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Testing the annual rainfall dispersion in Chaiyaphum,
Thailand, by using confidence intervals for the coefficient

of variation of an inverse gamma distribution

Wararit Panichkitkosolkul1

Abstract

In Thailand, droughts are regular natural disasters that happen nearly every year due to sev-
eral factors such as precipitation deficiency, human activity, and the global warming. Since
annual rainfall amount fits an inverse gamma (IG) distribution, we wanted to try testing an-
nual rainfall dispersion via the coefficient of variation (CV). Herein, we propose two statis-
tics for testing the CV of an IG distribution based on the Score and Wald methods. We
evaluated their performances by means of the Monte Carlo simulations conducted under
several shape parameter values for an IG distribution based on empirical type I error rates
and powers of the tests. The simulation results reveal that the Wald-method test statistic
performed better than the Score-method one in terms of the attained nominal significance
level, and is thus recommended for analysis in similar scenarios. Furthermore, the efficacy
of the proposed test statistics was illustrated by applying them to the annual rainfall amounts
in Chaiyaphum, Thailand.

Key words: statistical test, measure of dispersion, continuous distribution, simulation, me-
teorology.

1. Introduction

Since damage from natural disasters has increased due to anomalous global climate
changes, researchers have become interested in studying their occurrences. Thailand has
been divided into six geographical regions by the National Research Council: north, north-
east, central, east, west, and south; many of them are prone to droughts but they most often
occur in the central northeastern part of Thailand. Thailand is one of the most drought-
affected countries in the Asia-Pacific region and is marred by frequent droughts (Khadka et
al., 2021). Drought in Thailand directly affects agriculture and water resources, which has
a significant impact on the country’s economy since most of the country is agrarian.

The north-eastern of Thailand is one of the highly drought-prone regions of the country
(Prabnakorn et al., 2018). Chaiyaphum, one of the north-eastern provinces of Thailand, is
faced with drought every year due to long periods of little rain causing a severe shortage
of water for both consumption and farming (Srichaiwong et al., 2020). Figure 1 shows the
map of Chaiyaphum from the Google Maps (2023). In July 2019, parts of Chaiyaphum
were faced with a severe drought, and the water volume in the Chulabhorn Dam decreased
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to its lowest level in 30 years (only 25% of its capacity) (Pattayamail, 2022). Moreover,
in January 2020, eight hospitals in Chaiyaphum were impacted by the drought, leading to
the Chaiyaphum Provincial Public Health Office drilling artesian wells to reserve water for
medical services and sufficient staff consumption for at least three days while also request-
ing citizens to help by saving water (Nationthailand, 2022).

Figure 1: The map of Chaiyaphum, Thailand

Droughts take place whenever there are prolonged periods of rainfall deficiency for one
season or more (Eartheclipse, 2022). The major cause of meteorological drought is a deficit
of rainfall (Wichitarapongsakun et al., 2016). Since the rainfall amount varies greatly de-
pending on the region and season, the coefficient of variation (CV) can be used to represent
rainfall dispersion in different regions. The CV is a unit-free measure of variability relative
to the population mean (Albatineh et al., 2017). It is defined as the ratio of the population
standard deviation σ to the population mean µ namely θ = σ/µ , where µ ̸= 0. It has been
more widely used than the standard deviation for comparing the variations of several vari-
ables obtained by different units.

The estimator of the CV has been widely applied in many fields of science, including the
medical sciences, engineering, economics and others. For example, the applicability of the
CV method for analyzing synaptic plasticity was studied by Faber and Korn (1991). Reed et
al. (2002) used the CV in assessing the variability of quantitative assays. Kang et al. (2007)
applied the CV for monitoring variability in statistical process control. Pang et al. (2008)
proposed a simulation-based approach to the study of CV of dividend yields. The improved
estimators of CV in a finite population were introduced by Archana and Rao (2011). Calif
and Soubdhan (2016) used the CV to measure the spatial and temporal correlation of global
solar radiation. Singh and Mishra (2019) proposed an improved estimation method for the
population coefficient of variation, which uses information on a single auxiliary variable.
Thangjai and Niwitpong (2020) proposed confidence interval estimation for the ratio of CV
of two log-normal distributions constructed using the Bayesian approach.
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The inverse gamma (IG) distribution is a two-parameter family of continuous distribu-
tions on the positive real line based on the reciprocal of a variable (Abid and Al-Hassany,
2016). Milevsky and Posner (1998) studied the IG distribution and pointed out estima-
tion by method of moments. It is often used as a conjugate prior distribution in Bayesian
statistics (Zhang and Zhang, 2022). There have been several research papers published on
applying the IG distribution. For example, Gelman (2006) applied the IG distribution as
a prior distribution for variance parameters in hierarchical models. Rasheed and Sultan
(2015) proposed the Bayesian estimator for the scale parameter of IG distribution using
Linex loss function and squared error loss function with non-informative prior. Abid and
Al-Hassany (2016) studied some issues related to the inverted gamma distribution, which
is the reciprocal of the gamma distribution. Llera and Beckmann (2016) introduced five
different algorithms based on the method of moments, maximum likelihood, and Bayesian
methodology to estimate the parameters of an IG distribution. Glen and Leemis (2017) ap-
plied the IG distribution to survival studies. Ramírez-Espinosa and Lopez-Martinez (2019)
proposed the utility of the IG distribution in modeling composite fading channels. Yoo et al.
(2019) provided empirical evidence that the IG distribution is an excellent alternative for the
lognormal and gamma distributions which are often used to model shadowing. Furthermore,
the confidence intervals for the ratio of the CVs of the IG distributions were introduced by
Kaewprasert et al. (2023).

The literature on testing the CV for the IG distribution is limited. However, there are
many methods available for estimating the confidence interval for a population CV for the
IG distribution. Kaewprasert et al. (2020) presented three confidence intervals for the CV
of an IG distribution using the Score method, the Wald method and the percentile bootstrap
confidence interval. These confidence intervals for the CV can be used to test the hypothesis
for the CV.

The objective of this paper is to propose some methods for testing the CV for the IG dis-
tribution and identify the appropriate methods for practitioners. Two confidence intervals
proposed by Kaewprasert et al. (2020) are considered in order to test the CV. A simulation
study was conducted to compare the performance of these methods. Based on the sim-
ulation results, test statistic with high power that attained a nominal significance level is
recommended for practitioners.

The rest of this paper is organized as follows. The point estimation of parameters in an
IG distribution is reviewed in Section 2. In Section 3, we present the proposed methods for
testing the CV of the IG distribution. The simulation study and results are discussed in Sec-
tion 4. Section 5 shows the application of the proposed statistical tests to real data is shown
using the annual rainfall amounts in Chaiyaphum, Thailand. Discussion and conclusions
are presented in the final section.

2. Point estimation of parameters in an inverse gamma distribution

In this section, we explain the point estimation of parameters in an IG distribution. Let
X = (x1, . . . ,xn) be a random sample from the IG distribution with the shape parameter α

and scale parameter β , denoted as IG(α,β ). The probability density function of X (Rivera
et al., 2021) is given by
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f (x;α,β ) =
β α

Γ(α)
x−α−1 exp

(
−β

x

)
, x > 0, α > 0, β > 0. (1)

The population mean and variance of X are defined as E(X) = β/(α − 1), for α > 1
and Var(X) = β 2/

[
(α −1)2(α −2)

]
, for α > 2. Therefore, the CV of X can be expressed

as CV (X) = θ = 1/
√

α −2.
Since α is an unknown parameter, it is required to be estimated. We consider the maxi-

mum likelihood estimators (MLEs) for α and β . Thus, the log-likelihood function of α and
β is given by
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Taking partial derivatives of the above equation with respect to α and β , respectively,
the Score function is derived as
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Then, the MLEs can be conducted for α and β , respectively,
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Also, the estimator of CV is given by θ̂ = 1/
√

α̂ −2.

3. Methods for testing the coefficient of variation of the inverse gamma
distribution

Let X1, ...,Xn be an independent and identically distributed random sample of size n
from the IG distribution with the shape parameter α and scale parameter β . We want to test
for the population CV. The null and alternative hypotheses are defined as follows:

H0 : θ = θ0 versus H1 : θ ̸= θ0.

In this section, we discuss two test statistics for the CV based on the Score method and
the Wald method.
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3.1. Score method

Let α and β be the parameter of interest and the nuisance parameters, respectively.
In general, the Score statistic (Rao, 1948, 2005) is denoted as

W1 =UT (α0, β̂0)I−1(α0, β̂0)U(α0, β̂0),

where β̂0 is the MLE for β , under the null hypothesis H ′
0 : α = α0, U(α0, β̂0) is the vector

of the Score function and I(α0, β̂0) is the matrix of the Fisher information; see e.g., Kay
(1993). Here, it is easy to derive that the Score function under H ′

0 is
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∑
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n
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The inverse of the matrix of the Fisher information can be derived as follows:
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Using the property of the Score function, we can see that the pivotal
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converges in distribution to the standard normal distribution. Since the variance of α̂ is 2α2
0

n ,
it is approximated by substituting α̂ in its variance. Under H ′

0, the statistic in (2) is given as
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√
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From the probability statement, 1− γ = P(−Z1−γ/2 ≤ Zscore ≤ Z1−γ/2), it can be simply
written as 1− γ = P(ls ≤ θ ≤ us). Therefore, the (1− γ)100% confidence interval for θ

based on the Score method is given by



114 W. Panichkitkosolkul: Testing the annual rainfall dispersion...
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3.2. Wald method

The Wald statistic is an asymptotic statistic derived from the property of the MLE
(Gaffke et al., 2002). The general form of the Wald statistic under the null hypothesis
H ′

0 : α = α0 is defined as

W2 = (α̂ −α0)
T
[
Iαα(α̂, β̂ )

]−1
(α̂ −α0),

where Iαα(α̂, β̂ ) is the estimated variance of α̂ obtained from the first row and the first col-
umn of I−1(α̂, β̂ ). Using the information of partial derivatives from the previous subsection,
the inverse matrix is given by
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where Iαα(α̂, β̂ ) = 2α̂2

n . Therefore, under H ′
0, we obtain the Wald statistic

Zwald ∼=
√

n
2α̂2 (α̂ −α), (3)

which has the limiting distribution of a standard normal distribution. Thus, the (1−γ)100%
confidence interval for θ based on the Wald method is given by
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where Zγ/2 is the γ/2-upper quantile of the standard normal distribution. Therefore, we will
reject the null hypothesis, H0 : θ = θ0, if

θ0 <
1√

α̂ −2+Zγ/2

√
2α̂2

n

or θ0 >
1√

α̂ −2−Zγ/2

√
2α̂2

n

.

4. Simulation Study and Results

In this study, two statistical methods for testing the population CV in an IG distribution
are considered. Since a theoretical comparison is not possible, a Monte Carlo simulation
was conducted using the R version 4.1.3 statistical software (Ihaka and Gentleman, 1996)
to compare the performance of the test statistics. The methods were compared in terms of
their attainment of empirical type I error rates and the powers of their performance. We
count the number of times for each test that the null hypothesis was rejected when H0 was
true, to obtain the empirical type I error rates. In addition, the number of times for each
test, that the null hypothesis was rejected when H0 was not true, was counted to obtain the
power of the test. The simulation results are presented for the significance level γ= 0.05,
since a) γ= 0.05 is widely used to compare the power of the test and b) similar conclusions
were obtained for other values of γ .

To observe the behaviour of small, moderate and large sample sizes, we used n = 25, 50,
75, 100 and 200. Each Monte Carlo experiment consisted of 10,000 replications. The data
were generated from an IG distribution with β =1 and α was adjusted to obtain the required
coefficient of variation θ . We set θ = 0.10, 0.15, 0.20 and 0.30.

As can be seen in the simulation results shown in Tables 1-4, the empirical type I error
rates of the Wald method were close to the nominal significance level of 0.05 for all sample
sizes while those of the Score method were close to the nominal significance level of 0.05
for larger sample sizes. Note that the Score method had a high empirical type I error rate
when sample sizes were small. The Score method performed well in terms of the power
of the test for θ < θ0. On the other hand, the Wald method performed better for θ > θ0.
We observed a general pattern; when the sample size increases, the power of the test also
increases and the empirical type I error rate approaches 0.05. Also, the power increases as
the value of the CV departs from the hypothesized value of the CV. It was observed that for
large sample sizes, the performance of the test statistics did not differ greatly in the sense of
power and the attainment of the nominal significance level of the test. However, a significant
difference was observed for small sample sizes.
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Table 1. Empirical type I error rates (bold numeric) and powers of tests for IG(102,1),
θ =0.10.

n Method
θ0

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
25 Score 0.6696 0.2744 0.0610 0.0413 0.1155 0.2711 0.4674 0.6806 0.8383

Wald 0.9417 0.7357 0.3994 0.1433 0.0431 0.0483 0.1055 0.2268 0.3772
50 Score 0.9853 0.7963 0.3257 0.0583 0.0820 0.2996 0.6087 0.8623 0.9722

Wald 0.9977 0.9455 0.6460 0.2192 0.0432 0.0962 0.2933 0.5913 0.8365
75 Score 0.9996 0.9561 0.5740 0.1078 0.0680 0.3319 0.7339 0.9436 0.9948

Wald 1.0000 0.9883 0.7927 0.2888 0.0420 0.1454 0.4792 0.8088 0.9681
100 Score 1.0000 0.9911 0.7512 0.1785 0.0688 0.3806 0.8169 0.9816 0.9995

Wald 1.0000 0.9982 0.8867 0.3592 0.0469 0.1976 0.6333 0.9316 0.9967
200 Score 1.0000 1.0000 0.9799 0.4410 0.0595 0.5595 0.9690 0.9999 1.0000

Wald 1.0000 1.0000 0.9919 0.5863 0.0496 0.4089 0.9279 0.9992 1.0000

Table 2. Empirical type I error rates (bold numeric) and powers of tests for IG(46.44, 1),
θ =0.15.

n Method
θ0

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
25 Score 0.1695 0.0592 0.0323 0.0542 0.1131 0.1966 0.3222 0.4602 0.5987

Wald 0.6244 0.3933 0.1982 0.0933 0.0398 0.0350 0.0559 0.1014 0.1703
50 Score 0.6296 0.3168 0.0985 0.0401 0.0794 0.1973 0.3845 0.5925 0.7685

Wald 0.8673 0.6352 0.3253 0.1241 0.0476 0.0580 0.1421 0.2815 0.4585
75 Score 0.8726 0.5564 0.2101 0.0549 0.0702 0.2085 0.4603 0.7160 0.8807

Wald 0.9595 0.7910 0.4546 0.1564 0.0446 0.0814 0.2292 0.4591 0.6954
100 Score 0.9612 0.7378 0.3319 0.0750 0.0651 0.2276 0.5131 0.7890 0.9465

Wald 0.9884 0.8882 0.5468 0.1856 0.0465 0.1005 0.3030 0.5954 0.8423
200 Score 0.9996 0.9757 0.6977 0.1775 0.0556 0.3102 0.7294 0.9599 0.9979

Wald 0.9998 0.9909 0.8137 0.2988 0.0501 0.1901 0.5836 0.9112 0.9923

Table 3. Empirical type I error rates (bold numeric) and powers of tests for IG(27, 1),
θ =0.20.

n Method
θ0

0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24
25 Score 0.0531 0.0332 0.0383 0.0683 0.1146 0.1693 0.2406 0.3386 0.4419

Wald 0.3825 0.2363 0.1356 0.0727 0.0421 0.0319 0.0382 0.0617 0.0920
50 Score 0.2990 0.1337 0.0525 0.0418 0.0782 0.1537 0.2766 0.4017 0.5590

Wald 0.6224 0.4029 0.2099 0.0950 0.0446 0.0501 0.0924 0.1523 0.2578
75 Score 0.5438 0.2697 0.0988 0.0428 0.0677 0.1550 0.3047 0.4879 0.6761

Wald 0.7710 0.5278 0.2700 0.1097 0.0497 0.0571 0.1323 0.2445 0.4195
100 Score 0.7210 0.4130 0.1611 0.0571 0.0616 0.1630 0.3386 0.5600 0.7552

Wald 0.8735 0.6327 0.3462 0.1282 0.0485 0.0642 0.1731 0.3494 0.5535
200 Score 0.9734 0.7889 0.4010 0.1028 0.0545 0.2039 0.4865 0.7950 0.9462

Wald 0.9889 0.8803 0.5573 0.1895 0.0495 0.1178 0.3402 0.6589 0.8870
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Table 4. Empirical type I error rates (bold numeric) and powers of tests for IG(13.11, 1),
θ =0.30.

n Method
θ0

0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34
25 Score 0.0324 0.0431 0.0594 0.0784 0.1094 0.1444 0.1834 0.2214 0.2787

Wald 0.1879 0.1306 0.0915 0.0557 0.0429 0.0328 0.0308 0.0345 0.0457
50 Score 0.0858 0.0535 0.0427 0.0534 0.0736 0.1136 0.1653 0.2352 0.3164

Wald 0.2997 0.2058 0.1178 0.0717 0.0481 0.0410 0.0513 0.0759 0.1034
75 Score 0.1832 0.0934 0.0534 0.0426 0.0623 0.1103 0.1775 0.2544 0.3573

Wald 0.4103 0.2550 0.1497 0.0818 0.0511 0.0474 0.0676 0.1048 0.1649
100 Score 0.2806 0.1494 0.0678 0.0442 0.0603 0.1024 0.1809 0.2853 0.4150

Wald 0.5001 0.3153 0.1690 0.0878 0.0497 0.0474 0.0816 0.1320 0.2227
200 Score 0.6430 0.3718 0.1668 0.0652 0.0517 0.1115 0.2307 0.4030 0.5970

Wald 0.7682 0.5246 0.2832 0.1242 0.0513 0.0618 0.1361 0.2686 0.4456

5. An Empirical Application

To illustrate the applicability of the two statistical methods for testing the CV intro-
duced in the previous section, we used annual rainfall data in millimetres obtained from the
Hydrology Irrigation Center for the Upper Northeastern Region, the Royal Irrigation De-
partment, Thailand (http://hydro-3.rid.go.th). The annual rainfall amounts were measured
at the Irrigation Station, Mueang District, Chaiyaphum, Thailand from 1998 to 2021. The
descriptive statistics are as follows: sample size = 23, mean = 1088.44 mm, standard de-
viation (SD) = 245.79 mm, CV = 0.226, coefficient of skewness = 0.886, and kurtosis =
0.946. The distribution of the annual rainfall amount is right-skewed and it has heavy-tailed
data distribution. The histogram, density plot, Box and Whisker plot, and inverse gamma
quantile-quantile (Q-Q) plot shown in Figure 1 confirm that the fitted distribution for the
annual rainfall amounts is not symmetric.

Table 5 reports the Akaike information criterion (AIC) (Akaike, 1974) results to check
the fitting of the distribution for the annual rainfall amounts in Chaiyaphum. The AIC is
defined as AIC = −2lnL+ 2k, where L is the likelihood function and k is the number of
parameters. The results show that the annual rainfall amounts in Chaiyaphum follow an IG
distribution because the AIC value for this distribution was the smallest. The annual rainfall
amounts in Chaiyaphum had an IG distribution with shape parameter α̂= 26.8951 and scale
parameter β̂= 23588.810, while the MLE for the CV is θ̂= 0.2148.

Our interest was in testing the population CV of the annual rainfall amounts in Chaiya-
phum. Suppose the researcher wanted to test the claim that a population CV equals 0.25.
The null and alternative hypotheses are respectively given as follows:

H0 : θ = 0.25 versus H1 : θ ̸= 0.25.

The lower and upper critical values of both test statistics were shown in Table 6. The null
hypothesis H0 was not rejected since 0.1390 ≤ θ0 ≤ 0.2843 and 0.1721 ≤ θ0 ≤ 0.3634 us-
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ing test statistics based on the Score and Wald methods, respectively. We conclude that
the population CV of the annual rainfall amounts in Chaiyaphum does not differ from
0.25 at the 0.05 significance level.

Table 5. Results of AIC for the annual rainfall amounts in Chaiyaphum, Thailand.
Normal Cauchy Exponential Weibull Gamma Inverse Gamma

321.4549 328.0113 369.6550 323.7112 319.2704 318.2490

Table 6. Critical values of test statistics based on the Score and Wald methods for the
significance level of 0.05

Method
Critical values

Lower Upper
Score 0.1390 0.2843
Wald 0.1721 0.3634
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Figure 2: (a) histogram (b) density plot (c) Box and Whisker plot (d) inverse gamma Q-Q
plot of the annual rainfall amounts in Chaiyaphum, Thailand
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6. Conclusions and Discussion

The aim of this study is to identify potential methods that can be recommended to prac-
titioners for testing the population CV in an IG distribution. A general pattern was observed
(as expected); as the sample size increased, the power of the test also increased and the
empirical type I error rates approached 0.05. Moreover, the power increased as the value
of CV departed from the hypothesized value of the CV. It can be observed that for large
sample sizes, the performance of both methods did not differ greatly in terms of the power
and attaining the nominal size of the test. However, a significant difference was observed
for small sample sizes.

In this study, two statistical methods for testing the population CV in an IG distribution
were derived. Based on the simulation results, it is evident that the Wald method performed
better than the Score method in terms of the empirical type I error rate. The Score method
performed well in the sense of the power of the test when the population CV was smaller
than the hypothesized value of the CV. On the other hand, the Wald method performed better
when the population CV was greater than the hypothesized value of the CV. In summary, we
would recommend the Wald method for testing since its empirical type I error rate is close
to the nominal significance level. Furthermore, Kaewprasert et al. (2020) concluded that
the best method for estimating confidence interval for the CV of the IG distribution was the
Wald method. The conclusions of this study were consistent with the study of Kaewprasert
et al. (2020). In addition, the researchers can apply the proposed methods for testing the
population CV in an IG distribution with other data sets fitted well to an IG distribution.
For example, the IG distribution has been used for the hitting time distribution of a Wiener
process. Future research could focus on the one-tailed hypothesis testing.
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