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Composite estimators for domain estimation and sensitivity 
performance interval of their weights 
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Abstract 

Some composite estimators based on various combinations of two different existing 
estimators are obtained for domain estimation. The estimation of weights and thus 
obtaining optimum weights to combine two or more different existing direct and indirect 
estimators to form composite estimators are not an easy task for practitioners due to many 
reasons. To account for the absence of optimum weights, we obtained the sensitivity 
performance intervals for weights with respect to the proposed composite estimator. 
Subsequently, we determined the sensible values of the involved weights. The aim of this 
procedure was to confine the superiority for different composite combinations i.e., simple 
direct vs. direct ratio, simple direct vs. synthetic ratio and direct ratio vs. synthetic ratio 
composite estimators as compared to the existing estimators. 

Key words: domain estimation, synthetic and composite estimation, optimum weight, 
sensitivity performance interval. 

1.  Introduction 

Generally, sample surveys are used as a cost-effective means for data collection but 
they are not able to provide estimates with competent precision for domains 
(subpopulations). Domains may be socio-demographic or geographic subdivision of 
the population for which separate estimates are required. Direct estimators perform 
better than synthetic estimators if the sample size is large for the domain while synthetic 
estimator is better in terms of mean square error (MSE) than direct estimator if the 
sample size is small for the domain along with the corresponding synthetic assumptions 
being satisfied, i.e., smaller area resembles larger area in their properties (Gonzalez, 
1973). Further, the composite estimator is used, which is a weighted sum of two or more 
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estimators having smaller MSE in comparison with MSE of either its component 
estimators. Evaluation of the optimal weight for the composite estimators is generally 
difficult and complex in domain estimation. One of the many causes is to involve 
population parameters in the formula used for its estimation. 

Sometimes a difficulty occurs with the weights due to sampling frame problems, 
which results in some sampled elements being selected with less desired probabilities. 
The main purpose of weighting adjustments is to reduce the bias in the survey estimates 
that non-response and non-coverage can cause. Also, a challenging task in the 
construction of composite estimator is to set the weights of each input variable. 
Basically, an irritant that needs to be tackled lies in assuming the knowledge of the 
optimum value of the weighting factor which involves the population quantities. Thus, 
the main concern of the present article is to develop the performance intervals of weight 
which ensure the superiority of composite estimators as compared to its individual 
component estimators. 

In the absence of optimum weights, we need an interval of weight with a view to 
maintaining the efficiency of the composite estimator as compared to its component 
estimators.In this direction many works are in progress while a very rich literature is 
available based on estimation of weights. Agrawal and Roy (1999) discussed the 
performance of efficient estimators of small domains. The generalized class of 
composite estimator is developed and analyzed by Tikkiwal and Ghiya (2004), 
including group of estimators which are convexly combined with weights. Further, 
Pandey and Tikkiwal (2006) also discussed the generalized class of composite 
estimators under Lahiri-Midzuno sampling scheme. Tikkiwal and Rai (2009) also 
proposed composite estimators and their sensitivity interval for small domains. King-
Jong Lui (2020) discussed notes on the use of the composite estimator for improvement 
of the ratio estimator. 

Here, in the present work we considered the situation of absence of optimum 
weights and thus obtained the sensitivity performance intervals for weights in respect 
to the proposed composite estimators and figured out sensible values of the involved 
weights with a view to confining superiority for different composite combinations. 

2.  Notations and Formulation of the Problem 

Suppose a finite population U={1, 2, ..., i, ..., N} is divided into ‘A’ domains Ua 

having size Na (a=1, …, A). We represent the study characteristic by ‘y’ and auxiliary 
characteristic by ‘x’. A random sample ‘s’ of size ‘n’ is drawn using simple random 
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sampling without replacement (SRSWOR) from population U such that ‘na’ units in the 
sample ‘s’ comes from domain Ua (a=1, …, A). We denote 
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n n


  

Notations used are given as follows: 

X : Mean of the population based on ‘N’ observations of x. 
aX : Mean of the domain ‘a’ based on ‘Na’ observations of x. 

x : Mean of the sample ‘s’ based on ‘n’ observations of x. 
ax : Mean of the sample of domain ‘a’ based on ‘na’ observations of x. 

Y : Mean of the population based on ‘N’ observations of y. 
aY : Mean of the domain ‘a’ based on ‘Na’ observations of y. 

y : Mean of the sample ‘s’ based on ‘n’ observations of y. 

ay : Mean of the sample of domain ‘a’ based on ‘na’ observations of y. 

Let Xai (a=1, …, A; i=1, …, Na) denote the ith observation of ath domain for the 
characteristic x and Yai (a=1, …, A; i=1, …, Na) denote the ith observation of ath domain 
for the characteristic y. The corresponding various mean squares and coefficient of 
variations of domain Ua for direct estimators for study and auxiliary characteristics are 
given as follows: 
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The corresponding various mean squares and coefficient of variations of domain 
Ua for synthetic estimators are given as follows: 
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3.  Domain Estimator under Study 

As we have discussed, separate estimates are required for the domain under study. 
There are different direct and indirect methods of estimation for the study of domain 
of interest. For our case, we consider the composite estimators for the estimation of 
domains.  

3.1.  Composite Estimators 

The following three cases of composite estimators for ath domain are considered: 

(i) Simple direct estimator with direct ratio estimator 

, (1) , , ,(1 )c a d a d r ay y y     

where ,d ay = simple direct estimator and , ,d r ay = direct ratio estimator. 

Here, the bias and MSE terms of 𝑦തௗ, and 𝑦തௗ,, can be obtained as, 

,( ) 0d aBias y                                                                                     (3.1.1) 
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(3.1.4) 

(ii) Simple direct estimator with synthetic ratio estimator 

, (2) , , ,(1 )c a d a syn r ay y y     

where  ,d ay = simple direct estimator and , ,syn r ay = synthetic ratio estimator. 

The bias and MSE of 𝑦ത௦௬,, will be obtained as, 
2
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a a a

SSN n
Bias y Y
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                                      (3.1.5) 
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(3.1.6) 

(iii) Direct ratio estimator with synthetic ratio estimator 

, (3) , , , ,(1 )c a d r a syn r ay y y     
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where  , ,d r ay = direct ratio estimator and , ,syn r ay = synthetic ratio estimator. The bias 

and MSE terms of , ,d r ay  and , ,syn r ay  have been already mentioned above. 

3.2.  Performance Intervals for Weight  

Let us consider composite estimator 3t as a linear combination of components 1t  

and 2t  i.e., 

3 1 1 2 2 1 2(1 )t t t t t                                               (3.2.1) 

Here 
1 2 1   , where 1   and 2 1   ;  is the assigned weight. 

For better performing interval of composite estimator 3t , MSE( 3t ) is less than equal 

to either of MSE( 1t ) or MSE( 2t ).Now, we have two conditions, the first one is: 

3 1( ) ( )MSE t MSE t                                                                                                          (3.2.2)
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On solving the above quadratic equation and assuming that the covariance term is 
small relative to MSE( 2t ),we get, 
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As 1 is an integer value of  , we take the other values of   as, 
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(3.2.3) 

Again, the second condition is: 

3 2( ) ( )MSE t MSE t                                                   (3.2.4) 

Similarly, on solving equation (3.2.4), we get, 
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So, the better performing interval of 3t estimator is given as, 
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Now, let us consider the three cases for 1t  and 2t estimators as discussed before in 
previous Section 3.1, as follows: 

(i) Simple direct estimator with direct ratio estimator 

, (1) , , ,(1 )c a d a d r ay y y    , where 1t =
,d ay  and 2t = , ,d r ay . 

Putting the formulae of MSE from the expressions (3.1.2) and (3.1.4)in the 
expression of the left-hand part and right-hand part of (3.2.6),we get, 
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(3.2.7) 

(ii) Simple direct estimator with synthetic ratio estimator 

, (2) , , ,(1 )c a d a syn r ay y y     , where 1t = ,d ay  and 2t = , ,syn r ay . 

After putting the MSE expressions, the expression (3.2.6) provides, 
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(3.2.8) 

(iii) Direct ratio estimator with synthetic ratio estimator 

, (3) , , , ,(1 )c a d r a syn r ay y y     , where 1t = , ,d r ay  and 2t = , ,syn r ay . 

The MSE of , ,d r ay and , ,syn r ay are given by expressions (3.1.4) and (3.1.6) respectively. 
Thus, expression (3.2.6) provides, 
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3.3.  Sensitivity Performance Intervals for Weight  

Let us consider ‘P’ as the proportional inflation in the MSE of 3t  due to use of some 

  other than  .opt ,i.e. 
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For the sake of convenience neglecting the covariance term which does not 
hampered the equation and on substituting the formula of MSE of 3t  under   and 
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Divide numerator and denominator by 2
.(1 )opt and taking  2
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As P is a ratio of two positive quantity (as numerator and denominator of P are 
positive quantity) so, 0P  , which implies 
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(3.3.5) 

On simplifying equation (3.3.5), we have; 
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Now, we have to find the optimum weight for composite estimator 3t . 

3 1 2(1 )t t t     
2 2

3 1 2 1 2( ) ( ) (1 ) ( ) 2 (1 )cov( , )MSE t MSE t MSE t t t                       (3.3.7) 
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On differentiating eq. (3.3.7) with respect to  and equating it to zero after 
neglecting the covariance term, assuming that the covariance term is relatively small, 
we get, 

2
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Using (3.3.6) and (3.3.8), we have, 
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Thus, the sensitivity performance interval for  is given as: 
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Now, the sensitivity performance interval of the involved weight for the above three 
composite estimators as discussed before in previous Section 3 are given as follows: 

(i) Simple direct estimator with direct ratio estimator 

, (1) , , ,(1 )c a d a d r ay y y    , where 1t = ,d ay  and 2t = , ,d r ay . 

Here, the expression of sensitivity interval is obtained as 
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(3.3.11) 

(ii) Simple direct estimator with synthetic ratio estimator 

, (2) , , ,(1 )c a d a syn r ay y y    , where 1t = ,d ay  and 2t = , ,syn r ay  

The sensitivity performance interval for  in this case is obtained as 
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(iii) Direct ratio estimator with synthetic ratio estimator 

, (3) , , , ,(1 )c a d r a syn r ay y y    , where 1t = , ,d r ay  and 2t = , ,syn r ay . 

Here, the sensitivity performance interval will be obtained as 
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(3.3.13) 

4.  Numerical Illustration 

We consider the data from Sarndal et al. (1992), Appendix B of Sweden Municipalities 
which are classified into eight geographical regions. We take all eight geographical 
regions for the study purpose with sizes 25, 48, 32, 38, 56, 41, 15 and 29 respectively and 
select a sample of 5, 10, 6, 8, 11, 8, 3, 6sampling units from each domain respectively. 
We take the study variable ‘y’ as RMT85 (Revenues from the 1985 municipal taxation 
(in millions of kronor)) and the auxiliary variable ‘x’ as P85 (1985 population 
(in thousands)). The performance intervals for weight derived in equations (3.2.7), 
(3.2.8), (3.2.9)and sensitivity performance intervals for weight derived in equations 
(3.3.11), (3.3.12), (3.3.13)are presented in Table 4.1 and 4.2 respectively. 

Table 4.1:  Performance intervals for weight of three different composite estimators 

Domain 

Simple Direct with 
Direct Ratio 

, (1)c ay  

Simple Direct with 
Synthetic Ratio 

, (2)c ay  

Direct Ratio with 
Synthetic Ratio 

, (3)c ay  

1 2     1 2     
1 2     

1 [-0.9843,0.0157] [-0.9950,0.0050] [-0.5191,0.4808] 
2 [-0.9867,0.0132] [-0.8200,0.1799] [0.8737,1.8737] 
3 [-0.8767,0.1232] [-0.6234,0.3765] [0.5587,1.5587] 
4 [-0.6600,0.3399] [-0.9626,0.0374] [-0.8297,0.1703] 
5 [-0.6903,0.3097] [-0.9818,0.0182] [-0.9043,0.0957] 
6 [-0.9712,0.0288] [-0.4356,0.5644] [0.9284,1.9284] 
7 [-0.9748,0.0252] [-0.8565,0.1435] [0.7166,1.7166] 
8 [-0.9703,0.0297] [-0.7278,0.2722] [0.8253,1.8253] 
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Table 4.2:  Sensitivity performance intervals for weight of three composite estimators 

Domain 

Simple Direct with 
Direct Ratio 

, (1)c ay  

Simple Direct with 
Synthetic Ratio 

, (2)c ay  

Direct Ratio with 
Synthetic Ratio 

, (3)c ay  

1 2     
1 2     

1 2     

1 [0.0078,0.0157] [0.0025,0.0050] [0.2404,0.4808] 
2 [0.0066,0.0132] [0.0899,0.1799] [0.9368,1.8737] 
3 [0.0616,0.1232] [0.1882,0.3765] [0.7793,1.5587] 
4 [0.1699,0.3399] [0.0187,0.0374] [0.0852,0.1703] 
5 [0.1548,0.3097] [0.0091,0.0182] [0.0478,0.0957] 
6 [0.0144,0.0288] [0.2822,0.5644] [0.9642,1.9284] 
7 [0.0126,0.0252] [0.0718,0.1435] [0.8583, 1.7166] 
8 [0.0148,0.0297] [0.1361,0.2722] [0.9126,1.8253] 

 
From the above two tables we see that the performance intervals for weight of  

, (1)c ay , , (2)c ay  and , (3)c ay  are ranging from -0.9867 to 0.3399, -0.9950 to 0.5644 and -
0.9043 to 1.9284 respectively. It means all three composite estimators retain its 
superiority for values of  ranging from -0.9950 to 1.9284. Also, we observe that the 
length of the performance intervals for weight of composite estimators is one which 
follows from the expression (3.2.6). Table 4.2 clearly shows that the sensitivity 
performance interval for weight of composite estimators lies between 0.0025  to 1.9284. 

5.  Conclusions 

Composite estimators provide efficient estimates for the unknown population 
parameters as compared to their constituent estimators. The estimation of weights in 
the composite estimators are not easy task and due to this reason, this is not a popular 
estimator among users and practitioners. Here, in the present study an effort is made 
to get sensitivity performance intervals of the weight that guarantee the superiority of 
the proposed composite estimator with respect to its component estimators in the field 
of domain estimation also. 

From the above analysis of three different composite estimators, we obtain the 
performance intervals of weight which ensure supremacy of composite estimators  
as compared to their component estimators. As an example, we show that the 
combination of direct ratio estimator with synthetic ratio estimator performs better 
within performance intervals obtained in Table 4.1in terms of MSE. It is also concluded 
that the composite estimators for the weights lie in the sensitivity performance intervals 
are less varying in terms of MSE. The outcomes of the study will be useful to develop 
efficient composite estimators for the domain estimation in general and for small area 
estimation in particular. 
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