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Abstract 

This paper considers properties of half-normal distribution using informative priors under 
the Bayesian criterion. It employs the squared root inverted gamma, Chi-square and Rayleigh 
distributions as the prior distribution to construct the Posterior distributions of the 
respective distributional parameters. Hyperparameters are elicited via prior predictive 
distribution. The properties of posterior distribution are studied, and their graphs are 
presented using a real data set. A comprehensive simulation scheme is conducted using 
informative priors. Bayes estimates are obtained using the loss functions (squared error loss 
function, modified loss function, quadratic loss function and Degroot loss function). 
Statistical inferences interval estimates and Bayesian hypothesis testing are presented to 
demonstrate the usefulness of the study. 

Key words: informative prior, squared root inverted gamma distribution (SRIG), Bayesian 
hypothesis testing, loss functions. 

1.  Introduction 

Bayesian Inference is an approach to Statistical Inference, which is distinct 
from frequentist inference. Bayesian statistics, named for Thomas Bayes, is a set of fields 
of statistics in which the evidence about the true state of the world is expressed in terms 
of degrees of belief or, more specifically, Bayesian probabilities. Moravveji etal. (2019) 
presents a Bayesian approach for the estimation of the parameters of two-piece scale 
mixtures of normal distributions. This is a rich family of light/heavy-tailed 
symmetric/asymmetric distributions that includes, as a special case, the heavy-tailed 
scale mixtures of normal distributions, and is flexible in computations for modelling 
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symmetric and asymmetric data. A Bayesian approach is possible from the specification 
of hierarchical representations of the proposed family4. 

The half-normal distribution (HND) is linked with skewed positive data 
in describing lifetime process under fatigue. Various studies are done on the 
characteristics of HND under Bayesian with the choice of various priors. For example, 
Bland and Altman (1999) studied the half-normal model for dealing with the 
relationships between measurement and magnitude error whereas Cohen (1992) 
studied the problem of inference of truncated distributions, including the truncated 
normal through a classical approach. Classical inference for half-normal model is 
examined by Pewsey (2002, 2004). Later, Cooray and Ananda (2008) defined the 
generalized HND derived from a model for static fatigue, which is then followed by 
Gauss et al. (2012), who study the Kumaraswamy generalized half-normal distribution 
for modelling skewed positive data. Gupta (2018) estimates the location parameter of a 
HND is considered. Some unbiased as well as biased estimators are derived. 
Admissibility and minimaxity of Pitman estimator are proved. A complete class of 
estimators among multiples of the maximum likelihood estimator is obtained. 

Dobler (2015) developed Stein’s method for HND and applied it to derive rates of 
convergence in distributional limit theorems for three statistics of the simple symmetric 
random walk: the maximum value, the number of returns to the origin and the number 
of sign changes up to a given time ‘n’. Dobler compares the characterizing operator of 
the limiting HND with suitable characteristics of the discrete approximating 
distributions. Jeniffer et al. (2014) study the extended generalized half-normal 
distribution for modelling skewed fatigue life data. The new model contains as special 
cases the half-normal and generalized half-normal (Cooray and Ananda, 2008) 
distributions. Several of its structural properties are derived, including the density 
function, moments, quantile and generating functions, mean deviations and order 
statistics. They investigate maximum likelihood estimation of the model parameters. 
Alzaatreh and Knight (2013) propose the gamma-HND. Various structural properties 
of the gamma-HND are derived. The shape of the distribution may be unimodel or 
bimodal. Results for moments, limit behaviour, mean deviations and Shannon entropy 
are provided. To estimate the model parameters, the method of maximum likelihood 
estimation is proposed. Three real-life data sets are used to illustrate the applicability of 
the gamma-HND. For the first time, Cordeiro (2012) study the Kumaraswamy 
generalized HND for modelling skewed positive data. The half-normal and generalized 
half-normal (Cooray and Ananda, 2008) distributions are special cases of the new 
model. Several of its structural properties are derived, including explicit expressions for 
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the density function, moments generating and quantile functions, mean deviations, and 
moments of the order statistics.  

Some recent important works related to simulation, the choice of complex priors 
related to HND, are done by various authors including Van Erp and Brown (2020) and 
Al Amer et al. (2021), Sindhu and Hussain (2022), Ariyo et al. (2022), Bruch and 
Felderer (2022), Martin et al. (2022), among others. Here, we would like to summarize 
their work for the ready reference of the readers. For example, Ariyo et al. (2022) 
explored the performance of three Bayesian model-selection criteria when vague priors 
are used for the covariance parameters of the random effects in a linear mixed-effects 
model using simulation study. They considered five different specifications of inverse-
Wishart (IW) prior, five different separation priors and a joint prior. The results show 
that marginals perform far better over the conditional and the superiority of joint and 
separation priors over IW in all settings with selection criteria on a practical data set. 
Second is the work of Bruch and Felderer (2022), who considered prior choice for the 
variance parameter in multilevel regression and poststratification selective data and 
their Monte Carlo simulation study was done on the similar way as that of ours. They 
observed that prior choices are challenging when data results from selective inclusion 
mechanism which may be subject to bias in the estimation of a proportion based on a 
sample that is subject to a highly selective inclusion mechanism. 

Moreover, similar work is done by Martin et al. (2022) using Python instead of SAS. 
They explored Bayesian modelling and computation in Python with the aim to help 
beginner Bayesian practitioners to become intermediate modellers. Beside SAS, they 
used PyMC3, Tensor-flow Probability and Arvi-Z approaches and other libraries 
focusing on the practice of applied statistics with a summary of references to the package 
used in, whereas Sindhu and Hussain (2022) derived and performed predictive 
inference and parameter estimation from the half-normal distribution for the left 
censored data. They also derive the posterior and predictive distribution in conjunction 
with informative vis-à-vis uninformative priors. They used SAS and simulated left 
censored samples from a half-normal distribution are utilized to interpret the results. 

In this paper, the posterior distributions of the parameter using informative priors 
are derived in Section 2. The prior predictive distributions are derived in Section 3. 
Section 4 presents the elicitation of the hyperparameters via prior predictive 
distribution. The graphs of posterior distributions using a real data set are drawn in 
Section 5. In Section 6, the expressions of Bayes estimates under different loss functions 
are obtained. Section 7 presents Bayes estimates and Posterior risks using real data set. 
Section 8 contains credible intervals and hypothesis testing using a real data set. 
A simulation study is conducted using Mathematica and SAS packages5 in Section 9. 
Section 10 contains some concluding remarks. 
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2. Posterior Distribution of the Parameter Using Informative Priors 

A random variable X is said to be half-normal distribution with location parameter 
zero and unknown scale parameter 𝜃 if its p.d.f is: 

𝑓ሺ𝑥;𝜃ሻ ൌ ටଶ

గ

ଵ

ఏ
𝑒𝑥𝑝൛െ൫ ೣమ

మഇమ
൯ൟ ,   𝜃 ൐ 0, 0 ൏ 𝑥 ൏ ∞                       2.1 

Let nxxx ...,,2,1 be a random sample taken from HND with unknown parameter 𝜃 
and its likelihood function is: 
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2.1. Posterior Distribution using Informative Priors 

The posterior distribution using informative priors, i.e. squared root inverted 
gamma prior, inverted chi-square prior and inverse Raleigh prior, are presented in the 
following sections. 

2.1.1.  Posterior Distribution Using Squared Root Inverted Gamma Prior 
The squared root inverted gamma (SRIG) with hyperparameters   ‘a’ and ‘b’ is 

defined as: 
𝑝ሺ𝜃ሻ ൌ  
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Using equations (2.2) and (2.3), the posterior distribution of the parameter 𝜃 given 
data x is: 
𝑝ሺ𝜃|𝐱ሻ ∝ 𝑝ሺ𝜃ሻ𝐿ሺ𝜃, 𝑥ሻ 
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which is the density kernel of (SRIG) distribution, so the posterior distribution of 𝜃|𝐱 
is 

𝑆𝑅𝐼𝐺ሺ𝛼,𝛽ሻ 𝑤ℎ𝑒𝑟𝑒 𝛼 ൌ 𝑎 ൅
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2.1.2. Posterior Distribution using Inverted Chi-square Prior 
The inverted chi-square (IC) with hyperparameter ‘𝜈’ and is defined as: 
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Using equations (2.2) and (2.5), the posterior distribution of the parameter 𝜃|𝐱  is: 
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which is the density kernel of (SRIG) distribution, so the posterior distribution of 𝜃|𝐱 is 
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2.1.2. Posterior Distribution using Inverse Rayleigh Prior 
The inverse Rayleigh (IR) with Hyperparameter ‘c’ is defined as: 

𝑝ሺ𝜃ሻ ൌ
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Using equations (2.2) and (2.7), the posterior distribution of the parameter 𝜃|𝐱  is: 
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which is the density kernel of (SRIG) distribution, so the posterior distribution of 𝜃|𝐱 
is 
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3. Prior Predictive Distribution Using Informative Priors 

The prior predictive distribution is the model predicts over the observed variables 
before any of data are considered. The prior predictive distribution is also known as 
marginal distribution of an unobserved value which is the prior distribution of 𝜃 and 
single variable p.d.f integrating out this parameter. The derivations of the prior 
predictive distribution using informative priors are given below. Let Y be the random 
variable having the HND with unknown parameter 𝜃. 

The prior predictive distribution can be obtained by the following equation 
            𝑝ሺ𝑦ሻ ൌ ׬ 𝑝ሺ𝜃ሻ𝑓ሺ𝑦,𝜃ሻ

ஶ
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where y represents future random variable. 

3.1. Prior Predictive Distribution using Squared root Inverted Gamma Prior 
The prior predictive distribution using equation (2.3) and (3.1) is: 
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The above equation is used for the elicitation of hyperparameters ‘a’ and ‘b’. 

3.2. Prior Predictive Distribution using Inverted Chi-Square Prior 
The prior predictive distribution using equation (2.5) and (3.1) is: 
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The above equation is used for the elicitation of Hyperparameter ‘𝜈’. 
3.3. Prior Predictive Distribution using Inverse Rayleigh Prior 

The prior predictive distribution using equation (2.7) and (3.1) is: 
             𝑝ሺ𝑦ሻ ൌ ଷ௖
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The above equation is used for the elicitation of Hyperparameter ‘c’. 
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4. Elicitation of Hyperparameters 

The methods of elicitation through prior predictive distribution are defined by 
Aslam (2003). For the elicitation of the hyperparameters of the informative priors, we 
use prior predictive distributions given in Ssection 3 and consider the intervals that are 
used in the elicitation. 

4.1.   Elicitation of Hyperparameters of Squared root inverted Gamma Prior 
Using the prior predictive distribution given in equation (3.2), expert’s probabilities 

are to be 0.15 and 0.10, which are associated with the intervals 0.01 ൑ 𝑦 ൑ 0.5 and 3 ൑
𝑦 ൑ 5 respectively. 
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To elicit the hyperparameters ‘a’ and ‘b’, the above equations are simultaneously 
solved through the program developed in SAS package using ‘PROC SYSNLIN’ 
commands and the values of the hyperparameters ‘a’ and ‘b’ are found to be 0.7136 and 
0.1330 respectively . 

4.2.   Elicitation of Hyperparameter of Inverted chi-square prior 
Using the prior predictive distribution given in equation (3.3).The expert’s 

probability for the interval (0, 0.5) is to be 0.5. 
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The above equation is used to elicit the hyperparameter of inverted chi-square ‘𝑣’ 
by applying ‘PROC SYSNLIN’ and the value of the hyperparameter ‘v’ is found to be 
0.8963. 

4.3.   Elicitation of Hyperparameter of Inverse Rayleigh Prior 
Using the prior predictive distribution given in equation (3.4), expert’s probability 

is to be 0.08, which is associated with the interval 4 ൑ 𝑦 ൑ 6. 
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The above equation is used to elicit the hyperparameter of inverse Rayleigh ‘𝑐’ by 
applying ‘PROC SYSNLIN’ and the value of the hyperparameter ‘c’ is found to be 
0.8531. 
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5. Graphs of Posterior Distribution Using Real Data Set 

This section represents the graphs of the posterior distribution using informative 
priors. We draw graphs in SAS package.   

5.1. Real Data Set 
The real data set is used for analysis. From Serge et al. (2010), the data set of maximum 

flood levels (in millions cubic feet per second) for the Susquehanna River at Harrisburg, 
Pennsylvania over four-year periods. We have the following 20 observations: 

0.654,  0.613,  0.402,  0.379,  0.269,  0.740,  0.416,  0.338,  0.315,  0.449,  0.297,  0.423,  
0.379,  0.3235, 0.418, 0.412, 0.494, 0.392, 0.484, 0.268. 

The mean, variance and CV of the above data are as follows. 
𝑋ത ൌ 0.423  𝜎ଶ= 0.016 CV= 0.295 

5.1.1.  Graphs of Posterior Distributions 
The graphs of posterior distribution using SRIG prior with parameters 𝛼ௌோூீ ൌ

10.7136, 𝛽ௌோூீ ൌ 2.07245, IC prior with parameters 𝛼ூ஼ ൌ 10.224075, 𝛽ூ஼ ൌ 2.3945, and 
IR prior with parameters 𝛼ூோ ൌ 11,𝛽ூோ ൌ 2.79255 are presented below in Figures 5.1, 5.2 
and 5.3. 

 

𝑃ௌோூீሺ𝜃|𝐱ሻ                                                                𝑃ூ஼ሺ𝜃|𝐱ሻ 

            

   𝜃                                                                                 𝜃 
Figure 5.1: Graph using SRIG prior                               Figure 5.2: Graph using IC prior 
 
                                           𝑃ூோሺ𝜃|𝐱ሻ 

 

𝜃 
Figure 5.3: Graph using IR prior 
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The graphs of posterior distributions using informative priors in Figures 5.1, 5.2 
and 5.3 are similar and positively skewed. 

5.2 Properties of Posterior Distribution Using Real Data Set  
The properties of posterior distribution using a real data set mentioned in 5.1 are 

determined and given below. 

Table 5.1:  Properties of Posterior Distribution 

n=20 Mean Variance Mode C.V 
SRIG Prior     1.3724     0.0054      0.4299      5.3638% 

IC Prior     1.4854     0.2342      0.4769      32.5835% 
IR Prior     1.5950     0.1414      0.4927      23.5793% 

From the above Table 5.1, if we compare informative priors, squared root inverted 
Gamma prior is more efficient than other priors, as variance is minimum using Squared 
root inverted Gamma prior. 

6. Bayes Estimates Under Different Loss Functions 

In statistics, typically a loss function is used for parameter estimation, and the event 
in question is a function of the difference between estimated and true values for an 
instance of data. In this section, we have used four different loss functions. The details 
are given below. 

6.1.  Squared Error Loss Function 

The loss function: 𝐿൫𝜃,𝜃෠൯ ൌ ൫𝜃 െ 𝜃෠൯
ଶ is called squared error loss function (SELF), 

where 𝜃 is the parameter and 𝜃෠ is an estimator. 
By minimizing the risk function 𝜌൫𝜃෠൯ ൌ 𝐸𝐿൫𝜃,𝜃෠൯ with respect to 𝜃, we have the 

Bayes estimator 
𝜃෠ ൌ 𝐸ሺ𝜃ሻ           6.1 

which is the posterior mean under SELF. 
The Bayes posterior risk is 

𝜌൫𝜃෠൯ ൌ 𝐸ሺ𝜃ଶሻ െ ሼ𝐸ሺ𝜃ሻሽଶ                                          6.2 
which is the posterior variance, and it is the Bayes posterior risk under SELF. 

6.2. Quadratic Loss Function  

The loss function: 𝐿൫𝜃,𝜃෠൯ ൌ ቀ1 െ
ఏ෡

ఏ
ቁ
ଶ
 is called quadratic loss function (QLF).  

By minimizing the risk function, we have 𝜃෠ ൌ ாሺఏషభሻ

ாሺఏషమሻ
 , which is the Bayes estimator 

under QLF. 
The Bayes posterior risk is                                  

𝜌൫𝜃෠൯ ൌ 1 െ
ሼாሺఏషభሻሽమ

ாሺఏషమሻ
. This is the Bayes posterior risk under quadratic loss function. 



STATISTICS IN TRANSITION new series, September 2023 

 

27

6.3.  Modified Loss Function  

The loss function 𝐿൫𝜃,𝜃෠൯ ൌ
ሺఏିఏ෡  ሻమ

ఏ
 is called modified loss function (MLF).  

By minimizing the risk function, we have 𝜃෠ ൌ ଵ

ாሺఏషభሻ
 , which is the Bayes estimator 

under MLF. 
The Bayes posterior risk is 𝜌൫𝜃෠൯ ൌ 𝐸ሺ𝜃ሻ െ

ଵ

ாሺఏషభሻ
.This is the Bayes posterior risk 

under modified loss function. 

6.4.  Degroot Loss Function  

The loss function 𝐿൫𝜃,𝜃෠൯ ൌ ቀ
ఏିఏ෡

ఏ෡
ቁ
ଶ
 is called Degroot loss function (DLF).  

By minimizing the risk function, we have 𝜃෠ ൌ ாሺఏమሻ

ாሺఏሻ
, which is the Bayes estimator 

under DLF. 
The Bayes posterior risk is                                  

𝜌൫𝜃෠൯ ൌ
௏௔௥ሺఏሻ

ாሺఏሻ
          6.3 

This is the Bayes posterior risk under Degroot loss function. The expressions of 
Bayes estimators and posterior risks using SRIG, IC and IR priors are given in Tables 
6.1, 6.2 and 6.3 respectively. 

 

Table 6.1:  Bayes Estimators and Posterior Risks Assuming SRIG Prior 

Loss Functions Bayes Estimators Posterior Risks 
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Table 6.3:  Bayes Estimators and Posterior Risks Assuming IR Prior 
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We have simulated the values of the Bayes estimators and posterior risks given 
in Appendix under different loss functions. If we compare the results of the Bayes 
estimates and posterior risks, we can see the simulated values are closer to the true 
parameter as we increase our sample sizes under different loss functions. Bayes 
estimates and posterior risks have minimum values for SRIG prior, which shows SRIG 
prior has more efficient results than other priors. While comparing the loss functions, 
the SELF has more precise results than all other loss functions. We can conclude that 
among all prior distributions SRIG has better results. 

7. Bayes Estimation and Posterior Risks Using Real Data Set 

By using the above loss functions, the Bayes estimates and posterior risks of the 
parameter through informative priors, i.e. SRIG, IC and IR priors, are as follows, with 
posterior risks in parentheses.   

Table 7.1:  Bayes Estimates and Posterior Risk under Different loss Functions 

If we compare informative priors, we observe that posterior risk using Squared root 
inverted gamma prior is less than other priors hence SRIG prior gives more efficient 
results. We observe that MLF performance in terms of posterior risk is better than other 
loss functions. 

8. Bayesian Point and Interval Estimates Using Real Data Sets 

In this section, we obtained Bayesian point and interval estimates. The Bayesian 
analog of a classical confidence is called a credible set.  For details about credible sets, 
see Saleem and Aslam (2009), Lynn et al. (2003) and Saleem and Raza (2011), among 
others. The Bayesian credible intervals are obtained by using the posterior distribution 
of the respective parameter of interest. 

8.1. Credible Intervals  
A credible interval or Bayesian confidence interval is an interval in which domain 

of a posterior probability distribution is used for interval estimation. Credible intervals 
are not unique on a posterior distribution.  

The credible intervals are constructed as: 

1 െ α ൌ p ቊχଶ൫ଵିಉ,
మଶ୮൯

൏
2ሺβሻ

A
൏ χଶ൫ಉ,

మ ,ଶ୮൯ቋ 

n=20 Prior    Distributions 
Loss Functions SRIG IC IR 

SELF 1.3724(0.0067) 1.4854(0.0070) 1.5951(0.0068) 
QLF 1.3781(0.0231) 1.4922(0.0242) 1.7470(0.0225) 
MLF 1.5067(0.0110) 1.6382(0.0128) 1.7470(0.0122) 
DLF 1.3691(0.0028) 1.4815(0.0053) 1.5915(0.0041) 
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We have, 

ൣC୐
ሺ஘ሻ, C୙

ሺ஘ሻ൧ ൌ ቎ඨ
ଶሺஒሻ
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൬భష
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,ඨ
ଶሺஒሻ

஧మ
൬
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. ቏                                    8.1 

Thus ൫C୐
ሺ஘ሻ ൏ 𝜃 ൏ C୙

ሺ஘ሻ൯ is the (1  ) 100% credible interval where ‘α’ and ‘β’ 
are the respective parameters of posterior distribution. 

The Credible intervals for real data set by using equation (8.1) are given in Table 8.1. 

Table 8.1:  Credible Intervals using Informative Priors 

Prior Distributions 90% Credible Interval 95% Credible Interval 99% Credible Interval 

SRIG (0.3452,0.4788) (0.3358,0.4960) (0.3185,0.5326) 
IC (0.3349,0.5054) (0.3532,0.5238) (0.3349,0.5630) 
IR (0.3724,0.5155) (0.3622,0.5339) (0.3437,0.5731) 

In comparison, we can observe that 90% credible intervals are narrower than 99% 
and 95%.When we compare informative priors’ credible intervals under squared root 
inverted gamma prior are shorter than all other priors. 
8.2 Bayesian Hypothesis Testing  

Hypothesis testing has been subject to polemic since its early formulation by the 
Neyman and Pearson in the 1930s. It is more difficult to carry out a point null 
hypothesis test in a Bayesian analysis. Bayesian model comparison is a method 
of selection based on the Bayes factors. Bayes Factor is ratio of probabilities for null and 
alternative hypotheses. 

Jeffreys (1961) gives the following typology for comparing 𝐻௔ 𝑣𝑠 𝐻௕  where 𝐻௔ is 
used for null hypothesis and Hୠ  is used for alternative hypothesis. (i) B ൐ 1 H௔ is 
supported, (ii) 10ష

భ
మ ൑ B ൑ 1  Minimal evidence against H௔ (iii) 10షభ ൑ B ൑ 10ష

భ
మ 

Substantial evidence against H௔.  
(iv) 10షమ ൑ B ൑ 10షభ Strong evidence against H௔ (v) B ൏ 10ିଶ Decisive evidence 

againstH௔. 

Table 8.2:  Hypothesis testing using Real Data Set 

H௔ 𝑣𝑠  H௕  
Using SRIG Prior Using IC Prior Using IR Prior 

B.F B.F B.F 
H௔: θ ൑ 0.34 
H௕:θ ൐ 0.34 

0.0268 0.0031 0.0009 

H௔: θ ൑ 0.43 
H௕:θ ൐ 0.43 

0.6696 0.2049 0.1280 

H௔: θ ൑ 0.55 
H௕:θ ൐ 0.55 

8.5737 2.7522 2.1075 

H௔: θ ൑ 0.68 
H௕:θ ൐ 0.68 

115.713 26.6151 21.592 
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The above Table 8.2 shows: 
 While considering the hypothesis 

𝐻௔:𝜃 ൑ 0.34 Versus  𝐻௕: 𝜃 ൐ 0.34 
Bayes factor using squared root inverted gamma priors lies between 10షమ ൑ 𝐵 ൑

10ష
భ
మ . So we conclude that there is substantial evidence against the posterior 

distribution under 𝐻௔, and 𝐵 ൑ 10షమso we conclude decisive evidence against the 
posterior distribution under 𝐻௔ . 
 While considering the hypothesis 

𝐻௔:𝜃 ൑ 0.43  Versus 𝐻௕:𝜃 ൐ 0.43 
As 10ష

భ
మ ൑ 𝐵 ൑ 1  we have minimal evidence against 𝐻௔for all priors. 

 While considering the hypothesis 
𝐻௔:𝜃 ൑ 0.55  Versus 𝐻௕:𝜃 ൐ 0.55 

As 𝐵 ൐ 1, so we strongly supported 𝐻௔ using all informative priors. 
 While considering the hypothesis 

𝐻௔:𝜃 ൑ 0.68  Versus 𝐻௕:𝜃 ൐ 0.68 
As 𝐵 ൐ 1, so we strongly supported 𝐻௔using all informative priors. 

9. Properties of Posterior Distribution using Simulation Study 

Simulation is the process of imitating a real phenomenon with a set of mathematical 
formulas. Here, we discuss some properties of posterior distribution through 
a simulation study of parameter 𝜃. We have done all simulations in Mathematica 
package. 

Table 9.1:  Properties of Posterior Distribution under SRIG Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 
Mean Variance Mode Mean Variance Mode 

50 1.9907 1.2314 1.9980 3.9425 1.2268 3.9792 
100 1.9964 1.2088 1.9996 3.9945 1.2096 3.9987 
500 2.0050 1.1984 2.0048 4.0510 1.1914 4.0070 

1000 2.0007 1.1871 2.0006 4.0014 1.1804 4.0003 
 

Table 9.2:  Properties of Posterior Distribution under IC Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 
Mean Variance Mode Mean Variance Mode 

50 1.9867 1.2173 1.9825 3.9839 1.2040 3.9971 
100 1.9969 1.2054 1.9963 3.9914 1.2039 3.9997 
500 2.0968 1.1978 2.0963 4.0775 1.1907 4.0553 

1000 2.0012 1.1882 2.0010 4.0003 1.1847 4.0072 
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Table 9.3:  Properties of Posterior Distribution under IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 
Mean Variance Mode Mean Variance Mode 

50 1.9867 1.2173 1.9825 3.9839 1.2040 3.9971 
100 1.9969 1.2054 1.9963 3.9914 1.2039 3.9997 
500 2.0968 1.1978 2.0963 4.0775 1.1907 4.0553 

1000 2.0012 1.1882 2.0010 4.0003 1.1847 4.0072 
 
From the Tables 9.1, 9.2 and 9.3, it is observed that as we increase our sample sizes, 

our simulated values through mean tend to true values of parameter. Similarly, mode is 
closely to the true parameter as we increase sample sizes. Squared root inverted gamma 
prior is more precise than all other priors in the case of comparing informative priors. 
We have also simulated values of variances, which can show as we increase the sample 
sizes it becomes less. 

10. Concluding Remarks  

We have presented the Bayesian analysis of half-normal model using informative 
(squared root inverted gamma, inverted chi-square and inverse Rayleigh) priors. 
Initially, we derive posterior distributions using informative priors. The SAS package is 
used to draw graphs of posterior distributions. The properties of posterior distribution 
(mean, median, mode, variance and coefficient of variation) are discussed through 
simulation as well as real data set. The credible intervals for 90%, 95%, and 99% using 
informative priors are constructed and the Bayes factors of different hypothesis are 
computed. By the comparison of results, with increasing the sample size the Bayes 
estimates converge to the parametric values and their risks tend to be smaller. As under 
informative priors the Bayes risks for the estimates under SRIG are smaller than the 
Bayes risks assuming IC and IR priors, thus SRIG is more suitable prior. If we compare 
the Bayes risk under different loss functions, namely SELF, QLF, MLF and DLF, then 
the MLF is a better loss function for estimating the parameter 𝜃.  
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Appendix  

Bayes Estimates and posterior risks under Different Loss Functions 
 

Table 1:  Bayes Estimates of Informative Priors using SELF 

Priors SRIG Prior IC Prior IR Prior 

N 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 

50 2.0083 3.9706 2.0506 3.9758 2.0167 3.9662 

100 2.0044 3.9901 2.0224 3.9964 2.0426 3.9912 

500 1.9923 4.0637 1.9849 4.0396 1.9429 4.0826 

 
Table 2:  Bayes Estimates of Informative Priors using QLF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 

50 1.9698 3.9856 2.0720 3.9937 1.9897 3.9927 

100 1.9904 3.9942 2.0892 4.0463 1.9983 3.9987 

500 2.0097 4.0468 2.0048 4.0930 2.0562 4.0963 

 
Table 3:  Bayes Estimates of Informative Priors using MLF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 

50 2.0387 4.0204 1.9835 3.9913 2.0214 4.0443 

100 2.0932 4.0439 1.9991 3.9978 2.0610 4.0728 

500 2.0083 4.0992 2.0437 4.0933 1.9886 4.0027 

1000 2.0037 4.0070 2.0679 4.0013 1.9989 4.0002 

 
Table 4:  Bayes Estimates of Informative Priors using DLF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 
50 1.9862 3.9999 2.0160 3.9915 1.9925 4.0202 

100 1.9999 4.0537 2.0028 3.9996 1.9957 4.0210 

500 2.0193 4.0860 2.0921 4.0928 2.0868 4.0114 

1000 2.0641 4.0025 2.0944 4.0047 2.0029 3.9993 
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Table 5:  Posterior Risks of Informative Priors using SELF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 

50 1.2116 1.2376 1.2070 1.2112 1.2296 1.2314 

100 1.2048 1.2092 1.1927 1.2042 1.2059 1.2094 

500 1.1881 1.1880 1.1885 1.1905 1.1914 1.1902 

1000 1.1809 1.1847 1.1864 1.1886 1.1880 1.1888 

 
Table 6:  Posterior Risks of Informative Priors using QLF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 

50 1.2225 1.2427 1.2143 1.2189 1.2281 1.2412 

100 1.2153 1.2338 1.2095 1.2161 1.2109 1.2218 

500 1.1967 1.2113 1.1918 1.1905 1.1912 1.1912 

1000 1.1871 1.1883 1.1882 1.1879 1.1871 1.1863 

 
Table 7:  Posterior Risks of Informative Priors using MLF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 

50 1.2151 1.2363 1.2556 1.2690 1.2352 1.2252 

100 1.2058 1.2287 1.2340 1.2566 1.2253 1.2007 

500 1.1979 1.2052 1.2075 1.2116 1.1943 1.1946 

1000 1.1873 1.1964 1.1991 1.1923 1.1838 1.1877 

 
Table 8:  Posterior Risks of Informative Priors using DLF 

Priors SRIG Prior IC Prior IR Prior 

n 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 𝜃 ൌ 2 𝜃 ൌ 4 
50 1.2431 1.2492 1.2151 1.2158 1.2226 1.2456 

100 1.2364 1.2146 1.2007 1.2097 1.2193 1.2134 

500 1.2079 1.1983 1.1878 1.1912 1.1992 1.1886 

1000 1.1875 1.1876 1.1822 1.1884 1.1954 1.1805 

 


