical two-stage cluster design optimal n̄cl. when q > 0. In fact, it is not clear that the
stationary point for n̄opt. exists at all. If ρ is small enough, then the contents of the square
bracket in (15) will become negative, so that the square root will not exist.
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Looking at (15) it appears that n̄opt. will usually be less than in the classical design
(n̄cl.), because in the square root of the discriminant, the coefficient of C2

q/2 is c2(1−ρ)/ργ .
Usually, ρ is 0.05 or less, so that γ/c2 becomes {c1/c2 −19}. The cost of including a new
PSU in the sample (c1) will always be higher than the cost of including a new household
in a selected PSU (c2), hence the cost ratio will always be well above 1.0. The higher
the cost ratio, the more costly it is to select a new PSU compared with selecting more
households in selected PSUs; consequently, we should select more households in already
selected PSUs. We assume that c1/c2 < 19, so the coefficient of C2

q/2 is negative. In the
term −b, the coefficient of C2

q/2 is negative and in the denominator the coefficient of C2
q/2 is

positive. Hence, n̄opt. is (usually) a decreasing function of C2
q/2, so that for C2

q/2 > 0, n̄opt.

will be less than the classical design. A sufficient condition for this is that γ/c2 < 0, which
would usually be satisfied, unless c1 or ρ are unusually large. When C2

q/2 = 0 as is the case
when Nd = N̄ the optimal sample size reduces to the standard optimal cluster size so that
n̄opt. = n̄cl..

Let ntot = ∑d∈U1 nd (note that ntot ̸= n, the sample size, since ntot is the sum of nd over
all clusters in-sample and out-of-sample).

We now consider the solution of nd given by nd given by (8). Summing over all the
clusters and dividing by the total number of clusters M we obtain

ntot

M
=

1
M
√

λc2
∑

d∈U1

N
q
2

d

√
(1−ρ)/ρ − (1−ρ)/ρ (16)

Solving for
√

λ in (16) and substituting in (8) we obtain

nd = ntotP
q
2

d +(1−ρ)/ρ(MP
q
2

d −1) (17)

where P
q
2

d = N
q
2

d /∑d∈U1 N
q
2

d .

This solution for {nd} is identical to the area-only stratified formula for nd given by
Longford (2006), Molefe (2011) and Molefe and Clark (2015):

nh,opt. = nP
q
2

h +(1−ρ)/ρ(HP
q
2

h −1) (18)

for stratified sampling design, with total sample size n replaced by ntot . This shows that the
two-stage allocation for nd is the same as stratified allocation, given ntot . We can then write
the expected cost constraint (5) in terms of ntot as

CE = c1m+ c2
m
M

ntot (19)

For c1
c2

= 10, equation (14) gives a value of m which is greater than M when q = 1.
When this happens, the optimal value for the number of clusters to take into the sample is
m=M. As q approaches 2, the discriminant becomes negative so that there is no real-valued
solution for m, implying that m = M is optimal.
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3.1. Numerical Example

The cost constraint for sampling is set at CF = 350 cost units. The following per cluster
to per subunit cost ratios are considered; c1

c2
= 10, 4 and 2 where the cost per second stage

unit c2 = 1 cost units.
We used data on the 26 cantons (clusters) of Switzerland (Longford, 2006) to allocate

the sample using the various simple two-stage designs. Throughout, we assume that ρ = 1
40 .

We compute the optimum sample sizes for each ratio c1
c2

by priority exponent q using
(15) in Table 1. From the results, it is apparent that n̄opt. is a decreasing function of q. As q
increases the discriminant becomes small and eventually negative, resulting in the solution
for n̄opt. being negative or even a complex number. When this happens, the optimal sample
size is n̄opt. = 1. We also observe that the optimum sample size decreases as c1

c2
decreases.

Therefore, the main finding here is that the general optimal gives a less clustered design
when q > 0 than the classical two-stage optimal.

Table 1: Area-only simple two-stage optimum sample sizes
Priority c1

c2
= 10 c1

c2
= 4 c1

c2
= 2

exponent mopt n̄opt n̄cl. mopt n̄opt. n̄cl. mopt. n̄opt. n̄cl.

q = 0 12 20 20 21 12 13 26 9 9
q = 1

4 12 18 20 24 10 13 26 6 9
q = 1

2 15 14 20 26 4 13 26 1 9
q = 3

4 20 7 20 26 1 13 26 1 9
q = 1 26 1 20 26 1 13 26 1 9
q = 2 26 1 20 26 1 13 26 1 9

When c1
c2

is large, the sample is more clustered hence the CV’s of the estimates of the
cluster means are relatively smaller. However, the CV of the estimate of the grand mean
will be large. When c1

c2
goes down, the sample becomes less clustered since we can take

a larger number of clusters into the sample. When this happens the CV’s of the estimates
of the cluster means will be relatively larger since the within-cluster sample size is smaller,
and the CV of the estimate of the grand mean will be smaller.

In the case of clusters of equal size, the within-cluster sample size is the same for all
clusters selected into the sample. Hence, the optimization problem reduces to a singular
problem of finding the optimal number of clusters to take into the sample.

The optimal number of clusters, mopt., and the optimal expected sample size of ultimate
cluster, n̄opt., subject to a fixed total expenditure, CF = c1m+ c2mn̄, are mopt. = CF/(c1 +

c2n̄opt.) where n̄opt. =
√

c1/c2(1−ρ)/ρ .

4. Other Designs

We consider several sensible but ad-hoc designs that include equal allocation, propor-
tional allocation, classical optimal allocation and a combined design made up of the pro-
portional allocation and the classical optimal design. We consider these ad-hoc designs
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because sometimes the optimal design derived in Section 3 has undesirable properties such
as negative or complex values for the analytical result for n̄cl. or nd (implying values of 1 in
practice).

4.1. Equal Design

In the cluster equal design we consider the case in which a sample is taken from each
and every small area (cluster). An equal number of secondary stage units is taken from each
and every cluster. That is, m = M and nd = n/M for d = 1, . . . ,M, where n = (CF −c1M)/c2

is the total sample size.

4.2. Proportional Design

In this design a sample is taken from each and every cluster. The within-cluster sample
sizes are proportional to the population sizes of the clusters. The design is m = M and
nd = nPd for d = 1, . . . ,M, where n is the same as in equal design and Pd = Nd/N.

4.3. Classical Optimal Design

The number of clusters taken into the sample is determined by the cost constraint. The
within-cluster sample size is the standard optimal two-stage cluster design given by m =

CF/(c1 + c2n̄cl.) and nd = n̄cl. for d = 1, . . . ,m.

4.4. Proportional & Optimal Design

It may also be constructive to propose modifications of existing sampling designs. This
design uses a combination of two designs. The within-cluster sample size is proportional
to the cluster population size and also optimal for two-stage cluster design: m =CF/(c1 +

c2n̄cl.) and nd = Pd n̄cl. for d = 1, . . . ,m.

5. Numerical Evaluation

In this section, we compare the efficiency of the ad-hoc designs and the area-only opti-
mum derived in Section 3. We consider the relative efficiency of these designs by calculating
the ratios of F given by (6) of the designs using the equal design as the base design. A ra-
tio less than one implies that a design is more efficient than the base design, whilst a ratio
greater than one implies a design is less efficient than the base design.

In Table 2 we show the summary statistics of the CV’s of the estimates of the cluster
and national means for c1

c2
= 10, 4 and 2 under the ad-hoc designs. The results show that

for equal and classical optimum allocations, the CV’s of the estimates of the small area
means are narrowly dispersed by virtue of the design allocations being equal sample sizes.
On the other hand, we see that the ranges of the CV’s under proportional allocation and
proportional & optimum allocation designs are widely dispersed since the clusters receive
sample sizes that are proportionate to their population sizes.
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Table 2: CV’s of the ad-hoc designs

Equal Proportional Classical Proportional Area-only
allocation allocation optimum & optimum optimuma

c1
c2

= 10
CV % (SAE’s)

Minimum 57.01 25.49 22.64 10.77 13.31
1st Quarter 57.01 44.16 22.65 20.50 20.16
Median 57.01 57.01 22.65 26.03 29.77
Mean 57.01 60.42 22.65 34.47 38.08
3rd Quarter 57.01 69.82 22.65 44.16 49.37
Maximum 57.01 98.74 22.65 98.74 98.74
CV % (National) 81.41 52.33 57.67 46.37 34.32

c1
c2

= 4
CV % (SAE’s)

Minimum 32.91 15.24 27.37 13.19 12.34
1st Quarter 32.91 28.82 27.38 25.11 19.31
Median 32.91 37.61 27.39 33.07 27.39
Mean 32.91 49.54 27.38 41.87 36.05
3rd Quarter 32.91 69.82 27.39 57.01 38.82
Maximum 32.91 98.74 27.39 98.74 98.74
CV % (National) 46.75 31.75 45.71 33.75 31.24

c1
c2

= 2
CV % (SAE’s)

Minimum 29.77 13.96 29.76 13.96 12.06
1st Quarter 29.77 26.64 29.77 26.64 18.60
Median 29.77 33.91 29.77 33.91 25.49
Mean 29.77 44.05 29.77 44.05 30.19
3rd Quarter 29.77 57.01 29.77 57.01 33.91
Maximum 29.77 98.74 29.77 98.74 69.82
CV % (National) 42.21 28.55 42.21 28.55 26.95
aArea-only optimum when q = 1

We observe that the classical optimum is relatively more efficient for estimating cluster
means as shown by smaller CV’s of the estimates of the cluster means compared to the
other allocations. However, for estimating the national mean, the proportional & optimum
allocation is relatively more efficient than the other designs. The CV of the estimate of the
national mean is however considerably higher for the four ad-hoc designs, possibly showing
that these two-stage cluster designs are not well suited for estimating the overall mean.

When c1
c2

= 4, it implies more clusters and within-cluster samples for fixed CF . The
result of increased sample size is that the CV’s of the estimates of the cluster means under
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equal allocation and classical optimum are considerably lower than when c1
c2

= 10. But
proportional allocation and proportional & optimum allocation seem to be relatively better
than equal and classical optimum allocations in estimating the national mean.

For c1
c2

= 2 equal design give identical results to classical optimal design. Proportional
design on the other hand also gives identical results to proportional & optimal design. These
two designs perform better than equal and standard optimal designs for q ≥ 1

2 in terms of
CV’s and the criterion function F .

In Table 3 we see that proportional allocation and area-only stratified optimum given by
(18) is less efficient than the base design. The area-only optimum designs should always be
the best since the criterion function is minimized when the largest clusters are included in the
sample but they are not when q = 0. Classical optimum and proportional & optimum are the
only designs that are more efficient than equal allocation at q = 0. As the priority exponent
q increases all the designs’ efficiency against equal designs improve with the exception of
classical optimum, whose efficiency is constant. At q = 2, the area-only stratified optimum
and area-only optimum are nearly twice as efficient as equal design.

Table 3: Relative efficiency of two-stage designs for c1
c2

= 10

Priority Exponent (q)

Designs nd q = 0 q = 1
2 q = 1 q = 3

2 q = 2

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.91 0.83 0.77 0.71 0.66

Classical optimum n̄opt 0.92 0.92 0.92 0.92 0.92
Proportional & optimum Nd

N̄ n̄opt 0.91 0.83 0.77 0.71 0.61
Area-only stratified optimum nd

1 1.00 0.87 0.76 0.63 0.53
Area-only optimum nd

2 1.09 0.94 0.76 0.63 0.53

Table 4: Relative efficiency of two-stage designs for c1
c2

= 4

Priority Exponent (q)

Designs nd q = 0 q = 1
2 q = 1 q = 3

2 q = 2

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.02 0.94 0.86 0.80 0.74

Classical optimum n̄opt 0.98 0.98 0.98 0.98 0.98
Proportional & optimum Nd

N̄ n̄opt 1.02 0.94 0.87 0.82 0.77
Area-only stratified optimum nd

1 1.00 0.92 0.81 0.69 0.58
Area-only optimum nd

2 1.05 0.92 0.81 0.69 0.58



142 W. Molefe: Optimal allocation for equal probability two-stage design

In Table 4 we present the relative efficiency for the two-stage designs when c1
c2

= 4.
We see that area-only stratified optimum is equally efficient as the base design whilst the
area-only optimum is less efficient than the base design when q = 0. Also, proportional and
proportional & optimum allocations are less efficient than equal allocation. The classical
optimum design is the only design that is slightly more efficient than equal allocation at
q = 0. As the priority exponent q increases all the designs’ efficiency against equal designs
improve with the exception of classical optimum, whose efficiency is marginal and constant.
At q = 2, the area-only stratified optimum and the area-only optimum are almost twice as
efficient as the equal design.

Table 5: Relative efficiency of two-stage designs for c1
c2

= 2

Priority Exponent (q)

Designs nd q = 0 q = 1
2 q = 1 q = 3

2 q = 2

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.03 0.94 0.85 0.78 0.72

Classical optimum n̄opt 1.00 1.00 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 1.03 0.94 0.85 0.78 0.72
Area-only stratified optimum nd

1 1.00 0.92 0.81 0.70 0.59
Area-only optimum nd

2 1.00 0.92 0.81 0.70 0.59

The area-only stratified optimum and the area-only optimum compare favorably to pro-
portional allocation and proportional & optimum. Their relative efficiency improves as the
priority exponent q approaches 2. At q = 0, equal allocation is as good as any of these de-
signs, even better than, for example, proportional allocation and proportional & optimum.
But at q = 2 area-only stratified optimum and the area-only optimum are twice as efficient
as equal design, whilst proportional allocation and proportional & optimum are also more
efficient than equal design but to a lesser extent.

In Table 5 one can observe that the relative performance of the area-only stratified op-
timum and the area-only optimum (relative to equal design) are only slightly superior to
proportional allocation and proportional & optimum as q approaches 2.

When c1
c2

= 2 the relative performance of the classical optimum is the same as the base
design. We observe that the performance of proportional allocation is identical to propor-
tional & optimum design. At q = 0 these two designs are less efficient than equal design.
The area-only stratified optimum and the area-only optimum on the other hand are more
efficient than the base design.

Overall we can see that the designs relative efficiencies improves as the ratio of c1
c2

goes
up and q approaches 2.
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6. Sensitivity Analysis

In section 5 the numerical evaluations of the sample designs were based on an assumed
value of the intraclass correlation coefficient for the Switzerland canton data (Longford,
2006). In this section selected tables are replicated using Switzerland’s cantons data for
different values of ρ for the two-stage cluster designs, as well as for data on the population
of the administrative districts of Botswana, to investigate how the optimal sample designs
are altered as a result. For the two-stage designs we consider varying ρ , and CF for q = 1.

6.1. Switzerland Canton Data

Here the interest is in finding out how the values of c1
c2

, the cost ratio, CF , the total
fixed sampling cost, and ρ , the intraclass correlation coefficient, affect these designs. To
investigate this we consider the relative efficiency of these designs by fixing one parameter
and varying the others.

Table 6: Relative efficiency of simple two-stage designs for ρ = 1
40 , c1

c2
= 10, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.01 0.97 0.93 0.90

Classical optimum n̄opt 0.88 0.90 0.92 0.94
Proportional & optimum Nd

N̄ n̄opt 1.01 0.97 0.93 0.90
Area-only stratified optimum nd

1 0.73 0.74 0.76 0.76
Area-only optimum nd

2 0.73 0.74 0.76 0.76

In Tables 6 - 7 we present the results of the numerical evaluation of the relative effi-
ciency for the simple two-stage designs for ρ = 1

4 and q = 1 when the sampling cost CF is
varied using data on the Switzerland’s cantons. The results show that the area-only stratified
optimum and the area-only optimum are the best designs and are identically efficient.

Table 7: Relative efficiency of simple two-stage designs for ρ = 1
40 , c1

c2
= 5, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.92 0.89 0.88 0.86

Classical optimum n̄opt 0.97 0.98 0.99 1.00
Proportional & optimum Nd

N̄ n̄opt 0.92 0.89 0.88 0.86
Area-only stratified optimum nd

1 0.80 0.80 0.80 0.80
Area-only optimum nd

2 0.80 0.80 0.80 0.80
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Table 8: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 10, q = 1

Intraclass Correlation (ρ)

Designs nd ρ = 1
1000 ρ = 1

100 ρ = 1
4 ρ = 1

20 ρ = 1
10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.00 0.97 0.93 0.89 0.84

Classical optimum n̄opt 0.99 0.95 0.92 0.91 0.91
Proportional & optimum Nd

N̄ n̄opt 1.00 0.97 0.93 0.89 0.84
Area-only stratified optimum nd

1 0.96 0.83 0.76 0.70 0.63
Area-only optimum nd

2 0.96 0.83 0.76 0.76 0.76

Table 9: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 5, q = 1

Intraclass Correlation (ρ)
Designs nd ρ = 1

1000 ρ = 1
100 ρ = 1

4 ρ = 1
20 ρ = 1

10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.99 0.93 0.88 0.83 0.80

Classical optimum n̄opt 1.00 0.99 0.99 0.99 1.03
Proportional & optimum Nd

N̄ n̄opt 0.99 0.93 0.88 0.83 0.80
Area-only stratified optimum nd

1 0.96 0.85 0.80 0.76 0.74
Area-only optimum nd

2 0.96 0.85 0.80 0.76 0.74

In Tables 8 - 9 we consider the relative efficiency of the designs for CF = 350 cost units
and q = 1 when ρ is varied. The results show that the area-only stratified optimum and the
area-only optimum with partial coverage are the best designs for small values of ρ . As ρ

increases, the area-only stratified optimum is the best design, with the area-only optimum
nearly as good when ρ = 1

40 .

6.2. Botswana District Data

In this section we investigate the new sample designs for different data. We use data for
the administrative districts of Botswana published by the Central Statistics Office (CSO).
The population of Botswana is 1.67 million (Central Statistics Office, 2002). Botswana is
divided into 16 administrative districts comprising major cities, towns and tribal territories.
The smallest district is a mining town of Sowa with a population of almost 3,000 persons
and the largest is Central district with a population of just over half a million inhabitants as
per the 1991 population and housing census (Central Statistics Office, 2002).

For the simple two-stage designs we are interested in finding out whether the values
of CF and ρ has any effect on these designs. To investigate this we consider the relative
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efficiency of these designs by fixing one parameter and varying the others.
In Tables 10 - 11 we present the results of the numerical evaluation of the relative effi-

ciency for the simple two-stage designs for ρ = 1
10 and q = 1 when the sampling cost CF is

varied using data on Botswana administrative data. The results show that the area-only strat-
ified optimum given by (18) and the area-only optimum given by (17) are the best designs
and are identical.

Table 10: Relative efficiency of simple two-stage designs for ρ = 1
10 , c1

c2
= 10, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.78 0.80 0.82 0.78

Classical optimum n̄opt 0.96 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 0.90 0.83 0.77 0.78
Area-only stratified optimum nd

1 0.68 0.69 0.71 0.72
Area-only optimum nd

2 0.68 0.69 0.71 0.72

Table 11: Relative efficiency of simple two-stage designs for ρ = 1
10 , c1

c2
= 5, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.82 0.85 0.87 0.90

Classical optimum n̄opt 1.00 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 0.77 0.77 0.78 0.78
Area-only stratified optimum nd

1 0.72 0.74 0.74 0.75
Area-only optimum nd

2 0.72 0.74 0.74 0.75

Table 12: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 10, q = 1

Intraclass Correlation (ρ)

Designs nd ρ = 1
1000 ρ = 1

100 ρ = 1
4 ρ = 1

20 ρ = 1
10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.98 0.89 0.83 0.80 0.82

Classical optimum n̄opt 0.99 0.98 0.98 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 1.01 0.99 0.95 0.85 0.77
Area-only stratified optimum nd

1 0.99 0.89 0.81 0.75 0.71
Area-only optimum nd

2 0.99 0.89 0.81 0.75 0.71
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In Tables 12 - 13 we consider the relative efficiency of the designs for CF = 350 cost
units and q = 1 when ρ is varied. The results show that the area-only stratified optimum and
the area-only optimum with partial coverage are the best designs for all values of ρ . The
proportional & optimum design is nearly as good.

Table 13: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 5, q = 1

Intraclass Correlation (ρ)

Designs nd ρ = 1
1000 ρ = 1

100 ρ = 1
4 ρ = 1

20 ρ = 1
10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.98 0.87 0.82 0.82 0.87

Classical optimum n̄opt 1.00 1.00 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 0.99 0.93 0.80 0.78 0.78
Area-only stratified optimum nd

1 0.98 0.89 0.81 0.76 0.74
Area-only optimum nd

2 0.98 0.89 0.81 0.76 0.74

In this section we have used Switzerland canton data and Botswana district data. We
have replicated the numerical evaluation of the various designs by considering the relative
efficiencies of the designs, by computing the values of F for designs under consideration.
We considered relative priority exponent q = 1 and selected values of the relative prior-
ity coefficient. Selected tables are replicated using Switzerland’s cantons data for different
values of ρ for the stratified designs, as well as for data on the population of the administra-
tive districts for Botswana to investigate how the optimal sample designs are modified as a
result. For the two-stage designs we consider varying c1

c2
, ρ , and CF for fixed q.

To investigate whether the value of ρ , the intraclass correlation, has an effect on the
stratified allocations, we consider different values of ρ whilst keeping the priority coefficient
and priority exponent fixed, for these designs. When q = 1 proportional allocation and
optimal power allocation are the best designs when ρ = 1

1000 . As ρ increases, all designs
are the best except for proportional allocation and equal allocation.

For the simple two-stage designs we are interested in finding out whether the values of
CF and ρ has any effect on the choice of the within-cluster sample size. The results as in
section 5, show that the area-only stratified optimum given by equation 18 and the area-
only optimum given by equation 17 are the best designs. When ρ is varied for fixed CF

and q = 1, the results show that the area-only stratified optimum and the area-only optimum
with partial coverage are the best designs for all values of ρ .

7. Conclusions

An analytical solution for the stationary point exists when the only priority is small
area estimation. This optimal design is less clustered than the usual classical two-stage
optimal sample size n̄cl. when more priority is given to larger clusters (q > 0). The optimal
sample size depends on the cost per cluster relative to ( c1

c2
), intraclass correlation coefficient

(ρ) and the relative variance of N
q
2

d denoted by C2
q/2. When the only priority is small area
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estimation, that is, q = 0, or when the Nd’s are constant, C2
q/2 = 0 and the general optimal

coincides with the classical optimal. The area-only optimal average sample size is usually
a decreasing function of C2

q/2, so that when C2
q/2 > 0, n̄opt. will be less than the classical

optimum. A sufficient condition for this is that γ/c2 < 0, which would usually be satisfied,
unless c1

c2
or ρ are unusually large.

The area-only stratified optimum and the area-only simple two-stage optimum should
always be the best designs in minimizing the objective function but they are not when there
is equal priority for each cluster, that is when q = 0. These two designs have undesirable
properties of allocating zero or even negative sample sizes to smaller clusters. Negative
sample sizes are obviously not possible in practice and this anomaly is corrected by setting
them to zero and reallocating again.

When the clusters are equally important (q = 0), classical optimum and proportional
& optimum are the best designs especially when the cost ratio is high, in this case when
c1
c2

= 10. When c1
c2

= 2, proportional design and proportional & optimum design are less
efficient than equal allocation. Also, the classical optimum is as efficient as equal allocation.
All the other designs are better as q approaches 2, with area-only stratified optimum and the
area-only optimum being the best.
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