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Abstract 

This paper presents the framework of the Generalized Autoregressive Score (GAS) model 
with a variety of symmetric conditional densities of different time-varying hyper-
parameters. The distinctive trait and goal of the observation-driven GAS model is to use its 
score and information functions as the compeller of time-variation via hyper-parameters of 
conditional densities. 10 robust hyper-parametric conditional densities were used as random 
error drivers for the GAS model with an application to the price of the United States cooking 
gas in the period between 2005 and 2020. Out of the 10 robust hyper-parametric conditional 
noises for the GAS model, the Asymmetric Student–t with one tail decay parameter (AST1) 
outperformed other categories  of its variants and other conditional densities subjected to 
the GAS model, achieving a minimum reduced-error performance of AIC=11943.277 and 
BIC=12014.525. The hyper-parametric model obtained a location score and scale score of -
1.2634 and 0.6636, respectively, while its location information and scale information was 
0.2691 and 0.0362, respectively. Furthermore, the GAS model via AST1 proved more 
efficient than the core volatile conditional heteroscedasticity model of the Generalized 
Autoregressive Conditional Heteroscedasticity (GARCH) at GARCH (1,1) via a Gaussian 
distributed noise. 

Key words: Asymmetric Student–t, Generalized Autoregressive Score, hyper-parameters, 
score, information. 

1.  Introduction 

Describing and estimating time-varying variation in stochastic time series has been 
the process of aperture across all fields of applied statistics and most scientific 
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investigations. Time-varying variation is cognate in modelling parameter selection for 
strategizing and capturing behavioural dynamics of either multivariate or univariate 
stochastic time series process with different myriad of possible specifications (Cox, 
1981; Creal et al., 2013). According to Harvey & Luati (2014), some time-varying 
parameters of some proposed time series models are not only difficult to estimate 
(especially the class of stochastic volatility models reviewed by Olanrewaju et al. (2020) 
& Shephard (2005)), but also at times fail to take into consideration the shape of the 
conditional distribution of the data. These time-varying models in time series are 
categorized in two classes: parameter-driven models and observation-driven models.  
In the latter, the time variations of the parameters are used by subjecting the stochastic 
parameters to be functions of lagged dependent variables as well as synchronous and 
lagged exogenous variables. A typical example of such a model is the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) by Engle (1982). In the 
former, parameters are stochastic processes with their associated source of error, such 
that given the past and concurrent information the parameters cannot be perfectly 
predictable. Examples of such models are Stochastic Volatility (SV) model by 
Shephard (2005) and stochastic intensity models by Koopman et al. (2008). 
In order to strengthen the observation-driven based model, Creal et al. (2013) and 
Harvey (2013) proposed the score function of conditional density functions as the 
compeller of time-variation in the time series parameters to describe the data. This 
resulted into score-driven model called Generalized Autoregressive Score (GAS) 
model, otherwise known as Dynamic Conditional Score (DCS) model. Among the 
merits of GAS model over other observation-driven models are: it is based on complete 
density function rather than moments, its likelihood evaluation is free from ambiguity, 
its driven mechanism is based on score and information functions (Hessian). The 
model can be extended to long memory, asymmetric and other intricate dynamics. It is 
flexible enough to be used in all fields in which the use of time-varying parameter 
models is relevant. It can be subjected to real-value, integer-valued, strictly positive or 
(0, 1)-bounded observations provided the conditional density (either probability 
density function or probability mass function) for the score function and Hessian exists 
and is well-defined (Oh and Patton, 2016). It provides framework for modelling time 
variation in parametric models when computing the score of a parametric conditional 
observational density with respect to time-varying parameter. The practical relevance 
of GAS model includes default and credit risk modeling as affirmed by Lucas & Zhang 
(2016); stock volatility and correlation modeling as declared by Harvey & Sucarrat 
(2014); modeling time-varying dependence structures as established by Harvey & 
Thiele (2016); CDS spread modeling and questions relating to financial stability and 
systemic risk, modeling high frequency data as confirmed by Janus et al. (2014) and 
spatial econometrics as affirmed by Blasques et al. (2016). 
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The novelty of this article is to extend the driving mechanism of the score function 
and Hessian of the GAS model via its random noise to some probability density 
functions like Normal and its variants, Asymmetric Student–t with two tail decay 
parameters, Asymmetric Student–t with one tail decay parameter, Student-t, location-
scale skew-normal distribution, Skew-t distribution, Asymmetric Laplace, Gamma, and 
exponential. The notion of the mentioned conditional densities to GAS model is to be 
able to improve its score function and Hessian robustly via each conditional density 
time-varying hyper-parameters like location, scale, skewness, and shapes indexes. The 
high frequency financial data to be subjected to the GAS model via the mentioned 
conditional densities is the price of United State cooking gas. The raw dataset of the 
price of the United State cooking gas from 2005-2020 will be used as extracted from 
U.S. Energy Information Administration (EIA). 

2. Model Specification 

In this section, the general class of observation-driven time-varying parameter 
model will be formulated. Thereafter, the Generalized Autoregressive Score (GAS) for 
the time-varying hyper-parameters driven by scale function of conditional likelihood 
will be formulated to drive the score-function and Hessian. According to Monache and 
Petrella (2014), time-varying parametric autoregressive model of order “𝑖” can be 
defined as: 

              𝑥௧ ൌ 𝜙,௧  𝜙ଵ,௧𝑥௧ିଵ  𝜙ଶ,௧𝑥௧ିଶ  ⋯ 𝜙, ௧𝑥௧ି  𝜔௧                             (1) 

where the error term is 𝜔௧ ∼ ሺ0,𝜎௧
ଶሻ𝑡 ൌ 1,2,⋯ ,𝑛; 𝜙,⋯ ,𝜙 are the parameters of the 

autoregressive model; 𝑥௧ିଵ,⋯ , 𝑥௧ି  are the past series values (lags). 
Olanrewaju & Folorunsho (2018) proposed an updating rule by defining the 

associated variation of the time-varying hyper-parameters in a vector form to be: 𝑔௧ ൌ
ሺ𝜙௧

ᇱ ,𝜎௧
ଶሻ ∍ 𝜙௧ᇱ ൌ ൫𝜙,௧,𝜙ଵ,௧,⋯ ,𝜙, ௧൯

ᇱ. This implies that equation (1) can be interpreted 
as the first order of a Markov process with  

𝑔௧ାଵ ൌ 𝜂  𝐾𝑔௧  𝜉௧ , 𝜉௧ ∼ ሺ0,𝛴௧ሻ                                               (2) 

where 𝜂 is a vector of constants; K and 𝛴 are the matrices of hyper-parameters (updated 
location and scale parameters respectively), 𝑔௧ connotes the time-varying parameters. 
The Generalized Autoregressive Score (GAS) for the time-varying hyper-parameters 
driven by scale function of conditional likelihood of 𝑔௧ given the immediate past of “𝑡 െ
1”, 𝑔௧ିଵ ൌ ሺ𝜙௧ିଵ

ᇱ ,𝜎௧ିଵ
ଶ ሻ 

   𝑔௧ାଵ/௧ ൌ 𝜂  𝐾𝑔௧/௧ାଵ  𝑍𝑐௧                                                                                            (3) 
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where, 𝑋௧ିଵ ൌ ሼ𝑥௧ିଵ, 𝑥௧ିଶ,⋯ , 𝑥ଵሽ, 𝜂and K are the same as defined above, where 𝑍𝑐௧ ∼
ሺ0,𝜎௧

ଶሻ𝑡 ൌ 1,2,⋯ ,𝑛 is the error term of the GAS time-varying hyper-parameters with 
driven mechanism called the score-function. 

                                             𝑐௧ ൌ 𝐶௧𝛻௧                                                       (4) 

∍   𝛻௧ ൌ
డሾሺ௫/ሺ ;ఏሻሿ

డ/షభ
; 𝐶௧ ൌ 𝐼௧ିଵ

ିଵ ൌ 
డሾሺ௫/ሺ ;ఏሻሿ

డ/షభ/షభ
ᇲ ൨

ିଵ

 

 

with 𝐼௧ିଵିଵ  being the Information matrix (Hessian), 𝑍௧ ൌ ሾ𝐺௧ ,𝑋௧ିଵሿ and 𝐺௧ ൌ
൛𝑔௧/௧ିଵ,𝑔௧ିଵ/௧ିଶ,⋯ ,𝑔ଵ/ൟ defined for vector parameters of 𝜃௧; 𝑝ሺ𝑥௧/𝑍௧ ;𝜃ሻ is 
probability of the past series values (lags) at time ”t” given that the error (𝑍௧) and vector 
parameters (𝜃௧) at time. Rewriting equation (1) in matrix form gives 

𝑥௧ ൌ 𝐴ᇱ𝜙௧/௧ିଵ  𝜔௧ ∍ 𝜔௧/𝑋௧ିଵ ∼ ൫0,𝑔௧/௧ିଵ൯, 𝑓𝑜𝑟𝑡 ൌ 1,⋯ ,𝑛,                                   (5) 

𝜎௧/௧ିଵ
ଶ ൌ 𝑔௧/௧ିଵ,𝐴ᇱ ൌ ൣ1, 𝑥௧ିଵ,⋯ , 𝑥௧ି൧&𝜙௧/௧ିଵ ൌ ൣ𝜙,௧/௧ିଵ,𝜙ଵ,௧/௧ିଵ,⋯ ,𝜙,௧/௧ିଵ൧

ᇱ 
𝜔௧ ൌ 𝑥௧ െ 𝐴ᇱ𝜙௧/௧ିଵ,  

𝜔௧ ൌ 𝑥௧ െ 𝐴ᇱ𝜙௧/௧ିଵ, 𝜇௧ ൌ 𝐴ᇱ𝜙௧/௧ିଵ 

The matrix form of equation (5) will be incorporated into: 

Student-t-Distribution as 

              𝑝ሺ𝑥௧ ;𝜃௧ሻ ൌ
௰ቀ

ೡశభ
మ
ቁ

௰ቀ
ೡ
మ
ቁඥగ௩

൬1 
൫ଶథ/షభ

ᇲ ାఠ
ᇲ൯

௩/షభ
మ ൰

ି
ೡశభ
మ
െ ∞ ൏ 𝑥௧ ൏ ∞               (6) 

𝜔௧/𝑋௧ିଵ ∼ 𝑁𝐼𝐷൫0,𝑔௧/௧ିଵ, 𝑣௧൯ for location parameter 𝜇௧, scale parameter 𝑔௧ , 𝑣௧ degree 
of freedom 𝜃௧ ൌ ሼ𝜇௧,𝜙,𝑔௧, 𝑣௧ሽᇱ. According to Jones and Faddy (2003),  
Asymmetric Student–t with two tail decay parameters (that is the Student  
t-distribution, which is both heavy tailed and skew). Then, the density function of this 
new distribution is 

                    𝑝ሺ𝑥௧ ;𝑎 , 𝑏ሻ ൌ 𝐶,
ିଵ ൝1 

௫

൫ାା௫
మ൯
భ
మ
ൡ

ାభ
మ

൝1 െ
௫

൫ାା௫
మ൯
భ
మ
ൡ

ାభ
మ

                 (7) 

where, 

𝐶, ൌ 2ାିଵ𝐵ሺ𝑎, 𝑏ሻሺ𝑎  𝑏ሻ
భ
మ, where 𝐵ሺ𝑎, 𝑏ሻ denotes the beta function. When  

a = b, 𝑝ሺ𝑥௧ ; 𝑏 ,𝑎ሻ reduces to the Student- t-distribution on (2a) degrees of freedom 
(Asymmetric Student–t with one tail decay parameter). When a<b or a>b, 
𝑝ሺ𝑥௧ ; 𝑏 ,𝑎ሻ is negatively or positively skewed respectively. In fact, 𝑝ሺ𝑥௧ ; 𝑏 ,𝑎ሻ ൌ
𝑝ሺെ𝑥௧ ; 𝑏 ,𝑎ሻ. Note that “a” and “b” are positive real numbers and need not to be integer 
or half-integer. 
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Location-Scale Skew-Normal distribution 
According to Owen (2008), a random variable X is said to be a location-scale skew-

normal distribution, with location at 𝜇, scale at δ and shape parameter α, and denoted 
𝑋 ∼ 𝜃 ൌ 𝑆𝑁ሺ𝜇, 𝛿ଶ,𝛼ሻ if its probability density function (pdf) is given by 

𝑝ሺ𝑥௧ ;𝜃௧ሻ ൌ
ଶ

ఋ
𝜙 ቀ

௫ିఓ

ఋ
ቁ𝛷 ቀ𝛼

௫ିఓ

ఋ
ቁ , 𝑥௧ ∈ ℝሺ𝛼, 𝜇 ∈ ℝ, 𝛿 ∈ ℝାሻ, 

Then,           𝑝ሺ𝑥௧ ; 𝜃௧ሻ ൌ
ଶ

ఋ
𝜙 ቀ

௫ିᇲథ/షభ

ఋ
ቁ𝛷 ቀ𝛼

௫ିᇲథ/షభ

ఋ
ቁ                       

(8) 
∍ 𝜔௧/𝑋௧ିଵ ∼ 𝑁൫0,𝑔௧/௧ିଵ൯ 

 
Normal Distribution 

                        𝑝ሺ𝑥௧ ;𝜃௧ሻ ൌ
ଵ

ටଶగ/షభ
మ

൫௫ିᇲథ/షభ൯
ᇲ
൫௫ିᇲథ/షభ൯

ଶ/షభ
െ ∞ ൏ 𝑥௧ ൏ ∞    (9)       

 
∍ 𝜔௧/𝑋௧ିଵ ∼ 𝑁൫0,𝑔௧/௧ିଵ൯ 

Its inverse, that is Inverse Normal distribution is 

   𝑝ሺ𝑥௧ ;𝜃௧ሻ ൌ ට ఒ

√ଶగ௫య
𝑒𝑥𝑝 

ఒ൫௫ିᇲథ/షభ൯
ᇲ
൫௫ିᇲథ/షభ൯

ଶሺᇲథ/షభሻమೣ
൨                    (10) 

𝜆 is the shape parameter. The inverse normal distribution always works on sided tail.  
 
Skew-t Distribution  

To accommodate asymmetry and long tailed data, Hansen (1994) introduced the 
so-called skewed-t-distribution while maintaining the property of a zero mean and 
variance equal to one. Skew-t-distribution is derived by introducing a universalization 
of the Student-t distribution as follows: 

               𝑝ሺ𝑥௧ ; 𝜆 , 𝑟ሻ ൌ 𝑏
௰ቀ

ೝశభ
మ
ቁ

௰ቀೝ
మ
ቁඥగሺିଶሻ

ቀ1 
మ

ିଶ
ቁ
ିೝశభ

మ                                              (11)            

 
where, 

                      𝜁 ൌ ൜
ሺ𝑏𝑥௧  𝑎ሻ/ሺ1 െ 𝜆ሻ𝑖𝑓𝑥௧ ൏ െ𝑎/𝑏
ሺ𝑏𝑥௧  𝑎ሻ/ሺ1  𝜆ሻ𝑖𝑓𝑥௧  െ𝑎/𝑏

 

such that the constant terms “a” and “b” are defined as: 𝑎 ൌ 4𝜆𝑐
ିଶ

ିଵ
; 𝑏 ൌ 1  3𝜆ଶ െ

𝑎ଶ. In this distribution, 2 ൏ 𝑟 ൏ ∞ denotes the degrees of freedom parameter and 
െ1 ൏ 𝜆 ൏ 1 is the asymmetry parameter. 
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Asymmetric Laplace 
A random variable has an Asymmetric Laplace (μ, λ, κ) Distribution (ALD) if its 

probability density function is  

                              𝑝ሺ𝑥௧ ; 𝜇 , 𝜆, 𝜅ሻ ൌ ቆ
ఒ

ାభ
ഉ

ቇ 𝑒ିሺ௫ିఓሻఒௌ
ೄ  

So,                 𝑝ሺ𝑥௧ ;𝜙௧/௧ିଵ, 𝜆, 𝜅ሻ ൌ ቆ
ఒ

ାభ
ഉ

ቇ 𝑒ି൫௫ି
ᇲథ/షభ൯ఒௌೄ                                  (12) 

where 𝑆 ൌ 𝑠𝑖𝑔𝑛ሺ𝑥௧ െ 𝜇ሻ 

𝜇 is a location parameter, 𝜆  0is a scale parameter, and 𝜅 is an asymmetry parameter. 
When 𝜅 ൌ 1, ሺ𝑥௧ െ 𝜇ሻ𝑆𝜅ௌsimplifies to |𝑥௧ െ 𝜇| and the distribution simplifies to the 
Laplace distribution. 
 
Gamma Distribution 

A random variable X is said to be a Gamma distribution if:  

        
𝑝ሺ𝑥௧ሻ ൌ ቀ

௫
ఉ
ቁ
ఈିଵ

ൈ
ቀି

ೣ
ഁ
ቁ

ఉ௰ሺఈሻ
𝑥௧ ∈ ሺ0,∞ሻ                                 (13)  

where  𝛤ሺ𝛼ሻ ൌ  𝑒௧𝑡ఈିଵ𝜕𝑡
ஶ
    

 
with scale parameter𝛽  0 and shape parameter𝛼  0. 

Exponential distribution 
A random variable X is said to be an exponential distribution (λ) if its probability 

density function is  
𝑝ሺ𝑥௧ ; 𝜆ሻ ൌ 𝜆𝑒ିఒ௫𝑥௧ ∈ 0,∞ሻ 

                           𝑝ሺ𝑥௧ ; 𝜆ሻ ൌ 𝐴ᇱ𝜙௧/௧ିଵ𝑒
ିᇲథ/షభ௫                                      (14)           

The autoregressive score and information functions, hyper-parameters and 
autoregressive coefficients for the distributions specified from equation (6) to equation 
(14) can be estimated via the specifications made in equation (3), (4) and (5) using 
Maximum Likelihood (ML) or Reweighted Least Square Algorithm. See Creal et al.  
(2013), Harvey (2014), Olanrewaju & Folorunsho (2018). 

3.  Numerical Analysis 

This section discusses the analyzes and results of the time-varying and time series 
hyper-parametric Generalized Autoregressive Scores (GASs) of the aforementioned 
conditional densities. The data to be subjected to the GASs with the random noise 
densities will be the averge monthly price of cooking gas in the United State from 1:2005 
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to 12:2020. The raw dataset of the price of the United State cooking gas will be used as 
extracted from U.S. Energy Information Administration (EIA). The monthly unit of 
the price is in US Dollar ($). 
 

 
Figure 1:  Time Plot of the Price of the Cooking Gas 

From Figure 1, it is glaring that the monthly price of cooking gas in ($) was firstly 
pegged at around 6 ($) before skyrocketing to over 14($) towards ending of 2005 until 
2006. It maintained an oscillating price between 12($) and 2($) from 2006 to 2015. The 
price also skyrocketed again mid-2015 to over 16($), it pendulum between 14($) and 
10($) until around 2017 before a continuous drastic to 2($) was experienced. In general, 
from 2005 to 2020 the price of the cooking experienced a shocky zig-zag fluctuation.            

Table 1:  Coefficients of Skewness and Kurtosis 

D'Agostino  Skewness test Skew. = 1.564 z = 29.540 P-value < 2.2e-16 

Anscombe-Glynn kurtosis test Kurt. = 5.5841 z = 15.6419 P-value < 2.2e-16 

Bonett-Seier test for Geary kurtosis tau = 1.7997  z = 10.6083 p-value < 2.2e-16 
 

Under the hypothesis of normality, that is under the null hypothesis that the price 
of the cooking gas dataset is not skewed, which is the data should be symmetry 
(i.e. skewness should be equal to zero). However, since the D’Agostino Skewness 
coefficient is 29.540 with its P-value < 2.2e-16<0.05, there is sufficient evidence that the 
price of the cooking gas dataset is skewed with indication that the dataset is not 
normally distributed (this connotes that we fail to accept the null hypothesis).  
In a similar vein, since the Anscombe-Glynn kurtosis coefficient of 5.5841 is far greater 
than three, this suggested that the price of the US cooking gas is affected by heaviness 
in the tail of normal distribution. In collaboration, since Geary's kurtosis coefficient of 

2005 2010 2015 2020

2
4
6
8
1
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1.7997 ≠ sqrt(2/pi) (0.7979), tailedness of the normal distribution of the price of the 
cooking gas data is no doubt affected. Consequently, there is a need for hyper-
parameters in the conditional densities to modify the lacuna. 

 
Figure 2:  Time Plot versus the First Differencing Plot of the Price of the Cooking Gas 

The upper visual time series plot in Figure 2 above is the raw plot of the price of 
the cooking gas in the US from 2005 to 2020, but was not stationary due to visual 
characterization of up and down shocks. 

Table 2: Test of Stationarity and ARCH Effects for the Price of the US Cooking Gas 

Estimates 
ADF Test 
Statistic 

Lag P-value 
LM 

Statistic 
LM  P-value 

Price Series -1.553 12 0.674 32.84 0.005 
First Differencing -50.715 12 0.01 26.678 0.0002 

We tested the stationarity of the price of the US cooking gas via the Augmented 
Dickey-Fuller Test (ADF).  We hypothesized both the price of the cooking series and 
its first differencing that their Null hypotheses display a unit root, that is both series are 
nonstationary. The number of lag used for testing is 12. The Test Statistic for the former 
was -1.553, while the latter gave -50.715.  Since the p-value for the latter (first 
differencing) is 0.01 and the only one less than 0.05. We concluded that there is enough 
evidence to reject the Null hypothesis, meaning that the first differencing of the price 
series is the only one that is stationary. We also tested for Autoregressive Conditional 
Heteroskedasticity (ARCH) in order to ascertain if conditional variance on the 
information exists at a given point in time for both price of the cooking series and its 
first differencing. The formulated Null hypothesis for both series was there are no 
ARCH effects. Since the p-values for both the latter and former are less than 5% level 
of significance, the Null hypotheses are rejected and it is concluded that both series 
possessed ARCH effects. The first differencing series of the price of the cooking gas 
was used to model time-varying hyper-parameters for the GAS model because of its 
stationarity. 
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Table 3:  Model Adequacy of the Density GAS w.r.t to the Price of United State Cooking Gas. 
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Table 4:  Model Adequacy of GARCH (1,1) Model w.r.t to the Price of United State Cooking Gas. 

Specification Estimate Std. Error t-value Pr(>|t|) 
Information Criteria 

AIC BIC Shibata 
Hannan-

Quinn 

Omega 0.4642 0.2905 1.5978 0.0101 22235.08 22237.99 22235.94 22236.034 

Alpha1 0.9801   0.0684 14.3364   0.00000 

Beta1 0.0000   0.0630  0.0001   0.9999 
 

Description of each conditional density with respect to GAS or Dynamic Conditioal 
Correlation (DCC) was explicitly tabled in Table 1 and Table 2 (Table 1A in appendix). 
DCC is one of the most famous models for multivariate volatility. It uses multivariate 
GAS to model and analyze volatilities when the framework is based on score-driven 
time series for time-varying parameters. The model summary includes for each density 
of GAS includes their long-term value of the time-varying hyper-parameters, their 
estimated score and Hessian values, their model performance and concerned estimated 
autoregressive coefficients. Among the ten(10) hyper-parametric conditional noises 
that were subjected to the GAS model via the application of the price of the cooking 
gas,  Asymmetric Student–t with one tail decay parameter (AST1) outperformed other 
category of its variants as well as other conditional densities for the GAS/DCC model 
with the minimum reduced-error performance of AIC=11943.277 and BIC=12014.525. 
The model hyper-parametric scores for the location-score and scale-score are -1.2634 
and 0.6636 respectively. Its location-information and scale- information are 0.2691 and 
0.0362 respectively.  The concerned estimated coefficients of kappa1, kappa2, kappa3 
and kappa4 are the elements of vector 𝜂 i.e. 𝜂ఓ, 𝜂థ, 𝜂,𝜂௩which are 0.1444, 0.7434, -
10195  and  -0.8836  respectively. Analogously, a1, a2, a3, a4 are estimates of 𝑎ఓ, 𝑎థ, 
𝑎,𝑏௩ with 0.0000, 0.0000, 0.0000, and 0.0000 respectively, similarly to that of b1, b2, 
b3, b with 0.9468, 0.5166, 0.1566 and 0.5993 respectively. 

In comparison of the GAS or DCC model with the Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) model, it was affirmed that model 
GARCH(1,1) was the optimal lag (that is both Autoregressive (AR) and Moving 
Average (MA)  at lag 1 each) for the volatiled price of the United State cooking gas 
studied over the period of time. It is to be noted that the GARCH model was subjected 
to different distributional error noises, like Student-t, Gaussian, Skew-Normal, etc., but 
Gaussian noise gave a robust generalization. The estimated model criteria  of AIC, BIC, 
Shibata and Hannan-Quinn of 22235.08, 22237.99, 22235.94, and 22236.034 
respectively for the model performance of the GARCH (1,1) model were far below the 
model performance of the GAS or DCC model via  the random noise of the Asymmetric 
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Student–t with one tail decay parameter (AST1). The robustness of the GAS model via 
the Asymmetric Student–t with one tail decay parameter (AST1) might be via the 
location and scale scores of the noise.      

4.  Conclusions 

This article introduced the possible conditional densities for the Generalized 
Autoregressive Score (GAS) model with embedded time-varying hyper-parameters. 
The score and Hessian functions (via location, scale, skewness, and shapes parameters) 
are of paramount interest due to their capability to curtail the lacuna of heaviness in the 
tail of normal distribution and possibility of skewed observations. Due to the flexibility 
of the GAS model to several statistical distributions, an empirical application to 
financial data of the price of the United State cooking gas was subjected to the GAS 
model with ten (10) different conditional densities. Each of the conditional density 
subjected to the GAS model via the application of the price of cooking gas from 2005 
to 2020 was driven by the mechanism of time-varying score and Hessian functions of 
their embedded hyper-parameters. Asymmetric Student–t with one tail decay 
parameter (AST1) outperformed other category of its variants as well as other re-
parameterized distributions used. In addition, the GAS model via Asymmetric 
Student–t with one tail decay parameter (AST1) random noise outshined the core 
volatile conditional heteroscedasticity of Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) with Gaussian distributed noise. For further studies, the 
conditional densities of the GAS model might be subjected to a driven mechanism of 
family of distributions with strictly positive values or integer values. 
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APPENDICES 

Appendix 1. 

Table 1A: Coefficients of the Hyper-Parameterization of the Generalized    
                   Autoregressive Scores (GASs) 
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Appendix 2. 

 

 

Figure 1A: Graphical Plot of the AST1 Location and Scale Parameters. 

 

 

Appendix 3. 

 

Figure A2: ACF Graph of the First Differencing of the Price of the US Cooking GAS  
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