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Discussion of “Probability vs. Nonprobability Sampling:
From the Birth of Survey Sampling to the Present Day”

by Graham Kalton

Julie Gershunskaya1, Partha Lahiri2

In this excellent overview of the history of probability and nonprobability sampling 
from the end of the nineteenth century to the present day, Professor Graham Kalton outlines 
the essence of past endeavors that helped to define philosophical approaches and stimulate 
the development of survey sampling methodologies. From the beginning, there was an 
understanding that a sample should, in some ways, resemble the population under study. 
In Kiær’s ideas of “representative sampling” and Neyman’s invention of probability-based 
approach, the prime concern of survey sampling has been to properly plan for representing 
characteristics of the finite population. Poststratification and other calibration methods were 
developed for the same important goal of better representation.

Professor Kalton’s paper underscores growing interest in the use of nonprobability sur-
veys. With recent proliferation of computers and the internet, wealth of data becomes avail-
able to researchers. However, “opportunistic” information collected with present-day capa-
bilities usually is not purposely planned or controlled by survey statisticians. No matter how 
big such a nonprobability sample could be, it may inaccurately reflect the finite population 
of interest, thus presenting a substantial risk of an estimation bias.

Below, we discuss several recent papers that propose ways to incorporate nonprobability 
surveys to produce estimates for both large and small areas. Specifically, we will consider 
two situations often encountered in practice. In the first situation, a nonprobability sample 
contains the outcome variable of interest, and the main task is to reduce the selection bias 
with the help of a reference probability sample that does not contain the outcome variable 
of interest. In the second situation, a probability sample contains the outcome variable of 
interest, but there is little or no sample available to produce granular level estimates. For 
such a small area estimation problem, we consider a case when we have access to a large 
nonprobability sample that does not contain the outcome variable but contains some related 
auxiliary variables also present in the probability sample. In both situations, researchers 
have discussed statistical data integration techniques in which a reference probability sam-
ple is combined with a nonprobability sample in an effort to overcome deficiencies associ-
ated with both probability and nonprobability samples.
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One way to account for the selection bias of a nonprobability sample is by estimat-
ing the sample inclusion probabilities, given available covariates. Then, the inverse values
of estimated inclusion probabilities are used, in a similar manner as the usual probability
sample selection weights, to obtain estimates of target quantities. Several approaches to es-
timation of nonprobability sample inclusion probabilities (or propensity scores) have been
considered in the literature. Recent papers by Chen et al. (2020), Wang et al. (2021), and
Savitsky et al. (2022) propose ways to estimate these probabilities based on combining non-
probability and probability samples. Kim J. and K. Morikawa (2023) propose an empirical
likelihood based approach under a different setting. To save space, we will not discuss their
approach. We now review three statistical data integration methods.

The approaches concern with the estimation of probabilities πcipxiq “ Ptci “ 1|xiu to be
included into the nonprobability sample Sc, for units i “ 1, . . . ,nc, where ci is the inclusion
indicator of unit i taking on the value of 1 if unit i is included into the nonprobability sample,
and 0 otherwise; xi is a vector of known covariates for unit i; nc is the total number of units
in sample Sc. The problem, of course, is that we cannot estimate πci based on the set of
units in nonprobability sample Sc alone, because ci “ 1 for all i in Sc. The probabilities are
estimated by combining set Sc with a probability sample Sr. Due to its role in this approach,
the probability sample here is also called “reference sample”.

Assuming both nonprobability and probability samples are selected from the same finite
population P, Chen et al. (2020) write a log-likelihood, over units in P, for the Bernoulli
variable ci :

ℓ1pθq “
ÿ

iPP

tci log rπcipxi,θqs ` p1 ´ ciq log r1 ´ πci pxi,θqsu , (1)

where θ is the parameter vector in a logistic regression model for πci.

Since finite population units are not observed, Chen et al. (2020) employ a clever trick
and re-group the sum in (1) by presenting it as a sum of two parts: part 1 involves the sum
over the nonprobability sample units and part 2 is the sum over the whole finite population:

ℓ1pθq “
ÿ

iPSc

log
„

πcipxi,θq

1 ´ πci pxi,θq

ȷ

`
ÿ

iPP

log r1 ´ πci pxi,θqs . (2)

Units in part 1 of the log-likelihood in (2) are observed; for part 2, Chen et al. (2020)
employ the pseudo-likelihood approach by replacing the sum over the finite population with
its probability sample based estimate:

ℓ̂1pθq “
ÿ

iPSc

log
„

πcipxi,θq

1 ´ πci pxi,θq

ȷ

`
ÿ

iPSr

wri log r1 ´ πci pxi,θqs , (3)

where weights wri “ 1{πri are inverse values of the reference sample inclusion probabili-
ties πri. Estimates are obtained by solving respective pseudo-likelihood based estimating
equations.

One shortcoming of the Chen et al. (2020) approach is that their Bernoulli likelihood
is formulated with respect to an unobserved indicator variable. Although the regrouping
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employed in (2) helps to find a solution, results obtained by Wang et al. (2021) indicate that
it is relatively inefficient, especially when the nonprobability sample size is much larger
than the probability sample size.

Wang et al. (2021) formulate their likelihood for an observed indicator variable and thus
their method is different from the approach of Chen et al. (2020). To elaborate, Wang et al.
(2021) introduce an imaginary construct consisting of two parts: they stack together non-
probability sample Sc (part 1) and finite population P (part 2). Since nonprobability sample
units belong to the finite population, they appear in the stacked set twice. Let indicator
variable δi “ 1 if unit i belongs to part 1, and δi “ 0 if i belongs to part 2 of the stacked set;
the probabilities of being in part 1 of the stacked set are denoted by πδ ipxiq “ Ptδi “ 1|xiu.
Wang et al. (2021) assume the following Bernoulli likelihood for observed variable δi:

ℓ2pθ̃q “
ÿ

iPSc

log
”

πδ ipxi, θ̃q

ı

`
ÿ

iPP

log
”

1 ´ πδ i

´

xi, θ̃
¯ı

, (4)

where θ̃ is the parameter vector in a logistic regression model for πδ i. Since the finite
population is not available, they apply the following pseudo-likelihood approach:

ℓ̂2pθ̃q “
ÿ

iPSc

log
”

πδ ipxi, θ̃q

ı

`
ÿ

iPSr

wri log
”

1 ´ πδ i

´

xi, θ̃
¯ı

. (5)

Existing ready-to-use software can be used to obtain estimates of πδ i. However, the ac-
tual goal is to find probabilities πci rather than probabilities πδ i. Wang et al. (2021) propose
a two-step approach, where at the second step, they find πci by employing the following
identity:

πδ i “
πci

1 ` πci
. (6)

Savitsky et al. (2022) use an exact likelihood for the estimation of inclusion probabil-
ities πci, rather than a pseudo-likelihood based estimation. They propose to stack together
nonprobability, Sc, and probability, Sr, samples. In this stacked set, S, indicator variable zi

takes the value of 1 if unit i belongs to the nonprobability sample (part 1), and 0 if unit i be-
longs to the probability sample (part 2). In this construction, if there is an overlap between
the two samples, Sc and Sr, then the overlapping units are included into stacked set S twice:
once as a part of the nonprobability sample (with zi “ 1) and once as a part of the reference
probability sample (with zi “ 0). We do not need to know which units overlap or whether
there are any overlapping units. The authors use first principles to prove the following re-
lationship between probabilities πzipxiq “ Ptzi “ 1|xiu of being in part 1 of the stacked set
and the sample inclusion probabilities πci and πri:

πzi “
πci

πri ` πci
. (7)

A similar expression (7) was derived by Elliott (2009) and Elliott and Valliant (2017) un-
der the assumption of non-overlapping nonprobability and probability samples. The deriva-
tion given in Savitsky et al. (2022) does not require this assumption.
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To obtain estimates of πci from the combined sample, Beresovsky (2019) proposed to
parameterize probabilities πci “ πcipxi,θq, as in Chen et al. (2020), and employ identity (7)
to present πzi as a composite function of θ; that is, πzi “ πzipπcipxi,θqq “ πcipxi,θq{pπri `

πcipxi,θqq.

The log-likelihood for observed Bernoulli variable zi is given by

ℓ3pθq “
ÿ

iPSc

log rπzipπcipxi,θqqs `
ÿ

iPSr

log r1 ´ πzi pπcipxi,θqqs . (8)

Since the log-likelihood implicitly includes a logistic regression model formulation for
probabilities πci, Beresovsky (2019) labeled the proposed approach Implicit Logistic Re-
gression (ILR). For the maximum likelihood estimation (MLE), the score equations are
obtained from (8) by taking the derivatives, with respect to θ, of the composite function
πzi “ πzipπcipθqq. This way, the estimates of πci are obtained directly from (8) in a single
step. Savitsky et al. (2022) parameterized the likelihood, as in (8), and used the Bayesian
estimation technique to fit the model.

Note that to implement the ILR approach, the reference sample inclusion probabilities
πri have to be known for all units in the combined set. This is not a limitation for many
probability surveys. As discussed in Elliott and Valliant (2017), if probabilities πri cannot
be determined exactly for units in the nonprobability sample, they can be estimated using
a regression model. Savitsky et al. (2022) used Bayesian computations to simultaneously
estimate πri and πci for nonprobability sample units, given available covariates xi.

It must be noted that the estimation method of Wang et al. (2021) can be similarly
modified to avoid the two-step estimation procedure: a logistic regression model could be
formulated for inclusion probabilities πci, while probabilities πδ i in (6) could be viewed
as a composite function, πδ i “ πδ ipπcipxi,θqq “ πcipxi,θq{p1 ` πcipxi,θqq. This approach is
expected to be more efficient. Moreover, it avoids πci estimates greater than 1 that could
occur when the estimation is performed in two steps. Once modified this way, preliminary
simulations indicate that Wang et al. (2021) formulation would produce more efficient es-
timates than the Chen et al. (2020) counterpart, unless in a rare situation where the whole
finite population rather than only a reference sample is available.

Simulations show that the exact likelihood method based on formulation of Savitsky
et al. (2022) and Beresovsky (2019) performs better than the pseudo-likelihood based alter-
natives. In the usual situation where the reference probability sample fraction is small, the
relative benefits of the exact likelihood approach are even more pronounced.

The existence of a well-designed probability reference sample plays a crucial role in
the efforts to reduce the selection bias of a nonprobability sample. Importantly, an ongoing
research indicates that the quality of estimates of the nonprobability sample inclusion proba-
bilities is better if there is a good overlap in domains constructed using covariates from both
samples. This observation harks back to problems appearing in traditional poststratification
methods and to the notion of “representative sampling." Since survey practitioners usually
do not have control over the planning or collection of the emerging multitude of nonrandom
opportunistic samples, efforts should be directed to developing and maintaining comprehen-
sive probability samples that include sets of good quality covariates. Beaumont et al. (2023)
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proposed several model selection methods in application of the modeling nonprobability
sample inclusion probabilities.

We now turn our attention to the second data integration situation involving small area
estimation, a topic Professor Kalton touched on. This is a problem of great interest for
making public policies, fund allocation and regional planning. Small area estimation pro-
grams already exist in some national statistical organizations such as the Small Area Income
and Poverty Estimates (SAIPE) program of the US Census Bureau (Bell et al., 2016) and
Chilean government system (Casas-Cordero Valencia et al., 2016.) The importance placed
in the United Nations Sustainable Development Goals (SDG) for disaggregated level statis-
tics is expected to increase the demand for such programs in various national statistical
offices worldwide. Standard small area estimation methods generally use statistical models
(e.g., mixed models) that combine probability sample data with administrative or census
data containing auxiliary variables correlated with the outcome variable of interest. For a
review of different small area models and methods, see Jiang and Lahiri (2006), Rao and
Molina (2015), Ghosh (2020), and others.

A key to success in small area estimation is to find relevant auxiliary variables not only
in the probability sample survey but also in the supplementary big databases. Use of a big
probability or nonprobability sample survey could be useful here as surveys typically con-
tain a large number of auxiliary variables that are also available in the probability sample
survey. In the context of small area estimation, Sen and Lahiri (2023) considered a statis-
tical data integration technique in which a small probability survey containing the outcome
variable of interest is statistically linked with a much bigger probability sample, which does
not contain the outcome variable but contains many auxiliary variables also present in the
smaller sample. They essentially fitted a mixed model to the smaller probability sample that
connects the outcome variable to a set of auxiliary variables and then imputed the outcome
variable for all units of the bigger probability sample using the fitted model and auxiliary
variables. Finally, they suggested to produce small area estimates using survey weights
and imputed values of the outcome variable contained in the bigger probability sample sur-
vey. As discussed in their paper, such a method can be used even if the bigger sample is
a nonprobability survey using weights constructed by methods such as the ones described
earlier.

The development of new approaches demonstrates how the methods of survey esti-
mation continue to evolve by taking into the future the best from fruitful theoretical and
methodological developments of the past. As Professor Kalton highlights, we will increas-
ingly encounter data sources that are not produced by standard probability sample designs.
Statisticians will find ways to respond to new challenges, as is reflected in the following
amusing quote:

...D.J. Finney once wrote about the statistician whose client comes in and says,
“Here is my mountain of trash. Find the gems that lie therein." Finney’s advice
was to not throw him out of the office but to attempt to find out what he con-
siders "gems". After all, if the trained statistician does not help, he will find
someone who will....(source: David Salsburg, ASA Connect Discussion)
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Of course, nonprobability samples should not be viewed as a “mountain of trash.” In-
deed, they can contain a lot of relevant information for producing necessary estimates.
It is just that one needs to explore different innovative ways to use information contained
in nonprobability samples. In the United States federal statistical system, the need to inno-
vate for combining information from multiple sources has been emphasized in the National
Academies of Sciences and Medicine (2017) report on Innovations in Federal Statistics.
As discussed, statisticians have been already engaged in suggesting new ideas, such as sta-
tistical data integration, to extract information out of multiple non-traditional databases.
In coming years, statisticians will be increasingly occupied with finding solutions for ob-
taining useful information from non-traditional data sources. This is indeed an exciting time
for survey statisticians.
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