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Abstract

Analyzing survival (life-testing) data and drawing inferences about them is a part of engi-
neering and health sciences. So far, various statistical tools, e.g., survival (reliability) func-
tion (s f ), probability density function (pd f ), and hazard rate function (HR) were available
among decision-making scientists to handle time-to-event data (complete or censored). But
because functions (pd f ) estimators were interval (window) based, they mostly gave qualita-
tive ideas having pictorial representation resembling step functions, ordinate remain constant
when abscissa vary over an interval, thereby giving incomplete information. However, it can
be sorted out with the use of kernel estimates of the above mentioned functions, resulting
into smooth estimators. Moreover, the metric based on aging intensity function (AI) gives
an alternative way of studying lifetime or clinical datasets as it is a quantitative measure (not
interval-based), thereby depicting a broader view of a given data. In our study, we primar-
ily focus on AI and HR functions estimated using four different kernels. We apply them to
a case study of patients with primary malignant tumors of sternum (cf. Daniel and Cross,
2014) with the right-censored data. Our result shows that kernel estimates of HR and AI
functions for patients with high grade tumor (HGT ) are higher than for patients with low
grade tumor (LGT ), as expected. Thus, the study opens up a new direction for applying AI
and HR functions in health sciences and engineering studies.

Key words: hazard rate, aging intensity function, kernels, survival analysis, cancer statistics,
clinical datasets.

1. Introduction

The comparison of two different products for two different brands has high importance
in many fields including but not limited to reliability theory, biological sciences, and foren-
sic sciences. In survival analysis, the remaining lifetimes of a component at different times
of its life span needs to be compared to determine how the component is aging with time.
Various stochastic orders between random variables, viz., classical stochastic (st) order,
hazard rate (hr) order, likelihood ratio (lr) order, aging intensity (ai) order, etc. have been
studied in the literature (cf. Shaked and Shanthikumar (2007)). In this regard, our article
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analyzes a case study of cancer data cited in Daniel and Cross (2014).
Emmerson and Brown (2021), Rosen et al. (2020) and others discuss the use of

Kaplan-Meier survival analysis in evaluating the efficiency of onco-drugs in randomised
controlled trials (RCTs). Further, Nayak et al. (2021) apply Kaplan-Meier analysis to as-
sess a potential oncoprotein ATAD2 as a prognostic marker for stomach cancer. Inquisitive
readers can further explore on Kaplan-Meier Plotter (KMP, http://kmplot.com/analysis/),
which is a web-based meta-analysis biomarker validation tool used in medical research and
also used by Nayak et al. (2021) in the analysis of stomach cancer.

The treatment management of cancer starts with the determination of stages (how big
the tumor is and how far it is spread) and grades (how fast it grows) of the tumor. A higher
stage and/or grade of tumor may grow and spread rapidly and may require immediate treat-
ment action. For example, high-grade tumors (HGT ) are more aggressive than the low
grade tumors (LGT ). Therefore, severity of the disease and treatment management could be
more complicated for HGT . Moreover, every cancer sub-type is unique.

A statistical account on patients with the same cancer sub-type often help the pub-
lic health community to estimate the prognosis better. Therefore, to improve the treatment
spectrum of the complex disease like cancer, there is an immense importance of statistical
analysis using incidence and survival data from the vast range of original datasets that are
generally accumulated in authentic and authoritative public repository databases. However,
to dig out meaningful information from those datasets, the statistical analytical tools are
required to be robust and bias-free. So, we make an attempt to apply it for a particular data
so as to follow its aging pattern.

Although aging intensity function AI, defined as the ratio of the instantaneous HR to
its average, has already gathered some familiarity in recent literature of statistics, to the
best of our knowledge its application in analysis of survival data is sparse (cf. Misra and
Bhattacharjee (2018)). Here, in this study, we take up a strategy of implementing kernels
estimates of hazard rate (HR) and aging intensity (AI) functions for the survival analysis
of a particular censored data of patients suffering from malignant tumors of sternum (cf.
Daniel and Cross (2014)). Censoring of data arises as lifetimes occur only within certain
intervals. Censored data are useful when their survival time is truncated at a certain point of
time.

The rest of our article is organized as follows. Portfolio of HR and the AI functions
are presented in Section 2. A brief survey on kernels used in estimation follows. In Section
3, we cite a dataset which has been taken up in our present study and discuss the results so
obtained. The significance of the paper is established in concluding remarks of Section 4. In
Section 5, the Appendix speaks about the detailed calculations of this work connected with
four presented kernels and gives a short comparison between them based on goodness-of-fit
test. The notation r.v. is used in place of random variable.

2. Portfolio of HR and AI functions

The keywords of this work are hazard rate HR and aging intensity AI functions, which
are being here used along with their kernel estimates for application in medical statistics,
especially cancer analysis and in health sciences. To this end, we give a brief note of the
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aforementioned concepts in the ensuing discussions.

2.1. Hazard rate interpretation

Let T be a random variable representing any lifetime of a system with a well-defined
statistical distribution having probability density function (pd f ) denoted by f , and survival
function (or popularly known as reliability function) (s f ) denoted by F . S f of a r.v. T at
time t is given by FT (t) = P(T > t) which represents the probability of surviving over time
t. The cumulative distribution function (cd f ) is FT (t) = 1−FT (t), t > 0. Hazard rate (HR)
function, known also in survival analysis as failure rate, is defined for a continuous random
variable T as

hT (t) = lim
∆t→0

P [t < T ≤ t +∆t|T > t]
∆t

=
fT (t)

FT (t)
, where density is defined. (2.1)

If the hazard rate is high, then it implies that the corresponding unit with life-time T is aging
faster. Other functions used in the study of aging analysis are reversed hazard rate, mean
residual life (cf. Nanda et al. (2010)), reversed mean residual life (cf. Nanda et al. (2006),
Shaked and Shanthikumar (2007)) functions, etc.

2.2. Significance of aging intensity function

Jiang et al. (2003) classifies a unimodal hazard rate as quasi-decreasing (anti-aging),
quasi-increasing (aging) or quasi-constant (non-aging) depending on whether its mode tc,
(called critical time) is small, large or moderate, respectively. A distribution is classified as
quasi-constant if the hazard rate curve is relatively flat. They claim that the representation
of aging of a system by hazard rate is qualitative. Thereby, they introduced a notion, called
aging intensity (AI), to quantitatively evaluate the aging property of a system. AI of a
random variable T , denoted by LT (t), is defined as the ratio of the instantaneous hazard rate
hT (t) given by (2.1) to the hazard rate average 1

t HT (t), where HT (t) =
∫ t

0 hT (u)du is the
cumulative hazard rate, i.e.,

LT (t) =
hT (t)

1
t HT (t)

. (2.2)

It is easy to see that (2.2) can be also presented as

LT (t) =
−t fT (t)

FT (t) lnFT (t)
, for t > 0. (2.3)

The concept of aging intensity (AI) function is found in Nanda et al. (2007), Bhat-
tacharjee et al. (2013b), Bhattacharjee et al. (2022) for quantitative study of the aging
process of a system. Bhattacharjee et al. (2013a), Misra and Bhattacharjee (2016), Swain et
al. (2021) illustrate the properties of AI function and its usage on a complete dataset. Misra
and Bhattacharjee (2018) gave a comparative role of HR, and AI functions on analysis of
data (censored). Szymkowiak (2018, 2019, 2020) gave a detailed literature on AI function.
Giri et al. (2023) studied HR, AI functions of different Weibull models and simulated data
from Weibull distributions.
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For a complete data, the empirical estimates of pd f , cd f and AI functions, denoted by
f̂ (t), F̂(t) and L̂(t), respectively, are given by (cf. Bhattacharjee et al. (2013a), Szymkowiak
(2018))

f̂emp(t) =
Ns(t j)−Ns(t j +∆t j)

N∆t j
,

F̂emp(t) =
N −Ns(t j)

N
, (2.4)

L̂emp(t) =− t f̂ (t)[
1− F̂(t)

]
ln
[
1− F̂(t)

] =−t
{Ns(t j)−Ns(t j +∆t j)

∆t jNs(t j) ln Ns(t j)
N

}
, (2.5)

for t j ≤ t ≤ t j +∆t j. Here, N,Ns(t j) and Ns(t j +∆t j) refer to the total number of survivors
at t = 0 (beginning of the life-testing), t = t j and t = t j +∆t j, respectively.

The above defined estimates f̂emp(t) and F̂emp(t) for HGT and LGT patients are pre-
sented in Figure 5.13 and Figure 5.29, respectively, as the blue step functions. One can
justify the fact that AI function is a quantitative measure of aging as the factor t is involved
in (2.5), which gives rise to a smooth (or not window) estimator.

Refer Klein and Moeschberger (2003) for detailed analysis on estimator of cumulative
hazard rate H(t) =

∫ t
0 h(u)du and hazard rate h(t). Ĥ(t), is the estimator given by Nelson-

Aalen for H(t) and the slope of this estimator gives a rough estimate of the ĥ(t). Clearly,

the estimator of AI function (2.2) is given by L̂(t) = ĥ(t)
1
t Ĥ(t)

, t > 0.

The following subsection gives a brief survey of kernels which helps us to give smooth
(not window-based) estimators for functions used in statistics.

2.3. Kernels: a brief survey

If probability density function is unknown or difficult to obtain in parametric distribu-
tions, we can use kernel estimates of pd f and cd f functions for their applications in statis-
tical inference. One can refer to DiNardo and Tobias (2001) to name a few. These problems
are faced primarily by statisticians who are engaged in evaluating reliability. An important
aspect of aforementioned kernel estimation is associated with selecting suitable kernel and
the choice of its corresponding bandwidth (b). Readers can explore on some well-known
literature (cf. Miladinovic (2008)) on ranking of seven crucial kernels on the basis of their
(optimal) bandwidth.

The expressions of kernel estimates of pd f ,cd f and s f are, respectively, given by the
following definition (cf. Miladinovic (2008)).

Definition 2.1 If T1,T2, . . . ,Tn are i.i.d. random variables with the same fn(t), the kernel
estimate of pd f is given by

f̂n(t) =
1
nh

n

∑
i=1

K
(

t −Ti

b

)
, (2.6)

where b is the bandwidth and K(u) is a kernel smoothing function so chosen. The kernel
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estimate of the cd f and survival (reliability) function (s f ) are, respectively, given by

F̂n(t) =
1
n

n

∑
i=1

∫ t

−∞

K
(

u−Ti

b

)
du, (2.7)

and F̂n(t) = 1− F̂n(t).

We list four kernels as follows (cf. Bowman and Azzalini (1997), Miladinovic (2008)).
Here, I(A) refers to the fact that I(x) = 1, if x ∈ A and I(x) = 0, if x ̸∈ A, where A ̸= /0.

(i) Epanechnikov (EPA) kernel, K(u) = 3
4 (1−u2)I(|u| ≤ 1)

(ii) Normal (Gaussian) kernel, K(u) = 1√
2π

e−0.5u2

(iii) Triangle kernel, K(u) = (1− | u |)I(| u |≤ 1)

(iv) Box (Uniform) kernel, K(u) = 0.5I(| u |≤ 1)

The kernels must satisfy a set of properties as given in the following remark.

Remark 2.1 The kernels must satisfy the conditions
∫

∞

−∞
K(u)du= 1,

∫
∞

−∞
uK(u)du= 0 and∫

∞

−∞
u2K(u)du > 0.

The properties possessed by the kernels are partially the same as that of the kernel density
estimates. Epanechnikov introduced the kernel after his name for density estimation in
1956. The bandwidth b plays a crucial role and is assigned a value in such a way that it
minimizes mean-squared error or it helps in obtaining the required degree of smoothness. To
obtain the aging intensity estimator, we use (2.6) and (2.7). These are available in MATLAB
as ksdensity function.
As usual,

ĥn(t) =
f̂n(t)

1− F̂n(t)
=

1
nh ∑

n
i=1 K

(
t−Ti

b

)
1− 1

n ∑
n
i=1

∫ t
−∞

K
(

u−Ti
b

)
du

.

and by (2.3) aging intensity estimate is equal to

L̂n(t) = −
t 1

nh ∑
n
i=1 K

(
t−Ti

b

)
[
1− 1

n ∑
n
i=1

∫ t
−∞

K
(

u−Ti
b

)
du

]
ln
[
1− 1

n ∑
n
i=1

∫ t
−∞

K
(

u−Ti
b

)
du

] .
Here, we apply only four kernels estimates of HR and AI: Box kernels, ĥB, L̂B, Epanech-
nikov (EPA) kernels, ĥE , L̂E , Normal kernels, ĥN , L̂N , and Triangle kernels, ĥT , L̂T , respec-
tively.

3. Analysis of cancer data: results and discussion

We refer to data given in Martini et al. (1996) and Daniel and Cross (2014), displayed in
Table 3.1. They noted primary malignant tumors of the sternum in patients with low-grade
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Table 3.1: Data: Malignant Tumors of Sternum (cf. Daniel and Cross (2014))

Subject Time Vital Tumor Subject Time Vital Tumor
t [month] Status Grade t [month] Status Grade

1 29 dod LGT 21 155 ned LGT
2 129 ned LGT 22 102 dod LGT
3 79 dod LGT 23 34 ned LGT
4 138 ned LGT 24 109 ned LGT
5 21 dod LGT 25 15 dod LGT
6 95 ned LGT 26 122 ned HGT
7 137 ned LGT 27 27 dod HGT
8 6 ned LGT 28 6 dod HGT
9 212 dod LGT 29 7 dod HGT

10 11 dod LGT 30 2 dod HGT
11 15 dod LGT 31 9 dod HGT
12 337 ned LGT 32 17 dod HGT
13 82 ned LGT 33 16 dod HGT
14 33 dod LGT 34 23 dod HGT
15 75 ned LGT 35 9 dod HGT
16 109 ned LGT 36 12 dod HGT
17 26 ned LGT 37 4 dod HGT
18 117 ned LGT 38 0 d po HGT
19 8 ned LGT 39 3 dod HGT
20 127 ned LGT

tumor LGT (25 patients) or high-grade tumor HGT (14 patients), respectively (source: data
provided courtesy of Dr. Martini).

The notations used in Table 3.1 are depicted as dod for ‘dead of disease’ (treated as
uncensored data); ned for ‘no evidence of disease’ (treated as censored data) and d po for
‘dead post operation’ (treated as uncensored data). Throughout this paper, t is given in
months. In this article we aim to study the aging phenomena among the disease groups

Table 3.2: Kernel estimates of AI for HGT

t L̂B(t) L̂E (t) L̂N(t) L̂T (t)
0 – – – –
2 0.3306 0.3351 0.3660 0.3526
3 0.4413 0.4687 0.5132 0.4976
4 0.5328 0.5918 0.6392 0.6198
6 0.7542 0.7965 0.8350 0.8139
7 0.8995 0.8774 0.9082 0.8896
9 1.0286 1.0007 1.0137 1.0130
12 1.1289 1.1295 1.0942 1.1022
16 1.1802 1.1711 1.1230 1.1802
17 1.2682 1.1713 1.1257 1.1783
23 0.9968 1.1023 1.1513 1.1454
27 1.0251 1.0771 1.1057 1.1197

Table 3.3: Kernel estimates of HR for HGT

t ĥB(t) ĥE (t) ĥN(t) ĥT (t)
0 0.0318 0.0309 0.0305 0.0307
2 0.0383 0.0377 0.0395 0.0388
3 0.0398 0.0413 0.0441 0.0433
4 0.0415 0.0455 0.0486 0.0475
6 0.0504 0.0540 0.0570 0.0555
7 0.0585 0.0580 0.0608 0.0593
9 0.0663 0.0652 0.0673 0.0666

12 0.0744 0.0751 0.0738 0.0737
16 0.0816 0.0814 0.0783 0.0820
17 0.0890 0.0823 0.0791 0.0828
23 0.0734 0.0810 0.0843 0.0840
27 0.0771 0.0805 0.0828 0.0837

HGT and LGT implementing four kernels which are most commonly used in statistical
estimation (available with MATLAB R2016a version). Our primary focus is on two different
measures, one qualitative, i.e., HR function, and the other, quantitative , i.e., AI function.
Here, it is worth mentioning that HR and AI bear two different dimensions, the former’s unit
is 1 per unit of time (for considered data

[ 1
month

]
) and the latter is dimensionless. Their role

in the study of system aging behaviour has been discussed in introduction section. However,
to the best of our knowledge, not much work has been done where HR and AI functions
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Table 3.4: Kernel estimates of AI for LGT

t L̂B(t) L̂E(t) L̂N(t) L̂T (t)
6 0.0430 0.0585 0.0623 0.0633

11 0.0765 0.1058 0.1119 0.1148
15 0.1020 0.1427 0.1501 0.1545
21 0.1383 0.1962 0.2049 0.2105
29 0.3133 0.2642 0.2739 0.2794
33 0.3448 0.2967 0.3065 0.3111
79 0.6124 0.6036 0.6087 0.5948
102 0.7100 0.7157 0.7177 0.6960
212 0.8208 0.9222 0.9834 1.0478

Table 3.5: Kernel estimates of HR for LGT

t ĥB(t) ĥE(t) ĥN(t) ĥT (t)
6 0.0013 0.0017 0.0018 0.0018
11 0.0013 0.0018 0.0019 0.0019
15 0.0013 0.0018 0.0019 0.0020
21 0.0013 0.0019 0.0020 0.0020
29 0.0023 0.0020 0.0021 0.0021
33 0.0023 0.0020 0.0021 0.0022
79 0.0026 0.0025 0.0026 0.0025

102 0.0027 0.0028 0.0028 0.0027
212 0.0029 0.0032 0.0035 0.0036

are implemented in assessing the survival of cancer patients. We use four different kernel
estimators to address the issue. We find that all considered kernels exquisitely corroborated
each other to infer the data.

Table 3.2 and Table 3.3, respectively, depict four different kernel estimates of AI and
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Figure 3.1: AI for HGT
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Figure 3.3: AI for LGT
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Figure 3.5: AI, Box kernel
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Figure 3.6: HR, Box kernel
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Figure 3.7: AI, EPA kernel

0 50 100 150 200 250

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ĥ
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Figure 3.8: HR, EPA kernel

HR for patients with HGT . The respective four kernel estimates of AI and HR for patients
with LGT are given in Table 3.4 and Table 3.5. Note, that for t = 0, AI estimates are
not defined. Figures 3.1–3.12 are plotted for the purpose of drawing inference about the
given data (with reference to Table 3.1) from Tables 3.2–3.5. In Figures 3.1–3.4, we have
kernel estimates of AI for patients with HGT , kernel estimates of HR for patients with
HGT , kernel estimates of AI for patients with LGT , and kernel estimates of HR for patients
with LGT , respectively, which reveal the robustness of the kernels used to evaluate the
values of instantaneous hazard rate (given by HR) and aging intensity (given by AI). While
AI function is implemented in all four kernel estimators, we find all of them exquisitely
corroborates with each other, both for HGT (Fig 3.1) and LGT (Fig. 3.3) datasets. The
same observation is also found while HR function highlighting the qualitative aspect of
aging is used for HGT (Fig 3.2) and LGT patients (Fig 3.4). This clearly indicates that both
AI and HR functions could be efficiently implemented to the censored cancer data analysis.
Figures 3.5-3.12 represent the differences in the impact of two different tumor grades on
patients using HR and AI functions with respect to each of the four kernels. The sequel of
the figures can be found in caption of each figure.

First, we implement AI (Fig 3.5) and HR (Fig 3.6) in Box kernel estimator for censored
HGT and LGT datasets. As expected, HGT shows higher AI and HR, compared to LGT .
However, due to the differential nature of these two functions (quantitative vs qualitative)
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Figure 3.9: AI, Normal kernel
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Figure 3.10: HR, Normal kernel
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Figure 3.11: AI, Triangle kernel
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Figure 3.12: HR, Triangle kernel

the pattern of curve for LGT differs. Since, the representation of aging of a system by hazard
rate is qualitative, the curve is relatively flat for HR compared to the AI. On the other hand,
since AI quantitatively evaluates the aging property of a system, for LGT datasets, lifetime
distribution is better represented by AI than by HR curve. This is worth mentioning here that
since HGT patients do not survive for longer time period, qualitative (HR) and quantitative
(AI) evaluation does not affect much.

Interestingly, similar observation is also found for other three estimators like Epanech-
nikov (EPA) kernel (Fig 3.7 and 3.8), normal kernel (Fig 3.9 and 3.10) and triangle kernel
(Fig 3.11 and 3.12) indicating the importance of implementing AI and HR functions to the
cancer data irrespective of the kernel estimator used. The calculations pertaining to each of
the four kernels are given in detail in the Appendix section.

4. Conclusions

The concluding remarks of this paper are compiled as follows.

(i) Cancer statistics is an important domain of cancer treatment management. In this
article, we focus on analysing robust statistical methods that can deal with cancer
survival data effectively and it can be applied for any survival or life testing data.
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(ii) To the best of our knowledge, there are no studies where HR and AI functions are
applied in assessing the survival data from cancer patients. Reports from this work
indicate that implementation of HR and AI functions in human diseases is promising.
Therefore, we illustrate the same with detailed analysis using available censored data
on cancer-survivals (Martini et al., 1996).

(iii) We use four different kernel estimators to apply HR and AI functions. Our analysis
shows that HR and AI for patients with HGT are higher than for patients with LGT ,
as expected, showing a lower survival of HGT patients.

(iv) Since representation of aging in a system by AI is more quantitative, AI curves are
able to provide more information than the HR (qualitative) curves (as depicted in their
flattened nature) (see LGT curves of Fig 3.5 versus Fig 3.6; Fig 3.7 versus Fig 3.8;
Fig 3.9 versus Fig 3.10 and Fig 3.11 versus Fig 3.12). The pattern is particularly
prominent for all our LGT curves as we do not have data beyond 50 months for HGT
patients (by that time all HGT patients die due to the severity of the disease). On
the contrary, as LGT patients survived longer periods of time, we have data until 200
months (approx.). This allows us to visualize the full spectrum of the phenomena of
AI (with more information) and appreciate the quantitative nature of the function as
opposed to less informative flattened pattern for qualitative HR function.

(v) Our study strongly indicates that both AI and HR functions could be efficiently im-
plemented to estimate the survival analysis for cancer patients. We believe, this new
avenue of applying AI and HR functions will be adopted by researchers for imple-
mentation in any problem of health sciences or engineering studies.

5. Appendix

In this article, we intend to place the theme directly to the readers and as such we keep at
bay the other statistical calculations for discussion in the Appendix section. Here, we give
the details of the work done with reference to the aging metrics viz., cd f , pd f , HR and AI
functions. First, we survey HGT patients followed by LGT patients.

5.1. HGT patients

First, we survey HGT patients.

5.1.1 HGT : Box kernel

For HGT patients, Box kernel with bandwidth b = 6.1113 (proposed by MATLAB
R2016a) is used to determine function estimators. To be precise, we state that the esti-
mates of cumulative distribution function (cd f ), probability density function (pd f ), hazard
rate function (HR) and aging intensity function (AI) for patients with HGT using Box ker-
nel are obtained. Accordingly, we receive plots for the following functions as mentioned
here:
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Figure 5.13: cd f for HGT , Box kernel
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Figure 5.14: pd f for HGT , Box kernel
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Figure 5.15: HR for HGT , Box kernel
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Figure 5.16: AI for HGT , Box kernel

(i) Figure 5.13, empirical cd f (blue step function) and Box kernel estimate of cd f (green
function),

(ii) Box kernel estimate of pd f (Figure 5.14),

(iii) Box kernel estimate of HR (Figure 5.15),

(iv) Box kernel estimate of AI (Figure 5.16).

The function L̂(t) presented in Figure 5.16 is seen to oscillate around the linear func-
tion y = a + bt. So, the AI estimators of parameters of the Modified Weibull distribu-
tion MW (α,β ,λ ) (with linear AI, see, e.g., Szymkowiak (2020)) are α̂ = â = 0.3598,
β̂ = b̂ = 0.0390, respectively, and the maximum likelihood estimate is λ̂ = 0.3150. Here,
in this section, to obtain the desired value of λ̂ , we make use of the estimator

λ̂ =
n

∑
n
i=1 T α̂

i exp
(

β̂Ti

) , (5.8)

where n is a sample size. The theoretical F(t) for MW (α̂, β̂ , λ̂ ) with parameters received
by Box kernel estimates is shown in Figure 5.13 (magenta function).
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5.1.2 HGT : Epanechnikov (EPA) kernel
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Figure 5.17: cd f for HGT , EPA kernel
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Figure 5.18: pd f for HGT , EPA kernel
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Figure 5.19: HR for HGT , EPA kernel
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Figure 5.20: AI for HGT , EPA kernel

Next, for HGT patients, we determine the estimates of cd f , pd f , HR and AI by Epanech-
nikov (EPA) kernel with bandwidth b = 6.1113 (proposed by MATLAB R2016a). The cor-
responding plots are listed:

(i) Figure 5.17, empirical cd f (blue step function) and Epanechnikov kernel estimate of
cd f (green function),

(ii) Epanechnikov kernel estimate of pd f (Figure 5.18),

(iii) Epanechnikov kernel estimate of HR (Figure 5.19),

(iv) Epanechnikov kernel estimate of AI (Figure 5.20).

The function L̂(t) in Figure 5.20 oscillates around the linear function y = a+bt. Then,
the AI estimators of corresponding parameters of the Modified Weibull distribution MW (α,β ,λ )

(with linear AI) are α̂ = â = 0.3606, β̂ = b̂ = 0.0400, respectively, and the maximum like-
lihood estimate is λ̂ = 0.3093 (using (5.8)). The theoretical F(t) for MW (α̂, β̂ , λ̂ ) with
parameters obtained by Epanechnikov kernel estimates is shown in Figure 5.17 (magenta
function).
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5.1.3 HGT : Normal kernel
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Figure 5.21: cd f for HGT , Normal kernel
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Figure 5.22: pd f for HGT , Normal kernel
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Figure 5.23: HR for HGT , Normal kernel
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Figure 5.24: AI for HGT , Normal kernel

For HGT patients, Normal kernel with bandwidth b = 6.1113 (proposed by MATLAB
R2016a) is used to find the estimators of cd f , pd f , HR and AI. The corresponding plots
are listed:

(i) Figure 5.21, empirical cd f (blue step function) and Normal kernel estimate of cd f
(green function),

(ii) Normal kernel estimate of pd f (Figure 5.22),

(iii) Normal kernel estimate of HR (Figure 5.23),

(iv) Normal kernel estimate of AI (Figure 5.24).

The function L̂(t) presented in Figure 5.24 oscillates around y = a+bt. Therefore, we
can receive the AI estimators of parameters of the Modified Weibull distribution MW (α,β ,λ )

(with linear AI) α̂ = â= 0.3789, β̂ = b̂= 0.0393, respectively, and the maximum likelihood
estimate is λ̂ = 0.2982 (using (5.8)). The theoretical F(t) for MW (α̂, β̂ , λ̂ ) with parameters
determined using Normal kernel estimates is shown in Figure 5.21 (magenta function).
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5.1.4 HGT : Triangle kernel

Using Triangle kernel with bandwidth b = 6.1113 (proposed by MATLAB R2016a), we
receive the estimators of cd f , pd f , HR and AI for patients with HGT . One can refer to the
associated plots as given:

(i) Figure 5.25, empirical cd f (blue step function) and Triangle kernel estimate of cd f
(green function),

(ii) Triangle kernel estimate of pd f (Figure 5.26),

(iii) Triangle kernel estimate of HR (Figure 5.27),

(iv) Triangle kernel estimate of AI (Figure 5.28).

The function L̂(t) presented in Figure 5.28 can be considered to oscillate around the
linear function y = a+ bt. So, we can determine the AI estimators of parameters of the
Modified Weibull distribution MW (α,β ,λ ) (with linear AI) as α̂ = â = 0.3672, β̂ = b̂ =

0.0408, respectively, and the maximum likelihood estimate is λ̂ = 0.2999 (using (5.8)). The
theoretical F(t) for MW (α̂, β̂ , λ̂ ) with parameters received by Triangle kernel estimates is
shown in Figure 5.25 (magenta function).
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Figure 5.25: cd f for HGT , Triangle kernel
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Figure 5.26: pd f for HGT , Triangle kernel
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Figure 5.27: HR for HGT , Triangle kernel
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Figure 5.28: AI for HGT , Triangle kernel
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5.1.5 Summary for HGT patients

We now summarize our analysis of data for HGT patients by four considered kernels.
For each kernel and their AI estimators of parameters of the Modified Weibull distribu-
tion, using right type II censored data and Kolmogorov-Smirnov goodness-of-fit test (cf.
Agostino and Stephens (1986)) we verify the hypothesis that the data really follow this
distribution (with linear AI).

(i) Box kernel: statistics D∗ = 1.1216 and p-value higher than 0.15

(ii) Epanechnikov kernel: statistics D∗ = 1.1051 and p-value higher than 0.15

(iii) Normal kernel: statistics D∗ = 1.0787 and p-value higher than 0.15

(iv) Triangle kernel: statistics D∗ = 1.0795 and p-value higher than 0.15.

One can note that
D∗ =

√
nD+

0.24√
n

where n is a sample size and

D = max
1≤i≤l

{
i
n
−F(i),F(i)− i−1

n

}
.

Here, F(t) is the theoretical cd f and l is the number of uncensored data. It means that at
the significance level α < 0.15, for all considered kernels, we do not reject the hypothesis
that data follow the respective Modified Weibull distribution. Moreover, (although the dif-
ferences are not large) we can notice that the value of statistics D∗ is the smallest for Normal
kernel. Therefore, we can claim that this kernel function is the best to use in our data anal-
ysis and so the Modified Weibull distribution MW (α,β ,λ ) with parameters α̂ = 0.3789,
β̂ = 0.0393 and λ̂ = 0.2982 fits the analyzed data best.

5.2. LGT : Normal kernel

For low grade tumor (LGT ), we analyze the whole data from Table 3.1 using only Nor-
mal kernel with bandwidth b= 109.2138 (proposed by MATLAB R2016a) to get the function
estimators. For patients with LGT we receive the associated plots as:

(i) Figure 5.29, empirical cd f (blue step function) and Normal kernel estimate of cd f
(green function),

(ii) Normal kernel estimate of pd f (Figure 5.30),

(iii) Normal kernel estimate of HR (Figure 5.31),

(iv) Normal kernel estimate of AI (Figure 5.32).

The function L̂(t) presented in Figure 5.32 can be considered to oscillate around the
linear function y = a+ bt. Here, the AI estimators of parameters of the Modified Weibull
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Figure 5.29: cd f for LGT , Normal kernel
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Figure 5.30: pd f for LGT , Normal kernel
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Figure 5.31: HR for LGT , Normal kernel
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Figure 5.32: AI for LGT , Normal kernel

distribution MW (α,β ,λ ) (with linear AI) are α̂ = â = 0.1220, β̂ = b̂ = 0.0046, respec-
tively, and the maximum likelihood estimate is λ̂ = 1.2252 (using (5.8)). But we can see
in Figure 5.29 that the theoretical distribution function F(t) of the determined (by Normal
kernel estimates) Modified Weibull distribution (magenta function) is not close to the em-
pirical estimate F̂emp(t) (blue step function). So, we have to reject the hypothesis that the
lifetime of LGT patients follows MW distribution (and this is also the case for the other
Box, Epanechnikov, and Triangle kernels under consideration). Moreover, the usage of
Kolmogorov-Smirnov goodness-of-fit (see D’ Agostino and Stephens (1986)) to verify the
hypothesis that data really follow Modified Weibull distribution is controversial because the
percent of censored data is higher then 60%.
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