STATISTICS IN TRANSITION new series, June 2023 Vol. 24, No. 3, pp. 171-186, https://doi.org/10.59170/stattrans-2023-042 Received - 29.05.2022; accepted - 27.09.2022

Household expenditure in Africa: evidence of mean reversion

Gbenga A. Olalude¹, OlaOluwa S. Yaya², Hammed A. Olayinka³, Toheeb A. Jimoh⁴, Aliu A. Adebiyi⁵, Oluwaseun A. Adesina⁶

Abstract

This paper investigates the mean reversion in household consumption expenditure in 38 African countries; the expenditure series used were the percentage of nominal Gross Domestic Product (GDP), each spanning 1990 to 2018. Due to a small sample size of time series of household expenditure, with possible structural breaks, we used the Fourier unit root test approach, which enabled us to model both smooth and instantaneous breaks in the expenditure series. The results showed non-mean reversion in the consumption expenditure pattern of Egypt, Madagascar and Tunisia, while mean reversion was detected in the remaining 35 countries. Thus, the majority of African countries are on the verge of recession once shocks that affect the growth of GDP are triggered. Findings in this paper are of relevance to policymakers on poverty alleviation programmes in those selected countries.

Key words: household expenditure, poverty level, mean reversion, Africa. IEL Classification: C22; D19; H31

¹ Department of Statistics, Federal Polytechnic Ede, Osun State, Nigeria.

E-mail address: olalude.gbenga@federalpolyede.edu.ng. ORCID: https://orcid.org/0000-0002-9950-0552.

² Economic and Financial Statistics Unit, Department of Statistics, University of Ibadan, Ibadan, Nigeria & Centre for Econometrics and Applied Research, Ibadan, Nigeria. E-mail address: os.vava@ui.edu.ng. ORCID: https://orcid.org/0000-0002-7554-3507.

³ Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts, USA. E-mail address: haolayinka@wpi.edu. ORCID: https://orcid.org/0000-0002-9796-5276.

⁴ Department of Mathematics and Statistics, University of Limerick, Ireland.

E-mail address: toheeb.jimoh@ul.ie. ORCID: https://orcid.org/0000-0003-3830-7641.

⁵ Environmental Statistics Unit, Department of Statistics, University of Ibadan, Ibadan, Nigeria. E-mail address: aadebiyi083@stu.ui.edu.ng. ORCID: https://orcid.org/0000-0002-6340-098X.

⁶ Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

E-mail address: oaadesina26@lautech.edu.ng. ORCID: https://orcid.org/0000-0001-6952-3991.

[©] G. A. Olalude, O. S. Yaya, H. A. Olayinka, T. A. Jimoh, A. A. Adebiyi, O. A. Adesina. Article available under the CC BY-SA 4.0 licence

1. Introduction

One of the Sustainable Development Goals (SDGs) is to eliminate extreme poverty in any region of the globe by 2030, and as at the time of writing this paper, poverty is still prevalent in most parts of Africa. Many rich African countries, for instance, South Africa, Nigeria, and Senegal still have quite a high proportion of poor people. Household consumption expenditure amounts to about 60% of the Gross Domestic Product (GDP) as it includes government transfers, the total amount spent by household residents in catering for needs such as clothing, food, housing, transportation, etc., as well as other miscellaneous services that directly benefit households (OECD, 2020).

In 2012, the African Development Bank reported that the four largest economies in Africa in order as South Africa, Egypt, Nigeria, and Algeria accounted for 55% of the overall African household final consumption expenditure for 2009, and of the four, Nigeria is referred to as only a middle-expenditure country. Also, household expenditure varies generally among African countries concerning basic needs such as transportation, food, etc., and their areas, be it urban or rural. For instance, urban households allocate a greater percentage of their expenditures to housing compared to rural areas, except in Uganda, Malawi, and Ethiopia (Lozano-Gracia and Young, 2014).

Based on the latest household consumption expenditure dataset (2018), Africa has the highest average (84.92) household consumption expenditure.⁷ Africa also has the second-largest population in the world, after the Asia continent. All these reasons enliven our interest in studying the time-series dynamics of household consumption expenditure across African countries.

Mean reversion is used as a financial term for the assumption that the asset price and historical returns tend to revert to the mean price over time (Mahdavi, 2013). Based on this extract, the strategies of mean reversion on household expenditures work on the assumption that there is an underlying fixed trend in the expenditures of households, and the expenditure of a particular household is assumed to revert to its previous state from the long-term norm. Mean reversion of household expenditure can take place in two folds: firstly, the expected expenditure of household can go in a direction opposite to that of the expenditure; and secondly, the expected expenditure can revert toward a mean level. Reverting to mean level in the sense of a stationary series with supposed constant mean as in Box et al. (2015). Non-mean reversion in the case of nonstationary series, which deviates totally from the mean level of the series. As posited by Ben (2015), as households progress through life, they experience differing successes. Some

⁷ Europe: 58.35; North America: 67.88; Asia: 56.10; Africa: 84.92, South America: 68.23; and Australia: 54.65 (these were computed by the authors based on datasets available on databank.worldbank.org/world-development-indicators).

households generate high incomes, however, others generate less. For many households, there is evidence of income fluctuation throughout life, which shows both upward and downward trends.

The fluctuation of household income, therefore, influences the welfare and the behavioural pattern of the households. Ben ascertained that mean reversion is a crucial measure of high-frequency household expenditure. The ability to understand the household spending patterns particularly among the poor would be useful to manage their expenditure as preparation for any change in the economic uncertainties that are expected in the future (Nik et al., 2014). The fact that, at the time of writing this paper, there is no much review on unit roots or mean reversion on household income and expenditure, raises the dire need of embarking on the research for the growth of the African economy. However, a few pieces of literature are cited to have a broad overview of the nature of this research work.

Thankgod (2014) used Keynes' hypothesis of absolute income and found evidence of a long-run association between the variables, hence gave room for estimating a parsimonious error correction model. This in turn indicated a positive relationship between the national income and private consumption expenditure. Akhand (2011) examined the consumption behaviour of households in Indonesia with the use of Friedman's permanent income hypothesis under rational expectation. The unit root test results suggested that the real household consumption per-capita and the real disposable income per-capita in Indonesia follow a random walk process, and hence are eligible to form a cointegrating relationship.

Giray (2013) used Heterogeneous panel unit root tests and the Modified ADF unit root test to investigate the stochastic characteristics of the income-consumption ratios of eleven countries in Central and Eastern Europe (CEE). The study findings foresaw significant evidence of the existence of a hypothesis that indicated that the incomeconsumption ratio is mean-reverting. Ben (2015) used household consumption and wealth, as well as UK income panel data, and concluded that it is crucial and necessary to account for the mean reversion of shocks in the construction of life-cycle consumption models.

The present paper investigates the mean reversion in household consumption expenditure in 38 African countries, spanning across the four regions of the continent. The analysis is based on the ADF test with Fourier nonlinearity with smooth and instantaneous breaks (FADF-SB) as proposed in Furuoka (2017). The approach works quite well, particularly due to the small sample size of expenditure series since unit root lag is fixed to unity. Three other tests: the ADF, FADF, and ADF-SB are restricted tests to the FADF-SB test. In selecting the best representative test regression model, Furuoka (2017) set out an F-test strategy, which is adopted and applied in this paper. This univariate Fourier-based ADF test, and its panel version based on Seemingly Unrelated Regressions have been widely applied in Fumitaka et al. (2020), Awolaja et al. (2021), Gil-Alana and Yaya (2021), Yaya (2018), Yaya et al. (2019a,b), Yaya et al. (2020). Yaya et al. (2021), among others.

The remaining part of this paper is structured as follows: Section 2 presents the data and unit root tests employed with the F-tests. Section 3 of the paper presents the empirical findings while Section 4 renders the concluding remark.

2. Data and Methods

The data used in this paper are the annual time series of average final consumption expenditure of households in Africa computed as a percentage of nominal GDP. These were obtained from the World Development Indicators (WDI) of the World Bank at the website: <u>https://data.worldbank.org/indicator/</u>. Household expenditure series of thirty-eight (38) African countries were included, and each time series spanned between 1990 and 2018.

Table 1 presents the summary report of the dataset, showing the household expenditures across the countries in 1990 and 2018. The table includes the minimum and maximum expenditures in the periods sampled throughout the considered countries. The table also includes the rank of countries in ascending order concerning their household consumption expenditure changes between 1990 and 2018. The ranking was done based on the difference between the household expenditure of 1990 and 2018 for each country. The country with the highest positive difference was ranked as the 1st (Nigeria, 46.39), while the country with the highest negative difference was ranked as the 38th (Chad, -26.77). Botswana, Gabon, Congo, Algeria, Cameroon, Guinea, Mauritius, Morocco, Namibia, Seychelles, South Africa, and Tunisia have expenditure rate ranges from about 51% to 80%. Burundi, Chad, Tanzania, and Uganda have a very high expenditure rate above 100% of their GDP. As of 2018, the expenditure rates of Congo, Gabon, Tanzania, and Uganda dropped within the ranges from about 2% to 18%. Central African Republic, Sierra Leone, and the Gambia improved with a rate that ranges from about 6% to 22%. The range between the minimum and maximum rates varied widely across all the countries considered. This implies that there are fluctuations in household expenditure rates across the years sampled, and these imply high expenditure rates in Africa.

Country	Code	1990 Exp.	2018 Exp.	Min. Exp.	Max. Exp.	Rank
Algeria	DZA	72.90	59.61	42.94	73.44	32nd
Benin	BEN	93.30	83.03	83.03	96.64	25th
Botswana	BWA	57.37	68.26	55.77	72.60	9th
Burkina Faso	BFA	94.58	81.72	79.19	100.09	31st
Burundi	BDI	105.37	104.12	97.84	113.78	20th
Cameroon	CMR	79.32	81.59	76.92	83.46	16th
Central Afr. Republic	CAF	96.10	102.19	89.91	102.19	14th
Chad	TCD	107.67	80.90	69.19	140.81	38th
Congo	COG	51.36	38.98	35.07	91.45	30th
Congo, Dem. Rep.	COD	88.21	77.89	72.46	101.00	26th
Egypt	EGY	83.30	93.80	82.89	98.22	10th
Gabon	GAB	63.14	49.19	39.51	65.12	34th
Ghana	GHA	94.53	81.01	75.81	102.96	33rd
Guinea	GIN	77.84	96.06	77.61	105.29	3rd
Guinea-Bissau	GNB	97.17	96.23	92.99	110.06	19th
Kenya	KEN	81.03	94.68	77.57	95.69	6th
Madagascar	MDG	94.45	85.52	80.20	100.34	24th
Malawi	MWI	86.60	96.43	85.80	104.11	11th
Mali	MLI	95.58	90.17	82.93	100.04	22nd
Mauritania	MRT	95.12	83.43	58.16	100.23	28th
Mauritius	MUS	76.99	90.91	73.07	90.91	5th
Morocco	MAR	74.45	77.00	74.28	80.97	15th
Mozambique	MOZ	93.60	87.44	82.72	109.44	23rd
Namibia	NAM	76.86	93.62	76.86	97.25	4th
Niger	NER	95.75	80.43	80.29	99.95	35th
Nigeria	NGA	35.79	82.18	35.79	86.92	1st
Rwanda	RWA	93.80	92.40	90.70	148.51	21st
Senegal	SEN	97.64	85.52	85.52	99.09	29th
Seychelles	SYC	79.69	86.28	70.32	86.28	13th
Sierra Leone	SLE	86.30	108.21	86.30	120.16	2nd
South Africa	ZAF	79.91	81.21	78.67	82.62	17th
Sudan	SDN	90.30	78.73	74.40	95.72	27th
Tanzania	TZA	100.56	83.04	67.94	103.15	37th
The Gambia	GMB	89.34	102.69	87.14	105.45	7th
Togo	TGO	85.29	85.63	68.44	100.23	18th
Tunisia	TUN	79.98	92.72	76.49	93.05	8th
Uganda	UGA	100.48	84.30	81.94	100.77	36th
Zimbabwe	ZWE	82.55	90.03	78.19	121.46	12th

 Table 1:
 Data Summary

Note: Rates are given in percentages of Nominal GDP.

The ADF unit root test involving three regression specifications namely: (i) no intercept and trend (ii) intercept only and (iii) intercept and trend, was carried out and the results of the test were contained in Table 2.

Furthermore, the automatic selection of augmented lags was examined, thereafter used the minimum Schwarz information criteria in selecting the optimal lag, and is contained in squared brackets. Noting that these optimal lags may be large enough to bias the unit root decisions in some cases. In the case of no intercept, the null hypothesis of a unit root in household consumption expenditure series was not rejected in virtually all the countries except in Uganda. In this sense, rejection of unit root implies mean reversion evidence, while acceptance of null of unit root implies non-mean reversion in the time series. Due to the magnitude of the time series, the test regression model with no intercept would have under-represented the unit root decision. Meanwhile, by considering models with intercept only, and intercept with time trend, the authors found improved results.

The two-unit root regression models jointly determined unit roots in household consumption expenditure series of Cameroun, Guinea-Bissau, Malawi, Rwanda, Seychelles, Sierra Leone, Gambia, and Togo (21%). Altogether, unit root regression with intercept and trend detected unit root in household expenditure series of Benin, Cameroon, Chad, Egypt, Guinea-Bissau, Malawi, Niger, Nigeria, Rwanda, Senegal, Seychelles, Sierra Leone, Sudan, Gambia, Togo, and Uganda (42.1%). The test regression model with only the constant detected unit root in Burundi, Cameroon, Congo, Congo DR., Gabon, Guinea-Bissau, Malawi, Rwanda, Seychelles, Sierra Leone, Gambia, and Togo (approximately, 31.6%).

These inconsistencies in the ADF decision occurred due to the small size of the series – in this particular case a sample size of 29. Also, it is necessary to care for inherent structural breaks during the unit root test. We described below the unit root frameworks that cater to these shortcomings.

Country	Code	None	Intercept	Intercept and trend	
Algeria	DZA	-0.7815 [0]	-1.7534 [0]	-1.4175 [0]	
Benin	BEN	-0.9044 [0]	-1.7888 [0]	-3.6599 [1]	
Botswana	BWA	0.3293 [0]	-2.4362 [0]	-2.6255 [0]	
Burkina Faso	BFA	-0.7990 [0]	-1.5384 [0]	-2.0962 [0]	
Burundi	BDI	-0.1629 [0]	-3.6057 [0]	-3.5479 [0]	
Cameroon	CMR	0.4097 [1]	-3.3211 [0]	-4.1486 [0]	
Central Afr. Republic	CAF	0.2679 [0]	-2.7199 [0]	-3.3771 [0]	
Chad	TCD	-0.7082 [1]	-2.9566 [0]	-3.9549 [0]	
Congo	COG	-0.1139 [2]	-3.4651 [1]	-3.4094 [1]	
Congo, Dem. Rep.	COD	-0.6807 [3]	-4.6115 [0]	-3.2890 [2]	
Egypt	EGY	0.9748 [0]	-0.9641 [0]	-3.6447 [5]	
Gabon	GAB	-0.9538 [2]	-2.9961 [0]	-3.1788 [0]	
Ghana	GHA	-0.6397 [0]	-1.5135 [0]	-1.8238 [0]	
Guinea	GIN	0.5797 [1]	-2.0094 [0]	-3.3989 [0]	
Guinea-Bissau	GNB	-0.1155 [1]	-4.0749 [0]	-3.9617 [0]	
Kenya	KEN	0.9416 [0]	-1.7497 [0]	-1.6344 [0]	
Madagascar	MDG	-0.5678 [0]	-1.9170 [0]	-3.2636 [0]	
Malawi	MWI	0.2770 [1]	-4.0283 [0]	-4.0293 [0]	
Mali	MLI	-0.4038 [0]	-1.9220 [0]	-1.8934 [0]	
Mauritania	MRT	-0.5427 [0]	-2.7786 [0]	-3.0788 [0]	
Mauritius	MUS	1.3613 [0]	-0.0905 [0]	-2.3536 [0]	
Morocco	MAR	0.2441 [0]	-2.5937 [0]	-2.6143 [0]	
Mozambique	MOZ	-0.3823 [0]	-1.5728 [0]	-2.1244 [0]	
Namibia	NAM	0.5374 [0]	-2.8040 [0]	-3.2824 [0]	
Niger	NER	-1.6206 [1]	-0.8629 [1]	-4.0671 [0]	
Nigeria	NGA	3.4296 [5]	-0.1365 [5]	-4.8912 [0]	
Rwanda	RWA	-0.3431 [0]	-3.6677 [0]	-4.8875 [0]	
Senegal	SEN	-1.8074 [0]	-1.1199 [0]	-4.1930 [6]	
Seychelles	SYC	-0.0200 [2]	-5.2911 [0]	-5.1670 [0]	
Sierra Leone	SLE	0.6118 [1]	-3.3522 [0]	-3.6541 [0]	
South Africa	ZAF	0.2581 [0]	-2.3954 [1]	-2.7995 [1]	
Sudan	SDN	-0.8751 [2]	-2.2498 [0]	-3.6334 [0]	
Tanzania	TZA	-1.0607 [0]	-2.1177 [2]	0.2001 [2]	
The Gambia	GMB	0.2901 [1]	-4.8758 [0]	-4.7726 [0]	
Togo	TGO	-0.2193 [0]	-4.3405 [0]	-4.6638 [0]	
Tunisia	TUN	1.7287 [0]	1.0535 [0]	-1.1212 [0]	
Uganda	UGA	-2.0633 [2]	-2.3776 [2]	-3.6275 [0]	
Zimbabwe	ZWE	0.2162 [1]	-1.8254 [0]	-0.7937 [1]	

Table 2: Results of ADF Unit root tests

Note: Bolded figures denote that the ADF test is significant at 5% level, and reported in square brackets is the optimal lag length of the augmentation.

The traditional ADF unit root test does not account for structural breaks, in the long run, household expenditure rate can however experience smooth or instantaneous breaks within the considered years (see Perron, 1989; Furuoka, 2017a). As in Enders and Lee (2012a,b), to account for the limitation of the traditional ADF test, they expanded the traditional ADF test to a nonlinear framework with the use of a Fourier function with different frequencies. The general equation of the Fourier form is given as:

$$G(t) = \alpha + \beta t + \sum_{j=1}^{m} \lambda_j \sin(\frac{2\pi j t}{N}) + \sum_{j=1}^{m} \gamma_j \cos\left(\frac{2\pi j t}{N}\right); m \le \frac{N}{2}; t = 1, 2, \dots$$
(1)

where α and β represent the model intercept and coefficient of the trend, respectively; λ_j and γ_j are the measures of the amplitude and displacement of the sinusoidal component of the deterministic term, respectively; π is canonically taken to be 3.1416; m is the optimal number of frequencies, and it is to be obtained by the information criteria; *j* is a specific frequency, which is set to 1, 2, ..., up to m initially; and *N* represents the total number of observations – the length of the household expenditure rate in this paper. λ_j and γ_j are the nonlinear parameters in the Fourier function that was set up and are assumed to be real values upon estimation. The entire function in (1) becomes a linear function if the values of λ_j and γ_j are 0, therefore, the significance of at least one of (λ_j , γ_j) indicates nonlinearity. The classical ADF test regression is given as:

$$\Delta Exp_t = \alpha + \beta t + (\rho - 1)Exp_{t-1} + \sum_{i=1}^p d_i \Delta Exp_{t-i} + \varepsilon_t$$
(2)

where Exp_t is the household expenditure rate specific to a country at the time t; \mathcal{E}_t is the error term; ρ is the slope parameter specific to the first lagged dependent variable; Exp_{t-1} is 1, when the series contains unit root attributes; d and p represent the slope and the lag length for the augmentation in the augmented component, respectively. Putting equation (2) and (1) together resulted in the Fourier ADF (FADF) test regression as developed by Enders and Lee's:

$$\Delta Exp_t = \alpha + \beta t + (\rho - 1)Exp_{t-1} + \sum_{j=1}^m \lambda_j \sin\left(\frac{2\pi jt}{N}\right) + \sum_{k=1}^n \gamma_k \cos\left(\frac{2\pi kt}{N}\right) + \sum_{i=1}^p d_i \Delta Exp_{t-i} + \varepsilon_t$$
(3)

While testing for a unit root in a given time series modelling, the FADF unit root test accounts for smooth breaks (Becker et al., 2006). Furuoka (2017a), extended the test with a structural break obtained simultaneously in the process. This process aligns with Perron's (2006) one structural break unit root test. Hence, in this study, both the ADF-SB as in Perron (2006) and the FADF-SB as in Furuoka (2017a), are utilised respectively and given as:

$$\Delta Exp_t = \alpha + \beta t + \delta DU_t + \theta D(N_B)_t + (\rho - 1)Exp_{t-1} + \sum_{i=1}^p c_i \Delta Exp_{t-i} + \varepsilon_t$$
(4)

$$\Delta Exp_t = \alpha + \beta t + \delta DU_t + \theta D(N_B)_t + (\rho - 1)Exp_{t-1} + \sum_{k=1}^n \lambda_k \sin\left(\frac{2\pi kt}{N}\right) + \sum_{k=1}^n \gamma_k \cos\left(\frac{2\pi kt}{N}\right) + \sum_{i=1}^p c_i \Delta Exp_{t-i} + \varepsilon_t$$
(5)

where δ represents the coefficient of the structural break dummy variable DU_t , where $DU_t = 1$ if $t > N_B$, otherwise, $DU_t = 0$; N_B denotes the break date; θ represents the coefficient of the one-time break dummy, where $D(N_B) = 1$ if $t = N_B$, $D(N_B) = 0$ otherwise. As the same with the ADF test, the null hypothesis of unit root, $\rho - 1 = 0$ was tested using a t-test, in the above models represented as the equation (3), (4), and (5). These correspond to FADF, ADF-SB, and FADF-SB unit root tests respectively. The optimal frequency \hat{j} in equations (3) and (5) is obtained by reducing the residual sum of squares errors (SSR) to its minimum value through

$$SSR_{FADF}(\hat{j}) = \inf_{j} SSR_{FADF}(j); \quad SSR_{FADF-SB}(\hat{j}) = \inf_{j} SSR_{FADF-SB}(j)$$
(6)

whereas considering ADF-SB and FADF-SB cases, as shown in Perron (2006) and Zivot and Andrews (1992), one structural break is determined endogenously, and not exogenously. The (\hat{N}_B), structural break date, is then obtained. Furuoka (2014; 2017a) suggested the use of an F-statistic,

$$F = \frac{(SSR_0 - SSR_1)/k}{SSR_1/(N-r)},\tag{9}$$

where SSR_1 denotes the unrestricted model sum of squares residuals (SSR); SSR_0 denotes the restricted model of SSR; k represents the number of restrictions present in the restricted model, and *r* represents the number of regressors contained in the unrestricted model. For clarity's sake, the FADF model is an unrestricted model of the ADF regression model in a case when the nonlinear trigonometrical terms are zeros, that is, $\lambda_j = \gamma_j = 0$. Also, the ADF-SB model is an unrestricted model of the ADF model when there is no structural break observed. Moreover, the FADF-SB model is an unrestricted model of the ADF model in a case where structural break and nonlinearity forms are not included in the model. Furthermore, the FADF-SB regression is an unrestricted model to the FADF model when the structural break dummies in the model are not found. Finally, the FADF-SB model is an unrestricted model to the ADF-SB model is an unrestricted model to the FADF model when the structural break dummies in the model are not found. Finally, the FADF-SB model is an unrestricted model to the ADF-SB regression in a case whereby nonlinearity form via trigonometry is not included. Hence, there are cases of five pairings considered, given as F_{FADF} , F_{ADF} , F_{A

there is no significant improvement in an unrestricted model against a restricted one, the model which contains the lowest value of Type I error was accepted to be a better model. The accepted model determined the acceptance of the hypothesis of the unit root of the household expenditure rate.

3. Empirical Findings

Concerning the unit root approach described above, the ADF test, whereby the augmentation lag fixed to unity (i.e. p = 1) was conducted, and the same augmentation lag was fixed for the other tests, ADF-SB, FADF, and FADF-SB. The results of the unit root tests are presented in Table 3; and the result of the robustness test using the F test is in Table 4. Based on the ADF test result, there is evidence of mean reversion in household expenditure in the cases of Benin, Cameroon, Central African Republic, Democratic Republic of Congo, Malawi, Nigeria, Rwanda, Seychelles, the Gambia, Togo, and Uganda, accounting for approximately 28.95% of the 38 countries considered. Also, using the result from the Fourier form of the ADF framework (FADF), we found evidence of mean reversion in the household expenditure of Benin, Cameroon, Central African Republic, Congo, Democratic Republic of Congo, Malawi, Seychelles, Sierra Leone, Togo and Uganda (approximately 26.32% of total cases considered). It was observed that there was only a sparing distinction between the results of the ADF and that of the FADF. The unit root test results by the ADF and the FADF both display evidence of mean reversion in Benin, Cameroon, Central African Republic, Democratic Republic of Congo, Malawi, Seychelles, Togo, and Uganda (approximately 21.1%). Considering the ADF-SB test, it was discovered that there has been an increase in the number of rejections of the unit-roots. More importantly, the affected cases under the FADF test are almost exhaustively a subset of the rejection cases under the ADF-SB test, safe Sierra Leone. The number of cases that indicated mean reversion under the ADF-SB test is 24 (approximately 63.16% of the total cases). The evidence of an increase in the number of unit root rejection is because the ADF-SB test accounts for instantaneous breaks, while the FADF test does not. Furthermore, by using the FADF-SB test, the number of mean reversion cases increased to 33 (approximately 86.84% of the total cases), excluding just five countries - Egypt, Ghana, Madagascar, Nigeria, and Tunisia. The increment is also evident from the fact that the FADF-SB test allows for a smooth break. However, as a result of the consistency in the non-rejection of unit roots in the three countries, Egypt, Madagascar, and Tunisia, for the FADF, ADF-SB, and FADF-SB tests, there is, in turn, a nonrejection of the hypothesis of unit root for the household consumption expenditures in three countries (Egypt, Madagascar, and Tunisia), and this indicates non-mean reversion.

Country	Code	ADF	FADF	К	ADF-SB	Тв	λ	FADF-SB	TB	λ	K
Algeria	DZA	-1.407	-3.641	1	-3.165	1999	34	-5.702	2008	66	1
Benin	BEN	-3.660	-4.859	1	-4.377	2004	52	-5.660	2015	90	1
Botswana	BWA	-2.344	-3.313	1	-4.860	2008	66	-5.133	2008	66	1
Burkina Faso	BFA	-1.937	-3.129	1	-3.760	2009	69	-4.659	1993	14	1
Burundi	BDI	-3.243	-4.413	1	-4.381	2014	86	-5.049	2012	79	1
Cameroon	CMR	-4.123	-5.374	1	-7.264	1995	21	-8.236	1995	21	2
Central Afri. R.	CAF	-3.851	-4.617	2	-4.186	2008	66	-5.958	2009	69	1
Chad	TCD	-2.803	-3.840	2	-9.969	2002	45	-8.974	2002	45	1
Congo	COG	-3.409	-4.636	1	-4.905	1998	31	-10.015	2014	86	2
Congo, Dem.	COD	-3.762	-6.406	1	-5.799	1996	24	-7.785	1995	21	1
Rep.											
Egypt	EGY	-1.056	-0.311	2	-3.429	2011	76	-3.654	1998	31	2
Gabon	GAB	-2.588	-3.952	1	-4.458	2014	86	-5.059	2008	66	2
Ghana	GHA	-1.469	-2.841	1	-4.565	2012	79	-4.168	2012	79	2
Guinea	GIN	-2.407	-3.253	2	-4.060	2005	55	-4.474	2006	59	2
Guinea-Bissau	GNB	-2.221	-4.044	1	-4.245	1997	28	-6.072	2001	41	1
Kenya	KEN	-2.232	-3.386	1	-4.835	1994	17	-5.749	1995	21	2
Madagascar	MDG	-2.704	-2.973	1	-3.788	2011	76	-4.084	2006	59	1
Malawi	MWI	-4.288	-4.592	2	-5.261	2006	59	-5.092	2012	79	2
Mali	MLI	-1.793	-3.714	1	-3.599	2012	79	-5.283	2012	79	1
Mauritania	MRT	-2.347	-3.597	1	-3.709	1994	17	-7.515	1993	14	1
Mauritius	MUS	-2.249	-4.326	1	-4.223	2007	62	-6.289	2000	38	1
Morocco	MAR	-1.881	-2.330	1	-3.485	2010	72	-4.737	2011	76	2
Mozambique	MOZ	-2.116	-3.483	1	-3.952	1994	17	-5.645	2001	41	1
Namibia	NAM	-2.362	-2.588	2	-3.691	2003	48	-5.829	2008	66	2
Niger	NER	-2.735	-3.680	2	-4.093	2011	76	-5.238	2011	76	2
Nigeria	NGA	-4.036	-3.789	1	-4.797	1998	31	-4.623	1999	34	1
Rwanda	RWA	-3.987	-3.943	1	-8.898	1994	17	-11.703	1994	17	2
Senegal	SEN	-1.621	-4.206	1	-3.062	2005	55	-4.798	2006	59	1
Seychelles	SYC	-3.957	-4.449	2	-5.132	2004	52	-5.749	2017	97	1
Sierra Leone	SLE	-2.339	-4.626	2	-3.389	2003	48	-6.627	2009	69	2
South Africa	ZAF	-2.799	-3.935	1	-4.259	2001	41	-5.116	2011	76	1
Sudan	SDN	-2.885	-3.668	1	-5.116	1999	34	-6.787	1999	34	1
Tanzania	TZA	-0.363	-4.019	1	-2.110	1997	28	-4.793	2014	86	1
The Gambia	GMB	-3.512	-3.502	1	-3.826	1996	24	-5.459	2011	76	1
Togo	TGO	-3.969	-4.571	2	-5.034	1999	34	-5.237	1999	34	2
Tunisia	TUN	-0.968	-2.755	1	-3.490	2010	72	-4.078	2006	59	1
Uganda	UGA	-3.733	-5.037	2	-4.344	1999	34	-5.395	1999	34	2
Zimbabwe	ZWE	-0.794	-4.397	1	-2.496	2001	41	-5.367	2009	69	1

Table 3: Result of ADF, FADF, ADF-SB, and FADF-SB unit root tests

Note: Bolded figures denote that the test is significant at 5% level

Afterwards, the F-test statistic is used to juxtapose the different pairs of unrestricted and restricted model constructs to determine which of the unit root tests considered in the analysis would yield the most viable and reliable mean reversion decision, and its consistency in doing so compared to other tests. This is to determine the test that would

caption the sum of squares regression variation in the household consumption expenditure excellently. Based on the result presented in Table 4, it was discovered that the F-test $(F_{FADF_{ADF}})$, which investigates the improvement in the FADF over the ADF test, shows significant improvement in FADF in just 3 of the 38 cases, which are Algeria, Sierra Leone and Zimbabwe. This apparently indicates a high power of the Classical ADF test over its Fourier form (FADF) test. Considering the F-test ($F_{ADF-SB,ADF}$), the test investigates the significant improvement in the ADF-SB over the ADF. We discovered that there has been an appreciable improvement with respect to 18 cases over the ADF. Considering all the results, it is evident that the FADF-SB test performed highly well over the other three tests, ADF, FADF, and ADF-SB, in all the African countries examined in the study, except for Benin, Burundi, Nigeria, Seychelles, South Africa, Tanzania and Togo (7). Hence, it is safe to say that the FADF-SB unit root test is more reliable and preferable compared to others as displayed in Table 4. Additionally, it is evidently shown, in the result, that the mean reversion hypothesis is significantly affected by the availability of structural breaks. This thereby improve the power of the Fourier function test when combined with structural breaks in unit root testing framework.

Country	Code	$\mathbf{F}_{\mathrm{FADF}_\mathrm{ADF}}$	$\mathbf{F}_{\mathrm{ADF}-\mathrm{SB}_{\mathrm{ADF}}}$	Ffadf-sb_adf	$\mathbf{F}_{\mathrm{FADF}-\mathrm{SB}_{\mathrm{FADF}}}$	Ffadf-sb_adf-sb
Algeria	DZA	12.278	7.117	13.745	7.873	27.359
Benin	BEN	4.889	2.918	5.699	4.866	5.524
Botswana	BWA	4.102	12.516	7.448	8.219	14.606
Burkina Faso	BFA	4.114	5.281	5.363	5.134	10.265
Burundi	BDI	3.783	4.650	3.238	2.274	5.284
Cameroon	CMR	4.672	14.623	10.268	11.570	20.464
Central Afr.	CAF	2.970	1.952	5.428	6.471	8.072
Chad	TCD	3.669	124.785	85.869	127.662	160.603
Congo	COG	5.342	5.188	17.505	20.575	21.745
Congo, Dem.	COD	9.624	10.251	9.084	5.107	15.383
Egypt	EGY	5.401	7.996	10.511	10.948	11.759
Gabon	GAB	4.265	6.014	5.039	4.511	9.563
Ghana	GHA	4.087	12.730	6.197	6.392	11.836
Guinea	GIN	3.067	9.599	8.129	10.625	9.893
Guinea-Bissau	GNB	5.553	7.701	8.345	7.836	15.669
Kenya	KEN	3.870	11.379	12.116	15.487	22.743
Madagascar	MDG	1.048	3.352	4.878	8.063	9.296
Malawi	MWI	1.398	3.700	3.402	4.928	6.371
Mali	MLI	7.765	4.892	9.924	7.616	18.965
Mauritania	MRT	4.730	20.134	13.989	16.764	26.844
Mauritius	MUS	7.520	7.592	10.179	8.158	20.335
Morocco	MAR	4.238	4.346	7.406	7.995	14.594
Mozambique	MOZ	5.443	7.579	10.276	10.577	19.916
Namibia	NAM	2.178	4.684	8.849	13.208	16.615
Niger	NER	4.103	4.692	5.746	5.710	11.234
Nigeria	NGA	0.408	2.910	1.966	3.437	3.726

Table 4: F tests

Country	Code	F _{FADF_ADF}	F_{ADF-SB_ADF}	$F_{FADF-SB_ADF}$	F _{FADF-SB_FADF}	F _{FADF-SB_ADF-SB}
Rwanda	RWA	0.996	180.571	161.930	297.207	320.899
Senegal	SEN	9.857	3.724	6.945	2.634	13.667
Seychelles	SYC	2.233	4.596	4.032	5.045	5.952
Sierra Leone	SLE	10.677	3.193	11.542	6.915	21.331
South Africa	ZAF	4.526	4.888	4.887	4.048	7.238
Sudan	SDN	2.999	9.412	9.951	13.614	19.163
Tanzania	TZA	9.828	3.223	7.342	3.079	-1.169
Gambia	GMB	0.692	2.047	5.058	8.946	8.930
Togo	TGO	2.488	3.964	2.725	2.613	5.417
Tunisia	TUN	4.212	10.498	4.912	4.375	7.984
Uganda	UGA	5.559	2.137	3.683	1.544	7.157
Zimbabwe	ZWE	14.221	6.210	11.438	4.423	16.696

Table 4: F tests (cont.)

Note: In bold indicates significance at 5% level. See Furuoka (2017a) for critical values.

4. Conclusion

The study examines the evidence of mean reversion or non-mean reversion in household expenditures in selected thirty-eight (38) countries across Africa between 1990 and 2018 using the Fourier unit root test with breaks (FADF-SB). The test procedure works quite well in the presence of a small sample size and it is capable of controlling for smooth breaks based on the Fourier function in the test regression. Other unit root tests, the ADF, FADF, and ADF-SB, are restricted versions to the FADF-SB, which further gives the general test appealing properties. An F test that determines the superiority of FADF-SB and ADF-SB is also presented. On applying the traditional ADF unit root test, the authors discovered that only 16 of the considered cases indicate significance. That is, about 42% signify evidence of mean reversion in the time series of household expenditures across African countries considered. The three tests, FADF, ADF-SB, and FADF-SB rejected unit root hypotheses in 26.31%, 63.16%, and 86.84% of the total cases, respectively. Based on these results, the household expenditure rate in most of the African countries is mean-reverting for the period considered in this study. The FADF-SB test outperformed others in the majority of the African countries considered. Based on the results of only the FADF-SB test, the nonmean reversion hypothesis holds in five (5) of the thirty-eight (38) African countries examined in this study. Meanwhile, based on the decisions of nonrejection of unit root by the four tests considered, non-mean reversion exists in only three countries, that is, in Egypt, Madagascar, and Tunisia. In these cases of non-mean reversion, the household expenditure rates do not revert to their mean levels, which is the likelihood that these countries may experience the persistence of shocks for a longer period. The implication herewith requires strong public policy actions to address the

household expenditure shock. Depending on the nature of the shock, a strong check and balance are needed to be put in place. In cases where the household expenditure rate is lower compared to the Gross Domestic Product (GDP) per capita, the shocks could mean evidence of economic development. However, in cases where the household expenditure rate is higher, the shock could mean the evidence of GDP per capita debt. Considering the robustness investigation to ascertain the most powerful and preferable test, the result indicates the dominance of the FADF-SB over other tests.

References

- African Development Bank, (2012). A Comparison of Real Household Consumption Expenditures and Price Levels in Africa. Tunis: African Development Bank.
- Akhand, A., (2011). Household Consumption Behaviour in Indonesia, Newcastle Business School, The University of Newcastle The University Drive, Callaghan, NSW 2308, Australia.
- Awolaja, O. G., Yaya, O. S., Vo, X. V., Ogbonna, A. E. and JOSEPH, S. O., (2021). Unemployment Hysteresis in Middle East and North Africa Countries: Panel SURbased Unit root test with a Fourier function. *Middle East Development Journal*, pp. 13 (2), 318–334.
- Becker, R., Enders, W., and Lee, J., (2006). A stationarity test in the presence of an unknown number of smooth breaks. *Journal of Time Series Analysis*, 27(3), pp. 381–401.
- Ben, E., (2015). A test of the household income process using consumption and wealth data, European Economic Review, http://dx.doi.org/10.1016/ j.euroecorev.2015.05.003.
- Box, G, E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, C. M., (2015). *Time Series Analysis*: Forecasting and Control. John Wiley & Sons, UK.
- Enders, W., Lee, J., (2012a). A unit root test using a Fourier series to approximate smooth breaks. *Oxford Bulleting of Economics and Statistics*, 74, pp. 574–599.
- Enders, W., Lee, J., (2012b). The flexible Fourier form and Dickey-Fuller-type unit root tests. *Economic Letters*, 117, pp. 196–199.
- Furuoka, F., (2017a). A new approach to testing unemployment hysteresis. *Empirical Economics*, 53(3), pp. 1253–1280.
- Furuoka, F., (2017b). Unemployment Dynamics in the Asia-Pacific region: A Preliminary investigation. *The Singapore Economic Review*, 62(5), pp. 983–1016.

- Fumitaka, F., Pui, K. L., Ezeoke, C., Jacob, R. I. and Yaya, O. S., (2020). Growth slowdowns and the middle-income trap: Evidence based on new Unit root framework. *The Singapore Economic Review*. https://doi.org/10.1142/ S0217590820500083.
- Gil-Alana, L. A., Yaya, O. S., (2021). Testing Fractional Unit Roots with Non-linear Smooth Break Approximations using Fourier functions. *Journal of Applied Statistics*, 48 (13-15), pp. 2542–2559
- Giray, G., (2013). Stochastic properties of the consumption-income ratios in Central and Eastern European Countries Zb. rad. Ekon. fak. Rij., vol. 31, sv. 2, pp. 193–207
- Lozano-Gracia, N., Young, C., (2014). Housing Consumption and Urbanization. *Policy Research Working Paper.*, 7712, pp. 4–5.
- Mahdavi, D. B., (2013). The Non-Misleading Value of Inferred Correlation: An Introduction to the Cointelation Model. Wilmott., 1, pp. 50–61.
- Nik, M., Nik, H.R., Noorhaslinda, A. and Nasir, A. (2011). Household Income and Expenditure Relationships: A Simultaneous Equation Approach. *Chinese Business Review*, ISSN 1537-1506. pp. 395–405.
- OECD, (2020). Household Spending (indicator). DOI: 10.1787/b5f46047,
- Thankgod, O. (2014). *Private Consumption Expenditure Function in Nigeria: Evidence from the Keynes' Absolute Income Hypothesis.*
- Yaya, O. S., Furuoka, F., Ling, P. K., Jacob, R. I. and Ezeoke, C. M. R. (2020). Investigating Asian Regional Income Convergence using Fourier Unit Root test with Break. *International Economics*, 161, pp. 120–129.
- Yaya, O. S., Ogbonna, A. E. and Mudida, R. (2019a). Hysteresis of Unemployment rate in Africa: New Findings from Fourier ADF test. *Quality and Quantity International Journal of Methodology*, 53(6), pp. 2781–2795.
- Yaya, O. S., Ling, P. K., Furuoka, F., Ezeoke, C. M. R. and Jacob, R. I. (2019b). Can Western African countries catch up with Nigeria? Evidence from Smooth Nonlinearity method in Fractional Unit root framework. *International Economics*, 158, pp. 51–63.
- Yaya, O. S. (2018). Another Look at the Stationarity of Inflation rates in OECD countries: Application of Structural break-GARCH-based unit root tests. *Statistics* in Transition new series, 19(3), pp. 477–492

- Yaya, O. S., Otekunrin, O. A. and Ogbonna, A. E. (2021). Life Expectancy in West African countries: Evidence of Convergence and Catching up with the North. *Statistics in Transition*, 22(1), pp. 75–88.
- Zivot, E., Andrews, D. W. K. (1992). Further evidence on Great Crash, the oil price shock, and the unit root hypothesis. *Journal of Business and Economic Statistics*, 10, pp. 251–270.