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Advances in estimation by the item sum technique
in two move successive sampling

Kumari Priyanka1, Pidugu Trisandhya2

Abstract

The present article proposes an estimator using the Item Sum Technique (IST) for the esti-
mation of dynamic sensitive population mean using non-sensitive auxiliary information in
the two-move successive sampling. Properties of the proposed IST estimator have been anal-
ysed. Possible allocation designs for allocating long-list and short-list samples pertaining to
the IST have been elaborated. The comparison between various allocation designs has been
carried out. Theoretical considerations have been integrated with numerical as well as sim-
ulation studies to show the working version of the proposed IST estimators in the two-move
successive sampling.

Key words: Sensitive variable, Successive moves, Population mean, Variance, Mean squared
error, Optimum matching fraction.

1. Introduction

In many social surveys, data gathering on sensitive issues such as incidence of domestic
violence, drug addiction, eve teasing, negligence of government rules, duration of suffering
from AIDS, use of harmful pesticides in agriculture, sexual behaviour, etc., are a challeng-
ing task in the present scenario. Hence, in such circumstances, many respondents either
refuse to participate or give false or evasive responses in social surveys. Therefore, to over-
come mis-reporting on sensitive issues and to protect respondents confidentiality, the Ran-
domized Response (RR) technique, the Scrambled Response (SR) technique, Item Count
Technique (ICT), etc., may be used.

The RR technique was first initiated by Warner (1965) which was followed by Horvitz et
al. (1967), Greenberg et al. (1971), Franklin (1989), Arcos et al. (2015), etc. However, SR
technique was introduced by Pollock and Bek (1976) and was further explored by Eich-
horn and Hayre (1983), Diana and Perri (2010, 2011), Perri and Diana (2013), etc. The
ICT is used in surveys that require the study of qualitative sensitive variable and was intro-
duced by Miller (1984). Subsequently the literature addressing ICT was enhanced by Droit-
cour et al. (1991), Wimbush and Dalton (1997), LaBrie and Earleywine (2000), Rayburn
et al. (2003), and Tsuchiya et al. (2007), Holbrook and Krosnick (2010)etc. For estimat-
ing quantitative sensitive variable, the concept of ICT was generalized by Chaudhuri and
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Christofides (2013). Trappmann et al. (2014) named this technique IST. Perri et al. (2018)
discussed the possibility of optimal sample size allocation in IST.

As the issues are sensitive, single time survey will not be sufficient, one need to monitor
continuously over a period of time. So, to observe the situation at different point of time,
a statistical tool generally recommended in the literature is ‘Successive Sampling’. In or-
der to address the dynamic sensitive variable Arnab and Singh (2013), Yu et al. (2015),
Priyanka et al. (2018, 2019), Priyanka and Trisandhya (2019), etc. added valuable litera-
ture. To handle sensitive issues all these researchers dealt with SR technique or RR tech-
nique on two move successive sampling. As the IST is now emerging as an alternative
technique to deal with sensitive issues, in the present article an attempt has been made to
apply IST in successive sampling framework to estimate a sensitive population mean. The
concept of linear estimators has been used under IST set-up on successive move which is
a methodological advancement to the theory. Hence, IST class of estimator has been pro-
posed and studied under general allocation design advocated by Trappmann et al. (2014)
as well as optimum allocation design suggested by Perri et al. (2018). Properties of the
proposed class of estimator have been discussed in detail. Empirical as well as simulation
studies have been incorporated to justify the requirement and application of the proposed
estimator using a natural population. The proposed estimator has also been compared with
respect to direct version of the estimator to show the amount of loss incurred due to sensi-
tivity management of the variable under study by IST.

2. Outline of the Item Sum Technique(IST)

A promising indirect questioning technique, called Item Count Technique [Miller (1984)]
is proved to be a very useful technique to estimate the qualitative sensitive variable. In this
technique each respondent is provided with a list of items describing behaviors and asked to
count and report in how many he or she is engaged in and not in which ones. For example,
a random subsample (say subsample A) is provided with three-item list that includes the so-
cially disproved behaviour item; the remaining respondents (say subsample B) are given an
identical (two-item) list from which the disapproved item has been removed. By comparing
responses from the two subsamples, an estimate of sensitive behavior has been obtained.

This method of estimating qualitative sensitive characteristics was generalized by Chaud-
huri and Christofides (2013) to work for estimation of quantitative sensitive variates. Later
Trappmann et al.(2014) explored it and named the technique as Item Sum Technique, which
is described as follows.

Two random sub-samples (say s1 and s2) are drawn from a random sample (say s). The
respondent belonging to sub-sample s1 is given a long list (LL) of items containing sensitive
question and a number of non-sensitive questions. However, the respondents in sub-sample
s2 are confronted with a short list (SL) of items containing only the same non-sensitive
questions present in the long list (LL). In both the sub-samples, the respondents are asked to
respond only the total score of all the items given to them, without revealing the individual
scores for the items. Finally, the mean difference of answers between the samples s1 and s2

is used as an unbiased estimator of the population mean of sensitive variable. The pivotal
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point in IST is how to split a single sample(s) into two-samples (s1 and s2). Trappmann et
al. (2014), allocated equal number of units in each sub-sample irrespective of the variation
of items in the LL and SL. Let us name this allocation design ‘General Allocation’ for
further use. However, Perri et al. (2018) advocated the concept of ‘Optimum allocation
design’ for allocating units in two sub-samples (s1 and s2) instead of assigning equal number
of units to both the sub-samples. In the next section the IST set-up is modified to be applied
in successive sampling to estimate population mean of dynamic sensitive variable.

3. Survey Design

Let us consider a finite population U of size N units for sampling over two successive
moves. Let y1(y2) denote quantitative sensitive variable at first (second) move respectively.
Similarly, let x and t be non-sensitive auxiliary variables available at both the moves. Let
Ȳ1,Ȳ2, X̄ , and T̄ be the population mean of y1, y2,x, and t respectively. The aim is to
estimate the population mean of sensitive variable y2 at current move under IST set-up for
two move successive sampling. The sampling design under IST frame work is as follows.

At the first move, a sample sn of size n is drawn using simple random sampling without
replacement(SRSWOR). Two independent samples are drawn at the second move by consid-
ering the partial overlap case, one is matched sample sm of size m = n(1−µ) = nλ drawn as
sub sample from the sample sn and other is the sample su which is of size u = n−m = nµ

drawn afresh at the second move. Let su∗ denote the left out units from sn after drawing the
sub sample sm. Moreover all the available samples su∗ , sm and su are split in to two sub
samples called LL sample and SL sample respectively for embedding the IST set-up in two
move successive sampling, which is given in Table 1:

Table 1: LL and SL Sample on two moves

Move Sample LL− Sample SL− Sample

I su∗ su∗1 su∗2

sm sm1 sm2

II sm sm1 sm2

su su1 su2

Note: sm denotes matched sample and su denotes unmatched sample at current (second) move

The response received and the corresponding IST estimate on two moves under IST
set-up are presented in Table 2.
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Table 2: Response received and IST estimate

Move Sample size Response received IST estimate

I u∗ z1i =

{
y1i + ti if iεsu∗1
ti if iεsu∗2

ˆ̄y1u∗ = z̄1u∗1 − t̄u∗2

m z1i =

{
y1i + ti if iεsm1

ti if iεsm2

ˆ̄y1m = z̄1m1 − t̄m2

II m z2i =

{
y2i + ti if iεsm1

ti if iεsm2

ˆ̄y2m = z̄2m1 − t̄m2

u z2i =

{
y2i + ti if iεsu1

ti if iεsu2

ˆ̄y2u = z̄2u1 − t̄u2

Note: z ji ; j = 1, 2 denote the observed response at first and second move respectively and
z̄1 j ; j ∈ {u∗1, m1}, z̄2 j ; j ∈ {m1, u1} and t̄k ; k ∈ {u∗2, m2, u2} are the sample means based on
sample size j and k.

4. Proposed class of IST Estimators

Inspired by the classic work of Patterson (1950), who considered a general linear unbi-
ased estimator of population mean at the current move, we intend to propose an estimator
for estimation of sensitive population mean at the current move in IST set-up using all the
information available at the current move.

In sampling theory, the role of additional auxiliary variable is well known and its avail-
ability and use in estimation procedures can do wonders and enhance the results to a great
extent. Hence, in IST set-up, the availability of additional auxiliary variable has been em-
bedded and class of IST estimator has been proposed to estimate sensitive population mean
at current move as under:

T= ζ1 ˆ̄y∗1u∗ +ζ2 ˆ̄y∗1m +ζ3 ˆ̄y∗2m +ζ4 ˆ̄y∗2u, (1)

where, the constants ζ j ; j = 1, 2, 3, and 4 are to be chosen suitably and ˆ̄y∗2u = ˆ̄z∗2u − ˆ̄t∗u
with ˆ̄z∗2u = g1(z̄2u1 , x̄u1),and ˆ̄t∗u = h1(t̄u2 , x̄u2),
ˆ̄y∗2m = ˆ̄z∗2m − ˆ̄t∗m with ˆ̄z∗2m = g2(z̄2m1 , x̄m1),and ˆ̄t∗m = h2(t̄m2 , x̄m2),
ˆ̄y∗1m = ˆ̄z∗1m − ˆ̄t∗m with ˆ̄z∗1m = g3(z̄1m1 , x̄m1),
ˆ̄y∗1u∗ = ˆ̄z∗1u∗ − ˆ̄t∗u∗ with ˆ̄z∗1u∗ = g4(z̄1u∗1

, x̄u∗1
), and ˆ̄t∗u∗ = h3(t̄u∗2 , x̄u∗2

).

Following Srivastava and Jhajj (1980) and Tracy et al. (1996), g1(z̄2u1 , x̄u1) is assumed
as a function of z̄2u1 and x̄u1 such that:

(i) The point (z̄2u1 , x̄u1) assumes the value in a closed convex subset R2 of two dimen-
sional real space containing the point (Z̄2, X̄).

(ii) The function g1 (z̄2u1 , x̄u1) is continuous and bounded in R2.

(iii) g1(Z̄2, X̄) = Z̄2.
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(iv) The first and second order partial derivatives of g1 (z̄2u1 , x̄u1) exist and are continuous
and bounded in R2.

The similar regularity conditions holds for g2,g3,g4, h1, h2, and h3 respectively as that
of g1.

5. Properties of proposed class of IST estimator

Since the proposed IST estimator T has to be linear Unbiased Estimator, therefore, fol-
lowing Garcia and Artes (2002), we consider the following assumptions:

E( ˆ̄y∗2u) = E( ˆ̄y∗2m)
∼= Ȳ2, (2)

E( ˆ̄y∗1u∗) = E( ˆ̄y∗1m)
∼= Ȳ1. (3)

Now, using the results in equations (2) and (3) into the expression for the proposed
estimator in equation (1), we have

E(T) = (ζ1 +ζ2)Ȳ1 +(ζ3 +ζ4)Ȳ2. (4)

In order to satisfy the assumption in equation (2), we have the following conditions:

ζ1 +ζ2 = 0 and ζ3 +ζ4 = 1. (5)

Now, using the conditions in equation (5), the final structure of unbiased IST estimator
for estimating the sensitive population mean at current move is given as:

T= ζ1( ˆ̄y∗1u∗ − ˆ̄y∗1m)+ζ3 ˆ̄y∗2m +(1−ζ3) ˆ̄y∗2u. (6)

Following Mukhopadhyay (2014), as the estimators ˆ̄y∗1u∗ , and ˆ̄y∗1m are based on two
independent samples u∗ and m respectively, so Cov( ˆ̄y∗1u∗ , ˆ̄y∗1m) = 0. Similarly

Cov( ˆ̄y∗1u∗ , ˆ̄y∗2m) = Cov( ˆ̄y∗1u∗ , ˆ̄y∗2u) = Cov( ˆ̄y∗1m, ˆ̄y∗2u) = Cov( ˆ̄y∗2m, ˆ̄y∗2u) = 0. (7)

Also, ˆ̄z∗1u∗ is based on LL sample and ˆ̄t∗u∗ is based on corresponding SL sample, therefore
Cov( ˆ̄z∗1u∗ ,

ˆ̄t∗u∗) = 0. Similarly,

Cov( ˆ̄z∗2u, ˆ̄t∗u ) = Cov( ˆ̄z∗1m, ˆ̄t∗u ) = Cov( ˆ̄z∗2m, ˆ̄t∗u ) = 0.

Properties of the proposed IST estimator are discussed under above conditions, and the
following assumptions:
z̄2u1 = Z̄2 (1+ e0), x̄u1 = X̄ (1+ e1), t̄u2 = T̄ (1+ e2), x̄u2 = X̄ (1+ e3), z̄2m1 =

Z̄2 (1+e4), x̄m1 = X̄ (1+e5), t̄m2 = T̄ (1+e6), x̄m2 = X̄ (1+e7), z̄1m1 = Z̄1 (1+e8),

z̄1u∗1
= Z̄1 (1+ e9), x̄u∗1

= X̄ (1+ e10), t̄u∗2 = T̄ (1+ e11), x̄u∗2
= X̄ (1+ e12), such

that, E(ei) = 0; |ei| < 1 where, i = 0, 1, 2, 3, . . . , 12.
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5.1. General and optimum allocations on two moves

As discussed in Section (2), under the general allocation design, the following allocation
will be applicable to LL and SL samples on two moves:
u∗1 = u∗2 = u1 = u2 =

u
2 , m1 = m2 =

m
2 .

Following Perri et al. (2018) and applying the optimum allocation design to allocate LL
and SL samples on two moves, the following assumptions will be applicable:
u∗1 = u

Sz1
Sz1+St

= uβ1 (say), u∗2 = u( St
Sz1+St

) = uβ2 (say), m1 = m(
Sz2

Sz2+St
) = mβ3 (say),

m2 = m( St
Sz2+St

) = mβ4 (say), u1 = uβ3 and u2 = uβ4.

Hence, utilizing the two allocation designs, we further discuss the properties of the
proposed IST estimator.

Theorem 5.1 The variance of the estimator T under general allocation design as well as
optimum allocation design is obtained and given as

[V (T)]i =
1
n
[(ζ i

1)
2({

λ i +µ i
f

λ iµ i
f

}si
1)+(ζ i

3)
2({ 1

λ i }si
2)+(1−ζ

i
3)

2({ 1
µ i

f
}si

2)−2ζ
i
1ζ

i
3({

1
λ i }si

3)],

where, i =

{
g for general allocation design

o for optimum allocation design
,

sg
1 = 2S2

z1
−2ρ2

z1xS2
z1
+2S2

t −2ρ2
txS2

t , sg
2 = 2S2

z2
−2ρ2

z2xS2
z2
+2S2

t −2ρ2
txS2

t , sg
3 = 2Sz1Sz2(ρz1z2 −

ρz1xρz2x)+2S2
t (1−ρ2

tx), so
1 =

S2
z1
−ρ2

z1xS2
z1

β1
+ S2

t −ρ2
txS2

t
β2

, so
2 =

S2
z2
−ρ2

z2xS2
z2

β3
+ S2

t −ρ2
txS2

t
β4

,

so
3 =

Sz1 Sz2 (ρz1z2−ρz1xρz2x)

β3
+ S2

t (1−ρ2
tx)

β4
.

Proof 5.1 The variance of T is given by

[V (T)]i =(ζ i
1)

2[V ( ˆ̄y∗1u∗)+V ( ˆ̄y∗1m)]i +(ζ i
3)

2V ( ˆ̄y∗2m)i +(1−ζ
i
3)

2V ( ˆ̄y∗2u)i−
2ζ

i
1Cov( ˆ̄y∗1u∗ , ˆ̄y∗1m)+2ζ

i
1ζ

i
3[Cov( ˆ̄y∗1u∗ , ˆ̄y∗2m)−Cov( ˆ̄y∗1m, ˆ̄y∗2m)]i+

2ζ
i
1(1−ζ

i
3)[Cov( ˆ̄y∗1u∗ , ˆ̄y∗2u)−Cov( ˆ̄y∗1m, ˆ̄y∗2u)]+2ζ

i
3(1−ζ

i
3)Cov( ˆ̄y∗2m, ˆ̄y∗2u). (8)

Using equation (7), we have

[V (T)]i =(ζ i
1)

2[V ( ˆ̄y∗1u∗)+V ( ˆ̄y∗1m)]i +(ζ i
3)

2V ( ˆ̄y∗2m)i +(1−ζ
i
3)

2V ( ˆ̄y∗2u)i−
2ζ

i
3ζ

i
1[Cov( ˆ̄y∗1m, ˆ̄y∗2m)]i, (9)

where for large population size, the variance of ˆ̄y∗1u∗ is computed below

V ( ˆ̄y∗1u∗) =V ( ˆ̄z∗1u∗)+V (ˆ̄t∗u∗)−Cov( ˆ̄z∗1u∗ , ˆ̄t∗u∗). (10)

For this expanding ˆ̄z∗1u∗ about the point G = (Z̄1, X̄) using Taylor’s series expansion,
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retaining terms up to the first order approximations, we have

ˆ̄z∗1u∗ =g4[Z̄1 +(z̄1u∗1
− Z̄1), X̄ +(x̄u∗1

− X̄)]

=Z̄1 +(z̄1u∗1
− Z̄1)G1 +(x̄u∗1

− X̄)G2 +[(z̄1u∗1
− Z̄1)

2G11 +(x̄u∗1
− X̄)2G22

+2(z̄1u∗1
− Z̄1)(x̄u∗1

− X̄)G12 + . . .].

Expressing above equation in terms of e
′
is and retaining terms up to the first order ap-

proximations we have

ˆ̄z∗1u∗1
− Z̄1 =(Z̄1e9G1 + X̄e10G2 +[Z̄2

1e2
9G11 + X̄2e2

10G22 + Z̄1X̄e9e10G12]), (11)

where,

G1 =
∂g4

∂ z̄1u∗1

|G = 1, G2 =
∂g4

∂ x̄u∗1

|G, G11 =
1
2

∂ 2g4

∂ z̄2
1u∗1

|G = 0, G22 =
1
2

∂ 2g4

∂ x̄2
u∗1

|G,

and G12 =
1
2

∂ 2g4

∂ z̄1u∗1
∂ x̄u∗1

|G.

Squaring both sides of equation (11) and further retaining terms up to the first order
approximation, we have(

ˆ̄z∗1u∗1
− Z̄1

)2
=(Z̄2

1e2
9 + X̄2e2

10G2
2 +2Z̄1X̄e9e10G2). (12)

Taking expectations on both sides of the above equation, the variance of ˆ̄z∗1u∗1
is obtained

as

V ( ˆ̄z∗1u∗1
) =

1
u1

[
S2

z1
−S2

z1
ρ

2
z1x

]
,

similarly,

V (ˆ̄t∗u∗2) =
1
u2

[
S2

t −S2
t ρ

2
tx
]
.

Following similar procedure for V ( ˆ̄y∗1m)i, V ( ˆ̄y∗2m)i, V ( ˆ̄y∗2u)i and Cov( ˆ̄y∗1m, ˆ̄y∗2m)i and sub-
stituting in equation (9), we have the expression of the variance of [T]i under general allo-
cation design and optimum allocation design as described in Theorem 5.1.

6. Constants under IST Allocation Designs

It is observed that [V (T)]i is a function of unknown constants ζ i
1 and ζ i

3. Hence, they are
minimized with respect to ζ i

1 and ζ i
3 respectively to obtain the optimum value of constants.

The optimum values obtained are given in Table 3.
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Table 3: Optimum Value of Constants

General Allocation Design Optimum Allocation Design

ζ
g
1 =

sg
2sg

3λ gµ
g
f

sg
1sg

2−(sg
3)

2(µg
f )

2 , ζ o
1 =

so
2so

3λ oµo
f

so
1so

2−(so
3)

2(µo
f )

2 ,

ζ
g
3 = sg

1sg
2λ g

sg
1sg

2−(sg
3)

2(µg
f )

2 ζ o
3 = so

1so
2λ o

so
1so

2−(so
3)

2(µo
f )

2

Substituting the above optimum values of ζ i
1 and ζ i

3 in the expression of [V (T)]i
respectively, we get the minimum variance of the proposed IST estimator as presented in
Table 4.

Table 4: Optimum Variance

General Allocation Design Optimum Allocation Design

[V (T)opt.]g =
( 1

n
)[ sg

2(s
g
1sg

2−(sg
3)

2µ
g
f )

sg
1sg

2−(sg
3)

2(µg
f )

2

]
[V (T)opt.]o =

( 1
n
)[ so

2(s
o
1so

2−(so
3)

2µo
f )

so
1so

2−(so
3)

2(µo
f )

2

]

6.1. Optimum Replacement policy and Minimum Variance

In surveys repeated over time, the objective is to obtain efficient estimates with mini-
mum cost of the survey. This is technically achieved by maintaining a high overlap between
two successive moves. However, the best strategy would be to minimize the variance of the
estimator in order to determine the optimum value of µ or λ . Hence, [V(T)opt.]i is further
minimized with respect to µ i

f respectively, and the obtained optimum values of µ i
f say µ̂ i

f
are as:

µ̂
i
f = min

 Ii
2 +

√
(Ii

2)
2 − Ii

1Ii
3

Ii
1

,
Ii
2 −

√
(Ii

2)
2 − Ii

1Ii
3

Ii
1

 ε [0, 1], (13)

where,

i =

{
g for general allocation design

o for optimum allocation design
,

Ig
1 = (sg

3)
4sg

2, Ig
2 = (sg

3)
2sg

1(s
g
2)

2, Ig
3 = sg

1(s
g
2)

2(sg
3)

2, Io
1 = (so

3)
4so

2, Io
2 = (so

3)
2so

1(s
o
2)

2 and
Io
3 = so

1(s
o
2)

2(so
3)

2.

Substituting the optimum values of µ̂ i in [V (T)opt.]i, we have the minimum variance of
the proposed IST estimator as presented in Table 5.
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Table 5: Optimum Variance in terms of Optimum µ

Estimator General Allocation Design Optimum Allocation Design

T [V (T)opt.∗ ]g = ( 1
n )

[
sg

2(s
g
1sg

2−(sg
3)

2 µ̂
g
f )

sg
1sg

2−(sg
3)

2(µ̂g
f )

2

]
[V (T)opt.∗ ]o = ( 1

n )

[
so

2(s
o
1so

2−(so
3)

2 µ̂o
f )

so
1so

2−(so
3)

2(µ̂o
f )

2

]

7. Comparison

To judge the efficiency of the proposed class of IST estimators T, the IST estimator τ

has been considered where no additional auxiliary is used at any move, which is given as

τ = κ1 ˆ̄y1u∗ +κ2 ˆ̄y1m +κ3 ˆ̄y2m +κ4 ˆ̄y2u, (14)

where, κ j ; j = 1, 2, 3 and 4 are suitably chosen constants.
The minimum variance of the IST estimator τ has been computed and is given as

[V (τ)opt.]i =

(
1
n

)[
ν i

2(ν
i
1ν i

2 − (ν i
3)

2µ i
1)

ν i
1ν i

2 − (ν i
3)

2(µ i
1)

2

]
(15)

with

µ̂
i
1 = min

 Ii
12 +

√
(Ii

12)
2 − Ii

11Ii
13

Ii
11

,
Ii
12 −

√
(Ii

12)
2 − Ii

11Ii
13

Ii
11

 ε [0, 1], (16)

where, Ii
11 = (ν i

3)
4ν i

2, Ii
12 = (ν i

3)
2ν i

1(ν
i
2)

2, Ii
13 = ν i

1(ν
i
2)

2(ν i
3)

2, ν
g
1 = 2S2

z1
+2S2

t ,

ν
g
2 = 2S2
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8. Performance of IST estimator

In this section, we check the percent relative efficiency of the IST class of estimators T
with respect to the IST estimator τ which are the linear combination of the estimators based
on all available samples considering the availability and non-availability of additional non-
sensitive auxiliary variable respectively. The percent relative efficiency has been computed
under both the general allocation design as well as optimum allocation design as under:

Ei =
[V (τ)opt.∗ ]i
[V (T)opt.∗ ]i

×100, (17)

where, i =

{
g f or general allocation design

o f or optimum allocation design
.
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8.1. Simulation Study

To validate the theoretical results, simulation studies have been carried out using Monte
Carlo Simulation by MATLAB. The simulation is performed by examining 5,000 different
samples at two moves and the process is repeated for varying sample sizes.

Population Source:[Free access to data by Statistical Abstracts of United States ]
A real population consisting of N = 51 states has been considered for evaluation of the
performance of proposed estimators. The variables considered under IST set-up for two
moves are assumed as:

y1 :Rate of abortions in the year 2005
y2 :Rate of abortions in the year 2008
t :Rate of residents in the year 2004
x :Rate of residents in the year 2000.

From the above considered variables, it is obvious that the rate of abortions is sensitive
in nature however the rate of residents is non-sensitive in nature. Therefore, the data are
suitable to be used to test the performance of the proposed IST estimators.

The simulated percent relative efficiencies of τ with respect to T have been computed
under general as well as optimum allocation design denoted by Esi; i ∈ {g, o}.

The simulation results are presented in Table 6 and Figure 1.

Table 6: Simulation Results

u/n Esg Eso

n = 24,u = 3 0.125 688.4432 716.2598

n = 24,u = 5 0.208 643.9376 696.7527

n = 24,u = 7 0.291 605.1396 681.0255

n = 24,u = 10 0.416 556.1936 664.5010

n = 24,u = 12 0.5 527.6227 657.7056

n = 24,u = 15 0.625 493.9802 656.8039

n = 24,u = 17 0.708 476.4308 662.1325

n = 24,u = 20 0.833 461.5208 683.8706

n = 24,u = 22 0.916 475.8523 710.6313

8.2. Numerical Illustration

To judge the performance of the proposed estimator, numerical illustration has been
done for the real data considered in Section (8.1). The percent relative efficiency of the
proposed estimator has been computed under general as well as optimum allocation designs
denoted by E i; i ∈ {g, o}.
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Figure 1: Graphical Representation of Simulation Results

Therefore, Table 7 represents the results obtained on performing the empirical calcula-
tion on the considered data in Section (8.1).

Table 7: Optimum value of µ
′
s and Percent relative efficiencies

µ̂
g
1 µ̂o

1 µ̂
g
f µ̂o

f Eg Eo

0.8461 0.8584 0.6585 0.6712 656.6323 726.9219

9. Direct Method

The direct method of estimation is compared with the IST embedded method in order
to observe the amount of loss in the precision of estimators that result due to application of
IST. Some loss in precision is expected but application of direct method may not represent
the true facts as the variable under consideration is sensitive in nature. As a result, privacy
protection becomes an important issue for which the respondents need to be convinced. The
direct version of the class of estimators T denoted by Td is discussed as:

Td = ζd1 ˆ̄y∗1du∗ +ζd2 ˆ̄y∗1dm +ζd3 ˆ̄y∗2dm +ζd4 ˆ̄y∗2du, (18)
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where, the constants ζd j ; d j = 1, 2, 3 and 4 are to be suitably chosen. Now, for computing
the variance, we have the following steps as

E(Td) = (ζd1 +ζd2)Ȳ1 +(ζd3 +ζd4)Ȳ2 (19)

with

ζd1 +ζd2 = 0 and ζd3 +ζd4 = 1.

Following similar conditions as in Section (4), the optimum variance of the direct method
is obtained and is given as

V (Td)opt.∗ =

(
1
n

)[
C2(C1C2 −C2

3 µ̂d)

C1C2 −C2
3(µ̂d)2

]
(20)

with

µ̂d = min

F2 +
√

F2
2 −F1F3

F1
,

F2 −
√

F2
2 −F1F3

F1

 ε [0, 1] (21)

where, F1 =C4
3C2, F2 =C2

3C1C2
2 , F3 =C1C2

2C2
3 , C1 = S2

y1
−ρ

2
y1xS2

y1
,

C2 = S2
y2
−ρ

2
y2xS2

y2
, C3 = Sy1Sy2(ρy1y2 −ρy1xρy2x).

To examine the performance of the direct method we compare the estimator Td with
respect to the proposed IST class of estimator T under both general allocation design as
well as optimum allocation design as

E i
d =

V (Td)opt.∗

[V (T)opt.∗ ]i
× 100. (22)

The numerical comparison has been done on the data considered in Section (8.1) and
the results are presented in Table 8.

Table 8: Direct Method comparison with IST under general allocation design and optimum
allocation design

µ̂d Eg
d Eo

d

0.6000 33.4446 41.9547
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10. Discussion of Results

The following interpretations can be drawn from empirical and simulation results:

1. The minimum variance unbiased estimation is feasible under IST set-up to estimate
sensitive population mean on successive moves.

2. The simulation results in Table 6 and Figure 1 show that for all µ ∈ [0, 1], the per-
cent relative efficiencies exist for both the allocation designs. As Eso > Esg ∀ µ, this
indicate that the IST estimator under optimum allocation design is more efficient than
the general allocation design. The percent relative efficiencies exit for all considered
variations in sample sizes. Also, both Esg and Eso > 0, this indicates that the IST
class of estimators T is better than that of IST estimator τ.

3. From Table 7, it is observed that the optimum fraction of fresh sample to be drawn
afresh at current occasion exists for both the IST class of estimators under both allo-
cation designs. Further, it is observed that IST estimator T is coming out to be more
efficient than IST estimator τ under both the allocation designs. However, the estima-
tors under the optimum allocation design are proved to be more efficient than that of
the general allocation design.

4. Table 8 indicates that E i
d < 100 ∀ i ∈ {g, o}, which means there is a loss in pre-

cision when the IST estimator is compared with the direct method under both the
allocation designs. The loss is incurred due to the usage of IST in the estimator T.
However, dealing with sensitive issues when the direct method is used, may result in
false response or even no response.

11. Concluding Remarks

From the interpretation of results, it is concluded that IST is an alternative technique
to deal with sensitive issues in successive sampling. In IST setup, the estimator utilizing
additional auxiliary variable is proved to be more efficient than the estimator in which no
additional auxiliary variable is used. Out of the two allocation designs for allocating LL
and SL samples, the IST class of estimators using optimum allocation design is coming out
to be more efficient than the estimator using general allocation deign. Therefore, the IST
estimators with optimum allocation designs may be recommended for their practical use by
survey practitioners.
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