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Bayesian estimation of fertility rates under imperfect age
reporting
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ABSTRACT

This article outlines the application of the Bayesian method of parameter estimation to situ-
ations where the probability of age misreporting is high, leading to transfers of an individual
from one age group to another. An essential requirement for Bayesian estimation is prior
distribution, derived for both perfect and imperfect age reporting. As an alternative to the
Bayesian methodology, a classical estimator based on the maximum likelihood principle has
also been discussed. Here, the age misreporting probability matrix has been constructed us-
ing a performance indicator, which incorporates the relative performance of estimators based
on age when reported correctly instead of misreporting. The initial guess of performance in-
dicators can either be empirically or theoretically derived. The method has been illustrated
by using data on Empowered Action Group (EAG) states of India from National Family
Health Survey-3 (2005–2006) to estimate the total marital fertility rates. The present study
reveals through both a simulation and real-life set-up that the Bayesian estimation method
has been more promising and reliable in estimating fertility rates, even in situations where
age misreporting is higher than in case of classical maximum likelihood estimates.

Key words: Fisher information, square error loss function, age-specific marital fertility rate,
Bayes estimator, maximum likelihood principle.

1. Introduction

The purpose of any demographic or health sample survey is to provide information on
the demographic parameters of the concerned population. In demographic studies, the age
of an individual plays an important role, and misreporting leads to transfers of an individual
from one age to another. Misreporting causes subjective biases due to random and system-
atic errors in data that influence the estimate of the population parameters. Earlier studies
by Hussey and Elo (1997), Narasimhan et al. (1997) and Denic et al. (2004), Yi (2008),
and Neal et al. (2012) show that age misreporting is still highly prevalent in many coun-
tries including India. As a result of misreporting, various measures and vital indicators that
are age-dependent get influenced (Coale and Li (1991), Szoitysek et al. (2017)). To over-
come this problem many alternative methods have been discussed by Bhat (1990), Dechter
and Preston (1991), Bhat (1995), and Nwogu and Okoro (2017), which are based on the
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requirement and availability of the other related information to detect and measure these
errors.

The total marital fertility rate (TMFR) is considered as one of the important measures of
the overall summary of marital fertility. The measure of TMFR is basically a linear function
of the number of live births to the women in each group. Therefore, the distribution for the
total marital fertility rate of a population is difficult to get in an explicit form. Hence, the
total fertility rate is estimated by using this linear function. The procedure for estimation
and prediction of TMFR using various alternative methods was already explored in studies
by Garenne et al. (2001), Yadava and Kumar (2002), Martin et al. (2011), and Pathak and
Verma (2013).

Under the assumption that TMFR is an unknown but fixed quantity and there is no age
missreporting, many studies have been derived and investigated this. But, in practice, TMFR
is a random quantity, and can quantify the randomness specifying suitable prior distribution
for it. As such, the Bayesian approach could be successfully applied for making statistical
inference on TMFR.

Fertility is regarded as one of the essential demographic measures and is influenced by
age misreporting. Imperfect or wrong age reporting has been remained a methodological
problem (Murray et al., 2018; Singh et al., 2020; Schoumaker, 2020), and for the sake of
analysis, sophisticated methodological techniques are needed to address this situation dur-
ing estimation. For situations like the estimation of age-specific mortality (Bhatta and Nan-
dram, 2013), projecting populations (Daponte et al., 1995), school completion (Barakat et
al., 2021), where age-misreported, the Bayesian methodology has been found very effective
to estimate the population characteristics.

Under the assumption that age was correctly reported in recent years, various Bayesian
methodology-based estimates of fertility rates have been also introduced by Oh (2018), Liu
and Raftery (2018), Borges (2019), and Schmertmann and Hauer(2019). But the problem of
age misreporting remains unexplored. The Bayesian inference on TMFR, based on the lin-
ear function of birth in married women in each age group, has not been considered much in
the literature. The study is different from the existing one as it considered limited assump-
tions on the structure of data and choice of prior distribution in terms of hyper-parameters
values. The present study attempts to progress in the same direction of utilizing the Bayesian
paradigm to estimate TMFR considering that the age has been misreported. The present
study aimed to derive a prior TMFR using the same linear function following Fishers’ in-
formation. As an alternative to the Bayesian methodology, a classical estimator using the
maximum likelihood principle has also been discussed. The performance of the derived
posterior distributions is also generalized and investigated for both perfect and imperfect
age-reporting situations. Here, we hypothesized that the Bayesian estimation method might
provide a more promising and reliable estimation of fertility rates, even in cases where age
misreporting is higher than classical maximum likelihood estimates.

This article is organized in the following way. Section 2 provides classical and Bayesian
estimates of TMFR, based on the maximum likelihood principle and the Bayesian method,
respectively, under perfect age reporting. In Section 3, the procedure is generalized for
imperfect estimates of TMFR when age is misreported. Section 4 illustrates the performance
of the derived prior and its associated posterior distribution through numerical simulation.
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Section 5 illustrates the proposed estimate through real-life data of women belonging to the
childbearing age-group, i.e. 15-44 years, from third rounds of the National Family Health
Survey(NFHS-3) of 2005-2006 in India. Section 6 provides the results and discussion.
Lastly, Section 6 gives a summary and conclusion.

2. TMFR Estimation under Perfect Age Reporting

Let us consider a population of married women who are in the childbearing age group
(i.e., 15-44 years) at a particular period. Let Xai denote a binary form of the event of ever
occurrence of birth to the ith women during the study period within the ath childbearing
age-interval, where i = 1,2, · · · ,na and a = 1,2, · · · ,c. Here, c denotes the number of non-
overlapping age-groups and na is the number of women in the ath age group. The cases of
twin births in a particular interval are not considered a serious issue in reality as these events
are rare and found to be one out of 240 births in the database. The probability mass function
(p.m.f.) of age-specific birth occurrence to a woman is given by

f (xai|pa) = pxai
a (1− pa)

1−xai , xai = 0,1, 0 < pa < 1, (2.1)

where pa denotes the probability that a child was born to a married woman belonging to
ath childbearing age-group, referred to as the age-specific married fertility rate (ASMFR)
of mothers belonging to ath age-group, for all a = 1,2, · · · ,c. For any age-group, say a,

let Ya

[
=

na
∑

i=1
Xai

]
denote the total number of children born to na women belonging to that

age-group, then Ya is assumed to follow the Binomial (na, pa) distribution. The estimate of
probability that a child was born to a married woman in ath age-group, pa, is obtained using
the observed sample, say Ya.

2.1. Estimator of TMFR based on Maximum Likelihood Principle

Let f (ya|pa) denote the p.m.f. of Ya and by applying the standard maximum likelihood
(ML) principle, the ML estimate of pa, for all a = 1,2, · · · ,c, is obtained as

p̂a = arg max f (ya|pa)

pa
=

ya

na
(2.2)

and if the condition
na

∑
ya=0

δ

δ pa
f (ya|pa) = 0 (2.3)

is satisfied, then the variability explained by the estimator of pa is given by

V (p̂a)≥ {I (p̂a)}−1 =
p̂a(1− p̂a)

na
. (2.4)
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Classically, the estimate of TMFR has been obtained using the estimates of the proba-
bilities, p1, p2, · · · pc, using the linear function:

ψ(p) =
c

∑
a=1

αa pa, αa ≥ 0. (2.5)

Fisher’s information of the probability that a child born to a married woman belonging
to ath childbearing age-group, pa, using standard notation, has been obtained as

I (pa) =
na

∑
y=0

(
δ

δ pa
log f (ya|pa)

)2

f (ya|pa) (2.6)

and the inverse of Fisher’s information matrix of age classified probabilities vector, say p =

(p1 , · · · , pc), has been given by

I −1(p) = I −1(p1, p2 · · · , pc) =


p1(1−p1)

n1
0 . . . 0

0 p2(1−p2)
n2

. . . 0
...

...
. . .

...
0 0 . . . pc(1−pc)

nc
.



For the given linear function, ψ(p), of TMFR in equation (2.5), the gradient of p has
been obtained as

DT
ψ(p) =

[
∂ψ(p)

∂ p1

∂ ψ(p)
∂ p2

. . . ∂ ψ(p)
∂ pa

. . . ∂ ψ(p)
∂ pc

]
=
[
α1 α2 . . . αa . . . αc

]
.

Let νa =
(
I −1(p)

)
aa=(ath diagonal element of I −1(p))) = pa(1−pa)

na
, then

DT
ψ(p)I −1(p) =

[
α1 α2 . . . αc

]


ν1 0 . . . 0
0 ν2 . . . 0
...

...
. . .

...
0 0 . . . νc


=

[
α1ν1 α2ν2 . . . αcνc

]
(2.7)

DT
ψ(p)I −1(p)Dψ(p) =

c

∑
a=1

α
2
c νa. (2.8)
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The mean and variance of ψ(p) based on the ML estimates are of the form

ψ̂(p)M =
c

∑
a=1

αa p̂a (2.9)

V (ψ̂(p)M) = DT
ψ(p)I −1(p)Dψ(p)

=
c

∑
a=1

α
2
a

p̂a(1− p̂a)

na
. (2.10)

As Ya ∼ Binomial(na, pa), for all a = 1(1)c, and ψ(p) is estimated as ψ̂(p) =
c
∑

a=1
αa p̂a,

from the central limit theorem, we have

ψ(p)− ψ̂(p)√
DT

ψ(p)I −1(p)Dψ(p)
∼ N(0,1). (2.11)

The confidence interval for TMFR, ψ(p), has been obtained using the above equation
as

P

−z α
2
≤ ψ(p)− ψ̂(p)√

DT
ψ(p)I −1(p)Dψ(p)

≤ z α
2

≈ 1−α, (2.12)

where z α
2

is the (α

2 )
th quantile from the top of the standard normal distribution.

2.2. Bayes Estimators of TMFR

In the previous sub-section, it has been assumed that the numbers of live births that
occurred to women belong to ath age-interval, say Ya, follow the distribution denoted as
f (ya|pa). TMFR, ψ(p), is defined as a linear function of unknown but fixed probabilities of
having a live birth to a married woman in ath age-group. But in practical situations, TMFR
might be a random quantity and can model that randomness through the Bayesian approach
by specifying suitable prior distribution for ψ(p). To suggest a prior distribution for ψ(p),
a linear function of pa’s is difficult to be obtained directly. Here, an attempt has been made
to derive a prior distribution for ψ(p), based on the linear functions of pa’s as

Theorem-1: Suppose τ(·) defines the prior distribution for ψ(p) =
c
∑

a=1
αa pa, a linear func-

tion of probabilities that a child born to a married woman in ath age-group, say p1, · · · , pa, · · · pc,
is given by

τ(p) = τ(p1, · · · , pc) ∝

{
c

∑
a=1

α
2
a pa(1− pa)

}1/2 c

∏
a=1

p−1
a (1− pa)

−1 (2.13)

Proof: The proof of Theorem 1 is given in the Appendix.
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The posterior distribution based on the matching prior of TMFR, ψ(p), for the given
sample has been obtained as

q(p|data) ∝ L(p|data) τ(p)

q(p|y) ∝

{
c

∑
a=1

α
2
a pa(1− pa)

}1/2 c

∏
a=1

pya−1
a (1− pa)

na−ya−1, (2.14)

where ya =
na
∑

i=1
xai. Here, the posterior distribution, q(p|y), does not have any explicit form.

For this reason one has to get samples from q(p|x) to get the posterior distribution of ψ(p).
This is done by simulating N(= 100000) (with burning period 10000) values from the pos-
terior distribution as {p(l)1 , p(l)2 · · · , p(l)c ; l = 1,2, · · · ,N} for fixed values of αa’s, then these
samples have been used for the computation of TMFR as ψ(1)(p),ψ(2)(p), · · · ,ψ(N)(p),

where ψ(l)(p) =
c
∑

a=1
αa p(l)a .

The procedure of the Monte Carlo simulation technique was adopted to estimate an
empirical HPD interval of ψ(p|x) using the posterior samples by the following procedure:

1. ψ(1)(p),ψ(2)(p), · · · ,ψ(N)(p) are sorted ψ(1)(p)≤ ψ(2)(p)≤, · · · ,≤ ψ(N)(p)

2. Computation of the credibility interval of 100(1−α)% is done as

∆l = (ψ(l)(p),ψ(l+[(1−α)N])(p));∀l = 1,2, · · · ,N − [1−α]N

3. The 100(1−α)% credible interval is denoted as ∆ ∗
l , and is the one which has the

smallest interval width among all credible intervals.

Note : The posterior mean and variance of ψ(p) can be approximated as

ψ̂(p)B = E(ψ(p)|x)≃ 1
N

N

∑
l=1

ψ
(l)(p) (2.15)

and

V (ψ̂(p)B) =V (ψ(p)|x)≃ 1
N

N

∑
l=1

[ψ(l)(p)]2 −

[
1
N

N

∑
l=1

ψ
(l)(p)

]2

. (2.16)

3. Effect of Age Misreporting

The obtained estimates and their related discussions are enough to infer TMFR if each
woman correctly reported ages. But, the works of Narasimhan et al. (1997) and Denic et
al. (2004), Yi (2008), and Neal et al. (2012) have suggested that age misreporting is still
highly prevalent in many countries, including India and hence the error in age reporting is
inevitable. As a result, the fertility measures, including TMFR, might get highly underesti-
mated or overestimated, which is likely to inappropriately influence related policy planning
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leading to poor health care and/or undue economic burden. So, it is necessary to study how
robust the proposed estimates are when the prevalence of misreporting of age is high.

Let ‘a’ symbolize the age-interval reported by a woman and a∗ denote true age-interval,
where a,a∗ = 1,2, · · · ,c. The probability that a child born to a married woman in ath re-
ported age-group may be formulated as

p∗a∗ = ∑
a

πa,a∗ pa, a,a∗ = 1,2, · · · ,c (3.1)

where p∗a∗ denotes the probability that a child born to a married woman in her true age-
interval a∗, and πa,a∗ is the probability of shifting from the true age class a∗ to a due to
misreporting. Equation (3.1) can be represented in a matrix form as follows:

p∗ = π p, (3.2)

where p= (p1, p2, · · · , pc)
′ is a column vector representing probabilities of birth to a woman

based on their reported ages, p∗ = (p∗1, p∗2, · · · , p∗c)
′ is a column vector of probabilities of

birth to a women as per their true ages, and π is assumed to be a stochastic transition
probabilities matrix was (πa,a∗) of order c× c. The πa,a∗ ’s are such that

0 ≤ πa,a∗ ≤ 1,∑
a∗

πa,a∗ = ∑
a

πa,a∗ = 1, ∀a,a∗

Based on the above probabilistic model for misreporting of age, we have the following
observations:

Theorem 2: If αa = α∗
a , then the estimate of TMFR based on the classical procedure of

estimation does not take into account the age misreporting mechanism, i.e.i.e.,

c

∑
a∗=1

p∗a∗ =
c

∑
a=1

pa ⇒ ψ(p∗) = ψ(p) (3.3)

Proof: Let the coefficients of the linear function of TMFR for both prefect age reporting
and misreporting are the same i.e. α∗

a = αa, for all a,a∗ = 1,2, · · · ,c, then

∑
a∗

p∗a∗ = ∑
a∗

∑
a

πa,a∗ pa = ∑
a

(
∑
a∗

πa,a∗

)
pa =

c

∑
a=1

pa

⇒ ψ(p∗) = ∑
a∗

α
∗
a p∗a∗ = ∑

a
αa pa = ψ(p). (3.4)

Under imperfect age reporting scenario, the variance of maximum likelihood estimate
has been obtained after replacing pa by p∗a and na = na∗ as

V (ψ̂∗(p∗M)) =
c

∑
a∗=1

α
2
a∗

p̂∗a∗(1− p̂∗a∗)

na∗
. (3.5)
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and the posterior distribution of equation (2.14) will be of the form

h(p∗|x) ∝

{
c

∑
a=1

α
2
a p∗a(1− p∗a)

}1/2 c

∏
a=1

(p∗a)
ya−1(1− p∗a)

na−ya−1. (3.6)

In the context of the Bayesian framework, the distribution of p∗i , for each i, is a mixture
of the distributions of c independent variables pa, a = 1,2, · · · ,c with mixing proportions
πi1,πi2, · · · ,πic respectively. Here again, under age misreporting scenario, the posterior,
h(p∗|x), does not have any explicit form and hence it is evaluated by the following Monte
Carlo simulation technique.

4. Numerical Study

In this section the proposed procedures have been illustrated numerically through a sim-
ulation study. For demonstration purpose we first draw a random observation from Uni-
form(0,1) of size c, say pa, for all a =,1,2, · · · ,c, where ‘c’ denotes the numbers of groups.
By using the using the same pa a random number has been generated from Binomial(n, pa),
where assumed n1 = n2 = · · · = nc = n, i.e., number of individuals corresponding to each
group is the same and αc = 1 for all a =,1,2, · · · ,c. The suggested prior and posterior

distribution of ψ(p) =
c
∑

a=1
αa pa, αa ≥ 0, defined in equations (2.13) and (2.14) not have

any explicit forms, therefore, the simulation procedure discussed in Section (2.2) will be
followed to characterize of ψ(p).

Here we have been computed both ML and Bayesian estimators of ψ̂(p)M and ψ̂(p)B,
respectively, for both perfect and imperfect classification frameworks. Under the assump-
tion of perfect classification of individuals into groups, the comparison among the ML and
Bayes’ estimators of ψ(p) can be made based using their MSEs under the square risk func-
tion as

Rψ̂(p)B(ψ(p)) = E(ψ̂(p)B −ψ(p))2, (4.1)

Rψ̂(p)M (ψ(p)) = E(ψ̂(p)M −ψ(p))2. (4.2)

As the posterior mean is obtained by minimizing the Bayes risk under the squared error
loss function, the procured Bayes estimator of an unknown parameter has often been found
superior to the corresponding ML estimator concerning MSE. It is to be emphasized that the
estimator based on ML principal neither depends on any prior distribution for the parameter
nor it requires any particular loss function. Thus, in such a situation, the comparison among
the ML and Bayes estimator ought to be made so that the criteria do not depend on the
nature of prior information regarding unknown parameters. As the MSE of an estimator
is also considered risk under squared error loss, it has been treated as a risk function for
comparison purposes. The comparison is done by calculating the estimated relative risk of
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Bayes estimators concerning ψ̂(p)M and is defined by

θ̂ψ̂(p)B =
R̂(ψ̂(p)M)

R̂(ψ̂(p)B)
(4.3)

For generalization of the suggested methodology in the imperfect classification of group
situation, and comparison of ML and Bayesian technique, the misclassification matrix,π ,
is known. For the demonstration purpose we have considered the particular form of π ,
misclassification transition probabilities matrix i.e. (πa,a∗) of order c× c as,

π =


ρ δ δ . . . δ

ρ δ . . . δ

ρ . . . δ

. . .
...
ρ

 , 0 < ρ < 1, δ =
1−ρ

s−1
,

(4.4)

where ρ denotes the probability of an accurately classified group and δ denotes the inac-
curacy, which has been assumed as equally distributed across the remaining groups. Here
‘ρ = 1’ corresponds to the case of perfect classification. To illustrate the performance of
both ML and Bayesian estimators under perfect and imperfect classification frameworks,
for different choices of group size c ∈ {3,5,7}, the number of observation in each group
n = {50,100} and ρ = 0.8,0.9,1.0, estimates (ψ̂(p)M, ψ̂(p)B), 95 % confidence and credi-
ble intervals and relative risk of Bayes estimators θ̂ψ̂(p)B have been obtained. Based on the
simulation of 100000 times the obtained results have been depicted in Table 2.

5. Application to Real life data

In this section, an illustration of the proposed procedure using real-life data on Indian
married women has been discussed. For this study, we took the data set for the third round
of the National Family Health Survey-3 (NFHS-3) for the years 2005-06 from the Measure
DHS Demographic and Health Surveys (DHS). DHS provides a nationally representative
state survey that helps estimate various key indicators of fertility, infant mortality, family
planning practice, maternal and child care, and access to mother and child services (NFHS-
III(2005-2006)). NFHS-3 is conducted by the Ministry of Health and Family Welfare (Mo-
HFW), Government of India, and managed by the International Institute of Population Sci-
ences (IIPS), Mumbai, covering 29 states and 7 Union Territories of India (NFHS-III(2005-
2006)). Here, the samples of NFHS-3 are treated as our population of interest and the study
population comprised of the women residing at the Empowered Action Groups (EAG) states
of India viz. (a) Bihar (n = 3818) (b) Uttaranchal (n = 2953) (c) Chhatisgarh (n = 3810) (d)
Jharkhand (n = 2983) (d) Orissa (n = 4540) (e) Rajasthan (n = 3892) (f) Madhya Pradesh
(n = 6427) and (g) Uttar Pradesh (n = 12183), which are considered as socio-economically
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backward and have high fertility rates compare to other states.
In order to estimate TMFR, defined in equation (2.5), corresponding to each of the

selected Indian states under both ML and Bayesian methods, here married women belong-
ing to childbearing age interval (15-44 years) have been grouped into six (c = 6) non-
overlapping equal subgroups of 5 year interval viz. 15-19,· · · , 40-44. Age interval 45-49
could not be considered due to the lack of a sufficient number of women. Further, the infor-
mation on the birth status in the last year of the survey has been considered a study period.
Corresponding to each selected woman, information regarding their age and whether any
birth occurred or not during the study period has been collected.

The problem of estimation of TMFR for the situation where age has been misreported as
in equation (3.1), through ML and Bayesian technique, is possible only when the π matrix
is known. The present study suggested two different methods to obtain π matrix.

Firstly, we considered the particular form of π , misclassification transition probabilities
matrix presuming that the correct age reporting was done at five different levels viz. ρ =

100%,90%, and 80% in equation (4.4), where ‘ρ = 100%’ corresponds to the case of perfect
or correct age reporting. The impact of perfect or imperfect age reporting has been presented
as Table 2 and change in pattern of pa has been depicted in Figure 1.
Alternatively: The π matrix can be simulated empirically by using independent observation
from the same underlying population corresponding to each c age class. The πa,a∗ has been
estimated as the proportion of women out of total women whose reported age belonging to
the age-interval a belongs to the true age-interval a∗ in the set of c class. Here, the true
age of the mother is determined using the other additional reported information viz. age
at first marriage(AM), duration of Gauna (return marriage) if performed(AG), marriage to
first birth duration(AFB) and age of the first child(AC). The difference among the reported
age(AR) and age calculated using above information i.e. AR − (AM +AG +AFB +AC), has
been considered as error in reporting. The empirical estimates of πa,a∗ , for all a∗,a, have
been obtained by repeatedly observing the set of values for sufficiently large number of
times, and, finally computed the proportion of cases where the age a∗ has been reported as
a. The approximate πE matrix following this procedure based on the available information
can be estimated empirically using the whole population. Obtained estimates of TMFR
(ψ(p)) under different model assumptions are presented as Table 3 and 4. All computations
are carried out using Statistical Analysis System (SAS) package, University edition and R
package (version-3.4.0).

6. Findings and Discussion

Table 2 depicts the results under both perfect and imperfect age misreporting situations,
where Bayesian estimates ψ(p)B are not only found to be more reliable but also always
provide compact and efficient credible interval as compared to ψ(p)M . It also shows that
the Bayesian methodology is capable enough to capture the change in estimates due to
misclassification in terms of estimation with better accuracy.

The performance of the estimation procedures, as far as TMFR is concerned, has been
presented in Tables 3 and 4. Overall, the results indicate that the Bayes estimates of TMFR
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Table 1: Empirical estimate of the age misreporting error probability matrix for India

Reported True Age-interval (a∗)
Age-interval (a) 15-19 20-24 25-29 30-34 35-39 40-44

15-19 0.992 0.008 0.000 0.000 0.000 0.000
20-24 0.067 0.923 0.010 0.000 0.000 0.000
25-29 0.002 0.113 0.868 0.017 0.000 0.000
30-34 0.000 0.003 0.145 0.832 0.021 0.000
35-39 0.000 0.000 0.005 0.182 0.808 0.004
40-44 0.000 0.000 0.001 0.006 0.173 0.819

for all EAG states have shown a decreasing trend until correct age reporting decreases to
90% and starts increasing after that. As theoretically shown, the ML estimates have shown
no impact due to misreporting. Table 3 shows that the Bayes estimates of TMFR under
both perfect and imperfect age reporting have been found more precise i.e. with lesser risk
than those of the ML estimates. The 95% credible intervals based on the Bayes estimators
have been found narrower than those obtained using the ML estimates. It implies that the
proposed Bayes estimators based on the suggested prior provide estimates more precisely
and accurately address the issues of misreporting while estimating TMFR. Among the ML
and Bayes estimates generated by using empirically estimated transition probabilities ma-
trix, πE , in Table 4, results also reveal that Bayes’ estimates of TMFR of selected Indian
states are comparatively more precise (with narrower credible intervals). It is also to be
emphasized that Bayes’ estimates of TMFR (Table 3) under the presumption that the age
has been perfectly reported (ρ = 1), corresponding to each Indian state, have been found
close to the values of TMFR obtained during 2005-06 viz. Uttaranchal (4.0), Uttar Pradesh
(5.7), Bihar (5.2), Jharkhand (4.9), Orissa (4.4), Chhattisgarh (4.9), Madhya Pradesh (4.9)
and Rajasthan (4.6).

Since the probabilities that a child born to a married woman belonging to ath childbear-
ing age-group, pa, are sensitive towards age reporting, they are affected immensely due to
misreporting. Figure 1 depicts the estimates of pa based on the Bayesian principle, which
shows a significant variation in the pattern in Bayes’ estimates of pa with a change in levels
of the inaccuracy of age reporting corresponding to each Indian state. No systematic pattern
has been observed in the obtained estimates, as all states are demographically distinct. Still,
variation in Bayes’ estimates of TMFR is expected with a change in levels of misreporting.
The degree of distortions in the Bayes estimates of pa at age a has been noticed compara-
tively higher than those obtained using the principle of maximum likelihood. In particular,
as the proportion of misreporting increases from 5% to 20%, the Bayes estimates of pa are
getting more distorted.

The primary reason for accepting the suggested Bayesian estimates of fertility rates is
that the derived prior distribution is subjective and empirical. Here, we have also discussed
its formalization and update for imperfect age reporting situations, which demographers or
policy-makers routinely experience. Further, we compared the proposed Bayesian estimates
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Figure 1: Bayes estimates of the probability that a child born to a married woman belong-
ing to ath childbearing age-group (pa) in EAG States of India, when there is perfect age
reporting(ρ = 1) and misreporting lies in 5%- 20%.

with the classical through relative risk, and an attempt has been made to generalize this com-
parison for the imperfect age-reporting situations. As the likelihood function contains the
observation and combining the Bayesian approach with the classical model, the Bayesian
approach can incorporate more realistic conditions and data into the estimation.
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Table 2: Simulation results of relative risks and their 95% confidence and credible intervals
under perfect classification(ρ = 1) and under misclassification of 0%, 10% and 20%

Class n ρ ML Bayes’ RR
Size ψ̂(p∗)M 95% Interval ψ̂(p∗)B 95% Interval (θ̂ψ̂(p∗)B )

3 50 1.00 1.960 1.750 2.170 1.954 1.885 2.023 11
0.90 1.960 1.745 2.175 1.957 1.880 2.035 6
0.80 1.960 1.740 2.180 1.940 1.856 2.024 6.5

3 150 1.00 1.947 1.833 2.060 1.933 1.893 1.974 3
0.90 1.947 1.828 2.066 1.949 1.906 1.993 4
0.80 1.947 1.823 2.070 1.938 1.894 1.983 4

5 50 1.00 3.340 3.105 3.575 3.324 3.275 3.374 14
0.90 3.340 3.090 3.590 3.261 3.208 3.313 16
0.80 3.340 3.079 3.601 3.351 3.289 3.413 18

5 150 1.00 3.447 3.303 3.591 3.449 3.415 3.483 5
0.90 3.447 3.297 3.596 3.440 3.412 3.469 6
0.80 3.447 3.293 3.600 3.428 3.394 3.462 6

7 50 1.00 4.540 4.289 4.791 4.217 4.179 4.255 16
0.90 4.540 4.264 4.816 4.565 4.549 4.581 20
0.80 4.540 4.244 4.836 4.392 4.357 4.427 23

7 150 1.00 4.480 4.336 4.624 4.230 4.193 4.267 5
0.95 4.480 4.328 4.632 4.346 4.316 4.375 6
0.90 4.480 4.321 4.639 4.286 4.250 4.322 7
0.80 4.480 4.309 4.651 4.484 4.467 4.501 8

θ̂∗
ψ̂(p)B =

R̂(ψ̂(p∗)M)

R̂(ψ̂(p∗)B)

7. Conclusion

In the present article, we have derived a prior for total marital fertility rate using Fishers’
information and its related posterior distributions under perfect age reporting and general-
ized for misreporting scenarios. Since the posterior distributions of TMFR (in the Bayesian
paradigm) are complicated, a direct comparison with the maximum likelihood principle (in
connection with classical framework) is not straightforward. Thus, through simulation, a
comparison among classical and Bayes’ estimates of TMFR is presented. Both the simu-
lated and real-life based results show that the suggested Bayesian estimators of ψ(p) and
TMFR lead to population parameters more closely than classical ML estimators and are
much more precise than maximum likelihood estimates, even in imperfect scenarios. As
evident from the obtained results, even with inaccuracy in age reporting, the Bayesian tech-
nique has been found most promising for estimating TMFR, and obtained Bayes’ estimates
are more precise and reliable than those obtained using the maximum likelihood procedure.

To conclude, apart from the estimation of transition probabilities, the Bayesian tech-
nique has been found to be more useful in estimating the pattern of fertility rates even in
situations where there is inaccuracy in age reporting.
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Table 3: Estimates of TMFR (ψ(p)) in EAG States of India, when there is perfect age
reporting(ρ = 1) and misreporting is 10%, and 15%

State n ML Bayes’ θ̂ψ̂(p∗)B

ψ̂(p∗)M 95% Interval ψ̂(p∗)B 95% Interval
ρ = 1.00

Uttaranchal 2953 3.08 2.76 3.39 4.17 4.00 4.34 3.7
Uttar Pr. 12183 3.54 3.37 3.71 5.30 5.24 5.37 7.0
Bihar 3818 3.77 3.45 4.08 4.66 4.57 4.75 6.5
Jharkhand 2983 3.26 2.93 3.58 4.24 4.14 4.34 6.8
Orissa 4540 2.38 2.15 2.60 3.90 3.82 3.99 6.5
Chhattisgarh 3810 2.69 2.43 2.96 3.79 3.71 3.86 3.6
Madhya Pr. 6427 2.92 2.71 3.14 3.50 3.36 3.63 2.4
Rajasthan 3892 3.40 3.11 3.69 4.12 3.98 4.26 4.4

ρ = 0.90
Uttaranchal 2953 3.08 2.76 3.40 3.95 3.88 4.03 6.8
Uttar Pr. 12183 3.54 3.37 3.72 3.97 3.89 4.06 4.0
Bihar 3818 3.77 3.45 4.09 4.20 4.13 4.26 6.8
Jharkhand 2983 3.26 2.93 3.58 3.49 3.41 3.58 7.0
Orissa 4540 2.38 2.15 2.61 3.72 3.60 3.84 3.5
Chhattisgarh 3810 2.69 2.42 2.96 3.48 3.44 3.51 6.3
Madhya Pr. 6427 2.92 2.71 3.14 4.29 4.29 4.52 4.0
Rajasthan 3892 3.40 3.10 3.70 3.51 3.41 3.62 7.7

ρ = 0.85
Uttaranchal 2953 3.08 2.75 3.40 3.68 3.59 3.76 9.3
Uttar Pr. 12183 3.54 3.37 3.72 3.78 3.63 3.93 1.3
Bihar 3818 3.77 3.44 4.09 4.86 4.80 4.92 5.4
Jharkhand 2983 3.26 2.92 3.59 3.91 3.80 4.03 9.7
Orissa 4540 2.38 2.14 2.61 3.28 3.17 3.38 4.7
Chhattisgarh 3810 2.69 2.42 2.96 3.72 3.64 3.79 9.5
Madhya Pr. 6427 2.92 2.71 3.14 3.49 3.39 3.59 4.0
Rajasthan 3892 3.40 3.10 3.70 4.44 4.44 4.75 4.6
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Table 4: Estimates of TMFR (ψ(p)) in EAG States of India, under imperfect age-reporting
using empirical πE .

State ML Bayes’ θ̂ψ̂(p)B

ψ̂(p)M 95% Interval ψ̂(p)B 95% Interval
Uttaranchal 3.187 2.861 3.514 4.108 3.995 4.221 9.3
Uttar Pardesh 3.656 3.482 3.83 4.513 4.37 4.656 1.6
Bihar 3.875 3.552 4.198 3.758 3.649 3.868 9.0
Jharkhand 3.369 3.036 3.701 4.243 4.145 4.341 9.7
Orissa 2.464 2.232 2.697 3.697 3.587 3.808 4.7
Chhattisgarh 2.793 2.52 3.066 3.988 3.932 4.043 6.3
Madhya Pradesh 3.027 2.808 3.246 3.742 3.606 3.878 2.4
Rajasthan 3.513 3.214 3.812 4.022 3.858 4.187 3.3
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Appendix

Proof of Theorem 1: Let Xai be a binary variable, denoting the birth status of ith woman
belonging to ath age-group and (pa) be the probability that a child birth occurred to a
married woman in the same age-group, for all i = 1,2, · · · ,na and a = 1,2, · · · ,c. Let

ψ(p) =
c
∑

a=1
αa pa be the linear function of probabilities, p1, · · · pc, I −1(p) be the in-

verse of Fisher’s information matrix and DT
ψ(p) denote the gradient of ψ(p), where p

= {p1, · · · , pa, · · · pc}. Let us consider

γ
T (p) =

DT
ψ(p)I −1(p)√

DT
ψ(p)I −1(p)Dψ(p)

=

 α1 p1(1−p1)
n1√

c
∑

a=1

α2a pa(1−pa)
na

. . .
αc pc(1−pc)

nc√
c
∑

a=1

α2a pa(1−pa)
na


=

[
γ1(p) γ2(p) . . . γc(p)

]
, (7.1)

where γa(p) = αa pa(1−pa)
na

(√
c
∑

a=1

α2
a pa(1−pa)

na

)−1

. In the context of deriving a prior distribu-

tion of a parameter, Dutta and Ghose (1995) has suggested the criteria that must be satisfied

to establish the posterior distribution for a parametric function under which
c
∑

a=1

∂

∂ pa
γa(p)τ(p)=

0.

Let

τ(p) =

(
c

∑
a=1

α2
a pa(1− pa)

na

)1/2 c

∏
a=1

p−1
a (1− pa)

−1

then

γ1(p)τ(p) =

α1 p1(1−p1)
n1√

c
∑

a=1

α2
a pa(1−pa)

na

(
c

∑
a=1

α2
a pa(1− pa)

na

)1/2 c

∏
a=1

p−1
a (1− pa)

−1

=
α1

n1

s

∏
a ̸=1

p−1
a (1− pa)

−1 ⇒ ∂

∂ p1
γ1(p)τ(p) = 0 (7.2)

and

γ j(p)τ(p) =

α j p j(1−p j)
n j√

c
∑

a=1

α2
a pa(1−pa)

na

(
c

∑
a=1

α2
a pa(1− pa)

na

)1/2 c

∏
a=1

p−1
a (1− pa)

−1

=
α j

n j

c

∏
a̸= j=1

p−1
a (1− pa)

−1 ⇒ ∂

∂ p j
γ j(p)q(p) = 0 (7.3)
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From the above equations (7.2) and (7.3) we have

c

∑
a=1

∂

∂ pa
γa(p)τ(p) = 0,

which satisfied the condition required to be a prior distribution, τ(p), of a parameter. There-
fore,

τ(p) ∝

{
c

∑
a=1

α
2
a pa(1− pa)

}1/2 c

∏
a=1

p−1
a (1− pa)

−1 ; 0 < pa < 1

and hence we get the required proof.


