New generators for minimal circular generalised neighbour designs in blocks of two different sizes

Muhammad Nadeem¹, Khadija Noreen², H. M. Kashif Rasheed³, Rashid Ahmed⁴, Mahmood Ul Hassan⁵

Abstract

Minimal neighbour designs (NDs) are used when a response of a treatment (direct effect) is affected by the treatment(s) applied in the neighbouring units. Minimal generalised NDs are preferred when minimal NDs cannot be constructed. Through the method of cyclic shifts (Rule I), the conditions for the existence of minimal circular generalised NDs are discussed, in which v/2 unordered pairs do not appear as neighbours. Certain generators are also developed to obtain minimal circular generalised NDs in blocks of two different sizes, where k2 = 3, 4 and 5. All these designs are constructed using i sets of shifts for k1 and two for k2.

Key words: direct effects, neighbour effects, method of cyclic shifts, generalised NDs, GN2-designs.

Mathematics Subject Classification (2010): 05B05; 62K10; 62K05.

1. Introduction

There are several situations where response of a treatment (direct effect) is affected by the treatment(s) applied in neighbouring units. Such effects are known as neighbour effects which become the major source of bias. Such bias is minimized with the use of neighbour designs (NDs):

• If each pair of treatments appears once as neighbour then it is minimal ND.

¹ Department of Statistics, The Islamia University of Bahawalpur, Pakistan. ORCID: https://orcid.org/0000-0002-4034-3564.

² Department of Statistics, The Islamia University of Bahawalpur, Pakistan. ORCID: https://orcid.org/0000-0002-0377-0030.

³ Department of Statistics, The Islamia University of Bahawalpur, Pakistan.

ORCID: https://orcid.org/0000-0002-5965-7803.

⁴ Department of Statistics, The Islamia University of Bahawalpur, Pakistan.

E-mail: mailto:rashid701@hotmail.com. ORCID: https://orcid.org/0000-0001-9703-7296.

⁵ Department of Statistics, Stockholm University, Stockholm, Sweden.

ORCID: https://orcid.org/0000-0003-2889-0263.

[©] Muhammad Nadeem, Khadija Noreen, H. M. Kashif Rasheed, Rashid Ahmed, Mahmood Ul Hassan. Article available under the CC BY-SA 4.0 licence 💽 😨 👔

- A block formed in a cycle in such a way that its first and last units are considered as adjacent neighbours is called a circular block. In circular blocks, each unit has one left-neighbour and one right-neighbour.
- A block in which each treatment appears either once or not at all is called a binary block.
- The circular generalized neighbour designs (CGNDs) in which $\lambda'_1 = 1$ and $\lambda'_2 = 0$ are called minimal CGNDs (MCGNDs) and are a better alternative to the minimal NDs.

Rees (1967) used neighbour designs in virus research. Partially NDs and generalized NDs (GNDs) should be used in the situations where NDs require a large number of experimental units. Misra et al. (1991) relaxed the condition of the constancy of λ and constructed GNDs. Chaure and Misra (1996), Nutan (2007), Kedia and Misra (2008) constructed GN₂- designs and GN₃-designs. Ahmed et al. (2009), Zafaryab et al. (2010) and Shehzad et al. (2011) presented procedures to generate MCGNDs for limited cases. Iqbal *et al.* (2012) presented CGNDs for k = 3. Ahmed and Akhtar (2012) presented partially balanced NDs in circular blocks for some specific cases. In the literature, some minimal CGNDs might be constructed through *i* sets of shifts for k_1 and one set for k_2 , where $k_2 = 3$, 4 and 5. These designs can also be constructed for other combinations of v, k_1 and k_2 using *i* sets of shifts for k_1 and two for k_2 which have not been constructed. In this article, generators are developed to obtain MCGNDs in two different block sizes for (i) $k_2 = 3$, (ii) $k_2 = 4$, (iii) $k_2 = 5$. All these designs are constructed through the method of cyclic shifts (Rule I) using *i* sets of shifts for k_1 and two sets for k_2 . In the proposed designs $\nu/2$ unordered pairs do not appear as neighbours while all others appear once.

In Section 2, the method of cyclic shifts (Rule I) is described for MCGNDs. In Section 3, conditions are discussed for the existence of MCGNDs in which v/2 unordered pairs do not appear as neighbours. In Section 4, generators are developed for MCGNDs in two different block sizes when $k_2 = 4$, 5 and 6.

2. Method of Construction

The method of cyclic shifts was introduced by Iqbal (1991) for the construction of BIBDs, NDs, RMDs, Polygonal designs, etc. Its Rule I is explained here for MCGNDs.

Let $S_j = [q_{j1}, q_{j2}, ..., q_{j(k-1)}]$ be *l* sets of shifts, with j = 1, 2, ..., l and $1 \le q_{ji} \le v-1$. If each of 1, 2, ..., *v*-1 appears once in S^{*}, where S^{*} = $[q_{j1}, q_{j2}, ..., q_{j(k-1)}, (q_{j1}+q_{j2}+...+q_{j(k-1)})$ mod *v*, *v*- q_{j1} , *v*- q_{j2} , ...,*v*- $q_{j(k-1)}$, *v*- $(q_{j1}+q_{j2}+...+q_{j(k-1)})$ mod *v*] then it will provide minimal CND. If (i) $\lambda_1' = 1$ and $\lambda'_2 = 0$, or (ii) $\lambda_1' = 1$ and $\lambda'_2 = 2$ then the design is called MCGND.

Example 2.1. The following sets produce MCGND for v = 24, $k_1 = 5$ and $k_2 = 3$. $S_1 = [3,4,5,10], S_2 = [7,11], S_3 = [8,15]$

To generate the design from these sets of shifts, take v blocks for $S_1 = [3,4,5,10]$. Assign 0, 1, ..., v-1 as the first unit element for each block respectively. Add 3 (mod v) to the each first unit element to obtain the second unit elements. Similarly, add 4 (mod v) to the each second unit element to obtain the third unit elements. Then add 5 and 10 in the similar way and get Table 1.

B1	B ₂	B ₃	B4	B 5	B ₆	B ₇	B_8	B9	B ₁₀	B11	B ₁₂
0	1	2	3	4	5	6	7	8	9	10	11
3	4	5	6	7	8	9	10	11	12	13	14
7	8	9	10	11	12	13	14	15	16	17	18
12	13	14	15	16	17	18	19	20	21	22	23
22	23	0	1	2	3	4	5	6	7	8	9
B13	B14	B15	B16	B17	B18	B19	B20	B ₂₁	B ₂₂	B ₂₃	B ₂₄
12	13	14	15	16	17	18	19	20	21	22	23
15	16	17	18	19	20	21	22	23	0	1	2
19	20	21	22	23	0	1	2	3	4	5	6
0	1	2	3	4	5	6	7	8	9	10	11
10	11	12	13	14	15	16	17	18	19	20	21

Table 1: Blocks generated from $S_1 = [3,4,5,10]$

Take ν more subjects for $S_2 = [7,11]$ and generate Table 2 in the similar way as obtained through S_1 .

Table 2:	Blocks	generated	from S	$S_2 = [7, 11]$
----------	--------	-----------	--------	-----------------

B25	B ₂₆	B27	B ₂₈	B29	B30	B31	B32	B33	B34	B35	B36
0	1	2	3	4	5	6	7	8	9	10	11
7	8	9	10	11	12	13	14	15	16	17	18
18	19	20	21	22	23	0	1	2	3	4	5
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48
12	13	14	15	16	17	18	19	20	21	22	23
19	20	21	22	23	0	1	2	3	4	5	6
6	7	8	9	10	11	12	13	14	15	16	17

Take v more subjects for $S_3 = [8,5]$ and generate Table 3 in the similar way as obtained through S_1 .

B49	B50	B51	B52	B53	B54	B55	B56	B 57	B58	B59	B60
0	1	2	3	4	5	6	7	8	9	10	11
8	9	10	11	12	13	14	15	16	17	18	19
23	0	1	2	3	4	5	6	7	8	9	10
B ₆₁	B ₆₂	B ₆₃	B ₆₄	B65	B66	B67	B68	B69	B ₇₀	B ₇₁	B ₇₂
12	13	14	15	16	17	18	19	20	21	22	23
20	21	22	23	0	1	2	3	4	5	6	7
11	12	13	14	15	16	17	18	19	20	21	22

Table 3: Blocks generated from $S_3 = [8,5]$

Table 1, 2 and 3 jointly present the MCGND for v = 24, $k_1 = 5$ and $k_2 = 3$, using 72 blocks. In this design 12 unordered pairs (0,12), (1,13), ..., (11,23) among the total 276 do not appear as neighbours while all remaining 264 unordered pairs appear once.

3. Conditions for the Existence of MCGNDs in Which v/2 Pairs Do Not Appear as Neighbours

Condition 3.1: Let m = (v-2)/2 and A = [1, 2, ..., m]. If $m \pmod{4} \equiv 0$ then A will provide MCGNDs for $v = 2ik_1+4k_2+2$ in which (m+1) unordered pairs do not appear as neighbours while all other appear exactly once.

Condition 3.2: Let m = (v-2)/2 and $m \pmod{4} \equiv 3$. Then, A = [1, 2, ..., (3m-1)/4, (3m+7)/4, (3m+11)/4, ..., m, 5(m+1)/4] will provide MCGNDs for $v = 2ik_1+4k_2+2$ in which (m+1) unordered pairs do not appear while all others appear once.

4. MCGNDs in Blocks of Two Different Sizes

Here, some generators are developed through Rule I to obtain MCGNDs in blocks of two different sizes using *i* sets for k_1 and two for k_2 . In these designs $\nu/2$ pairs do not appear as neighbours while all other appear once. (*i*+2) sets are obtained as follows:

- Divide values of 'A' selected from Section 3, in *i* classes of size k₁ and two of size k₂ such that the sum of values in each class is divisible by *v*.
- 2. Deleting any one value from each class will result in (*i*+2) sets of shifts to produce MCGND.
- 4.1. MCGNDs when $k_2 = 3$

Generator 4.1.1. Construct MCGNDs for k_2 for $v = 2ik_1+14$, $k_1 = 4l+2$, $k_2 = 3$, *i* odd, $m \pmod{4} \equiv 0$ and *l* integer. Here:

• Consider A = [1, 2, ..., m].

Example 4.1.1. The following sets produce MCGND for v = 26, $k_1 = 6$ and $k_2 = 3$.

$$S_1 = [2,3,4,5,11], S_2 = [9,10], S_3 = [8,12]$$

Designs constructed through this method for $\nu \le 100$, $k_1 = 6$, 10, 14 and 18 are presented in Table 4 in Appendix.

Generator 4.1.2. Construct MCGNDs for k_2 for $v = 2ik_1+14$, $k_1 \pmod{4} \equiv 1$, $k_2 = 3$, *I* (mod 4) $\equiv 1$, *m* (mod 4) $\equiv 3$. Here:

• Consider A = [1, 2, ..., (3m-1)/4, (3m+7)/4, (3m+11)/4, ..., m, 5(m+1)/4].

Example 4.1.2. The following sets produce MCGND for v = 24, $k_1 = 5$ and $k_2 = 3$.

$$S_1 = [3,4,5,11], S_2 = [8,10], S_3 = [7,15]$$

Designs constructed through this method for $\nu \le 100$, $k_1 = 5$, 9, 13 and 17 are presented in Table 5 in Appendix.

4.2. MCGNDs when $k_2 = 4$

Generator 4.2.1. Construct MCGNDs for k_2 for $v = 2ik_1+18$, $k_1 = 4l+2$, $k_2 = 4$, *i* even, *m* (mod 4) \equiv 0. Here:

• Consider A = [1, 2, ..., m].

Example 4.2.1. The following sets produce MCGND for v = 42, $k_1 = 6$ and $k_2 = 4$.

$$S_1 = [3,4,5,8,20], S_2 = [11,13,16,17,18], S_3 = [7,14,15], S_4 = [10,12,19]$$

Designs constructed through this method for $\nu \le 100$, $k_1 = 6$, 10, 14 and 18 are presented in Table 6 in Appendix.

Generator 4.2.2. Construct MCGNDs for k_2 for $v = 2ik_1+18$, $k_1 \pmod{4} \equiv 1$, $k_2 = 4$, *i* (mod 4) $\equiv 3$, *m* (mod 4) $\equiv 3$. Here:

• Consider A = [1, 2, ..., (3m-1)/4, (3m+7)/4, (3m+11)/4, ..., m, 5(m+1)/4].

Example 4.2.2. The following sets produce MCGND for v = 48, $k_1 = 5$ and $k_2 = 4$.

 $S_1 = [4,5,17,19], S_2 = [8,9,14,16], S_3 = [10,11,12,13], S_4 = [22,23,30], S_5 = [7,15,20]$

Designs constructed through this method for $\nu \le 100$, $k_1 = 5$, 9 and 13 are presented in Table 7 in Appendix.

4.3. MCGNDs when $k_2 = 5$

Generator 4.3.1. Construct MCGNDs for $v = 2ik_1+22$, $k_1 = 4l+2$, $k_2 = 5$, *i* odd, $m \pmod{4} \equiv 0$ and *l* integer. Here:

• A = [1, 2, ..., m].

Example 4.3.1. The following sets produce MCGND for v = 34, $k_1 = 6$ and $k_2 = 5$. $S_1 = [3,4,5,7,13]$, $S_2 = [6,8,9,10]$, $S_3 = [12,14,15,16]$

Designs constructed through this method for $\nu \le 100$, $k_1 = 6$, 10, 14 and 18 are presented in Table 8 in Appendix.

Generator 4.3.2. Construct MCGNDs for $v = 2ik_1+22$, $k_1 \pmod{4} \equiv 1$, $k_2 = 5$, $i \pmod{4} \equiv 1$, $m \pmod{4} \equiv 3$. Here:

• A = [1, 2, ..., (3m-1)/4, (3m+7)/4, (3m+11)/4, ..., m, 5(m+1)/4].

Example 4.3.2. The following sets produce MCGND for v = 32, $k_1 = 5$ and $k_2 = 5$.

 $S_1 = [2,5,9,15], S_2 = [10,13,14,20], S_3 = [4,6,8,11]$

Designs constructed through this method for $\nu \le 100$, $k_1 = 5$, 9, 13 and 17 are presented in Table 9 in Appendix.

Acknowledgement

Authors are thankful to the Reviewer for valuable suggestions.

References

- Ahmed, R., Akhtar, M. and Tahir, M. H., (2009). Economical generalized neighbor designs of use in Serology. *Computational Statistics and Data Analysis*, 53, pp. 4584–4589.
- Ahmed, R., Akhtar, M., (2012). Designs partially balanced for neighbor effects. *Aligarh Journal of Statistics*, 32, pp. 41–53.
- Chaure, N. K., Misra, B. L., (1996). On construction of generalized neighbor design. *Sankhya Series* B, 58, pp. 45–253.
- Iqbal, I., (1991). Construction of experimental design using cyclic shifts, Ph.D. Thesis, University of Kent at Canterbury, U.K.
- Iqbal, I., Tahir, M. H., Aggarwal, M. L., Ali, A. and Ahmed, I. (2012). Generalized neighbor designs with block size 3. *Journal of Statistical Planning and Inference*, 142, pp. 626–632.
- Kedia, R. G., Misra, B. L., (2008). On construction of generalized neighbor design of use in serology. *Statistics and Probability Letters*, 18, pp. 254–256.
- Misra, B. L., Bhagwandas and Nutan S. M., (1991). Families of neighbor designs and their analysis, *Communications in Statistics Simulation and Computation*, 20, pp. 427–436.
- Nutan, S. M., (2007). Families of Proper Generalized Neighbor Designs. *Journal of Statistical Planning and Inference*, 137, pp. 1681–1686.
- Rees, D. H., (1967). Some designs of use in serology. Biometrics, 23, pp. 779-791.
- Shehzad, F., Zafaryab, M. and Ahmed, R., (2011). Some series of proper generalized neighbor designs. *Journal of Statistical Planning and Inference*, 141, pp. 3808–3818.
- Zafaryab, M., Shehzad, F. and Ahmed, R., (2010). Proper generalized neighbor designs in circular blocks. *Journal of Statistical Planning and Inference*, 140, pp. 3498–3504.

Appendix

v	k1	k ₂	Sets of Shifts
26	6	3	[1,2,3,4,5,11]+[7,9,10]+[6,8,12]
50	6	3	[1,3,4,6,12,24]+[2,7,8,9,11,13]+[14,15,16,17,18,20]+[10,19,21]+[5,22,23]
74	6	3	[2,4,5,6,23,34]+[7,8,9,10,11,29]+ [1,12,13,15,16,17]+ [18,19,22,26,31,32]+
			[14,24,25,27,28,30]+ [20,21,33]+[3,35,36]
98	6	3	[1,2,3,6,38,48] + [9,10,11,12,26,30] + [13,14,15,16,18,22] + [7,8,19,20,21,23] +
			[25,27,28,29,43,44]+ [24,31,34,35,33,39]+ [4,32,37,40,41,42]+
			[17,36,45]+[5,46,47]
34	10	3	[1,2,3,4,6,7,8,12,9,16]+[10,11,13]+[5,14,15]
74	10	3	[2,4,5,6,7,8,21,29,32,34]+[9,17,12,13,14,15,18,19,20,11]+
			[1,16,22,23,24,25,26,27,28,30] + [10,31,33] + [3,35,36]
42	14	3	[1,2,3,4,6,7,8,9,10,12,13,14,17,20]+[11,15,16]+[5,18,19]
98	14	3	[1,2,3,4,7,8,9,10,12,13,14,20,45,48]+
			[6,15,16,17,18,19,21,22,23,24,27,35,26,25]+
			[28,29,30,31,32,33,36,37,34,38,39,40,41,42]+[11,43,44]+[5,46,47]
50	18	3	[1,2,3,4,6,7,8,9,24,12,13,20,15,14,17,16,11,18]+[10,19,21]+[5,22,23]

Table 5: MCGNDs for $v = 2ik_1+14$, $k_1 \pmod{4} \equiv 1$, $k_2 = 3$, $i \pmod{4} \equiv 1$ and $v \le 100$

v	k1	k ₂	Sets of Shifts
24	5	3	[1,3,4,5,11]+[6,8,10]+[2,7,15]
64	5	3	[1,2,6,27,28]+[4,5,17,18,20]+[10,12,13,14,15]+[7,8,11,16,22]+
			[19,21,23,25,40]+ [9,26,29]+[3,30,31]
32	9	3	[1,2,4,5,6,8,11,14,13]+[7,10,15]+[3,9,20]
40	13	3	[1,2,3,6,7,8,9,12,10,13,14,16,19]+[4,11,25]+[5,17,18]
48	17	3	[1,2,3,4,6,7,8,10,11,15,13,14,16,12,17,23,30]+[9,19,20]+[5,21,22]

Table 6: MCGNDs for $v = 2ik_1+18$, $k_1 = 4l+2$, $k_2 = 4$, *i* even and *l* integer and $v \le 100$

v	k1	k ₂	Sets of Shifts
42	6	4	[2,3,4,5,8,20]+[9,11,13,16,17,18]+[6,7,14,15]+[1,10,12,19]
66	6	4	[1,3,4,6,20,32]+[7,8,9,11,12,19]+[16,17,18,26,27,28]+ [10,21,22,25,23,31]+
			[13,14,15,24]+[2,5,29,30]
90	6	4	[5,18,34,40,41,42]+[7,8,9,14,15,37]+[6,11,12,16,17,28]+[1,4,19,21,22,23]+
			[25,26,27,29,30,43]+[13,31,32,33,35,36]+ [3,10,38,39]+[2,20,24,44]
58	10	4	[3,4,5,6,8,9,13,23,17,28]+[10,11,12,15,16,18,19,20,26,27]+
			[1,14,21,22]+[2,7,24,25]
98	10	4	[1,2,3,4,6,7,8,9,10,48]+[13,14,15,16,17,18,19,20,23,41]+
			[12,21,22,24,28,30,33,39,40,45]+ [32,34,35,36,37,38,43,44,46,47]+
			[11,27,29,31]+[5,25,26,42]
74	14	4	[3,4,5,6,7,9,10,12,19,20,29,33,31,34]+
			[2,14,15,16,17,21,24,27,22,23,25,28,26,36]+[1,11,30,32]+[8,13,18,35]
90	18	4	[1,2,3,4,5,7,8,11,12,13,14,15,16,18,19,39,40,43]+
			[20,22,23,24,25,26,27,28,29,30,34,31,33,35,32,36,41,44]+[6,9,37,38]+
			[10,17,21,42]

v	k 1	k ₂	Sets of Shifts
48	5	4	[3,4,5,17,19]+[1,8,9,14,16]+[2,10,11,12,13]+[21,22,23,30]+[6,7,15,20]
88	5	4	[2,4,5,34,43]+[7,8,9,22,42]+[3,12,13,28,32]+[14,17,18,19,20]+
			[6,10,23,24,25]+[29,31,37,38,41]+[16,30,36,39,55]+[11,15,27,35]+
			[1,21,26,40]
72	9	4	[4,6,7,8,10,20,26,28,35]+[9,12,13,14,15,16,17,18,30]+
			[2,3,5,19,23,24,22,25,21]+[1,11,29,31]+[32,33,34,45]
96	13	4	[1,2,3,4,5,6,7,8,9,10,11,12,18]+[15,16,17,19,20,21,22,23,24,25,26,27,33]+[29,30,3
			1,32,34,35,37,38,39,40,42,46,47]+[13,14,28,41]+[43,44,45,60]

Table 7: MCGNDs for $v = 2ik_1+18$, $k_1 \pmod{4} \equiv 1$, $k_2 = 4$, $i \pmod{4} \equiv 3$ and $v \le 100$

Table 8: MCGNDs for $v = 2ik_1+22$, $k_1 = 4l+2$, $k_2 = 5$, *i* odd, *l* integer, and $v \le 100$

v	k 1	k ₂	Sets of Shifts
34	6	5	[2,3,4,5,7,13]+[1,6,8,9,10]+[11,12,14,15,16]
58	6	5	[1,2,3,4,22,26]+[7,8,9,10,11,13]+[16,17,19,20,21,23]+
			[5,6,14,15,18]+[12,24,25,27,28]
82	6	5	[2,4,5,6,29,36]+[9,10,11,12,18,22]+[7,13,14,15,16,17]+[1,3,8,21,23,26]+
			[19,24,25,28,31,37]+ [30,32,33,34,35]+[20,27,38,39,40]
42	10	5	[2,3,4,6,7,8,9,10,15,20]+[1,5,11,12,13]+[14,16,17,18,19]
82	10	5	[1,2,3,4,5,6,7,8,9,37]+[11,13,14,15,16,17,18,19,20,21]+
			[10,22,23,24,25,26,27,28,29,32]+ [30,31,33,34,36]+[12,35,38,39,40]
50	14	5	[2,3,4,6,7,8,10,11,12,13,15,16,24,19]+[1,5,9,17,18]+[14,20,21,22,23]
58	18	5	[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,21,17,16]+[19,20,23,26,28]+
			[18,22,24,25,27]

Table 9: MCGNDs for $v = 2ik_1+22$, $k_1 \pmod{4} \equiv 1$, $k_2 = 5$, $i \pmod{4} \equiv 1$ and $v \le 100$

v	k 1	k ₂	Sets of Shifts
32	5	5	[1,2,5,9,15]+[7,10,13,14,20]+[3,4,6,8,11]
72	5	5	[3,5,9,10,45]+[4,8,17,21,22]+[2,13,15,19,23]+[6,12,16,18,20]+
			[1,7,11,24,29]+[25,26,28,30,35]+[14,31,32,33,34]
40	9	5	[1,5,6,7,8,9,12,13,19]+[2,3,10,11,14]+[4,16,17,18,25]
48	13	5	[1,2,3,4,5,6,7,8,9,10,11,13,17]+[12,15,16,23,30]+[14,19,20,21,22]
56	17	5	[1,2,3,4,5,6,7,8,9,16,12,13,23,19,15,11,14]+[17,18,20,22,35]+
			[10,24,25,26,27]