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Conditional density function for surrogate scalar response

Mounir Boumahdi 1, Idir Ouassou 2, Mustapha Rachdi 3

Abstract

This paper presents the estimator of the conditional density function of surrogated scalar re-
sponse variable given a functional random one. We construct a conditional density function
by using the available (true) response data and the surrogate data. Then, we build up some
asymptotic properties of the constructed estimator in terms of the almost complete conver-
gences. As a result, we compare our estimator with the classical estimator through the Relatif
Mean Square Errors (RMSE). Finally, we end this analysis by displaying the superiority of
our estimator in terms of prediction when we are lacking complete data.

Key words: Density function, surrogate response, functional variable, almost complete con-
vergence, kernel estimators, scalar response, entropy, semi-metric space.

1. Introduction

There are many situations that may study the link between two variables, with the main
goal to be able to predict new values. This predicted problem has been widely studied in
the literature when both variables are of finite dimensions. Of course, the same problem
can occur when some of the variables are functional. Our aim is to investigate this problem
when the explanatory variable is functional and the response one is still real.
We are based in the following model:

Y = m(X)+ ε. (1)

Where m is the regression operator, X is a functional covariate which belongs to a semi-
metric space (E,d) and Y is the response variable, ε is a random error.
Our goal is to build the conditional density function for surrogate data by using the true
response data and the surrogate data. By following the work of Wang (2006), Firas et al.
(2019) and based on the work of Ramsay and Silverman (2002), Ferraty and Vieu (2006),
Horvath and Kokoszka (2012), Cuevas (2014), Zhang (2014), Bongiorno et al. (2014), Hs-
ing and Eubank (2015), Goia, Vieu (2016) and Wang, Chiou, and Müller (2016) and the
references therein, we construct our estimator f̂ X

R (y).

The problem we are addressing in this work i.e., the unavailability of some data in the
response variable, can be motivated both from a practical and a theoretical point of view.
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In fact, it may be difficult or expensive to exactly measure some response observations Y .
Our goal is then to improve the modeling by filling/recovering some of the information
missed in the response variable with this surrogate variable. In this case, one solution is
to use the help of validation data to capture the underlying relation between the true vari-
ables and surrogate ones. Some examples where validation data are available can be found
in Duncan and Hill (1985), Carroll and Wand (1991) and Pepe (1992).

This paper aims to study the conditional density for missing response by the kernel
method, we explore in this work the aspect of missing data in the response variable to es-
timate the conditional density function for surrogate data. We adopt an approach based on
validation data ideas. In fact, the idea is to introduce the information contained in both the
validation data and the surrogate data.

The unavailable observation of Y will be replaced by the estimator of E
(
Y | X ,Ỹ

)
, de-

noted by U(X j,Ỹj) for all j ∈ V̄ that corresponds to the size of the missing data, where Ỹ is
surrogate variable of Y . To estimate E

(
Y | X ,Ỹ

)
we adopt an approach based on validation

data and the brut data (the primary data), which includes surrogate data and the correspond-
ing observations of the covariate X .

Inside the simulation study of section 4, the surrogate variable Ỹi of Yi was generated
from Ỹi = ρZi + εi, where Zi is the standard score of Yi and εi ∼ N

(
0,
√

1−ρ2
)
, in such

a way that the correlation coefficient between Yi and Ỹi is approximately equal to p which
would not be controllable in practice, but we can clearly notice that the quality of our f̂ x

R
depends on the size n of the validation data and ρ . Specifically, our estimator greatly better
as the value of n and ρ increases.

We already know the convergence almost complete of the classical kernel estimator
f̂ x
C(y)( Ferraty and Vieu (2006)) towards the real f x

Y (y), In fact, within the section 4, we cal-
culated and represented graphically the conditional density function estimator for surrogate
data and we conduct a computational study on a simulated data in order to show advantages
of using f̂ x

R(y) over f̂ x
V (y).

Effectively, we are in a position to give the alternative estimator of f̂ x
C(y) (estimator of

Ferraty and Vieu) when we are lacking complete data with the help of Ỹ (the surrogate vari-
able of Y ), so in reality the choice of Ỹ is important to improve the quality of our estimator.
In practice we can cite as an example two diseases (Y and Ỹ ) presenting similar symptoms,
more that there is a strong correlation between these two diseases, more our estimator is bet-
ter. So, there exists a wide scope of applied scientific fields for which our approach could
be of interest for examples Biometrics, Genetics or Environmetrics and this approach can
be helpful for a lot of statistical models when we are lacking complete data.

The main objective of this paper is to estimate the conditional density function for surro-
gate data. Then, we present the almost complete convergence of our estimator f̂ X

R (y) and we
study its performance against f̂ X

V (y) by computing the relative mean squared error (RMSE)
using simulated data.



STATISTICS IN TRANSITION new series, June 2023 119

2. Estimation procedure

Let (X ,Y ) ∈ F ×R denote a random vector, where (F ,d) is a semi-metric space
equipped with the semi-metric d. We are concerned with the estimation of the conditional
density function for surrogate data. Therefore, let (X1,Y1), ...,(XN ,YN) be a random sample
consisting of independent and identically distributed (i.i.d) variable from the distribution of
(X ,Y ).

The regression function for surrogate data defined in [?] as follows

m̂R(x) = ∑
i∈V

YiW1,n,i(x)+ ∑
j∈V̄

U(X j,Ỹj)W1,n, j(x), (2)

with
U(X j,Ỹj) = ∑

i∈V
YiW2,n,i(X j,Ỹj), ∀ j ∈ V̄ . (3)

We can estimate the conditional c.d.f Fx
Y (y) for surrogate data as follows

F̂x
R(y) = ∑

i∈V
H
(

y−Yi

g

)
W1,n,i(x)+ ∑

j∈V̄

R(X j,y,Ỹj)W1,n, j(x), (4)

where

W1,n,i(x) =
K
(

d(Xi,x)
h

)
∑

N
l=1 K

(
d(Xl ,x)

h

) , (5)

and

R(X j,y,Ỹj) = ∑
i∈V

H
(

y−Yi

g

)
W2,n,i(X j,Ỹj), ∀ j ∈ V̄ . (6)

With

W2,n,i(X j,Ỹj) =

W
(

d(X j,Xi)

h
,
Ỹi − Ỹj

b

)
∑l∈V W

(
d(X j,Xl)

h
,
Ỹl − Ỹj

b

) . (7)

The conditional density function can be obtained by derivating the conditional c.d.f.
Since we have now at hand some estimator F̂x

R(y) of Fx
Y (y), it is natural to propose the

following estimate:

f̂ x
R(y) =

∂ F̂x
R(y)
∂y

.

Assuming the differentiability of H, we build our new estimator of conditional density
function for surrogate data as following:

f̂ x
R(y) = ∑

i∈V
Ωi(y)W1,n,i(x)+ ∑

j∈V̄

L(X j,y,Ỹj)W1,n, j(x).

Where
Ωi(y) = g−1K0(g−1(y−Yi)),
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and
L(X j,y,Ỹj) = ∑

i∈V
g−1K0(g−1(y−Yi))W2,n,i(X j,Ỹj), ∀ j ∈ V̄ . (8)

Where K is a kernel function and both h = hN and g = gN are a sequence of positive
reals that tends to zero when N goes to infinity.

∀u ∈ R, H(u) =
∫ u

−∞

K0(v)dv. (9)

K0 is a function from R into R+ such that
∫

K0 = 1. To give an estimator of Fx
Y when

there are surrogate data in the response variable, let us introduce the integer n (n < N) that
corresponds to the size of the validation set V. Let V̄ be the complementary set of V in the
set {1,2, ...,N}.

W is a kernel function which is defined on R2 and b is sequence of real numbers which
tend to zero. To simplify, we will use only one kernel. In sense that K = K0 and W (·, ·) =
K(·)K(·). This consideration is because the choice of the kernel has less influence on the
performance of the estimator.

3. Some asymptotic properties

In the sequel, when no confusion is possible, we will denote by C and C′ some strictly
positive generic constants, we denote by f x1,ỹ1(y) the conditional distribution function of Y
given (X ,Ỹ ):

f x1,ỹ1(y) =
∂Fx1,ỹ1(y)

∂y
,

with
Fx1,ỹ1(y) = P(Y ≤ y | x1, ỹ1).

Recall that a semi-metric (sometimes called pseudo-metric) is just a metric violating the
property [d(x,y) = 0]⇒ [x = y] . We define the Kolmogorov’s entropy as follows:

Definition 3.1 Let SF be a subset of a semi-metric space F , and let ε > 0 be given.
A finite set of point x1,x2, .......,xn0 in F is called an ε-net for SF if SF ⊂

⋃N0
k=1 B(xk,ε).

The quantity ψSF
= log(Nε), where Nε s the minimal number of open balls in F of radius

ε which is necessary to cover S, is called the Kolmogorov’s ε-entropy of the set SF .

This concept was introduced by Kolmogorov (see, Kolmogorov and Tikhomirov, 1959)
and it represents a measure of the complexity of a set, in sense that, high entropy means
that much information is needed to describe an element with an accuracy ε . Therefore, the
choice of the topological structure (with other words, the choice of the semi-metric) will
play a crucial role when one is looking the uniform (over S) asymptotic results. For more
precision about this concept, see Ferraty et al. (2010).

We consider the following assumptions:

(H1) For all x in the subset SF we have,

0 <Cφ(h)≤ P(X ∈ B(x,h))≤C′
φ(h)< ∞.
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For all ỹ in the subset SR

0 <Cφ(b)≤ P(Y ≤ ỹ ≤ Y +b)≤C′
φ(b)< ∞.

For all x, ỹ in the subset SF ×SR

Cφ(h)φ(b)< E[K(h−1d(x,Xi))K(b−1 (ỹ−Y1)]<C′
φ(h)φ(b).

(H2) There exists b1,b2,b3 > 0 such that ∀x1,x2 ∈ SF , ∀y1,y2 ∈ SR and ∀ỹ1, ỹ2 ∈ SR

| f x1(y1)− f x2(y1)| ≤C
(

dβ1(x1,x2)+ |y1 − y2|β2
)
,

and
∣∣ f x1,ỹ1(y1)− f x2,ỹ2(y1)

∣∣≤C
(

dβ1(x1,x2)+ |y1 − y2|β2 + |ỹ1 − ỹ2|β3
)
.

(H3) K and K0 are bounded and Lipschitz kernel on its support [0,1], such that −∞ <C <
K′(t)<C′ < 0.

(H4) The functions φ and ψSF
are such that:

(H4a) ∃C > 0, ∃η0 > 0, ∀η < η0, φ
′(η)<C, and

∃C > 0, ∃η0 > 0, ∀0 < η < η0,
∫

η

0
φ(u)du > C η φ(η),

(H4b) For some γ ∈ (0,1) , γ ′ ∈ (0,1) and γ” ∈ (0,1)
limn→+∞ nγ h = ∞, ,limn→+∞ nγ ′g = ∞ and limn→+∞ nγ”

b = ∞, and for n large
enough:

(logn)2

ngφ(h)
<

(logn)2

ngφ(b)φ(h)
< ψSF

(
logn

n

)
<

ngφ(b)φ(h)
logn

<
ngφ(h)

logn
.

(H5) The Kolmogorov’s ε-entropy of SF satisfies

∞

∑
n=1

n2γ+1 exp
{
(1−β )ψSF

(
logn

n

)}
< ∞, for some β > 1,

and
∞

∑
n=1

n2γ”+1 exp
{
(1−β )ψSF

(
logn

n

)}
< ∞, for some β > 1.

Note that (H4a) implies that for n large enough

0 ≤ φ(h)≤Ch. (10)

The condition (H4b) implies that:

ψSF
(ε)

ngφ(h)
→ 0, and

ψSF
(ε)

ngφ(b)φ(h)
→ 0. (11)
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The condition (H4b) implies that:

∞

∑
n=1

n2γ”+1Nε(SF )1−β < ∞, and
∞

∑
n=1

n2γ+1Nε(SF )1−β < ∞. (12)

Conditions (H2)-(H3) are very standard in the nonparametric setting. Concerning (H4a),
the boundness of the derivative of φ around zero allows to consider φ as a Lipschitzian func-
tion. Hypothesis (H4b) deals with topological considerations by controlling the entropy of
SF . For a radius not too large, one requires that ψSF

(
logn

n

)
is not too small and not too

large. Moreover (H4b) implies that
ψSF

(ε)

ngφ(h)
→ 0 and

ψSF
(ε)

ngφ(h)φ(b)
→ 0 tends to 0 when n

tends to +∞, in some “usual” cases, one has ψSF

(
logn

n

)
∼ C logn. The assumption (H5)

acts on the Kolmogorov ε-entropy of SF .

The following Theorem states the rate of convergence of f̂ x
R for the surrogated scalar

response, uniformly over the set SF and SR . The asymptotics are stated in terms of almost
complete convergence (denoted by a.co.), which imply both weak and strong convergences
(see Section A-1 in Ferraty and Vieu, 2006).

Theorem 3.1 Under the hypotheses (H1)-(H5), we have

sup
x∈SF

sup
y∈SRR

| f̂ x
R(y)− f x

Y (y)|= O(hβ1)+O(gβ2)

+Oa.co.


√√√√ψSF

(
logn

n

)
ngφ(h)

+Oa.co.


√√√√ψSF

(
logN

N

)
Ngφ(h)



+Oa.co.


√√√√ψSF

(
logn

n

)
nφ(h)φ(b)

+Oa.co.


√√√√ψSF

(
logn

n

)
ngφ(h)φ(b)

 .

4. Numerical results

In this section, we evaluate the performance of the proposed estimator by conducting
a number of simulation studies. Let f̂ x

V (y) be the classical conditional density function
estimator which is obtained with the true observations in the validation data set V :

f̂ x
V (y) =

∑i∈V K
(
h−1d(x,Xi)

)
g−1K0

(
g−1(y−Yi)

)
∑i∈V K

(
h−1d(x,Xi)

) ,

and f̂ x
C(y) the classical kernel estimator which is obtained with the complete data for (such

as an example with N = 300 in the simulation below)

f̂ x
C(y) =

∑
N
i=1 K

(
h−1d(x,Xi)

)
g−1K0

(
g−1(y−Yi)

)
∑

N
i=1 K (h−1d(x,Xi))

.
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Within this section we will calculate and represent graphically the conditional density
function estimator for surrogate data and we conduct a computational study on a simulated
data in order to show advantages of using f̂ x

R(y) over f̂ x
V (y).

We choose K and K0 the Gaussian kernel as follows

K0(u) = K(u) =
1√
2π

exp−u2/2 .

We generate 400 observations (Xi,Yi)i using the following model:

Yi = m(Xi)+ ε.

Where the errors εi are i.i.d. according to the normal distribution N(0;5). More pre-
cisely, the functional regressors Xi(t) are defined, for any t ∈ [0,1], by

Xi(t) = sin(2π t)+Wi ∗ t.

Where Wi ∼ U(0.5;2). The scalar response variable Y is generated by taking as a re-
gression operator:

m(x) = 2π ∗ sin(bi)×
∫ 1

0
x2(t)dt + ε.

Where: εi ∼ N(0,2) and bi ∼ N(0,0.1). Let I0 = {1, ....,300} and I1 = {301, ....,400}
be two subsets of indices. Then, we choose ∆ = (Xi,Yi)i∈I0 as the learning sample and
Γ = {(Xi,Yi)}i∈I1 as the testing sample. The surrogate variable Ỹi of Yi, for all i ∈ I0 was
generated from Ỹi = ρZi + εi, where Zi is the standard score of Yi and εi ∼ N(0,

√
1−ρ2),

in such a way that the correlation coefficient between Yi and Ỹi is approximately equal to ρ

which would not be controllable in practice.

In the sequel of this simulation study, we take p = 0.75. From the learning sample
containing N = 300 functional data, we randomly choose a set V of n validation data
{(Xi,Yi)}i∈V which allows to build the estimator f̂ x

V (y) of f x
Y (y).

The estimator f̂ x
R(y) is then constructed by using the surrogate data {(Xi,Yi)}i∈V̄ with

the help of the validation data, where V̄ ∪V = {1, ....N}. It should be pointed out that for
N = n (complete observations), we have f̂ x

V (y) = f̂ x
R(y) = f̂ x

C(y).

We evaluate the performance of the estimator f̂ x
R(y) in terms of prediction, by computing

the relative mean squared error (RMSE) on the test sample:

RMSE( f̂ x
R) =

√
∑i∈Γ

(
f̂ x
C(Yi)− f̂ x

R(Yi)
)2

100
.

We have run 100 replicates of the simulation process for various values of n. We com-
puted, for the two estimators f̂ x

R(y) and f̂ x
V (y) the mean and relative mean squared error

(RMSE) over this 100 replications.
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The comparison study results, for different values of percentage of validation data in
samples:

p(V ) =
card(V )

N
×100% =

n
N
×100%.

The results are summarized in the following Table 1.

Table 1. f̂ x
R(Yi) and f̂ x

V (Yi) whereas f̂ x
C(Yi) for n = 100 and n = 210.

estimator p(V ) Mean RMSE
f̂ x
V (y) 33% 0.048 0.34
f̂ x
R(y) 33% 0.03767 0.02356

f̂ x
C(y) - 0.03960 -

f̂ x
V (y) 70% 0.044 0.0368
f̂ x
R(y) 70% 0.03882 0.001

f̂ x
C(y) - 0.03960 -
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Figure 1. f̂ x
R (the red line ) and f̂ x

V (the green line ) with f̂ x
C (blue line) for Card(V)=n=100.

Obviously the quality of the prediction of the two estimators depend on the size n of
the validation data. Specifically, RMSE decrease when the value of n increases. On the
other hand, for n = 100 that means the percentage of validation data in a sample is 33% our
estimator f̂ x

R(y) is better than f̂ x
V (y) in terms of RMSE inferior. In addition for n = 210 that

means that we know 70% of data, our f̂ x
R(y) still greatly better as result of RMSE = 0.001.

Nearly with the same mean of f̂ x
C(y).
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Figure 2. f̂ x
R (the red line ) and f̂ x

V (the green line ) with f̂ x
C (blue line) for

Card(V ) = n = 210.

It can be noticed from Figure 1 and Figure 2 that our f̂ x
R(y) is closer than f̂ x

V (y) to the
curve f̂ x

C(y) which represents the estimator with the complete samples. Consequently, even
if the percentage of validation data in sample increases from 33% to 70%, the estimator
f̂ x
R(y) keeps performing better than f̂ x

V .

5. Remarks and Conclusion

This paper has stated uniform consistency results when X is functional and Y is scalar.
The fact to be able to state results on the quantity

sup
x∈SF

sup
y∈SR

| f̂ x
R(y)− f x

Y (y)|.

Allows directly to obtain results on quantity

| f̂ x
R(y)− f x

Y (y)|.

The entropy function represents a measure of the complexity of a set, in sense that, high
entropy means that much information is needed to describe an element with an accuracy
ε = logn

n , in fact, the quality of the prediction of this estimator depends on the size n of the
validation data. By building a suitable projection-based semi-metric, the entropy function
becomes ψSF

(
logn

n

)
=O(logn) and for N = n (without surrogate data) we get the estimator

of Ferraty and Vieu (2006)

sup
x∈SF

sup
y∈SR

| f̂ x
R(y)− f x

Y (y)|= O(hβ1)+O(gβ2)+Oa.co.

(√
logn

ngφ(h)

)
.
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We present in this paper the almost complete convergence of conditional density func-
tion for surrogated scalar response variable given a functional random by using validation
sample set. In addition, we show the performance of our estimator f̂ x

R(y) than f̂ x
V (y) to

reduce RMSE by using the simulated data. This confirms that our estimator is a good alter-
native to the f̂ x

C(y) estimator (see Ferraty and Vieu, 2006) when we lack complete data.

Proof of Theorem

We note that :

i ∈V ⇒ i ∈ {1, .....,n} , and j ∈ V̄ ⇒ j ∈ {n+1, .....,N} .

We can write

f̂ x
R(y)− f x

Y (y) = ∑
i∈V

Ωi(y)W1,n,i(x)− ∑
i∈V

f Xi,Ỹi
Y (y)W1,n,i(x)

− ∑
j∈V̄

f
X j ,Ỹ j
Y (y)W1,n, j(x)+ ∑

j∈V̄

L(X j,Ỹj)W1,n, j(x)

+
N

∑
i=1

f Xi,Ỹi
Y (y)W1,n,i(x)− f x

Y (y).

= E1 +E2 +E3,

with 

E1 = ∑
i∈V

(
Ωi(y)− f Xi,Ỹi

Y (y)
)

W1,n,i(x),

E2 = ∑
j∈V̄

(
L(X j,Ỹj)− f Xi,Ỹi

Y (y)
)

W1,n, j(x),

E3 =
N

∑
i=1

(
f Xi,Ỹi
Y (y)− f x

Y (y)
)

W1,n,i(x).

And
Ωi(y) = g−1K0(g−1(y−Yi)).

Furthermore, we put

∆i(x) =
K
(

d(Xi,x)
h

)
E
[

K
(

d(Xi,x)
h

)] ,
and we define 

r̂1(x) =
1
n ∑

i∈V
∆i(x),

r̃1(x) =
1
N

N

∑
i=1

∆i(x),

r̂2(x,y) =
1
n ∑

i∈V

(
Ωi(y)− f Xi,Ỹi

Y (y)
)

∆i(x),

r̂3(x) =
1
N

N

∑
i=1

(
f Xi,Ỹi
Y (y)− f x

Y (y)
)

∆i(x).
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By the definition of r̂1, r̃1, r̂2, and r̂3 we have:

E1 =
1

r̂1(x)
(r̂2(x,y)−E(r̂2(x,y)))+

E(r̂2(x,y))
r̂1(x)

,

and

E3 =
1

r̃1(x)
(r̂3(x,y)−E(r̂3(x,y)))+

E(r̂3(x,y))
r̃1(x)

.

The numerators in this decomposition will be treated directly by using Lemma 6.2 and
Lemma 6.3 below, while the denominators are treated directly by using Lemma 6.1 together
with part i) of Proposition A.6 defined in p232 of Ferraty and Vieu, 2006. For the term E2
will be treated by using Lemma 6.4.
Finally, the Theorem 3.2 is consequence of the following intermediate results

Lemma 5.1 Under the hypotheses (H1) and (H3)-(H5), we have

sup
x∈SF

|r̂1(x)−1|= Oa.co.


√√√√ψSF

(
logn

n

)
nφ(h)

 ,

and
∞

∑
n=1

P
(

inf
x∈SF

r̂1(x)<
1
2

)
< ∞.

The Proof of this Lemma is detailed in [?]

Lemma 5.2 Under the hypotheses (H1),(H2) and (H4)-(H5), we have

sup
x∈SF

sup
y∈SR

|E[r̂2(x,y)]|= O
(

gβ2
)
,

and
sup

x∈SF

sup
y∈SR

|E[r̂3(x,y)]|= O
(

hβ1
)
.

Proof of Lemma 5.2

By stationarity, we have

|E[r̂2(x,y)]| =
∣∣∣E[∆1(x)E

[(
Ω1(y)− f X1,Ỹ1

Y (y)
)
|X1

]]∣∣∣
=
∣∣∣E[∆1(x)E [Ω1(y)|X1]−E[ f X1,Ỹ1

Y (y)|X1]
]∣∣∣

=
∣∣∣E[1IB(x,h)(X1)∆1(x)E [Ω1(y)|X1]− f X1

Y (y)
]∣∣∣ .

The fact that
∫
R K0(u)du = 1 allows us to write:

E [Ω1(y)|X1]− f X1
Y (y) =

∫
R

g−1K0
(
g−1(y−u)

)(
f X1
Y (y)− f X1

Y (u)
)

du

=
∫
R

K0(v)
(

f X1
Y (y)− f X1

Y (y− vg)
)

dv
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Thus, under (H3) we obtain uniformly

∣∣∣E [Ω1(y)|X1]− f X1
Y (y)

∣∣∣≤Cgβ2 .

Hence, we get

∀x ∈ SF , |E[r̂2(x,y)]| ≤Cgβ2 .

|E[r̂3(x,y)]| =
∣∣∣E[∆1(x)E

[(
f Xi,Ỹi
Y (y)− f x

Y (y)
)
|X1

]]∣∣∣
= E

[
1IB(x,h)(X1)∆1(x)

∣∣∣ f X1
Y (y)− f x

Y (y)
∣∣∣]≤Chβ1 .

Lemma 5.3 Under the assumptions of the Theorem, we have

sup
x∈SF

sup
y∈SR

|r̂2(x,y)−E[r̂2(x,y)]|= Oa.co.


√√√√ψSF

(
logn

n

)
ngφ(h)

 ,

and

sup
x∈SF

sup
y∈SR

|r̂3(x,y)−E[r̂3(x,y)]|= Oa.co.


√√√√ψSF

(
logN

N

)
Ngφ(h)

 .

Proof of Lemma 5.3

We treat only the first case, the second result can be treated by the same arguments.
Firstly, we simplify the notation by denoting for all i = 1, . . . ,n, by

Ki(x) = K(h−1d(x,Xi)).

Observe that, according to (H1) and (H3) we have

∀x ∈ SF Cφ(h)< E[K1(x)]<C′
φ(h). (13)

Next, we denote by x1, . . . ,xNε (SF ) an ε-net (see Kolomogorov and Tikhomirov (1959))
for SF and by t1, . . . , tdn some ln-net for the compact SR . Furthermore, for all x in SF and y
in SR we put

k(x) = arg min
k∈{1,2,...,Nε (SF )}

d(x,xk) and j(y) = arg min
j∈{1,2,...,dn}

|y− t j|.
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Now, we fix ε = logn
n and ln = n−2γ−1 and we use the following decomposition

|r̂2(x,y)−E[r̂2(x,y)]| ≤ sup
x∈SF

sup
y∈SR

∣∣r̂2(x,y)− r̂2(xk(x),y)
∣∣︸ ︷︷ ︸

T1

+ sup
x∈SF

sup
y∈SR

∣∣r̂2(xk(x),y)− r̂2(xk(x), t j(y))
∣∣︸ ︷︷ ︸

T2

+ sup
x∈SF

sup
y∈SR

∣∣r̂2(xk(x), t j(y))−E[r̂2(xk(x), t j(y))]
∣∣︸ ︷︷ ︸

T3

+ sup
x∈SF

sup
y∈SR

∣∣E[r̂2(xk(x), t j(y))]−E[r̂2(xk(x),y)]
∣∣︸ ︷︷ ︸

T4

+ sup
x∈SF

sup
y∈SR

∣∣E[r̂2(xk(x),y)]−E[r̂2(x,y)]
∣∣︸ ︷︷ ︸

T5

.

For the term T1 we employ the Lipschitzianity of the kernel K on [0,1] which gives

T1 ≤ C
n

n

∑
i=1

Zi with Zi =
ε

hgφ(h)
1IB(x,h)∪B(xk(x),h)(Xi),

Therefore, it is clear that the assumption (H3) permits to write that

Z1 = O
(

ε

hφ(h)

)
, E[Z1] = O

(
ε

hg

)
and var(Z1) = O

(
ε2

h2g2φ(h)

)
.

So, we get

E(| Z1 |m)≤
Cεm

hmgmφ(h)m−1 . (14)

By using the result (10) together with the definition of ε we have for n large enough:

ε

hg
≤C.

So, we get:

E(| Z1 |m)≤
Cεm−1

hm−1gm−1φ(h)m−1 .

Now, by applying Corollary A.8 in Ferraty and Vieu (2006) with a2 =
ε

hgφ(h)
, we get:

1
n

n

∑
i=1

Zi = EZ1 +Oa.co.

(√
ε logn

nghφ(h)

)
.

Finally, applying (14) for m = 1 one gets

T1 = O(
ε

hg
)+Oa.co.

(√
ε logn

nhgφ(h)

)
.
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By (10) and the definition of ε for n large enough :

C
(logn)2

(ngφ(h))2 ≥ ε logn
nhgφ(h)

Using (H4b) together with (11) and the fact that:

{∣∣∣∣∣1n n

∑
i=1

Zi

∣∣∣∣∣>
√

ψSF
(ε)

ngφ(h)

}
⊂

{∣∣∣∣∣1n n

∑
i=1

Zi

∣∣∣∣∣>
√

C(logn)2

(ngφ(h))2

}
,

we get

T1 = Oa.co.

(√
ψSF

(ε)

ngφ(h)

)
. (15)

Thus, by Assumption (H4b) we deduce that

T1 = Oa.co.

(√
ψSF

(ε)

ngφ(h)

)
and T5 = O

(√
ψSF

(ε)

ngφ(h)

)
. (16)

We use the same ideas to treat R2. In fact, we use the Lipschitz condition on the kernel
K and the assumption (H2) to write that

∣∣r̂2(xk(x),y)− r̂2(xk(x), t j(y))
∣∣ ≤ C

n φ(h)

n

∑
i=1

Ki(xk(x))
(∣∣Ωi(y)−Ωi(t j(y))

∣∣
+| f Xi,Ỹi

Y (y)− f Xi,Ỹi
Y (y)|

)
≤ C

n

n

∑
i=1

Zi,

where Zi =
lnKi(xk(x))1IB(xk(x),h)(Xi)

g2 φ(h)
.

It is clear that the assumption (H3) permits to write that

Z1 = O
(

ln
g2φ(h)

)
, E[Z1] = O

(
ln
g2

)
and var(Z1) = O

(
l2
n

g4φ(h)

)
.

Invoking the same idea in (15), allows to get:

T2 = Oa.co.

(√
ψSF

(ε)

gnφ(h)

)
and T4 = O

(√
ψSF

(ε)

gnφ(h)

)
. (17)
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It remains to evaluate R3. Indeed, we write

P

(
T3 > η

√
ψSF

(ε)

n φ(h)

)

= P

(
max

j∈{1,2,...dn}
max

k∈{1,...,Nε (SF )}

∣∣r̂2(xk, t j)−Er̂2(xk, t j)
∣∣> η

√
ψSF

(ε)

nφ(h)

)

≤ dnNε(SF ) max
j∈{1,2,...,dn}

max
k∈{1,...,Nε (SF )}

P

(∣∣r̂2(xk, t j)−Er̂2(xk, t j)
∣∣> η

√
ψSF

(ε)

n φ(h)

)

≤ dnNε(SF ) max
j∈{1,2,...,dn}

max
k∈{1,...,Nε (SF )}

P

(∣∣∣∣∣1n n

∑
i=1

Γi

∣∣∣∣∣> η

√
ψSF

(ε)

n φ(h)

)
.

Where

Γi =
1

E[K1(x)]

[
Ki(xk)(Ωi(t j)− f Xi,Ỹi(t j))−E

(
Ki(xk)(Ωi(t j)− f Xi,Ỹi(t j))

)]
.

It follows, from the fact that the kernel K and K0 and f Xi,Ỹi are bounded, that

E|Γi|2 ≤C (φ(h))−1.

Thus, we apply the Bernstein exponential inequality, we obtain for all j ≤ dn, that

P

(∣∣r̂2(xk, t j)−Er̂2(xk, t j)
∣∣> η

√
ψSF

(ε)

nφ(h)

)
≤ 2exp

{
−Cη

2
ψSF

(ε)
}
.

Therefore, by choosing Cη2 = β , and using the fact that dn = O(l−1
n ), we conclude that

dnNε(SF ) max
j∈{1,2,...,dn}

max
k∈{1,...,Nε (SF )}

P

(∣∣r̂2(xk, t j)−Er̂2(xk, t j)
∣∣> η

√
ψSF

(ε)

nφ(h)

)

≤C′dn (Nε(SF ))1−Cη2
.

Finally, we obtain

T3 = Oa.co.

(√
ψSF

(ε)

n1−γ φ(h)

)
(18)

For the term r̂3(x,y)−E[r̂3(x,y)]. First we fix ε = logN
N and lN = N−2γ−1.

Using the decomposition and invoking the same arguments as for the proof of r̂2(x,y)−
E[r̂2(x,y)], we get:

sup
x∈SF

sup
y∈SR

|r̂3(x,y)−E[r̂3(x,y)]|= Oa.co.


√√√√ψSF

(
logN

N

)
Ngφ(h)

 .
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Lemma 5.4 Under the assumptions of Theorem (H1)-(H6), we have ∀ j ∈ V̄

sup
x∈SF

sup
y∈SF

| f Ỹ j ,X j(y)−L(X j,Ỹj)|= O(hβ1)+Oa.co.


√√√√ψSF

(
logn

n

)
nφ(h)φ(b)



+Oa.co.


√√√√ψSF

(
logn

n

)
ngφ(b)φ(h)

 .

To simplify we put X j = x and Ỹj = ỹ.

Proof of Lemma 5.4

The proof is based on the following decomposition

L(x,y, ỹ)− f Xi,ỹi
Y (y) =

1
L1(x, ỹ)

[
L2(x,y, ỹ)−E[L2(x,y, ỹ)]

]

+
1

L1(x, ỹ)

[
E[L2(x,y, ỹ)]− f Xi,Ỹi

Y (y)
]
+[1−L1(x, ỹ)]

f Xi,Ỹi
Y (y)

L1(x, ỹ)
.

Where

L1(x, ỹ) =
1

nE[K(h−1d(x,X1))K(b−1(ỹ− Ỹ1))]
∑
i∈V

K(h−1d(x,Xi))K(b−1(ỹ− Ỹi)),

and

L2(x,y, ỹ) =
1

nE[K(h−1d(x,X1))K(b−1(ỹ− Ỹ1))]
∑
i∈V

K(h−1d(x,Xi))K(b−1(ỹ− Ỹi))Ωi(y).

|L1(x, ỹ)−E[L1(x, ỹ)]| ≤ sup
x∈SF

sup
ỹ∈SR

|L1(x, ỹ)−L1(xk, ỹ)|︸ ︷︷ ︸
R1

+ sup
x∈SF

sup
ỹ∈SR

∣∣L1(xk, ỹ)−L1(xk, t j(ỹ))
∣∣︸ ︷︷ ︸

R2

+ sup
x∈SF

sup
ỹ∈SR

∣∣L1(xk, t j(ỹ))−E[L1(xk, t j(ỹ))]
∣∣︸ ︷︷ ︸

R3

+ sup
x∈SF

sup
ỹ∈SR

∣∣E[L1(xk, t j(ỹ))]−E[L1(xk, ỹ)]
∣∣︸ ︷︷ ︸

R4

+ sup
x∈SF

sup
∈SR

|E[L1(xk, ỹ)]−E[L1(x, ỹ)]|︸ ︷︷ ︸
R5

.
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For the term R1 we employ the Lipschitzianity of the kernel K on [0,1] with (H1) and
(H2) lead directly

R1 ≤ C
n

n

∑
i=1

Zi with Zi =
ε

hφ(h)φ(b)
1IB(x,h)∪B(xk(x),h)(Xi)1I{Y≤ỹ≤Y+b},

It is clear that the assumption (H3) permits to write that

Z1 = O
(

ε

hφ(h)

)
, E[Z1] = O

(
ε

h

)
and var(Z1) = O

(
ε2

h2φ(b)φ(h)

)
.

By using the same steps as (15) we get

R1 = Oa.co.

(√
ψSF

(ε)

nφ(h)φ(b)

)
and R5 = O

(√
ψSF

(ε)

nφ(h)φ(b)

)
. (19)

We use the same ideas to treat R2. In fact we use the Lipschitz condition on the kernel
K and the assumption (H2) to write that∣∣L1(xk(x), ỹ)−L1(xk(x), t j(ỹ))

∣∣ ≤ C
nφ(h)φ(b)

n

∑
i=1

Ki(xk(x))
(∣∣Ki(ỹ)− ki(t j(ỹ))

∣∣
≤ C

n

n

∑
i=1

Zi,

where Zi =
wnKi(xk(x))1IB(xk(x),h)(Xi)1I{Y≤ỹ≤Y+b}

bφ(h)φ(b)
.

It is clear that the assumption (H3) permits to write that

Z1 = O
(

wn

bφ(b)φ(h)

)
, E[Z1] = O

(wn

b

)
and var(Z1) = O

(
w2

n

b2φ(b)φ(h)

)
.

Similarly, as previously we get

R2 = Oa.co.

(√
ψSF

(ε)

nφ(b)φ(h)

)
and R4 = O

(√
ψSF

(ε)

nφ(b)φ(h)

)
. (20)

It remains to evaluate R3. Indeed, we write

P

(
R3 > η

√
ψSF

(ε)

n φ(b)φ(h)

)

= P

(
max

j∈{1,2,...dn}
max

k∈{1,...,Nε (SF )}

∣∣L1(xk, t j(ỹ)−EL1(xk, t j(ỹ)
∣∣> η

√
ψSF

(ε)

nφ(b)φ(h)

)

≤ dnNε(SF ) max
j∈{1,2,...,dn}

max
k∈{1,...,Nε (SF )}

P

(∣∣L1(xk, t j(ỹ)−EL1(xk, t j(ỹ)
∣∣> η

√
ψSF

(ε)

n φ(b)φ(h)

)

≤ dnNε(SF ) max
j∈{1,2,...,dn}

max
k∈{1,...,Nε (SF )}

P

(∣∣∣∣∣1n n

∑
i=1

Γi

∣∣∣∣∣> η

√
ψSF

(ε)

n φ(b)φ(h)

)
.
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Where
Γi =

1
E[K1(x)K1(ỹ)]

[
Ki(xk)(Ki(t j(ỹ))−E (Ki(xk)Ki(t j))

]
.

It follows from the fact that the kernel K is bounded , that E|Γi|2 ≤ C (φ(b)φ(h))−1.
Thus, we apply the Bernstein exponential inequality we obtain for all j ≤ Nε(SF ), that

P

(∣∣L1(xk, t j(ỹ)−EL1(xk, t j(ỹ))
∣∣> η

√
ψSF

(ε)

nφ(b)φ(h)

)
≤ 2exp

{
−Cη

2
ψSF

(ε)
}
.

Therefore, by choosing Cη2 = β , and using the fact that dn = O(w−1
n ), we conclude that

dnNε(SF ) max
j∈{1,2,...,dn}

max
k∈{1,...,Nε (SF )}

P

(∣∣L1(xk, t j)−EL1(xk, t j)
∣∣> η

√
ψSF

(ε)

nφ(b)φ(h)

)

≤C′dn (Nε(SF ))1−Cη2
.

Finally, using (H5) and (12) we obtain

R3 = Oa.co.

(√
ψSF

(ε)

nφ(b)φ(h)

)
. (21)

By using the same decomposition:

|L2(x,y, ỹ)−E[L2(x,y, ỹ)]| ≤ sup
x∈SF

sup
y∈SR

|L2(x,y, ỹ)−L2(xk,y, ỹ)|︸ ︷︷ ︸
S1

+ sup
x∈SF

sup
y∈SR

∣∣L2(xk,y, ỹ)−L2(xk, t j(y), ỹ)
∣∣︸ ︷︷ ︸

S2

+ sup
x∈SF

sup
y∈SR

∣∣L2(xk, t j(y), ỹ)−E[L2(xk, t j(y), ỹ]
∣∣︸ ︷︷ ︸

S3

+ sup
x∈SF

sup
y∈SR

∣∣E[L2(xk, t j(y), ỹ]−E[L2(xk,y, ỹ)]
∣∣︸ ︷︷ ︸

S4

+ sup
x∈SF

sup
y∈SR

|E[L2(xk,y, ỹ)]−E[L2(x,y, ỹ)]|︸ ︷︷ ︸
S5

.

So as before we get:

S1 = Oa.co.

(√
ψSF

(ε)

ngφ(h)φ(b)

)
and S5 = O

(√
ψSF

(ε)

ngφ(h)φ(b)

)
. (22)

And

S2 = Oa.co.

(√
ψSF

(ε)

ngφ(b)φ(h)

)
and S4 = O

(√
ψSF

(ε)

ngφ(b)φ(h)

)
. (23)
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And

S3 = Oa.co.

(√
ψSF

(ε)

ngφ(b)φ(h)

)
. (24)

|E[L2(x,y, ỹ)]− f x(y)|

≤C E
[∣∣∣∣K( d(x,X1)

h )K( ỹ−Ỹ1
b )E

[
1
g K0

(
ỹ− Ỹ1

g

)
− f X1,Ỹ1

Y (y)|
(
X1,Ỹ1

)∣∣∣∣]]
≤C E

[∣∣∣∣K( d(x,X1)
h )K( ỹ−Ỹ1

b )E
[

1
g K0

(
ỹ− Ỹ1

g

)
|
(
X1,Ỹ1

)]
− f X1,Ỹ1

Y (y)
∣∣∣∣]

Moreover, by change of variable:

E
[

g−1K0

(
y−Y1

g

)
|
(
X1,Ỹ1

)]
=
∫
R

K0(u) f X1,Ỹ1
Y (y−ug)du.

Finally, by (H2) we get:∣∣∣E[L2(x,y, ỹ)]− f Xi,Ỹi
Y (y)

∣∣∣= O(gβ1). (25)

So, The Lemma 5.4 can be easily deduced from (19), (20), (22), (23), (24) and (25). □
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