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An empirical study of hierarchical Bayes small area estimators 
using different priors for model variances 

Yong You1 

Abstract 

In this paper, we study hierarchical Bayes (HB) estimators based on different priors for small 
area estimation. In particular, we use inverse gamma and flat priors for variance components 
in the HB small area models of You and Chapman (2006) and You (2021). We evaluate the 
HB estimators through a simulation study and real data analysis. Our results indicate that 
using the inverse gamma prior for the variance components in the HB models can be very 
effective. 
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1.  Introduction 

Small area estimation is very popular and important in survey data analysis due to 
growing demand for reliable small area estimates. Model-based estimates have been 
widely used to provide reliable indirect estimates. Various area level models have been 
proposed in the literature to improve direct survey estimates, see Rao and Molina 
(2015). In this paper, we use the well-known Fay-Herriot model (Fay and Herriot, 1979) 
as a basic model and present the Fay-Herriot model in hierarchical Bayes (HB) 
framework of You and Chapman (2006) and You (2016, 2021). The Fay-Herriot model 
has two components, namely a sampling model for the direct survey estimates and 
a linking model for small area parameters of interest. The sampling model assumes that 
a direct estimator 𝑦௜ is design unbiased for a small area parameter 𝜃௜  such that 

       𝑦௜ ൌ 𝜃௜ ൅ 𝑒௜,  i = 1,…,m,                                 (1) 

where 𝑒௜ is the sampling error and m is the number of small areas.  It is customary to 
assume that 𝑒௜’s are independently distributed normal random variables with mean  
𝐸ሺ𝑒௜|𝜃௜ሻ ൌ 0 and variance 𝑉𝑎𝑟ሺ𝑒௜|𝜃௜ሻ ൌ 𝜎௜

ଶ.  The linking model assumes that the small 
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area parameter 𝜃௜  is related to area level auxiliary variables 𝑥௜ ൌ ሺ𝑥௜ଵ, . . . , 𝑥௜௣ሻ′ through 
a linear regression model  

       𝜃௜ ൌ 𝑥௜′𝛽 ൅ 𝑣௜,  i = 1,…,m,                             (2) 
where 𝛽 ൌ ሺ𝛽ଵ, . . . ,𝛽௣ሻ′ is a p × 1 vector of regression coefficients and 𝑣௜ ’s are random 
effects assumed to be independent and normally distributed with E(𝑣௜) = 0 and Var(𝑣௜) 
= 𝜎௩ଶ. The model variance 𝜎௩ଶ is unknown and needs to be estimated. Combining models 
(1) and (2) leads to a linear mixed area level model given as  

              𝑦௜ ൌ 𝑥௜′𝛽 ൅ 𝑣௜ ൅ 𝑒௜,  i = 1,…,m.                         (3) 
Model (3) involves both design-based random errors 𝑒௜ and model-based random 

effects 𝑣௜ . For the Fay-Herriot model, the sampling variance 𝜎௜ଶ is assumed to be known 
in model (3). This is a very strong assumption. Generally smoothed estimators of the 
sampling variances are used in the Fay-Herriot model and then treated as known. 
Alternatively, the sampling variance 𝜎௜ଶ can be modelled together with the small area 
parameter 𝜃௜ . Let 𝑠௜ଶ denote a direct estimator for 𝜎௜ଶ. We consider a commonly used 
model for 𝑠௜ଶ as 𝑑௜𝑠௜ଶ~𝜎௜ଶ𝜒ௗ೔

ଶ  , where 𝑑௜ ൌ 𝑛௜ െ 1 and 𝑛௜  is the sample size for the i-th 

area. We combine the sampling variance model 𝑑௜𝑠௜ଶ~𝜎௜ଶ𝜒ௗ೔
ଶ  with the small area model 

(3) to construct an integrated model in the HB framework. The integrated model 
borrows strength for small area estimates and sampling variance estimates 
simultaneously. This integrated HB modelling approach has been widely used 
in practice, for example, see You and Chapman (2006), Dass, Maiti, Ren and Sinha 
(2012), Sugasawa, Tamae and Kubokawa (2017), Ghosh, Myung and Moura (2018), 
Hidiroglou, Beaumont and Yung (2019) and You (2008, 2021).  

In Section 2, we present two HB small area models and consider two priors for 
variance components, namely inverse gamma (IG) prior and flat prior. In Section 3, 
we conduct a simulation study to evaluate the impact of priors on small area estimation. 
In Section 4, we apply the models to a real data application. And in Section 5, we offer 
some concluding remarks.  

2. Hierarchical Bayes small area models  

In this section, we present two HB models with sampling variance modelling.  
The first model is considered in You and Chapman (2006), in which an inverse gamma 
model is used for the sampling variance 𝜎௜ଶ with known vague values. The second model 
is considered in You (2016, 2021), where a log-linear random error model is used  
for 𝜎௜ଶ.  

HB Model 1: You-Chapman Model (You and Chapman, 2006), denoted as YCM: 
 𝑦௜|𝜃௜ ,𝜎௜

ଶ ∼ 𝑖𝑛𝑑 𝑁൫𝜃௜ ,𝜎௜
ଶ൯, i = 1,…,m; 

 𝑑௜𝑠௜
ଶห𝜎௜

ଶ ∼ 𝑖𝑛𝑑 𝜎௜
ଶ𝜒ௗ೔

ଶ , 𝑑௜ ൌ 𝑛௜ െ 1, i = 1,…,m; 



STATISTICS IN TRANSITION new series, September 2023 

 

171

 𝜃௜|𝛽,𝜎௩ଶ ∼ 𝑖𝑛𝑑 𝑁ሺ𝑥௜′𝛽,𝜎௩ଶሻ, i = 1,…,m; 
 𝜎௜

ଶ ∼ 𝐼𝐺ሺ𝑎௜ ,𝑏௜ሻ, where 𝑎௜ ൌ 0.0001, 𝑏௜ ൌ 0.0001, i = 1,…,m;  
 priors for unknown parameters:𝜋ሺ𝛽ሻ ∝ 1, 𝜋ሺ𝜎௩ଶሻ ∼ 𝐼𝐺ሺ𝑎௩,𝑏௩ሻ, where 𝑎௩, 𝑏௩ are 

chosen to be very small constants (0.0001) to reflect vague knowledge on 𝜎௩ଶ. 

The full conditional distributions for the Gibbs sampling procedure under YCM 
can be found in You and Chapman (2006).  

HB Model 2: You (2016, 2021) log-linear model on sampling variances, denoted as 
YLLM: 

 𝑦௜|𝜃௜ ,𝜎௜
ଶ ∼ 𝑖𝑛𝑑 𝑁൫𝜃௜ ,𝜎௜

ଶ൯, i = 1,…,m; 
 𝑑௜𝑠௜

ଶห𝜎௜
ଶ ∼ 𝑖𝑛𝑑 𝜎௜

ଶ𝜒ௗ೔
ଶ ,  𝑑௜ ൌ 𝑛௜ െ 1, i = 1,…,m; 

 𝜃௜|𝛽,𝜎௩ଶ ∼ 𝑖𝑛𝑑𝑁ሺ𝑥௜′𝛽,𝜎௩ଶሻ, i = 1,…,m; 
 𝑙𝑜𝑔ሺ 𝜎௜

ଶሻ~𝑁 ሺ𝛿ଵ ൅ 𝛿ଶ 𝑙𝑜𝑔ሺ 𝑛௜ሻ, 𝜏ଶሻ, i = 1,…,m; 
 priors for unknown parameters:𝜋ሺ𝛽ሻ ∝ 1, 𝜋ሺ𝛿ଵ, 𝛿ଶሻ ∝ 1, 𝜋ሺ𝜎௩ଶሻ ∼ 𝐼𝐺ሺ𝑎௩,𝑏௩ሻ, 

𝜋ሺ𝜏ଶሻ ∼ 𝐼𝐺ሺ𝑎ఛ,𝑏ఛሻ, where 𝑎௩,  𝑏௩, 𝑎ఛ, 𝑏ఛ are chosen to be very small constants 
(say, 0.0001).  

The full conditional distributions for the Gibbs sampling procedure under YLLM 
are given in the Appendix.  

For both YCM and YLLM, we use IG priors with very small constant parameters 
for the variance components 𝜎௩ଶ and 𝜏ଶ. Ghosh, Myung and Moura (2018) used an IG 
prior with some fixed values for the model variance 𝜎௩ଶ. IG prior is a proper prior and 
conditionally conjugate for the variance components. IG prior is widely used 
in Bayesian literature (e.g. Gelman, Carlin, Stern and Rubin, 2004) and Bayesian 
software packages (e.g. WinBUGS, Lunn, Thomas, Best and Spiegelhalter, 2000). 
Alternatively, flat priors 𝜋ሺ𝜎௩ଶሻ ∝ 1 and 𝜋ሺ𝜏ଶሻ ∝ 1 can be used for the model variances 
𝜎௩ଶ and 𝜏ଶ in the YCM and YLLM models. Flat prior is used as a non-informative prior 
in the literature (e.g. Gelman, 2006). You (2021) compared the models of YCM and 
YLLM with the model of Sugasawa, Tamae and Kubokawa (2017) using flat priors on 
the variance components. In this paper we use YCM and YLLM as two studying models 
and compare the HB estimators using IG and flat priors through simulation study and 
real data analysis.  

3. Simulation study 

In this section, we estimate model variance 𝜎௩ଶ and small area means through 
a simulation study. We generate 𝜃௜ ൌ 𝒙ᇱ௜𝛽 ൅ 𝑣௜ ൌ 𝛽଴ ൅ 𝑥௜𝛽ଵ ൅ 𝑣௜ with 𝛽଴ ൌ 3.5 and 
𝛽ଵ ൌ 1.5 fixed through the simulation. The single covariate 𝑥௜  is generated from an 
exponential distribution with mean equal to 1, and then fixed for the simulation study. 
Random effect 𝑣௜  is generated from 𝑣௜ ~𝑁ሺ0,𝜎௩ଶሻ. Following Lahiri and Rao (1995) and 



172                                             Y. You: An empirical study of hierarchical Bayes small area estimators … 

 

 

Rivest and Vandal (2002), we let the number of small areas m = 30. These 30 areas are 
divided into five groups with different sampling variances. The true sampling variance 
is set at 𝜎௜ଶ = 1, 0.75, 0.5, 0.25, and 0.1 for each grouped areas, with the corresponding 
sample size  𝑛௜= 4, 6, 8, 10 and 12. That is, for areas from 1 to 6, 𝜎௜ଶ = 1 (i = 1,…,6) and 
the corresponding sample size 𝑛௜= 4 for each area (i = 1,…,6). For areas 7 to 12,  𝜎௜ଶ = 
0.75 (i = 7,…,12) and the corresponding sample size 𝑛௜= 6 for each area (i = 7,…,12). 
And so on for other areas. We consider three choices of the model variance: the true 𝜎௩ଶ 
is set to be 1, 0.5 and 0.1, respectively. The direct sampling variance estimate is 
generated as  𝑠௜ଶ ൌ ሺ𝑑௜ሻ

ିଵ𝜎௜
ଶ𝜒ௗ೔

ଶ , where 𝑑௜  = 𝑛௜ െ 1 (e.g. Ghosh, Myung and Moura, 
2018; You, 2021). For each case, we perform 5000 simulation runs. For each run, the 
Gibbs sampling procedure consists of 1000 burn-in period and 5000 more iterations for 
each simulation run.  

We first compare the estimates of the model variance 𝜎௩ଶ based on YCM and YLLM 
using IG and flat priors on 𝜎௩ଶ. Table 1 presents the estimates of 𝜎௩ଶ when the true 𝜎௩ଶ 
is 1, 0.5 and 0.1. It is clear from Table 1 that both YCM and YLLM lead to almost 
unbiased estimates of the model variance under IG prior. However, when flat prior is 
used, both YCM and YLLM lead to over-estimation of the model variance. The over 
estimation is substantially large when the true model variance is small. For example, if 
the true 𝜎௩ଶ is 1, under flat prior, both YCM and YLLM lead to about 22% over-
estimation; if the true 𝜎௩ଶ is 0.1, the over-estimation could be more than 100%. The 
result in Table 1 indicates that IG prior performs much better than the flat prior for the 
model variance estimation.  

Table 1:  Estimates of model variance under YCM and YLLM using IG and flat priors 

True 𝜎௩ଶ 
YCM YLLM 

IG prior Flat prior IG prior Flat prior 

1 1.025 1.217 1.027 1.228 
0.5 0.518 0.683 0.512 0.672 
0.1 0.119 0.251 0.096 0.225 

To compare the small area HB estimators, we consider the average absolute relative 
bias (ARB) for the HB estimator 𝜃෠௜ of the simulated small area mean 𝜃௜  as 𝐴𝑅𝐵 ൌ
ሺ∑ 𝐴𝑅𝐵௜

௠
௜ୀଵ ሻ/𝑚, where  

𝐴𝑅𝐵௜ ൌ ฬ
ଵ

ோ
∑

ሺఏ෡೔
ሺೝሻିఏ೔

ሺೝሻሻ

ఏ೔
ሺೝሻ

ோ
௥ୀଵ ฬ, 

and  𝜃෠௜
ሺ௥ሻ is the HB estimate and 𝜃௜

ሺ௥ሻ is the true mean based on the r-th simulated 
sample, R = 5000. The estimated average coefficient of variation (ACV) is computed as 
𝐴𝐶𝑉 ൌ ሺ∑ 𝐶𝑉௜

௠
௜ୀଵ ሻ/𝑚, where  

𝐶𝑉௜ ൌ
ଵ

ோ
∑ 𝐶𝑉௜

ሺ௥ሻோ
௥ୀଵ and 𝐶𝑉௜

ሺ௥ሻ ൌ
ට௩௔௥ሺఏ෡೔

ሺೝሻሻ

ఏ෡೔
ሺೝሻ  
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where 𝑣𝑎𝑟ሺ 𝜃෠௜
ሺ௥ሻሻ is estimated posterior variance of the HB estimator �̑�௜

ሺ௥ሻ. We also 
compare the average simulation relative root MSE (RRMSE), and the RRMSE is 
computed as 𝑅𝑅𝑀𝑆𝐸 ൌ ሺ∑ 𝑅𝑅𝑀𝑆𝐸௜

௠
௜ୀଵ ሻ/𝑚, where 

𝑅𝑅𝑀𝑆𝐸௜ ൌ
ଵ

ோ
∑ 𝑅𝑅𝑀𝑆𝐸௜

ሺ௥ሻோ
௥ୀଵ , and 𝑅𝑅𝑀𝑆𝐸௜

ሺ௥ሻ ൌ
ටሺఏ෡೔

ሺೝሻିఏ೔
ሺೝሻሻమ

ఏ೔
ሺೝሻ . 

Table 2 presents the comparison results of ARB, ACV and RRMSE under models 
YCM and YLLM using IG and flat priors. The HB estimator 𝜃෠௜ should be unbiased for 
the small area parameter 𝜃௜  following the conditional posterior distribution of 𝜃௜  given 
in the Appendix. When the true 𝜎௩ଶ= 1, the average ARB is around 1.7% to 1.8% for 
both models YCM and YLLM, and the average ARB becomes much smaller when the 
true  𝜎௩ଶ= 0.1. The results of ARB also indicate that the posterior HB estimators are 
unbiased for the small area parameter 𝜃௜  under both the IG and flat priors. However, 
both YCM and YLLM have smaller average CVs and RRMSE using IG prior, and 
particularly, using the flat prior leads to much larger average CVs for both YCM and 
YLLM. For example, when the true 𝜎௩ଶ= 0.1, the average CV using flat prior is 8.15% 
under YCM and 7.88% under YLLM, the average CV using IG prior is 5.87% under 
YCM and 5.56% under YLLM. The results in Table 2 indicate that both IG and flat 
priors lead to similar performance of the HB estimator. However, using IG prior in both 
YCM and YLLM leads to smaller CV and RRMSE for the HB estimator. The results 
in Table 2 also demonstrate that YLLM performs slightly better than YCM in terms of 
CV and RRMSE. This simulation result is consistent with the results shown in You 
(2021).  

Table 2:  Comparison of average ARB%, average CV (ACV%) and RRMSE%  

Specification 𝜃෠௜
ு஻ 

YCM YLLM 

IG prior Flat prior IG prior Flat prior 

𝜎௩ଶ=1 
ARB 1.83 1.78 1.73 1.77 
ACV 12.31 12.69 12.07 12.48 

RRMSE 10.49 10.46 10.24 10.25 

𝜎௩ଶ=0.5 
ARB 1.15 1.14 1.14 1.16 
ACV 9.99 10.93 9.87 10.71 

RRMSE 8.76 8.87 8.62 8.78 

𝜎௩ଶ=0.1 
ARB 0.22 0.35 0.28 0.31 
ACV 5.87 8.15 5.56 7.88 

RRMSE 5.68 5.72 5.45 5.56 
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4. Data analysis   

In this section, we compare YCM and YLLM using IG and flat priors through a real 
data application. Following Hidiroglou, Beaumont and Yung (2019) and You (2021), 
we apply both the YCM and YLLM to a Canadian Labour Force Survey (LFS) data and 
compare the HB estimates of unemployment rates with the census estimates. We apply 
both the YCM and YLLM to the May 2016 unemployment rate estimates for the Census 
Metropolitan Areas (CMAs) and Census Agglomerations (CAs), and then we compare 
the HB estimates and the direct estimates with the census estimates. For both the YCM 
and YLLM, the local area employment insurance monthly beneficiary rate is used as an 
auxiliary variable in the model, same as in Hidiroglou, Beaumont and Yung (2019) and 
You (2021). We compute the absolute relative error (ARE) of the direct and HB 
estimates with respect to the census estimates for each CMA/CA as follows: 

ARE௜ ൌ ฬ
ఏ೔
಴೐೙ೞೠೞିఏ೔

ಶೞ೟

ఏ೔
಴೐೙ೞೠೞ ฬ, 

where 𝜃௜ா௦௧  is the direct or HB estimate and 𝜃௜஼௘௡௦௨௦ is the corresponding census value 
of the LFS unemployment rate. Then we take the average of AREs over CMA/CAs. For 
CV, we compute the average CVs of the direct and model-based estimates. We prefer a 
model with smaller ARE and smaller CV. We first apply both models YCM and YLLM 
to all the 117 CMA/CAs with sample size ൒ 2, and then apply to 92 CMA/CAs with 
sample size ൒ 5, and 79 CMA/CAs with sample size ൒ 7, respectively. Table 3 presents 
the average ARE and the corresponding average CV (in brackets) for the YCM and 
YLLM using IG and flat priors.  

Table 3:  Comparison of average ARE and average CV (in parenthesis) 

CMA/CAs Direct  
LFS 

YCM 
IG prior 

YCM 
Flat prior 

YLLM 
IG prior 

YLLM 
Flat prior 

Average over 117 CMA/CAs 
(sample size ൒ 2) 

0.263 
(0.329) 

0.149 
(0.127) 

0.148 
(0.136) 

0.135 
(0.116) 

0.135 
(0.123) 

Average over 92 CMA/CAs 
(sample size ൒ 5) 

0.216 
(0.262) 

0.132 
(0.115) 

0.132 
(0.121) 

0.126 
(0.112) 

0.125 
(0.117) 

Average over 79 CMA/CAs 
(sample size ൒ 7) 

0.181 
(0.232) 

0.123 
(0.112) 

0.122 
(0.115) 

0.119 
(0.109) 

0.118 
(0.114) 

 
It is clear from Table 3 that both the YCM and YLLM improve the direct LFS 

estimates substantially by reducing the average ARE and CV, and YLLM performs 
better than YCM. For both the YCM and YLLM, using IG and flat priors leads to about 
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the same ARE. However, using IG prior in the models can lead to smaller CV as shown 
in Table 3. For example, for YCM, the average CV over 117 CMA/CAs is 0.127 under 
IG prior and 0.136 under flat prior. For YLLM, the average CV is 0.116 under IG prior 
and 0.123 under flat prior. Thus, in our application, for the point estimation, there is 
no difference using IG or flat prior. However, using IG prior in both the YCM and 
YLLM can lead to smaller CV. This result is consistent with the simulation result 
reported in Table 2.  

Now we present a Bayesian model comparison using conditional predictive 
ordinate (CPO) for both the YCM and YLLM with IG and flat priors. CPOs are the 
observed likelihoods based on the cross-validation predictive density 𝑓ሺ𝑦௜|𝑦௢௕௦ሺ௜ሻሻ. We 
compute the CPO value CPO௜ ൌ 𝑓ሺ𝑦௜,௢௕௦|𝑦௢௕௦ሺ௜ሻሻ for each observed data point 𝑦௜,௢௕௦, 
and larger CPO௜ indicates a better model fit. For model choice, we can compute the 
CPO ratio of model A against model B. If this ratio is greater than 1, then 𝑦௜,௢௕௦ supports 
model A. We compute the CPO ratios for YCM IG/Flat and YLLM IG/Flat, and count 
the number of the CPO ratios that are larger than 1. We can also plot the CPO values 
or summarize the CPO values by taking the average of the estimated CPOs. For more 
detail on applications of CPO, see for example, Gilks, Richardson and Spiegelhalter 
(1996), You and Rao (2000), Molina, Nandram and Rao (2014) and You (2021). Table 4 
presents the average CPO values and # of CPO ratios larger than 1 over the 117, 92 and 
79 CMA/CAs for the YCM and YLLM with IG vs flat priors.  

Table 4:  Summary of the average CPO values and # of CPO ratios larger than 1 

CMA/CAs 

YCM YLLM 

IG  
prior 

Flat  
prior 

# of CPO  
ratio >1 

IG 
prior 

Flat  
prior 

# of CPO  
ratio >1 

117 0.1228 0.1222 76 0.1253 0.1242 73 

92 0.1412 0.1392 61 0.1419 0.1398 59 

79 0.1516 0.1491 50 0.1526 0.1517 52 

It is clear from Table 4 that for both the YCM and YLLM models, IG prior has 
larger CPO values than flat prior, and more than half of the observations support the 
model with IG prior. For example, over 117 CMA/CAs, for YCM, the average CPO 
under IG prior is 0.1228, and 0.1222 under flat prior, and 76 observations support YCM 
with IG prior. For YLLM, the average CPO is 0.1253 under IG prior and 0.1242 under 
flat prior, and 73 observations support YLLM with IG prior. We also note that the 
YLLM model is better than the YCM with larger CPO values for both IG and flat priors.  
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5. Concluding remarks 

In this paper, we have studied the performance of HB small area models using IG 
and flat priors on variance components through a simulation study and real data 
analysis. Our results indicate that both the YCM (You and Chapman 2006) and YLLM 
(You, 2021) models using IG and flat priors perform very well. However, using IG prior 
in both the YCM and YLLM leads to slightly better results (smaller CV) and better 
model fit. Our simulation study and real data analysis demonstrate that proper IG prior 
should be used in the HB small area models for variance components. Flat prior for the 
model variance should be avoided as using the flat prior has no advantage over the IG 
prior with respect to the final HB estimates. For future work, informative priors such 
as IG prior with parameter values based on previous survey data could also be used in 
the model to improve the HB small area estimators. It is also interesting to compare the 
HB estimators using informative priors.  
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Appendix 

 
Full conditional distributions and sampling procedure for the YLLM model:  

 ሾ𝜃௜|𝑦,𝛽,𝜎௜
ଶ,𝜎௩ଶሿ~𝑁 ൫𝛾௜𝑦௜ ൅ ሺ1 െ 𝛾௜ሻ𝑥௜′𝛽, 𝛾௜𝜎௜

ଶ൯, where 𝛾௜ ൌ
ఙೡమ

ఙೡ
మାఙ೔

మ,  

𝑖 ൌ 1, . . . ,𝑚; 

 ሾ𝛽|𝑦,𝜃,𝜎௜
ଶ,𝜎௩ଶሿ~𝑁௣ሺሺ∑ 𝑥௜

௠
௜ୀଵ 𝑥௜′ሻିଵሺ∑ 𝑥௜𝜃௜

௠
௜ୀଵ ሻ,𝜎௩ଶሺ∑ 𝑥௜𝑥௜′

௠
௜ୀଵ ሻିଵሻ;  

 ሾ𝜎௩ଶ|𝑦,𝜃,𝛽,𝜎௜
ଶሿ~ 𝐼 𝐺 ቀ𝑎௩ ൅

௠

ଶ
, 𝑏௩ ൅

ଵ

ଶ
∑ ሺ𝜃௜ െ 𝑥௜′𝛽ሻଶ
௠
௜ୀଵ ቁ;  

 ൣ𝜎௜
ଶห𝑦,𝜃,𝛽,𝜎௩ଶ, 𝛿, 𝜏ଶ൧ ∝ 𝑓ሺ𝜎௜

ଶሻ ⋅ ℎሺ𝜎௜
ଶሻ, where 𝑓ሺ𝜎௜ଶሻ and  ℎሺ𝜎௜ଶሻ are 

𝑓ሺ𝜎௜
ଶሻ~ 𝐼 𝐺 ቀ

ௗ೔ାଵ

ଶ
,
ሺ௬೔ିఏ೔ሻమାௗ೔௦೔

మ

ଶ
ቁ, and ℎሺ𝜎௜ଶሻ ൌ 𝑒𝑥𝑝 ቀെ

ሺ௟௢௚ሺఙ೔
మሻି௭ᇲ೔ఋሻమ

ଶఛమ
ቁ; 

 ሾ𝛿|𝑦,𝜃,𝛽,𝜎௜
ଶ,𝜎௩ଶ, 𝜏ଶሿ~𝑁ଶ൫ሺ∑ 𝑧௜𝑧ᇱ௜

௠
௜ୀଵ ሻିଵሺ∑ 𝑧௜ 𝑙𝑜𝑔ሺ 𝜎௜

ଶሻ௠
௜ୀଵ ሻ, 𝜏ଶሺ∑ 𝑧௜𝑧ᇱ௜

௠
௜ୀଵ ሻିଵ൯;  

 ሾ𝜏ଶ|𝑦௜ ,𝜃 ,𝛽,𝜎௜
ଶ,𝜎௩ଶ, 𝛿ሿ~ 𝐼 𝐺 ቀ𝑎ఛ ൅

௠

ଶ
, 𝑏ఛ ൅

ଵ

ଶ
∑ ሺ𝑙𝑜𝑔ሺ 𝜎௜

ଶሻ െ 𝑧ᇱ௜𝛿ሻଶ
௠
௜ୀଵ ቁ. 

 
 
We use Metropolis-Hastings rejection step to update 𝜎௜ଶ:  

(1) Draw 𝜎௜ଶ
∗ from 𝐼𝐺 ቀௗ೔ାଵ

ଶ
,
ሺ௬೔ିఏ೔ሻమାௗ೔௦೔

మ

ଶ
ቁ; 

(2) Compute the acceptance probability 𝛼 ቀ𝜎௜ଶ
∗
,𝜎௜

ଶሺ௞ሻቁ ൌ 𝑚𝑖𝑛 ቄℎሺ𝜎௜
ଶ∗ሻ/ℎሺ𝜎௜

ଶሺ௞ሻሻ,1ቅ;  

(3) Generate 𝑢 from Uniform(0,1), if 𝑢 < 𝛼 ቀ𝜎௜ଶ
∗
,𝜎௜

ଶሺ௞ሻቁ, the candidate 𝜎௜ଶ
∗ is 

accepted, 𝜎௜ଶ
ሺ௞ାଵሻ

ൌ 𝜎௜
ଶ∗; otherwise 𝜎௜ଶ

∗ is rejected, and set 𝜎௜ଶ
ሺ௞ାଵሻ

ൌ 𝜎௜
ଶሺ௞ሻ. 

 


