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From the Editor   

 
The March issue of Statistics in Transition new series presents readers with a set of 

eleven articles written by twenty-four authors from nine countries (in order of 
appearance): USA, Poland, Nepal, Indie, Nigeria, Indonesia, Iran, Algeria, and Saudi 
Arabia. This volume opens with an invited article by Piotr Kokoszka, Mengting Lin, 
HaonanWang, and Stephen Hayne. 

Invited paper 

In the first paper, Statistical risk quantification of two-directional internet traffic 
flows, Piotr Kokoszka, Mengting Lin, HaonanWang, and Stephen Hayne discuss 
recent developments in statistical methodology for the quantification of risk of source-
destination pairs in an internet network within the framework of functional data 
analysis and copula modeling. It was summarized in the form of computational 
algorithms that use bidirectional source-destination packet counts as input. The 
usefulness of  the proposed approach was evaluated by an application to real internet 
traffic flows and via a simulation study. The performance, and relative performance, 
of the two algorithms using simulated data that has certain features of  real data sets, 
but also certain characteristics that are known targets, were assessed. 

Research articles 

Henryk Gurgul’s and Robert Syrek’s article Mutual information between Polish 
subindexes – the use of copula entropy around the time of the COVID-19 pandemic 
demonstrates application of the copula theory to describe the dependence structure 
between variables, while the information theory provides the tools necessary to measure 
the uncertainty associated with these variables. What both theories have in common is 
copula entropy, which is strictly related to mutual information. The findings of this 
study  of the dependence of the (sub)indexes of the Polish stock market during the 
pandemic period seem to be useful not only to investors in Poland, but in other 
countries as well, especially in Central Europe, in making investment decisions. The 
results of calculating the interdependencies between WIG, sectoral indexes and among 
sectoral indexes of the Polish economy using copula entropy and Pearson’s correlation 
are quite different.  
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The next article, by Arjun Kumar Gaire and Yogendra Bahadur Gurung, entitled 
Skew Log-logistic distribution: properties and application, presents a novel three-
parameter skew-log-logistic distribution. It starts from the development of a new 
random variable based on Azzalini and Capitanio’s (2013) proposition, including 
various statistical properties of this distribution. A maximum likelihood method for 
estimating the distribution’s parameters is employed. The density function exhibits 
unimodality with heavy right tails, while the hazard function exhibits rapid increase, 
unimodality, and slow decrease, resulting in a right-skewed curve. Furthermore, four 
real datasets are utilized to assess the applicability of this new distribution. The AIC and 
BIC criteria are employed to assess the goodness of fit, revealing that the new 
distribution offers greater flexibility compared to the baseline distribution. 

In the paper A chain ratio-type exponential estimator for population mean 
in double sampling, by Nirupama Sahoo and Sananda Kumar Jhankar, an efficient 
ratio-type exponential estimator for estimating the population mean by incorporating 
two auxiliary variables in two-phase (double) sampling is proposed. The bias and the 
mean square error of the presented estimator have been obtained up to the first order 
of approximation. The new estimator offers more precision in comparison to other 
competing estimators, theoretically as well as empirically, by considering a known value 
of some population parameter. 

Abimibola V. Oladugba’s and Oluwagbenga T. Babatunde’s paper, Improved 
calibration estimation of population mean in stratified sampling using two auxiliary 
variables, discusses possibilities to improve the standard estimator of the population 
mean in a stratified sampling through calibration estimation approach using two 
auxiliary variables. A simulation study was carried out to evaluate the performance and 
efficiency of an estimator with respect to three estimators proposed in the literature for 
estimating the population mean in a stratified sampling (using two auxiliary variables). 
The proposed estimator has the least absolute relative bias and mean square error for 
all the cases under consideration. The results showed that the new estimator proved to 
be more efficient than the three existing estimators considered.  

Agnieszka Palma and Dorota Kałuża-Kopias in the paper Inter-voivodship 
migration in Poland in the 2000–2020 period based on Markov chain analysis deal 
with the scale and directions of inter-voivodship migration in Poland in selected years 
of the 2000–2020 period. The study focused on permanent residence migration and 
aimed to identify areas of migration attractiveness and migration catchment 
voivodships. The application of the Markov Chain allowed for evaluation of the 
population flow between voivodships. The results of the study indicate that the most 
favourable situation remains in the Mazowieckie voivodship, which is considered the 
most attractive area for people from other regions of the country – mainly from the 



STATISTICS IN TRANSITION new series, March 2024 IX

Lubelskie, Podlaskie, and Łódzkie voivodships, and to a lesser extent from the 
Świętokrzyskie and Warmińsko-Mazurskie voivodships. The approach used allowed 
for determining the properties of the transition probability matrix as well as stationary 
probability in order to characterise the mechanism of inter-voivodship migrations 
in the years 2000, 2010 and 2020.  

In the next article, Implementation of K-Nearest Neighbor using the oversampling 
technique on mixed data for the classification of household welfare status, Nur 
Mutmainnah Djafar and Achmad Fauzan took up the task to classify the household 
welfare status in Kulon Progo using the K-Nearest Neighbor (KNN) method. Since 
imbalance was found between the poor and non-poor categories, an oversampling 
technique was employed. Imbalanced data affect classification, especially when it comes 
to predicting the results of the classification. The following oversampling techniques 
were employed: Random Oversampling (RO), the Adaptive Synthetic (ADASYN) and 
the Synthetic Minority Oversampling Technique (SMOTE). It was found that, of the 
three techniques, RO was the most efficient with k = 5, which yielded the best 
performance in terms of sensitivity, specificity, the G-mean. Therefore, it can be 
concluded that the classification model performed well enough to classify household 
welfare status, especially among the poor (minority group). 

The paper On Bayesian inference of reliability parameter in Burr-type XII model 
based on imprecise data: a survey on fuzzy modelling by Iman Makhdoom and Abbas 
Pak examines the classical and Bayesian inference procedures for the BT XII 
distribution parameters, including  the corresponding reliability parameter when the 
available data are described regarding fuzzy numbers. In this context, the authors 
considered three priors as noninformative prior, i.e. a1 = b1 = a2 = b2 = 0, less 
informative prior, i.e. a1 = b1 = a2 = b2 = 0.01, and informative prior, i.e. a1 = b1 = a2 = 
b2 = 4. Considering the criterion MSE for all methods, with increasing n, the estimates 
are improved. The performance of the Bayes estimates with assumptions of 
noninformative prior and less informative prior regarding AVs and MSEs is almost 
identical. The simulation study for all methods shows that the estimate of R is 
satisfactory, even for samples with sizes small and moderate. Using the NR or EM 
algorithms for the computation of MLEs gives similar estimation results. 

Joanna Kisielińska’s article presents Estimation of quantiles with the exact 
bootstrap method. The estimation uses the bootstrap method in the so-called exact. 
Three bootstrap estimators were used: two of them based on one order statistic, and the 
third on a linear combination of two order statistics (for an integer). It has been shown 
that there is no general form of the distribution of the exact bootstrap estimator based 
on two order statistics. However, it is possible to calculate such a distribution – the 
algorithm that performs such a task is presented. The bootstrap confidence intervals 
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were constructed using the exact percentile method. It has been shown that if the 
estimator is based on a single order statistic, it is known in advance which elements of 
the primary sample are the limits of the confidence intervals (so there is no need to 
resample). The intervals determined by the exact percentile method were compared 
with those constructed using other methods.   

Research Communicates and Letters 

Thara Belhamra, Halim Zeghdoudi, and Vinoth Raman analyse Reliability for 
Zeghdoudi distribution with an outlier, fuzzy reliability and application. This study 
focuses on estimating reliability P[Y<X], where Y has a Zeghdoudi distribution with 
parameter a, X has a Zeghdoudi distribution with one outlier present and parameter c, 
and the remaining (n – 1) random variables are from a Zeghdoudi distribution with 
parameter b, in order for X and Y to be independent. Several findings of a simulation 
study and the maximum likelihood estimate of R are provided. Some results related to 
fuzzy dependability were also presented. In order to demonstrate the adaptability of the 
Zeghdoudi distribution, the authors use real data on the survival times (in days) of 
72 Algerian people who were infected with coronaviruses, and then compared the 
outcomes with those of other distributions. Studies have been done on the maximum 
likelihood estimator for R and fuzzy dependability. 

Piyush Kant Rai’s and Sweta Singh’s paper, Composite estimators for domain 
estimation and sensitivity performance interval of their weights presents some 
composite estimators based on various combinations of two different existing 
estimators. To account for the absence of optimum weights, the sensitivity performance 
intervals for weights with respect to the proposed composite estimators were obtained 
and  the sensible values of the involved weights have been determined. The aim of this 
procedure was to confine the superiority for different composite combinations – i.e. 
simple direct vs. direct ratio, simple direct vs. synthetic ratio and direct ratio vs. 
synthetic ratio composite estimators – as compared to the existing estimators. It was 
concluded that the composite estimators for the weights lie in the sensitivity 
performance intervals that are less varying in terms of MSE. The outcomes of the 
study will be useful to develop efficient composite estimators for the estimation domain 
in general, and for small area estimation in particular. 

 
 

Włodzimierz Okrasa 
Editor  
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Statistical risk quantification of
two-directional internet traffic flows

Piotr Kokoszka1, Mengting Lin2, Haonan Wang3, Stephen Hayne4

Abstract

We develop statistical methodology for the quantification of risk of source-destination pairs
in an internet network. The methodology is developed within the framework of functional
data analysis and copula modeling. It is summarized in the form of computational algo-
rithms that use bidirectional source-destination packet counts as input. The usefulness of
our approach is evaluated by an application to real internet traffic flows and via a simulation
study.

Key words: Copula, Functional data, Internet traffic, Principal components, Risk quantifi-
cation.

1. Introduction

Malicious cyberattacks have emerged as a growing threat to economic performance and
national security. They can be launched by criminal organizations or autocratic govern-
ments. A significant challenge facing the internet security community is to develop algo-
rithms that can automatically detect abnormal network access patterns. Attackers use many
different techniques, such as distributed denial of service attacks (DDoS), intrusions that
lead to the installation of malware for exfiltration or ransomware intrusion, misconfigured
servers for reflection and amplification attacks. By sending a misconfigured server request
using a spoofed IP address, the server will unknowingly bombard the target with a frequency
50 or more times higher than that of the response. Attacks of various types have been sub-
jects of extensive research, with thousands papers on the above topics. Some representative
recent contributions are Dong and Sarem (2019), Nishanth and Mujeeb (2020), Sambangi
and Gondi (2020) and Awan et al. (2021).

In this paper, we propose statistical methodology aimed at detecting attacks manifested
as unusual traffic between a source and a destination IP addresses. Our focus is on identi-
fying such pairs and ranking them according to the threat they may pose. Related papers,
focusing on outlier detection in multivariate functional data, are Dai and Genton (2018) and

1Department of Statistics, Colorado State University, Fort Collins CO 80523, USA.
E-mail: Piotr.Kokoszka@colostate.edu. ORCID: https://orcid.org/0000-0001-9979-6536.

2Department of Statistics, Colorado State University, Fort Collins CO 80523, USA.
ORCID: https://orcid.org/0009-0002-7712-9585.

3Department of Statistics, Colorado State University, Fort Collins CO 80523, USA.
ORCID: https://orcid.org/0000-0002-8892-6232.

4Department of Computer Information Systems, Colorado State University, Fort Collins CO 80523, USA.
ORCID: https://orcid.org/0000-0002-9578-3364.
© P. Kokoszka, M. Lin, H. Wang, S. Hayne. Article available under the CC BY-SA 4.0 licence
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Amovin-Assagba et al. (2022). Dai and Genton (2018) propose graphical tools for identify-
ing the set of potentially outlying curves by taking into account unusually large magnitudes
and/or shapes. They do not rank the pairs, even though this might be possible by elaborat-
ing on their approach. Amovin-Assagba et al. (2022) also focus on identifying the set of
outlying pairs, but do not rank them in any way. They postulate a specific model motivated
by the industrial application they consider. Such a model, and the clustering technique they
use, need not be suitable for the data we consider. Basically, related existing approaches fo-
cus on identifying the set of outliers rather than assigning numerical measures of separation
from most curves.

Our method is based on multivariate functional principal components and copula mod-
eling. Internet streaming data are recorded at densely spaced time points, so they can be
modeled as densely observed functions. This suggests that functional data analysis (FDA)
approaches might be suitable. Following the monographs of Bosq (2000), Ramsay and Sil-
verman (2005) and Ferraty and Vieu (2006), FDA has grown into a mature field of statistics.
Its advantage over competing approaches is that all information in the time series of traffic
traces, e.g. shape, variation, and timing, can be taken into account. Functional principal
component analysis (FPCA) is a statistical method used to uncover main patterns in func-
tional data, see e.g. Chapter 11 of Kokoszka and Reimherr (2017). FPCA is a powerful
dimension reduction, or feature extraction, tool when a sample of functions from a single
population is observed. In our setting, we are dealing with bidirectional traffic flows, so we
need an analog of FPCA for samples whose elements are pairs of functions. A suitable tool
is therefore Multivariate (bivariate in our case) FPCA. Such methods have recently been
studied by Happ and Greven (2018), Górecki et al. (2018), Krzyśko and Smaga (2020,
2021), even though earlier related work exists, e.g. Berrendero et al. (2011), Jacques and
Preda (2014), Chiou et al. (2014).

A copula describes the joint distribution of random vectors with standard uniform
marginal distributions. Many excellent monographs are available, e.g. Nelsen (2006), Joe
(2015), Hofert et al. (2018) and Czado (2019). A copula model decomposes a multivariate
distribution function into two elements: the marginal distributions and the copula which
captures the dependence relationship of the marginals. In recent years, copulas have been
used to handle multivariate cybersecurity risks, e.g. Peng et al. (2018), and for predicting
the effectiveness of cyber defense early-warning, e.g. Xu et al. (2017). Both FPCA and cop-
ula modeling show flexibility and efficiency that we also demonstrate for our methodology
that combines and suitably refines them for our task.

To summarize our contribution, this paper develops statistical methodology to identify
IP addresses of source-destination pairs that exhibit unusual and suspicious behavior and
quantify their cybersecurity risks. We use the term risk to refer to the level of extreme
behavior relative to the bulk of the data. We treat the bi-directional internet flows as bivariate
functional data and compute scores using a multivariate FPCA (MFPCA) algorithm. The
scores provide low dimensional representations of the traffic between the node IP addresses
of each pair. Then, we propose a multivariate copula to compute the cybersecurity risk. The
copula model is estimated after outlying scores have been removed because it is used to
compute probabilities of extreme observations under the assumption of normal traffic. Even
though we deal with a specific application, we propose a general paradigm that can be used
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to develop effective screening tools to detect unusual multiple functional data objects.
It is informative to put the approach we propose into the context of previous research.

Methods for detecting internet anomalies can be divided into signature-based methods and
profile-based methods, Liao et al. (2013). Several requirements are necessary for signature-
based methods to identify suspects, including the need for labeled data, prior results from
anomalies, and an external supervisor. However, using this method, it is not possible to
detect new intrusions that are unknown, Modi et al. (2013). A number of approaches
have been proposed for the detection and prevention of DDoS attacks by using classifica-
tion algorithms. The majority of such techniques require pre-training on a set of labeled
data before they are applied. There are several popular approaches to data analysis, in-
cluding Support Vector Machines, Bayesian Networks, and Neural Networks, Ahmed et
al. (2016). Although these algorithms have performed well in certain situations in which
“known" anomaly data exist, they can be difficult to incorporate into a larger set of algo-
rithms due to the reliance on labeled data. It is likely that there will be no real knowledge for
the classification of network traffic, which means supervised techniques can only be applied
when approximated labels are available. It is inevitable that the results of training will be
skewed by incorrectly labeled data, Soysal and Schmidt (2010).

Furthermore, an analysis of frequency domains has proven to be effective in detecting
DDoS attacks, Fouladi et al. (2016). Compared to normal traffic in which energy is dis-
tributed among different frequencies, most DDoS attack energy is found at lower frequen-
cies. Such methods have been used to discover abnormalities and analyze traffic patterns,
Fouladi et al. (2013). Low rate DoS attacks (LDoS) are distinguished from normal traffic
using spectrum energy and thresholding methods. Spectrum energy and thresholding are
used to separate them, Wu et al. (2015). Spectral analysis is one of the methods used by the
authors in order to detect DoS attacks, Hussain et al. (2003). It should be noted that most
studies of frequency domain analysis in identifying DoS and DDoS attacks are carried out
in simulation environments.

The remainder of this paper is structured as follows. Section 2 begins with an introduc-
tion of the MFPCA followed by algorithms for identification of outliers and copula based
risk quantification. In Section 3, we apply our methods to a DDoS data set. The analysis is
supplemented by a simulation study in Section 4.

2. Statistical methodology

In Section 2.1, we review the MFPCA and interpret it in context of source-destination
traffic flows. Section 2.2 describes strategies used to remove outlying pairs so that a model
for normal traffic (for the whole source-destination network) can be constructed. Finally,
Section 2.3 explain the estimation of this model.

2.1. Multivariate functional principal components

To make the exposition more relevant, we introduce multivariate functional principal
component analysis (MFPCA) in the context of time series of packet counts.

Suppose there are N SIP-DIP (source-destination) pairs. Sources are outside, and des-
tinations are inside an organization or a protected network. Let (Xi(t),Yi(t)) be a bivariate
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time series associated with the ith SIP-DIP pair. Here, Xi(t) denotes the count of packets in
hour t in the SIP → DIP direction (i.e. inbound), and Yi(t) denotes the count of packets in
hour t in the DIP → SIP direction (i.e. outbound). These are pairs of noisy functions over
the time interval [0,T ]. We create their smooth versions and set

hi(t) = [h(1)i (t),h(2)i (t)]⊤. (2.1)

The smoothing serves two purposes: 1) it is the first step in dimension reduction because
it eliminates noise, 2) within an FDA software it converts discrete data to functional objects.
The latter can be done in such a way that the functional objects look almost exactly as raw
data, but then no noise reduction is achieved. We performed the smoothing using 100 B-
spline basis functions. In the context of the data studied in Section 3, it corresponds to
approximately using averages over 2.5 h, thus focusing only on persistent anomalies or
attacks. Using 250 basis functions would practically correspond to working with raw data
and would thus include anomalies lasting an hour or less, which we want to exclude, unless
they are so large that their influence spreads over a few hours. Using 50 basis functions
would focus on anomalies impacting at least five hours. The latter choice produces basically
the same risk rankings as the 100 basis functions we use in the remainder of the paper. The
details of smoothing are not essential to understand the remainder of the paper, we refer e.g.
to Chapter 1 of Kokoszka and Reimherr (2017). Examples of the raw count data and smooth
series are shown in Figure 1.

Figure 1: Example of DIP→SIP traffic and its smooth version.

We begin by describing the MFPCA algorithm of Happ and Greven (2018). We ini-
tially assume that each pair i comes from the same population, in particular, the functions
h(k)1 , . . . ,h(k)N , have the same distributions as a population function h(k). This corresponds to
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the absence of any outliers. We set

µµµ(t) = [µ(1)(t),µ(2)(t)]⊤ = [E[h(1)i (t)],E[h(2)i (t)]]⊤, 1 ≤ i ≤ N, (2.2)

and consider the Karhunen–Loève expansions

h(k)i (t)−µ
(k)(t) =

∞

∑
m=1

ξ
(k)
i,m φ

(k)
m (t)≈

M

∑
m=1

ξ
(k)
i,m φ

(k)
m (t), k = 1,2. (2.3)

The functions φ
(k)
m are the functional principal components of the functions h(k)i . Their

scores are ξ
(k)
i,m = ⟨h(k)i − µ(k),φ

(k)
m ⟩. At this stage, decomposition (2.3) is performed for

each k separately. For each k = 1,2, the functions φ
(k)
m are orthonormal in the Hilbert space

L2([0,T ]) and provide optimal data-driven basis systems in the sense that a specified accu-
racy of approximation that can be achieved with the smallest possible truncation level M.
We refer e.g. to Chapter 11 of Kokoszka and Reimherr (2017) for an introductory account
of FPCA and to Ramsay and Silverman (2005) and Horváth and Kokoszka (2012) for many
examples of applications of FPCA.

Based on the sample h(k)i , 1 ≤ i ≤ N, we can estimate the FPCs φ
(k)
m and the scores ξ

(k)
i,m .

We denote the corresponding estimators by φ̂
(k)
m and ξ̂

(k)
i,m . We set

Ξi = (ξ̂
(1)
i,1 , ..., ξ̂

(1)
i,M , ξ̂

(2)
i,1 , . . . , ξ̂

(2)
i,M) (2.4)

and denote by ΞΞΞ the N ×2M matrix whose ith row is Ξi. Next, we set

Ẑ = (N −1)−1
ΞΞΞ
⊤

ΞΞΞ (dim[Ẑ] = 2M×2M). (2.5)

The entries of the matrix Ẑ are estimators of the covariances E[ξ (k)
m ξ

(l)
m′ ], k, l = 1,2,

m,m′ = 1, . . .M.
The eigenvalues of the positive definite matrix Ẑ are denoted by λs and the orthonormal

vectors belonging to them by ĉs, i.e.

Ẑĉs = λsĉs, s = 1, . . . ,2M, (2.6)

with the convention that the eigenvalues λs are ordered from the largest to the smallest. Each
ĉs is a column vector of length 2M. The multivariate eigenfunctions are estimated by ψ̂

(k)
m

where

ψ̂
(k)
m (t) =

M

∑
j=1

ĉ(k−1)M+ j,mφ̂
(k)
j (t), m = 1,2, . . . ,M, k = 1,2. (2.7)

The multivariate scores are calculated as

ρ̂i,m =
2

∑
k=1

M

∑
j=1

ĉ(k−1)M+ j,mξ̂
(k)
i, j , m = 1,2, . . . ,M, i = 1, ...,n. (2.8)
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There is a correlation between the two sets of scores since the number of packets sent
from SIP to DIP is correlated with the number of packets sent from DIP to SIP. The MFPCA
algorithm has the advantage of revealing a joint variation in the number of packets sent
in both directions that cannot be captured by separate FPCA.

We emphasize that the φ
(k)
m and ξ

(k)
i,m are the functional principal components and scores

from univariate FPCA, while the ψ̂
(k)
m are the multivariate functional principal components

of the kth variable and ρ̂i,m are the corresponding scores of the ith multivariate functional
observation. Thus, in the MFPCA, the functional principal components of both variables
share the same score. These scores reflect the variability of pairs rather than their individual
components. While the objects at the population level are defined under the assumption of
identical distributions, the estimators discussed above can be computed for any sample of
SIP-DIP pairs.

We conclude this section by introducing the concept of the copula, see Genest and
Nešlehová (2012) for a recent review. Consider a random vector (Z1, . . . ,Zd) with uni-
variate continuous marginal distribution F1, . . . ,Fd , respectively. Then the random vector
(U1, . . . ,Ud) = (F1(Z1), . . . ,Fd(Zd)), where Fk(z) = P(Zk ≤ z) has marginals that are uni-
formly distributed on the interval [0,1]. The copula of (Z1, . . . ,Zd) is defined as the joint
cumulative distribution functions of (U1, . . . ,Ud), i.e.

C(u1, . . . ,ud) = P
(
Z1 ≤ F−1

1 (u1), . . . ,Zd ≤ F−1
d (ud)

)
. (2.9)

Equivalently, for any random vector (Z1, . . . ,Zd) with distribution function F(z1, . . . ,zd)

and marginal distributions F1, . . . ,Fd , there is a copula C such that

F(z1, . . . ,zd) =C(F1(z1), . . . ,Fd(zd)).

Therefore, assuming that the margins F1, . . . ,Fd are continuous and that the unique un-
derlying copula is absolutely continuous, the joint density function can be represented as

f (z1, ...,zd) = c(F1(z1), . . . ,Fd(zd))
d

∏
i=1

fi(zi),

where fi(zi) is the corresponding marginal density function of Zi and c(u1, ...,ud) is the
d−dimensional copula density function. We refer to C or c as a copula model.

In Sections 2.2 and 2.3, we use the letter d in place of M. Our recommendation is to
perform the MFPCA for some larger M, and then depending on the variance explained, use
d < M initial components.

2.2. Identification of risky source-destination pairs

We will use bivariate FPCA and a probabilistic copula-based method as our anomaly
detection and risk quantification techniques. There are three stages. First, we consider
the bi-directional streams [(h(1)i (t),h(2)i (t))], i = 1, ...,N, as bivariate functional data and
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compute the scores ρ̂i,m defined by (2.8). Then, a copula model is estimated based on
the score vectors ρρρ i = (ρi1, ...,ρid), i = 1, ...,N, obtained from the bivariate FPCA after
outlying scores or outlying functions have been removed. Finally, a copula model is used
to compute the risk of each SIP-DIP pair. We propose two strategies to remove outliers.
In the first algorithm, we remove extremely large scores before fitting a copula. In the
second algorithm, we remove pairs of functions associated with extreme scores, recompute
the scores, and then fit a copula. The justification for removing outlying pairs of curves is
to ensure that a copula is estimated on data that can be reasonably assumed to come from
the same distribution, so a single copula model is appropriate. Outliers come from different
distributions than the bulk of the data. These two strategies are summarized in Algorithms
1 and 2 below. In Algorithm 3, we explain how extremely large scores are identified.

ALGORITHM 1

1. For the smooth versions (h(1)i (t),h(2)i (t)), i = 1, ...,N, estimate the multivariate func-
tional principal components ψ

(k)
m , k = 1,2, and the scores ρ̂i,m, m = 1, ...,d.

2. If pair i has extremely large ρ̂ρρ i, then it is considered as an outlier. Remove ρ̂ρρ i from
the estimated scores.

3. Estimate a copula model based on the remaining scores ρ̂ρρ i = (ρ̂i1, ..., ρ̂id).

ALGORITHM 2

1. Step 1 is the same as in Algorithm 1.

2. If pair i has extremely large ρ̂ρρ i, remove (h(1)i (t),h(2)i (t)).

3. Estimate the multivariate functional principal components ψ
(k)
m and the scores ρ̂i,m

again.

4. Iterate Step 2 and Step 3 until there is no more ρ̂ρρ i identified as outlying.

5. Estimate a copula model based on estimated scores ρ̂ρρ i = (ρ̂i1, ..., ρ̂id).

Step 2 of both algorithms identifies outlying pairs i using the following Algorithm 3 due
to Billor et al. (2000). We note that any effective way of identifying pairs of outlying curves
could be used; the approaches of Hubert et al. (2005), Dai and Genton (2018) or Amovin-
Assagba et al. (2022) could be effective. As we will see in Section 3, a more significant
difference arises depending on whether Algorithms 1 or 2 are used.

ALGORITHM 3

1. Compute the Mahalanobis distance for each ρ̂ρρ i:

Mahalanobis distance = (ρ̂ρρ i − ¯̂ρρρ i)
⊤S−1(ρ̂ρρ i − ¯̂ρρρ i), i = 1, . . . ,N,

where ¯̂ρρρ i and S are the mean and the sample covariance matrix of the ρ̂ρρ1, . . . ,ρ̂ρρN .
Select a potential basic subset of size k (k > M) of smallest Mahalanobis distances
that can safely be assumed free of outliers.
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2. Compute the discrepancies:

di =
√
(ρ̂ρρ i − ρ̄ρρb)

⊤S−1
b (ρ̂ρρ i − ρ̄ρρb), i = 1, . . . ,N,

where ρ̄ρρb and Sb are the sample mean and the sample covariance matrix of the obser-
vations in the basic subset.

3. Denote by χ2
d,α/N the (1−α/N)th quantile of the chi-square distribution with d de-

grees of freedom. The level α depends on how many risky pairs we want to identify;
see the discussion following (2.13).

Set the new basic subset to all points with discrepancies less than c, where

c =
√

χ2
d,α/N

(
max

{
0,

h− k
h+ k

}
+1+

d +1
N −d

+
1

N −h−d

)
with h = (N +d +1)/2.

4. The stopping rule: Iterate Step 2 and 3 until the size of the basic subset no longer
changes.

5. Nominate the observations excluded by the final basic subset as outliers.

2.3. Risk quantification using a copula model

Among several copula candidates, we settled on the t-copula that is widely used in
finance and risk analysis, see Demarta and McNeil (2005). We also considered the popular
normal copula, but it did not lead to a good separation of risks for the most extreme pairs.
The R package copula contains many other copula models that could be used in various
settings, and could be better than the t-copula in different applications.

The d-dimensional t-copula with ν degrees of freedom and association matrix Σ is the
probability distribution on [0,1]d whose distribution function is given by

Cν ,Σ(uuu) =
∫ t−1

ν (u1)

−∞

...
∫ t−1

ν (ud)

−∞

Γ( ν+d
2 )

Γ( ν

2 )
√
(πν)d |Σ|

(
1+

xxx′Σ−1xxx
ν

)− ν+d
2

dxxx (2.10)

where tν(·) is the distribution function of a univariate t-distribution with ν degrees of free-
dom. The probability density function corresponding to (2.10) equals to

cν ,Σ(uuu) =
dtν ,Σ(t−1

ν (u1), ..., t−1
ν (ud))

∏
d
i=1 dt(t−1

ν (ui),ν)
, (2.11)

where dtν ,Σ(·) and dt(·, ·) are the densities of multivariate and univariate t-distribution, re-
spectively. We used the R package copula to fit copula (2.10). While the t-copula provides
a useful separation of risks for the data we study in Section 3, different copulas could be
more appropriate for different data sets. Our criterion is that the highest risks should be
clearly separated from each other and the bulk of the data.
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Risk usually refers to the uncertainty of an outcome given a situation. Cybersecurity risk
is the potential for a cybersecurity threat to occur. Following an established practice, we use
tail probabilities to quantify risk. To explain the idea, we consider the first two scores, i.e.,
ρρρ i = (ρi1,ρi2). This corresponds to d = 2 used in Section 3. In general, the four cases in
(2.12) would be replaced by 2d cases. Define the probability of scores more extreme than
those of the observed pair (ρ̂i1, ρ̂i2) as

pi =


P(ρi1 ≥ ρ̂1,ρi2 ≥ ρ̂2), if ρ̂i1 ≥ 0 and ρ̂i2 ≥ 0

P(ρi1 ≤ ρ̂1,ρi2 ≥ ρ̂2), if ρ̂i1 < 0 and ρ̂i2 ≥ 0

P(ρi1 ≤ ρ̂1,ρi2 ≤ ρ̂2), if ρ̂i1 < 0 and ρ̂i2 < 0

P(ρi1 ≥ ρ̂1,ρi2 ≤ ρ̂2), if ρ̂i1 ≥ 0 and ρ̂i2 < 0.

(2.12)

The extreme (risky) regions may have a different form, and will look differently in
higher dimensions, but (2.12) is a commonly used definition on the plane. We require that
in every quadrant, both scores are extreme, rather than just one of them. If the ith pair of
traffic flows is anomalous, then it should occur infrequently, i.e., the probability of obtaining
ρi at least as extreme should be small. To associate high risk with large positive values, we
work with negative log probabilities. Thus, the cybersecurity risk of pair i is defined as

Ri =− log(ε + pi), (2.13)

where ε > 0 is a small value, the same in all calculations. (In Section 3, we use ε = 0.001.)
The risks Ri can be used to rank the pairs from most risky to least risky. One can also set a
probability threshold α , and consider the pairs satisfying Ri >− log(ε+α) as exceptionally
risky. We emphasize that α has an interpretation as a probability only within the copula
model. Alternatively, one can report α corresponding to 10 or 20, or any other number of
most risky pairs. In most applications, we are dealing with thousands of pairs.

3. Application to bi-directional packet flows

3.1. Data description and preliminary analysis

The data set we study consists of a collection of time series of bi-directional packet
flows, aggregated hourly, between source Internet protocol (SIP) addresses and destination
IP (DIP) addresses captured at a large university from October 20th to 30th, 2013. These
data are collected 3 months before a major DDoS attack occurred around January 10th,
2014. The data, transformed with Crypto-PAn, as well as the source code, accompany
this paper at the journal’s website. During the 250-hour time window over which the data
were collected, there are 869 unique SIPs connected with 1869 unique DIPs, and a total of
approximately 1.2 million data packets were sent. We consider N = 3049 unique SIP-DIP
pairs, where SIP is an IP outside the university network and DIP is inside. Each pair is
associated with two observed time series, an inbound packet flow and an outbound packet
flow. The pairs are labeled with integers 1,2, . . . ,3049, the SIPs with S1,S2, . . . ,S869 and
the DIPs with D1,D2, . . . ,D1869. This is needed to anonymize the IP addresses and ease
the notation, the real addresses are long string of integers.
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Figure 2: Time series plots of traffic traces. Left: inbound (SIP to DIP); Right: outbound
(DIP to SIP). Each time series depicts the hourly count of packets between a SIP-DIP pair.

Figure 3: Zoom of Figure 2 with outlying traces removed.
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Time series of inbound traffic traces (from SIP to DIP) and outbound traffic traces (from
DIP to SIP) are depicted, respectively, in the left and right panels of Figure 2. The hourly
count of packets is shown as y-axis, and the time (in hours) is shown as x-axis. It can
be seen that there are some clearly, or potentially, outlying packet flows. These are the
traces that need to be removed before the computation of the bivariate FPCA is performed.
Detection and ordering of risky pairs in the remaining data set shown in Figure 3, cannot
be done visually, or by an obvious algorithm. This is why we have developed copula-based
algorithms.

Figure 4: Mean functions of all functions in the sample.

Another justification of the need to develop an algorithm that uses only the pairs that
are not obviously outlying comes from the examination of Figures 4 and 5. Figure 4 shows
sample mean functions computed from all available data. It is seen that they strongly reflect
the extremely outlying curves in Figure 2, one curve in each panel. Similarly, the initial
FPCs, shown in Figure 5 reflect the deviations of the mean due to smaller outliers, except
the first FPC that reflects the differences in level for most functions. These figures show
that the FPCA based on all functions is not suitable for the quantification of risk because it
reflects the most risky functions and mostly ignores the bulk of the data. For these reasons,
in the following, we first apply the outlier removal algorithms proposed in Section 2.2.

We conclude this section with information about running times. On a 2.2 GHz Intel
Core i7 processor, 16GB RAM, the average running times over three repetitions were 27.9
s for Algorithm 1 and 129.9 s for Algorithm 2, for the data set described at the beginning of
this section.

3.2. Risk analysis using Algorithm 1

For reasons explained in Section 3.1, before fitting a copula model, we use Algorithm 3
in Section 2.2 to remove outlying curves. It identifies four pairs with abnormal scores (la-
beled 2, 794, 1077, and 1491). These pairs are excluded from the copula model estimation.
Using only the remaining pairs, 95.6% of the variance is explained by the first two MFPCs,
with 86.3% of the variance explained by the first MFPC and 9.3% by the second MFPC.
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Figure 5: The first four sample FPCs for all functions in the SIP to DIP direction.

Using d = 2 is therefore sufficient to capture the main features of the data. After estimat-
ing the bivariate t copula (2.10), we compute the probabilities p̂i using (2.11) for all pairs
ρ̂ρρ i = (ρ̂i1, ρ̂i2), including those that were excluded in the copula estimation. Next, we com-
pute the risks using equation (2.13) with ε = 0.001. The risks are in the range [0.624,2.336],
i.e. R̂i ∈ [0.624,2.336]. To give a better idea about the range of risk, we consider, say, 55
pairs with the highest risk. They have risks higher than 1.509. This corresponds to the cut-
off level α = 0.22, i.e for these 55 pairs, R̂i >− log(ε +0.22) = 1.509. Table 3.2 shows the
risks for ten riskiest pairs.
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Table 1. The 10 riskiest pairs according to Algorithm 1
Pair SIP DIP Risk

2 S2 D2 2.336
1077 S312 D655 2.0679
1491 S213 D899 2.0404
2260 S312 D1296 1.999

10 S10 D1 1.896
51 S46 D1 1.870
40 S36 D1 1.861
33 S30 D1 1.858

1272 S423 D1 1.854
34 S31 D1 1.820

We note that the risky pairs are found, and their risks computed, using presmoothing
with B = 100 splines, which is the value used for all analyses presented in this paper. This
level of smoothing is suitable to capture the main and relevant features of the data we study.
We refer again to Figure 1. We need a level of smoothing that preserves large spikes, but
basically ignores typical variability that is not unusual in any way. Larger values of B are not
recommended because they would basically reproduce the raw data and distort the MFPCA
that requires smooth functions as inputs. Using B = 50 produces basically the same risks
and identifies almost the same sets of risky pairs. Using fewer that B = 50 basis functions
is not recommended because the spikes are smoothed out too much.

We examined the patterns of high risk pairs in Table 3.2. The high-risk pairs can,
roughly, be classified into three groups, which we denote (a), (b), and (c). Figure 6 shows
examples of packet flows in each of the three groups. The curves in group (a) have high lev-
els of packet flows with many rapid drops in the packet counts. Pair 2, the most outstanding
outlier, is characterized by exceptionally large traffic. Pair 34 has a similar pattern as pair 2,
but the traffic levels are much lower, so it is not displayed in Figure 6. The relatively high
levels of activity in group (b) (pairs 1077, 1491, and 2260) last only for a short period of
time, and at other times, no activity occurs. The curves in group (c) (pairs 10, 33, 40, 51,
and 1272) have generally low levels with many spikes. Only two pairs in groups (b) and (c)
are plotted, so as not to obscure the picture.

We also examined other pairs in the group of the 55 riskiest pairs, beyond those in Table
3.2. The general patterns are somewhat different. Basically, the patterns in panels (a) and
(b) of Figure 3.2 are exceptional and correspond to outliers. For the majority of high-risk
pairs three different groups can be identified. Figure 7 shows examples of packet flows in
each of the three groups. The curves in group (a) have moderate levels of packet flows, but
exhibit more variability than typical curves. The curves in group (b) have mostly high levels
of packet flows with many rapid drops in the packet counts. Group (c) coincides with group
(c) in Figure 6. It is basically a mirror image of group (b). The curves in that group have
generally low levels with many upward spikes.

It is not possible to display risks for all 3049 pairs in our data set. To obtain some
additional insights, we proceed as follows. In the 3049 pairs, there are SIPs that appear
more often than others. We thus ranked the SIPs by the frequency with which they appear
in the pairs. For example, the address S23 appears most frequently, in 241 out of 3049
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Figure 6: Examples of traffic traces corresponding to the pairs in Table 3.2.

Figure 7: Examples of traffic traces corresponding to pairs identified as high risk under
Algorithm 1: Left: pair 8 (S8 → D2), pair 16 (S15 → D2); Middle: pair 1 (S2 → D2), pair
7 (S7 → D2); Right pair 10 (S10 → D1), pair 33 (S30 → D1).

pairs. We performed the same ranking for the DIPs; the address D1 appears most often, in
285 out of 3049 pairs Figure 8 shows risks for the 10 most frequent DIP and SIP addresses.
According to Figure 8, the pairs including the 10 most frequent SIPs tend to be less risky,
whereas the pairs sent to the 10 most frequent DIPs require more attention, particularly
D1 and D2. The DIP D2 was captured by the outlier detection Algorithm 3, but D1 was
identified only after computing the risks. A finding of this type may indicate that D1 and
D2 (that are within the university) may require special attention.

The results presented in this section illustrate the value of quantitative risk assessment.
Certain SIP-DIP pairs are brought to attention by their high risk, even though they are
difficult to identify visually due to the fact that we are dealing with thousands of pairs of
curves with very complex shapes; in a cloud of thousands of curves it is difficult to see
which are more unusual than others, and it is difficult to examine them visually one after
another. Our method provides a tool for sorting the SIP-DIP pairs so that attention can be
focused only on the riskiest ones.



STATISTICS IN TRANSITION new series, March 2024 15

Figure 8: Top: Boxplots of risks for pairs with the 10 most frequent SIPs. Bottom: Boxplots
of risks for pairs with the 10 most frequent DIPs. (Algorithm 1)

3.3. Risk analysis using Algorithm 2

We now turn to the application of Algorithm 2 proposed in Section 2.2. The results of
copula estimations are shown in Table 3.3. Due to the iterative procedure for the removal of
outliers, Algorithm 2 is expected to identify more outliers than Algorithm 1. We emphasize
that risks are computed for all pairs, including those identified as outliers. The difference
relative to Algorithm 1 is that the copula is estimated on a smaller subset of “typical" pairs.
For the data set we study, Algorithm 2 identified 54 pairs as outlying using α = 0.1 in Step
3 of Algorithm 3. The first iteration identified, by definition, the same outliers as Algorithm
1: pairs 2, 794, 1077 and 1491. The second iteration identified 42 new outliers, third, 5
outliers and fourth 3. After the fourth iteration no more outliers were identified. The range
of R̂i computed by Algorithm 2 is [0.870,2.059]. The risks are different than those obtained
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from Algorithm 1, where the range was [0.624,2.336]. We emphasize that the values of
risks are used only for identifying and ranking risky pairs, they do not have an “absolute"
interpretation. This point is further highlighted by comparing Figures 8 and 9. Table 3.3
displays the risks of the riskiest pairs identified by Algorithm 2. The pairs in Table 3.3 are
different than those in Table 3.2, with some overlap (pairs 2260, 2, 1491, 1272, 40). This
is to be expected because different copula models are used to compute them. A change in
ranking can also occur if the method is applied to transformed data. We applied Algorithm
2 to log(1+ count) and obtained slightly different, but similar rankings using the level of
smoothing similar to that used for the original data. This is understandable, because after
any transformation, the curves take on different shapes.

Table 2. Results of the estimation of the t copula based on the two algorithms
Algorithm 1 Algorithm 2

Degrees of freedom 1.844 3.359

Correlation matrix
(

1 0.344
0.344 1

) (
1 −0.0737

−0.0737 1

)
Margin 1 t0.785(µ =−0.672,σ = 0.0289) t1.0769(µ =−0.0459,σ = 0.0273)
Margin 2 t0.965(µ = 0.0761,σ = 0.0295) t0.908(µ = 0.00433,σ = 0.0470)

Table 3. The 10 riskiest pairs according to Algorithm 2
Pair SIP DIP Risk
2260 S312 D1296 2.0594
794 S312 D13 2.0329
80 S71 D1 2.0294
2 S2 D2 1.995

1491 S213 D899 1.994
79 S70 D1 1.988
43 S39 D2 1.951

1272 S423 D1 1.945
57 S49 D1 1.938
40 S36 D1 1.929

4. Assessment of the methodology on simulated data

A question arises whether Algorithm 1 or Algorithm 2 provides a more useful risk rank-
ing. To address this question, we need an informative simulation study, which is the focus
of this section.

The chief difference between Algorithms 1 and 2 of Section 2.2 is as follows. In Algo-
rithm 1, the MFPCs are computed using all available data, even the potential outliers. The
largest outliers do not affect the MFPCs because they impact the mean functions that are
subtracted before the computation of the MFPCs. In Algorithm 2, the MFPCs are computed
after the outliers have been removed. For example, in Section 3.3 they were computed after
54 pairs had been removed. We assess the performance, and relative performance, of the
two algorithms using simulated data that has certain features of our real data sets, but also
certain characteristics that are known targets. In step 1 of the following data generation al-
gorithm, we have two options, A and B. Option A might seem to, a priori, favor Algorithm
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Figure 9: Top: Boxplot of risks for pairs with the 10 most frequent SIPs. Bottom: Boxplot
of risks for pairs with the 10 most frequent DIPs. (Algorithm 2)

1 and Option B Algorithm 2.

1. A Estimate ψ
(1)
1 ,ψ

(1)
2 ,ψ

(1)
3 and ψ

(2)
1 ,ψ

(2)
2 ,ψ

(2)
3 using all data.

B Remove 54 pairs identified by Algorithm 2 as outlying and estimate ψ
(1)
1 ,ψ

(1)
2 ,

ψ
(1)
3 and ψ

(2)
1 ,ψ

(2)
2 ,ψ

(2)
3 based on the remaining 3049 - 54 = 2995 pairs.

2. For 1 ≤ i ≤ 2995, generate

Xi =
3

∑
j=1

ξi jψ
(1)
j , Yi =

3

∑
j=1

ηi jψ
(2)
j (4.14)

with iid scores ξi j and ηi j distributed according to

ξ1 ∼ t10, ξ2 ∼ 0.5 N(0,1), ξ3 ∼ 0.1 N(0,1),

η1 ∼ t11, ξ2 ∼ 0.4 N(0,1), ξ3 ∼ 0.2 N(0,1),
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The first 2995 pairs are the typical low risk pairs.

3. For 2996≤ i≤ 3041, generate the pairs (Xi,Yi) according to (4.14), but ξ1 and η1 hav-
ing different, “larger" distributions, as specified below. The remaining distributions
are unchanged. These are the pairs with increasing risks. Pair 2996 has the smallest
risk of them, pair 3041 the highest.

4. For 3042 ≤ i ≤ 3049, generate the pairs (Xi,Yi) according to (4.14), but with ξ1 and
η1 having “extremely" large distributions. These are the outlying pairs

In steps 3 and 4 above, the distribution of the scores changes, so as reduce the depen-
dence of the the conclusions on a specific distribution of risky and outlying pairs. We repeat
steps 1-4 20 times, and use four distributions for each batch of five simulations according to
the following specifications:

Simulations 1 to 5: For 2996 ≤ i ≤ 3041, ξ1 ∼ (i−2995)t10,η1 ∼ (i−2995)t11; for
3042 ≤ i ≤ 3049, ξ1 ∼ 2(i−3041)t3,η1 ∼ 2(i−3041)t4.

Simulations 6 to 10: For 2996 ≤ i ≤ 3041, ξ1 ∼ (i − 2995)Exp(0.5),η1 ∼ (i −
2995)Exp(1); for 3042≤ i≤ 3049, ξ1 ∼ (i−3041)Exp(0.1),η1 ∼ (i−3041)Exp(0.5);

Simulations 11 to 15: For 2996≤ i≤ 3041, ξ1 ∼ 2i−2995
10 Exp(1),η1 ∼ 2i−2995

11 Exp(2);
for 3042 ≤ i ≤ 3049, ξ1 ∼ 2i−3041

5 Exp(1),η1 ∼ 2i−3041
6 Exp(2).

Simulations 16 to 20: For 2996 ≤ i ≤ 3041, ξ1 ∼ (i − 2995)Exp(0.5),η1 ∼ (i −
2995)t11; for 3042 ≤ i ≤ 3049, ξ1 ∼ (i−3041)Exp(0.1),η1 ∼ (i−3041)t4.

We apply Algorithms 1 and 2 to the data generated above. Note that each algorithm
estimates the MFPCs and the scores. The estimated MFPCs will be different than those
used to generated the data in Step 1. We list the pairs identified as outliers. The target
list are pairs 3042,3043, . . . ,3049. We find 54 riskiest pairs and order them from the one
with the smallest risk to the one with the highest risk (according to each algorithm). We
denote the indexes as i1, . . . , i54. These indexes will be different for the two algorithms.
The pair (Xi1 ,Yi1) has the the lowest risk out of the 54 pairs. We compute the absolute
differences |ik − k−2995|, k = 1, . . . ,54, and plot them as histograms for both algorithms.
If an algorithm performs well, these differences should be small. For an algorithm that
detects outliers perfectly and ranks the risks perfectly, they should all be zero. However,
due to the random generation of outlying and risky pairs, some of them will not appear to
be in these categories because even a t3 distribution can take a value close to zero. However,
our experiment should give a reasonable idea how the algorithms perform, as we now report.

In both scenarios A and B, Algorithm 1 identifies five to nine pairs as outlying and
Algorithm 2 eight to seventeen pairs. In this sense, Algorithm 1 is closer to our target of
seven outlying pairs. However, as shown in Figure 10, Algorithm 2 has an advantage in
ranking the risky and outlying pairs, but is more prone to make serious mistakes more often
that Algorithm 1. The reader can certainly draw conclusions from the above analysis, but
it appears that the additional outliers identification step in Algorithm 2 does not provide a
decisive improvement. One might conclude that both algorithms identify outliers and risky
pairs in a satisfactory manner, but may result in somewhat different risk rankings, as we
have seen in Section 3.
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Figure 10: Boxplots of absolute difference for the top 54 risky pairs for both algorithms
in two scenarios.
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Mutual information between Polish subindexes – the use of copula 
entropy around the time of the COVID-19 pandemic 

Henryk Gurgul1, Robert Syrek2 

Abstract 

In this paper, the copula theory is used to describe the dependence structure between 
variables, while the information theory provides the tools necessary to measure the 
uncertainty associated with these variables. What both theories have in common is copula 
entropy, which is strictly related to mutual information. 
The findings of this study, focusing on the dependence of the (sub)indexes of the Polish 
stock market during the pandemic period, may prove useful not only to investors from 
Poland, but also from other countries, especially Central European, in making investment 
decisions.  
The results of calculating the interdependencies between WIG, sectoral indexes and among 
sectoral indexes of the Polish economy using copula entropy and Pearson’s correlation are 
quite different.  
The source of the basic difference between copula entropy and Pearson’s correlation is that 
the former enables the measurement of nonlinear interdependencies, while the latter not. 
The interrelations on the stock markets are nonlinear and returns are not normally 
distributed in general. The use of copulas is also superior in terms of ranking correlation, 
as it is more general and allows the examination of the structure of dependencies between 
extreme values. 
JEL Classification: G15, G19 
Key words: Polish subindexes, COVID-19 pandemic, mutual information, copula entropy. 

1. Introduction

At the end of 2019, the COVID-19 pandemic broke out. According to WHO, by
September 1 2020 there were 25,327,098 cases of COVID-19. In addition 848,255 deaths 
were registered across the world. Since the outbreak of the pandemic, governments 
have tried to restrict the spread of COVID-19.  
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All countries have used different measures in order to protect societies from the 
pandemic. These measures include stopping production and quarantining people in 
their own homes. The implementation of these measures has had a great impact on 
economic development, the economic situation of enterprises and national economies. 
These economic and social problems are reflected in the growing number of academic 
contributions. These studies have documented the negative impact of the pandemic 
(Goodell, 2020 among others) on trade, tourism, transportation, and employment 
(Leduc and Liu, 2020), even at the beginning. Some contributors have started to 
compare the effects of the spread of COVID-19 and its consequences to those of an 
economic crisis (Sharif et al., 2020). 

The pandemic has had a great effect on economic and social development as well 
as  the financial markets. Some studies have documented the impact of the pandemic 
on the returns of financial markets (Ashraf, 2020; Zhang et al., 2020; Aslam et al., 2020 
a,b,c) and/or their volatility  (Albulescu, 2020; Bakas and Triantafyllou, 2020; Zaremba 
et al., 2020; Okorie and Lin, 2020).  

The risk of contagion between financial markets was also the subject of these 
inquiries (Akhtaruzzaman, 2020; Goldstein and Pauzner, 2004). Baig et al. (2020) 
investigated the impact of the pandemic on the liquidity and volatility of the stock 
market. They established that the increase in confirmed cases and deaths due to the 
pandemic caused a lack of liquidity, stability and strong volatility on the financial 
market.  

Rizwan et al. (2020) investigated the banking systemic risk in eight important 
countries. All of them were strongly affected by the pandemic. The authors found that 
the financial systemic risk of the countries under consideration rose significantly 
during the pandemic period. 

Some studies have concentrated on the performance of stocks in different sectors 
or different countries. Mazur et al. (2020) examined the return of the healthcare, food, 
natural gas, and software sectors. They observed that these sectors performed well 
during the pandemic. However, they also found that the crude petroleum, real estate, 
entertainment, and hospitality sectors declined noticeably. In addition, these sectors 
displayed great volatility.  

Shehzad et al. (2020) compared the impact of the pandemic on the stock market 
with that of global financial crises. They established that the American and the 
European stock markets were affected by the pandemic more strongly, and COVID-19 
disturbed  economic communication throughout the world and was the source of 
a financial crisis. 

For investors it is very important to analyze the interdependence structure of the 
stock market. This is important with respect to diversifying investment and building 
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investment portfolios during the time of the pandemic, which is essential from the point 
of view of risk management of the financial market taken into account by financial 
regulators.  

In recent years, several researchers have tried to investigate the interdependence 
among stock markets (Sukcharoen and Leatham, 2016; Long et al., 2016; Qiao et al., 
2016; Long et al.,2017a, b; Surya et al., 2018; Alomari et al., 2018; Huang et al., 2019, 
Kodres and Pritsker 2002, Barberis et al., 2005, Chiang and Zheng, 2010, Wang and 
Hui, 2018). They have used, among others, the GARCH model, Copula model, Granger 
causality test, DCC model, and some other models in order to detect the 
interdependence structure between different stock sectors in the countries under 
consideration.   

Research on the interdependence structure of the stock markets has indentified 
which sector plays the most important role in a national economy. These studies 
provide new opportunities for investors to build a proper portfolio of assets (Poynter et 
al., 2015). However, in Europe there are not many studies concerned with the 
interdependence structure of the stock sectors during the selected period of the 
COVID-19 pandemic.  

China was the first country that faced COVID-19. This country was the first in the 
world to implement measures to tackle the pandemic. Taking scientific investment 
methods into account,  investors expect to obtain higher profits and/or reduce 
investment losses. A very well- known investment strategy is diversification. According 
to this strategy, assets are distributed to stocks from different sectors. Its main goal is to 
avoid investment losses caused by investing in closely dependent assets.  

The pandemic, which began in 2019 in China, was the source of the greatest 
recession in economic and social development since the global financial crisis of 2008. 
Identifying the structure and changes in the interdependence between various sectors 
during the time of COVID-19 is a very useful piece of advice for investors trying to 
optimize their investment during the pandemic.  

The copula entropy used in this contribution is a combination of copula theory and 
information theory. The copula function is employed to describe the dependence 
between variables, and mutual information is used to quantify the dependence. There 
is a connection between copula theory and information theory, and mutual information 
can be expressed in terms of copulas, as copula entropy. 

One of the first and  most important contributions using copula entropy  is a paper 
by Zhao and Liu, 2011. In this research, the copula entropy model was constructed by 
the copula and the entropy theory. Therefore the copula entropy model combines the 
advantages of both of them. The used approach is not limited to measuring the linear 
correlation; it also can describe the nonlinear correlation. It not only measures the 
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degree of the dependence, but considers the structure. In this paper, the contributors 
propose copula entropy models with two and three variables to measure dependence 
in stock markets, which extend the copula theory and are based on Jaynes’s  
information criterion.The research sample is composed of 12 stocks indexes from 
12 countries selected by two methods. They chosen three copula functions to represent 
three different economic situations: recession, boom and interim. Having completed 
the two experiments, they provided a comparative analysis. The authors proven that 
three-variable dependence changes across the three economic circles are less obvious 
than the two-variable dependence. 

This study of the dependence of the Polish stock market during the pandemic 
period may be useful not only for Polish investors in making investment decisions, but 
also those from other countries, especially Central Europe. Our aim to study 
interdependencies around the time of the outbreak of COVID-19 seems to be 
reasonable. 

The main task of this study is detection of  changes in dependence around event 
day (13.03.2020 - the day a state of epidemic threat was introduced in Poland). We will 
prove the dependence of subindexes using the concept of mutual information before 
and after the event day.  By means of mutual information based on copula entropy  we 
aim to check whether the parameters of mutual information are greater before or after 
the event day. Further research question concerns behaviour  of Pearson correlation 
with respect to the event day. 

We will compare results of  both measures of dependence before the event day and 
after the event day and explain possible differences  with respect to linear and nonlinear 
dependence notions. 

2.  Copulas 

Sklar (1959) introduced a new class of multivariate cumulative distribution 
functions, which are multivariate cumulative distributions with uniform margins. 
Assume that random vector ሺ𝑋,𝑌ሻ has joint distribution function 𝐹௑௒ሺ𝑥,𝑦ሻ and density 
𝑓௑௒ሺ𝑥,𝑦ሻ. Let  𝐹௑ሺ𝑥ሻ and 𝐹௒ሺ𝑦ሻ be marginal distributions, whereas 𝑓௑ሺ𝑥ሻ and 𝑓௒ሺ𝑦ሻ are 
marginal density functions of 𝑋 and  𝑌, respectively. Sklar’s theorem (see Nelsen, 2006) 
states that there exists function 𝐶 (called the copula), such that 𝐹ሺ𝑥,𝑦ሻ ൌ
𝐶ሺ𝐹௑ሺ𝑥ሻ,𝐹௒ሺ𝑥ሻሻ. From this we see that the copula is a function that combines one-
dimensional distributions into a multivariate (bivariate is a special case)  distribution 
with uniform margins. Moreover, if marginal distributions are continuous the copula 𝐶 
is unique and the equation holds 

𝐶ሺ𝑢, 𝑣ሻ ൌ 𝐹൫𝐹௑
ିଵሺ𝑢ሻ,𝐹௒

ିଵሺ𝑉ሻ൯                                            (1) 
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where 𝑢, 𝑣 ∈ ሾ0,1ሿ and  𝐹௑ିଵ,𝐹௒
ିଵ are quasi-inverses of the distribution of 𝐹௑ and 𝐹௒, 

respectively. The density of copula 𝐶 is the mixed second derivative of 𝐶 and can be 
expressed as  

𝑐ሺ𝑢, 𝑣ሻ ൌ
డమ஼ሺ௨,௩ሻ

డ௨డ௩
ൌ

௙೉ೊሺ௫,௬ሻ

௙೉ሺ௫ሻ∙௙ೊሺ௬ሻ
                                         (2) 

The best known classes of copulas are elliptical and Archimedean copulas. The 
bivariate Gaussian (or normal) copula is an elliptical copula of the form 

𝐶ఘீ௔ሺ𝑢ଵ,𝑢ଶሻ ൌ Φఘ൫Φିଵሺ𝑢ଵሻ,Φିଵሺ𝑢ଶሻ൯      (3) 

where Φఘ is the cumulative distrubution function of the bivariate standard normal with 
Pearson’s correlation coefficient 𝜌, while  Φିଵ is the inverse of the univariate 
cumulative distribution function of the standard normal.  
The other example of elliptical copula is copula t which is based on the t distribution 
function and is given by 

𝐶ఔ,ఘ
௧ ሺ𝑢ଵ,𝑢ଶሻ ൌ 𝑡ఔ,ఘ൫𝑡ఔିଵሺ𝑢ଵሻ, 𝑡ఔିଵሺ𝑢ଶሻ൯.                                  (4) 

where 𝑡ఔ,ఘ is the cumulative distribution function of the bivariate t cumulative 
distribution function with linear correlation coefficient 𝜌 and 𝜈 degrees of freedom, 
whereas 𝑡ఔିଵ is the inverse of the univariate cumulative distribution function of t with 
𝜈 degrees of freedom.  

The other class of copulas is Archimedean copulas, whose construction is based  
on a special convex and strictly decreasing continuous function called generator 
(see Nelsen (2006) for details). In Table 1 we present the definitions of the selected 
copulas and the range of parameters 

Table 1:  Some families of Archimedean copulas 

name 𝑪ሺ𝒖,𝒗ሻ Range of parameter 

Frank 
െ

1
𝜃

log ቈ1 ൅
ሺexpሺെ𝜃𝑢ሻ െ 1ሻሺexpሺെ𝜃𝑣ሻ െ 1ሻ

expሺെ𝜃ሻ െ 1
቉ 

ሺെ∞,∞ሻ\ሼ1ሽ 

Clayton max ሺሾ𝑢ିఏ ൅ 𝑣ିఏ െ 1ሿି
భ
ഇ, 0ሻ ሾെ1,∞ሻ\ሼ0ሽ 

Gumbel exp ሺെൣሺെ𝑙𝑛𝑢ሻఏ ൅ ሺെ𝑙𝑛𝑣ሻఏ൧
భ
ഇሻ ሾ1,∞ሻ 

BB1 
ቄ1 ൅ ൣሺ𝑢ଵିఏ െ 1ሻఋ ൅ ሺ𝑢ଶିఏ െ 1ሻఋ൧

ଵ/ఋ
ቅ
ିଵ/ఏ

 𝜃 ∈ ሺ0,∞ሻ, 𝛿 ∈ ሾ1,∞ሻ 

The number of copulas can be easily extended using rotations. In applications, the 
most frequently used copulas are those rotated 180 degrees, called survival copulas of 
the form 

𝐶መሺ𝑢, 𝑣ሻ ൌ 𝑢 ൅ 𝑣 െ 1 ൅ 𝐶ሺ1 െ 𝑢, 1 െ 𝑣ሻ.      (5) 
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The main use of copulas is to model dependence. Such concordance measures as 
Kendall’s 𝜏 or Spearman’s 𝜌 can be expressed in terms of copulas, but the dependencies 
between extreme values which can be investigated with copulas are often more 
interesting. Upper- and lower-tail dependence coeefficients are defined as 

𝜆௎ ൌ lim
௨→ଵష

ଵିଶ௨ା஼ሺ௨,௨ሻ

ଵି௨
  and 𝜆௅ ൌ lim

௨→଴శ
஼ሺ௨,௨ሻ

௨
      (6). 

The copula C has upper-tail dependence if 𝜆௎ ∈ ሺ0,1ሿ and upper-tail independence 
if 𝜆௎ ൌ 0. The definitions for lower-tail coefficients are analogous. The upper- (lower-
) tail dependence coefficients of survival copula are equal to lower- (upper-) tail 
dependence coefficients. 

The Gaussian copula exhibits tail independence for both tails and for 𝑡 copula 𝜆௎ ൌ

𝜆௅ ൌ 2𝑡ఔାଵ ൬െට
ሺఔାଵሻሺఘିଵሻ

ଵାఘ
൰. The Archimedean copulas include non-symmetrical 

cases. The tail-dependence coefficients of the families selected are presented in the table 
below. 

Table 2:  Tail dependence coefficients of some Archimedean copulas 

copula 𝝀𝑼 𝝀𝑳 
Frank 0 0 

Clayton 0 2ିଵ/ఏ 
Gumbel 2 െ 2ଵ/ఏ  0 

BB1 2 െ 2ଵ/ఋ  2ିଵ/ሺఋఏሻ 
 

The objective of some research, such as that of Ma and Sun (2011), is to present 
a copula entropy approach based on entropy theory and copula theory to measure the 
dependence relationship between the financial variables with practical applications. 

3. Linear correlation vs. mutual information 

Most research methods that are concerned with the dependence of the stock 
markets are based on linear assumptions. Some of them refer to a specific model and 
parameters. The best known Pearson correlation coefficient can only measure the linear 
relationship between variables, instead of effectively measuring the nonlinear 
relationship. Pearson’s correlation coefficient is based on the multivariate ellipticity 
assumption, which does not always hold. This measure will not estimate the 
dependence between two variables properly when the sample size is not large enough 
or the dependence relationship is nonlinear. 

The rank correlation coefficient can be used in order to estimate the nonlinear 
dependence relationship between two variables. It has no restriction regarding the 
distribution of variables. The rank correlation coefficient primarily includes the 
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Kendall correlation coefficient and the Spearman correlation coefficient, which are 
examples of concordance measures. 

Due to the development of entropy theory and its application, different methods, 
such as mutual information, have been used in a number of pieces of financial market 
research (Fiedor, 2014; Fiedor, 2015; Yang et al., 2013; Yang et al., 2014; Kwon and 
Yang, 2008; Wang and Hui, 2017, Wang et al., 2017 Khan et al., 2007). We briefly 
present the fundamental concepts of information theory, such as entropy and mutual 
information. 

Entropy is the average amount of information. For discrete random variable 𝑋 with 
support set 𝒳 is given by 

𝐻ሺ𝑋ሻ ൌ െ∑ 𝑝ሺ𝑥ሻ log௠ 𝑝ሺ𝑥ሻ௫∈𝒳         (7) 

If the logarithm base is equal to 2, the unit of entropy is bit. For 𝑚 ൌ 𝑒 and 𝑚 ൌ 10 
we get nat and dit respectively (we omit this parameter in the following formulas). 

In the case of a pair of random variables 𝑋 and 𝑌 one can compute conditional 
entropy 𝐻ሺ𝑌|𝑋ሻ, which measures the entropy of variable 𝑌 when the values of 𝑋 are 
known. This is given by 

𝐻ሺ𝑌|𝑋ሻ ൌ െ∑ ∑ 𝑝ሺ𝑥,𝑦ሻ log
௣ሺ௫,௬ሻ

௣ሺ௫ሻ௫∈𝒳௬∈𝒴      (8) 

where 𝑝ሺ𝑥,𝑦ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሻ and 𝑝ሺ𝑦ሻ ൌ 𝑃ሺ𝑌 ൌ 𝑦ሻ. Defining joint entropy by 

𝐻ሺ𝑋,𝑌ሻ ൌ െ∑ ∑ 𝑝ሺ𝑥,𝑦ሻ log𝑝ሺ𝑥,𝑦ሻ௫∈𝒳௬∈𝒴       (9) 

conditional entropy can be expressed as 𝐻ሺ𝑌|𝑋ሻ ൌ 𝐻ሺ𝑋,𝑌ሻ െ 𝐻ሺ𝑋ሻ. In this paper, we 
use mutual information (𝑀𝐼) to measure the dependence between variables. Mutual 
information is given by 𝑀𝐼ሺ𝑋,𝑌ሻ ൌ 𝐻ሺ𝑋ሻ െ 𝐻ሺ𝑌|𝑋ሻ and for the two given variables X 
and 𝑌, assuming that their respective marginal probability distributions and joint 
probability distribution are known, and they are, respectively, p(x), p(y), and p(x, y), 
mutual information can be expressed as 

𝑀𝐼ሺ𝑋,𝑌ሻ ൌ ∑ ∑ 𝑝ሺ𝑥,𝑦ሻ log
௣ሺ௫,௬ሻ

௣ሺ௫ሻ௣ሺ௬ሻ௫∈𝒳௬∈𝒴       (10) 

Mutual information measures the amount of information of 𝑋 contained in 𝑌 and, 
conversely, the amount of information of 𝑌 contained in 𝑋. In other words, mutual 
information measures the uncertainty of one variable given knowledge of the other.  

This measure has the following properties: 
1. 𝑀𝐼ሺ𝑋,𝑌ሻ ൒ 0 
2. 𝑀𝐼ሺ𝑋,𝑋ሻ ൌ 𝐻ሺ𝑋ሻ 
3. 𝑀𝐼ሺ𝑋,𝑌ሻ ൑ min ሺ𝐻ሺ𝑋ሻ,𝐻ሺ𝑌ሻሻ. 

 



30                                                       H. Gurgul, R. Syrek: Mutual information between Polish subindexes… 

 

 

Although 𝑀𝐼 is bounded by the entropies of each variables, it is not normalized. 
Following Joe (1989) we can normalize mutual information using formula 𝛿 ൌ
ඥ1 െ exp ሺെ2𝑀𝐼ሻ. In this way we obtain a normalized index, which is contained 
in interval ሾ0,1ሿ. 

For continuous random variables, the definitions above can be reformulated in 
terms of integrals. In this case, the Shannon entropy is called differential entropy, which 
unfortunately does not have all the desired properties, such as a discrete version 
(for example non-negativity). Mutual information is given by 

𝑀𝐼ሺ𝑋,𝑌ሻ ൌ ׬ ׬ 𝑝ሺ𝑥,𝑦ሻ log
௣ሺ௫,௬ሻ

௣ሺ௫ሻ௣ሺ௬ሻ
𝑑𝑥𝑑𝑦𝒳𝒴 .      (11) 

In the literature (for example Jenison and Reale 2004, Ma and Sun 2011, Zhao and 
Liu, 2011), we can also find the term copula entropy. Using copula entropy, association 
information and dependence structure information can be measured simultaneously. 
In addition, copula entropy does not impose constraints on the dimension of multiple 
variables. Copula entropy can also be used to measure multivariate dependence 
in different branches of the economy. In general, for N-dimensional copula with 
density 𝑐ሺ𝒖ሻ, where 𝒖 ൌ ሺ𝑢ଵ,𝑢ଶ, … ,𝑢ேሻ copula entropy is defined as 

𝐻஼ሺ𝒖ሻ ൌ െ׬ 𝑐ሺ𝒖ሻ log 𝑐ሺ𝒖ሻ 𝑑𝒖ሾ଴,ଵሿಿ ,       (12) 

which in the bivariate case takes the form 

𝐻஼ሺ𝑈,𝑉ሻ ൌ െ𝐸ሾlog 𝑐ሺ𝑢, 𝑣ሻሿ ൌ െ׬ ׬ 𝑐ሺ𝑢, 𝑣ሻ log𝑐ሺ𝑢, 𝑣ሻ 𝑑𝑢𝑑𝑣
ଵ
଴

ଵ
଴ .   (13) 

Ma and Sun (2011) show in their paper that mutual information is copula entropy 
and more specifically 𝑀𝐼 ൌ െ𝐻஼ . They also implement a method for estimating mutual 
information in a non-parametric way.  Given the density of the copula, one can use 
numerical integration to obtain 𝐻஼ , or simply as െ ଵ

௡
∑ log 𝑐ሺ𝑢௧, 𝑣௧ሻ
௡
௧ୀଵ . This is a general 

approach, but for some families of copulas there are explicit formulas. For example, 
in the case of the Gaussian copula with parameter 𝜌, mutual information is equal 
to െଵ

ଶ
lnሺ1 െ 𝜌ଶሻ. 

To summarize, dependence measurement using mutual information expressed 
in terms of copulas has many advantages. It is not limited to measuring linear 
correlations; it can also capture a nonlinear correlation. It not only measures the degree 
of the dependence, but also considers the dependence structure which is more than 
correlation. Moreover, there is no assumption about the ellipticity of marginal and joint 
distribution. It even allows the dependence of variables with different cumulative 
distribution functions to be modelled. Although in this paper we consider bivariate 
copulas, extension to the multidimensional case is obvious. 
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4. Data and empirical results 

We consider the closing prices of 14 sectoral indexes between January 3, 2018 and 
May 13, 2022 (the day the state of epidemic in Poland was lifted). In addition, the largest 
index from the Warsaw Stock Exchange WIG is considered. On March 11, 2020 the 
World Health Organization (WHO) announced the COVID-19 pandemic. We divide 
the time series of logarithmic returns with the date 13 March, 2020. On that day a state 
of epidemic threat was introduced in Poland (we refer to this as the event day). For all 
the series we computed descriptive statistics (mean, standard deviation, kurtosis and 
skewness given in Table 3).  

We conducted a Ljung-Box test of lack of autocorrelation and Jarque-Bera test of 
normality. To save space we present their quartiles (all results of the computations are 
available upon request). 

Table 3:  Descriptive statistics of returns 

before event 
Specification mean sd kurtosis skewness 

min -0.21 0.92 5.31 -2.89 
1st quartile -0.17 1.23 7.83 -2.02 
median -0.13 1.63 12.14 -1.37 
3rd quartile -0.03 1.90 23.68 -0.77 
max 0.14 2.58 29.75 -0.52 

after event 

 mean sd kurtosis skewness 
min -0.08 1.26 3.78 -5.48 
1st quartile 0.05 1.97 6.25 -0.30 
median 0.10 2.26 6.49 0.02 
3rd quarile 0.14 2.85 9.04 0.38 
max 0.19 3.50 88.23 1.08 

The results of the first test are mixed, but we reject null of normality for all the 
series. This is also the case for the WIG series. 

Main index – subindex dependence 

To investigate the dependence between the WIG index and the sectoral indexes we 
compute mutual information for all pairs main index - subindex before and after the 
event day using copula entropy. 

First, we filter our time series using Vector Autoregression models for conditional 
means, GARCH type models for conditional variance and skew t for conditional 
distribution. Given the estimated models we computed the probability integral 
transform. Tenzer and Elidan (2016) established a monotonic relationship between the 
mutual information and the copula dependence parameter. We limit the set of potential 



32                                                       H. Gurgul, R. Syrek: Mutual information between Polish subindexes… 

 

 

copulas to selected families, but allow their rotated versions (survival copulas). Using 
the Bayesian information criterion, we choose bivariate copulas that fit the best.  

In most cases, the fitted copulas belong to a class of asymmetric (BB1, survival 
Gubmel, survival BB1) copulas with a different structure in the upper and lower tails. 
The computed tail dependence coefficients are not smaller after the event for 9 and 
12 subindexes, respectively. Given the densities of the estimated copulas we compute 
mutual information and the corresponding parameter  𝛿 for all pairs under 
investigation. We present this in Figure 1 (red before, green after). 

 
Figure 1:  Parameter 𝛿 for pairs index-subindex 

Both before and after the event the weakest and strongest dependence is observed 
for PHA and BANK, respectively. 

In 9 cases out of 14 delta values are higher after the event (the exceptions are the 
sectors BANK, CLO, GAM, MIN, OIL). The three largest percentage increases in the 
delta parameter are observed for MED (32.5%), PHA (25.3%) and AUT (21.5%), 
the largest decreases for MIN (-21.3%), BAN (-7.1%) and GAM (-4.6).  

For the purpose of comparison we computed linear correlation coefficients. Before 
the event, the weakest and strongest dependence is observed for MED and BANK, 
whereas after PHA and BANK. Only in 3 cases (AUD, IT, MED) does the correlation 
increase after the event, with the highest percentage increase for IT (14.1%) and largest 
decrease for MIN(-27.3%). 

Dependence of subindexes 

We repeat the procedure for all pairs of subindexes. In most cases the copula that 
fits the best is a rotated version of Gumbel (63 cases before and 50 cases after the event), 
which is dependent in the lower tail and independent in the upper one. The number of 
symmetric copulas increases, and most of them are Gaussian copulas with tail 
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independence. However, in 50 cases the number of estimated lower-tail dependence 
coefficients increases. Upper-tail dependence coefficients remain the same in 72 cases 
because of elliptical copulas and Archimedean copulas with upper-tail independence. 
For the subsectors GAM, MED and MIN, the lower-tail dependence coefficients do not 
increase with the other sectors in most cases, whereas for FOOD and OIL they do. In the 
left diagram of Figure 2, we present pairs of sectors for which lower-tail dependence 
coefficients do not decrease (yellow) and decrease (grey). On the right, we present pairs 
of sectors for which upper-tail dependence increases (yellow) and does not increase 
(grey). 

 
Figure 2:  Designation of pairs with tail-dependence coefficient changes 

Despite the lack of economic justification, we compute mutual information and 
cooresponding paramerer 𝛿 for all pairs and for both subperiods (see Figure 3). 

 
Figure 3:  Heat map of parameters delta before (left) and after (right) the event 
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In Table 4 we present the 3 weakest and 3 strongest relationships before and after 
the event. 
 

Table 4:  Selected weakest and strongest relationships 

before event after event 

pair value pair value 

MIN - MED 0.1911 REES - MIN 0.1640 

OIL - MED 0.1928 MIN - CHEM 0.1659 

PHA - AUT 0.1990 MIN - BANK 0.1716 

 … …  

CLO - BANK 0.5000 CLO - BANK 0.5149 

OIL - BANK 0.5078 OIL - GAM 0.5308 

GAM - BANK 0.5606 OIL - BANK 0.5909 
 

In 69 cases dependence increases, which accounts for over 75% of all cases. 
In Figure 4, we present the heat map of the percentage changes of delta coefficients. 
 

 
Figure 4:  Heat map of percentage changes of 𝛿 

 
From Figure 4 we notice that mining is the sector with the lowest percentage 

changes in dependencies. Table 5 contains the three smallest and three largest 
percentage changes. 
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Table 5:  Selected smallest and largest percentage changes of 𝛿 

pair percentage  change 

MIN - BANK -53.7 

MIN - CHEM -52.1 

MIN - REES -40.6 

…. 

MED - IT 59.7 

FOOD - CHEM 68.1 

IT - AUT 74.8 

 
Given 𝛿௜௝, the dependence parameter between 𝑖 and 𝑗 subindexes, we compute 𝑆௜ ൌ

∑ 𝛿௜௝௝ , which reflects the sum of parameters 𝛿 of certain subindex with all of the other 
subindexes. 

 

 
Figure 5:  𝑆௜  of each sector before (red) and after the event (green) 

We can see from Figure 5 that only in the case of the mining sector 𝑆௜ is greater before 
the event than after with a drop of about 47%. The increase in the gaming sector is small 
(about 0.25%) while the greatest change is observed for the media sector (about 71%).   

Again, for the purposes of comparison we computed the linear correlation 
coefficients between the returns of the subindexes. In 24 cases the dependence after the 
event is greater than dependence before the event. This is contrary to the results by 
mutual information. However, the correlation coefficient was calculated for returns. 
Moreover, the smallest value of correlation coefficient before the event is greater than 
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the smallest one after, and the maximum value of the correlation coefficient is greater 
before the event than after. These results are presented in the heat maps (Figure 6): 

 
Figure 6: Heat maps of correlation coefficients before (left) and after (right) the event 

From these pictures we notice that after the event the smallest values of correlation 
coefficients are when we consider the PHA or MIN sectors as a member of a pair, which 
is partly in line with the results from mutual information. In Table 6 we again present 
the 3 weakest and 3 strongest dependencies. These results are similar to those from 
Table 4. 

Table 6: Selected weakest and strongest relationships measured with linear correlation coefficient. 

before event after event 
pair value pair value 

OIL - MED 0.2253 MIN - MED 0.1320 
MED - IT 0.2476 REES - MIN 0.1468 

MIN - MED 0.2702 PHA - MED 0.1487 
… … 

GAM - CLO 0.5509 OIL - GAM 0.5297 
CLO - BANK 0.6253 OIL - BANK 0.5501 
GAM - BANK 0.6671 CLO - BANK 0.5595 

 
The last confirmation (Figure 7) of difference between mutual information and 

linear correlation results is the sum of the correlation coefficients of certain subindex 
with all of the other subindexes (red before event, green after event). The largest drop 
in these values is observed for MIN (about 43%) and PHA (about 37%). The only 
positive change is observed for the IT sector with the value of 3.7%. 
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Figure 7:  Sum of correlation coefficients of each sector before and after the event 

5. Conclusions  

The main goal of this contribution was to detect changes in dependence around the 
event day. The event day was 13.03.2020. On that day a state of epidemic threat was 
introduced in Poland. In the first part of this empirical study we examined the 
dependence between the WIG index and (14) sectoral subindexes. We calculated 
mutual information and their normalized value for all pairs main index – subindex 
before and after the event day using copula entropy. In most cases dependence 
parameters were higher after the event day than before this day.  

Then we checked the dependence of subindexes using the concept of mutual 
information  before and after the event day. In all cases, except for the subsector, mining 
dependence parameters were greater after the event day than before the event day. 
A quite different picture emerges from a linear correlation analysis. In almost all 
subsectors, the sum of the Pearson correlation coefficients before the event day is larger 
than after the event day.  

The COVID-19 pandemic was reflected not only in a crisis in health systems, but 
also in an economic crisis, among other things. Past experiences, e.g. the Global 
Financial Crisis of 2007 and 2008, have convinced us that in times of crisis dependence 
between economic variables, especially variables from stock exchanges become 
stronger. The results before and after the event day, which are based on mutual 
information, are in line with our expectations formulated by observing crises in the 
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past. On the contrary, Pearson’s correlation delivers different results. This may be 
caused by an increase in nonlinear dependencies between subsectors of the Warsaw 
Stock Exchange after the event day. Nonlinearities after the event day may be 
incorrectly categorized as independent by Pearson’ correlation. 

An interesting  question in future research will be a comparison of  pandemic 
outbreak of the mutual entropy and correlation results for subindexes  of developed 
capital markets and a comparison  of  these dependence measures with results for Polish 
subindexes (and/or) subindexes of other emerging markets. 

The second research question will be the impact of the size of subsectors on the 
dependence measures under study. 
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Skew Log-Logistic distribution: properties
and application

Arjun Kumar Gaire1, Yogendra Bahadur Gurung2

Abstract

This paper introduces a novel three-parameter skew-log-logistic distribution. The research 
involves the development of a new random variable based on Azzalini and Capitanio’s (2013) 
proposition. Additionally, various statistical properties of this distribution are explored. The 
paper presents a maximum likelihood method for estimating the distribution’s parameters. 
The density function exhibits unimodality with heavy right tails, while the hazard function 
exhibits rapid increase, unimodality, and slow decrease, resulting in a right-skewed curve. 
Furthermore, four real datasets are utilized to assess the applicability of this new distribution. 
The AIC and BIC criteria are employed to assess the goodness of fit, revealing that the new 
distribution offers greater flexibility compared to the baseline distribution.

Key words: Log-Logistic, skew, marriage, menarche, age-specific fertility rate.

1. Introduction

Different families of distribution created from the baseline distribution by using differ-
ent mathematical techniques have attracted the interest of statisticians and other scholars.
In the literature, univariate probability distributions have been modified by adding extra pa-
rameters such as shape, scale, or location in the existing distribution, the primary aim of
such extension, generalization, and modification of the existing distribution is to generate
a more flexible distribution. Such new distributions have been applied to fit a distribution
pattern of real-world problems such as in finance, economics, physics, biostatistics, actu-
arial science, reliability analysis, engineering, and many more fields. In this study, a new
random variable from the application of Azzalini and Capitanio’s proposition (Azzalini and
Capitanio, 2013) has been introduced. For this, the Log-Logistic (LLog) distribution is cho-
sen as a base distribution. Heavy-tailed distribution is always desired by the researcher to
capture the right-tailed skewed data. This research is motivated to find the distribution to
capture the unusual data or outliers present in the real dataset. Four real data sets of the age
of the Nepalese mother at the birth of a child, the waiting time of customers at the bank
before receiving the service, the age at first marriage of Nepalese females, and the age at
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menarche of Nepalese girls have been applied to test the suitability and flexibility of the
proposed distribution.

The rest of the paper is organized as follows. In Section 2, a brief review of LLog
distribution has been presented. In Section 3 a new distribution, called hereafter, ’Skew-
Log-Logistic’ (SLLog) distribution, is formulated and some statistical properties have been
derived. Section 4 includes the methods of parameter estimation and Section 5 illustrates
the application and validity of a model by using the four real data sets. Finally, Section 6
concludes the paper.

2. Log Logistic Distribution

The LLog distribution is a popular logistic distribution, which was initially developed to
model population growth by Verhulst (1838) as cited in (Tahir et al., 2014). It is a continuous
distribution with a uni-model failure rate function for a non-negative random variable. If T
has a logistic distribution, then X = eT has LLog distribution. It is popularly known as
Fisk-distribution in economics (Fisk, 1961). This distribution is applicable for modeling in
various real-world situations, viz.: wealth and income (Fisk, 1961); economics and actuarial
sciences (Kleiber and Kotz, 2003); flow data in hydrology (Ashkar and Mahdi, 2006) and
‘time following a heart transplantation’ in biostatistics (Collet, 2015). Similarly, Yilmaz
et al. (2011) used it to estimate the seismic risk and earthquake occurrence probabilities.
Further, Tahir et al. (2014) applied it to study the reliability analysis. Furthermore, it is used
by Surendran and Tota-Maharaj, (2015) for modeling daily water consumption, estimation,
and forecasting. So, LLog is a widely applicable model in different walks of life.

The probability density function (PDF) and the cumulative distribution function (CDF)
of the three-parameter LLog distribution are given as

g(x) =
α

β

(
x−γ

β

)α−1

(
1+

(
x−γ

β

)α)2 , for x > γ (1)

G(x) =

(
x−γ

β

)α

1+
(

x−γ

β

)α (2)

where α > 0 is a shape parameter, β > 0 is a scale parameter and γ is a threshold or location
parameter. The random variables under study in the different situations have positive values
and the minimum cutoff value of these random variables is greater than zero, such as the
minimum age of the mother at the birth of a child. Here, we consider the third threshold or
location parameter of the LLog distribution.

The basic properties of this distribution are studied by Kleiber and Kotz (2003), Lawless
(2003), and Ashkar and Mahdi (2006). The kth order moments of two-parameter LLog
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distribution are derived and studied by Tadikamalla (1980) for α > k as

E(xk) = β
k B

(
1+

k
α
,1− k

α

)
= β

k Γ
(
1+ k

α

)
Γ
(
1− k

α

)
Γ(2)

=
kπβ k

αsin kπ

α

(3)

where B(a,b) is the Beta function defined as B(a,b) =
∫ 1

0 xa−1(1−x)b−1dx. Also, the value
of the Beta function is computed by using the relation as B(a,b) = Γa Γb

Γ(a+b) .
In particular, the mean and variance of the two-parameter LLog distribution are given as

Mean =
πβ

αsin π

α

for α > 1 and Variance =
2πβ 2

αsin 2π

α

−
(

πβ

αsin π

α

)2

for α > 2.

3. Skew Log-Logistic Distribution

The Normal distribution was extended to the Skew-Normal distribution by adding an
asymmetry parameter λ > 0 (Azzalini, 1985, 2005). The PDF of a Skew-Normal distribu-
tion was derived by using the relation expressed in Equation (4).

f (z) = 2 φ(z) Φ(λ z), z ∈ R, λ ∈ R (4)

Here, φ(z) and Φ(z) are the PDF and CDF of Standard Normal distribution. The general
formula for the construction of a skew-symmetrical distribution other than the Standard
Normal distribution proposed by Azzalini and Capitanio (2013) is as:

f (x) = 2 g(x) G(x), x ∈ R (5)

where g(x) and G(x) are the PDF and CDF of any baseline distribution. Gupta et al. (2002)
introduced Skew-uniform, Skew-t, Skew-Cauchy, Skew-Laplace, and Skew-logistic distri-
butions. Later, Nadarajah (2009) studied in detail about the Skew-Logistic distribution. The
base distributions chosen in all of these cases were a symmetrical distribution about the ori-
gin. However, Shaw and Buckley (2007) claimed to choose any distribution other than the
symmetrical one (p. 15). Thus, in this research, the LLog distribution is chosen as a base
distribution that is already positively skewed. Since the distributions proposed by different
researchers are unable to catch the extreme value of data. We hope this construction of a
heavy-tailed distribution could catch the unusual extreme value that exists in the data. [Note:
Some or part of this research is published as a preliminary result in proceeding (Gaire et al.,
2019)].

The LLog distribution is chosen as the base distribution because it has been preferred by
different researchers in their generalization, modification and extension due to the flexible
nature of both PDF and hazard rate functions. Different forms of generalization of the LLog
distributions are found in literature used by different scholars. Some of frequently used dis-
tributions are exponentiated LLog distribution (Rosaiah et al., 2006); Beta LLog distribu-
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tion (Lemonte, 2012) by using the generator introduced by Eugene et al. (2002) and Jones
(2004); Kumaraswamy LLog distribution proposed by De-Santana et al. (2012) by using the
relationship provided by Cordeiro and Castro (2011); Transmuted LLog distribution intro-
duced by Aryal (2013) using the concept of the quadratic transmutation rank map of Shaw
and Buckley (2007); Marshall-Olkin Extended LLog distribution proposed and studied by
Gui (2013) using the concept of Marshall and Olkin (1997); Zografos-Balakrishnan LLog
distribution introduced and studied by Hamedani (2013) based on the concept of Zografos-
Balakrishnan generalized distribution (Zografos and Balakrishnan, 2009); McDonald LLog
distribution proposed and studied by Tahir et al. (2014) using the concept of Alexander et
al. (2012); Extended LLog distribution studied and presented by Lima and Cordeiro (2017)
using an exponentiated generalized class of distribution of Cordeiro et al. (2013). Similarly,
Additive Weibull LLog distribution has been introduced by Hemeda (2018) using the con-
cept suggested by Hassan and Hemeda (2016); Transmuted generalized LLog distribution
was studied by Adeyinka and Olapade (2019). At this juncture, the SLLog distribution is
introduced and formulated; further some structural properties of the distribution are derived,
along with a method of parameter estimation, and applied to four real data sets for model
validity.

3.1. Probability Density Function of the SLLog Distribution

In this section, the PDF of the SLLog distribution is introduced. After substituting the
values of g(x) and G(x) of the LLog distribution in Equation (5) we obtained the PDF of
the SLLog distribution in Equation (6) as:

f (x) =
2α

β

(
x−γ

β

)2α−1

(
1+

(
x−γ

β

)α)3 , for x > γ (6)

Here, f (x) is a probability density function since the total probability under a given
range is unity. Figure 1 depicts the plots of PDF of the distribution for the selected values of
parameters. The graph shows that the PDF is right-skewed for selected values of parameters.

3.2. Cumulative Distribution Function of SLLog Distribution

The CDF of the SLLog distribution is defined as:

F(x) =
∫ x

γ

f (x)dx =
∫ x

γ

2α

β

(
x−γ

β

)2α−1

(
1+

(
x−γ

β

)α)3 dx



STATISTICS IN TRANSITION new series, March 2024 47

20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

x

f(x
)

α = 3 , β = 10 , γ = 15

α = 3 , β = 15 , γ = 15

α = 3 , β = 23 , γ = 15

α = 3 , β = 29 , γ = 15

Figure 1: Plots of PDF of SLLog distribution for selected values of parameters
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Figure 2: Graph of CDF for the selected values of parameters

On simple calculation, it gives the value of F(x) as:

F(x) = 1− 2

1+
(

x−γ

β

)α +
1(

1+
(

x−γ

β

)α)2 , for x > γ (7)

The graph of CDF of SLLog distribution has been presented in Figure 2 for the selected
values of the parameters α, β , and fixed value of γ = 15. The graph is monotonically
increasing and the maximum value is 1 for a different set of parameters selected.



48 A. K. Gaire, Y. B. Gurung: Skew Log-Logistic distribution: properties...

3.3. Moments About Origin of the SLLog Distribution

To calculate the kth order moments of the SLLog distribution about the origin, first,
consider the third parameter γ = 0, then the density function (6) becomes,

f (x) =
2α

β

(
x
β

)2α−1

(
1+

(
x
β

)α)3 , for x > 0

Now, the kth order moments of the SLLog distribution about the origin is

E(xk) =
∫

∞

0
Xk f (x)dx =

∫
∞

0
xk 2α

β

(
x
β

)2α−1

(
1+

(
x
β

)α)3 dx = 2 β
kB

(
2+

k
α
,1− k

α

)

By using the relation of integration from Gradshteyn and Ryzhik (2000),

E(xk) = 2 β
k Γ

(
2+ k

α

)
Γ
(
1− k

α

)
Γ3

Here, it is to be noted that moments of the SLLog distribution are only defined for α > k
as.

E(xk) =
π(k+α)β k

α2sin kπ

α

(8)

In particular, the mean and variance of the SLLog Distribution are given in Equation
(9).

Mean =
π(α +1)β

α2sin π

α

and Variance =
π(α +2)β 2

α2sin 2π

α

−
(

π(α +1)β
α2sin π

α

)2

(9)

Thus, the value of the mean of SLLog distribution for α = 3 and β = 10 is 16.1252.
Table 1 gives the value of the first four moments of distribution about the origin for different
values of parameters. These moments can be used to compute the value of skewness and
kurtosis of the distribution. The values of moments are increased with the increase in the
value of parameters.

Table 1: Value of first four moments about the origin for different values of parameters

Parameters K = 1 K = 2 K = 3 K = 4
α = 8, β = 10 11.54 138.84 1753.35 23571.43

α = 9, β = 11 12.47 160.62 2146.27 29992.96

α = 10, β = 12 13.42 184.72 2617.31 38367.2

α = 11, β = 13 14.37 211.02 3170.38 48922.32
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3.4. Random Number Generation and Quantile Function of the SLLog Distribution

A set of random numbers can be generated by using the method of inversion from the
CDF of the SLLog distribution. For this, let, F(x) = U , where, the function U follows the
uniform distribution in an interval [0,1] as

1− 2

1+
(

x−γ

β

)α +
1(

1+
(

x−γ

β

)α)2 =U

2

1+
(

x−γ

β

)α − 1(
1+

(
x−γ

β

)α)2 = 1−U

Let,
(

x−γ

β

)α

= Z. Then, it leads to: Z2(1−U)−2UZ −U = 0

This is quadratic in Z. After simple calculation, this becomes

Z =
U ±

√
U

1−U

Here, U < 1 so the term becomes negative and this negative term is not included in
further analysis. Thus, the value of the random variable is given as

X = γ +β

(
U +

√
U

1−U

) 1
α

(10)

For the known value of parameters α, β and γ , one can generate a set of random num-
bers X by using Equation (10). Similarly, by choosing the suitable value of U in Equation
(10) one can also get the different values of quantiles such as the first, second, and third
quartiles obtained by setting U = 1

4 , U = 1
2 , and U = 3

4 respectively.

3.5. Reliability Analysis of the SLLog Distribution

The reliability function R(x) as defined by Rodriguez (2010) is simply the complement
of the CDF. It is also the probability that a random variable X will take a value greater than
a number x or the probability of an item not failing before some time x. So, it is defined as
R(X) = Prob(X > x) = 1−Prob(X ≤ x) = 1−F(x)

The graph of the reliability function of the SLLog distribution is presented in Figure
3 and the expression is given in Equation (11). The graph of the reliability function is
decreasing with respect to increase in the value of variable X .

R(x) =
2

1+
(

x−γ

β

)α − 1(
1+

(
x−γ

β

)α)2 =
1+2

(
x−γ

β

)α

(
1+

(
x−γ

β

)α)2 (11)
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Figure 3: The plot of the reliability function for selected values of parameters

3.6. Hazard, Inverse Hazard, and Cumulative Hazard Rate Function

The other characteristics of interest of a random variable are the hazard and inverse
hazard rate function defined as h(x) = f (x)

1−F(x) , and rh(x) = f (x)
F(x) . Thus, the hazard rate

function for the SLLog distribution, which is the conditional probability of failure, given
that it has survived up to the time x is given in Equation (12), and the graph of the hazard
rate function is presented in Figure 4. Similarly, the inverse hazard rate function defined by
(Barlow et al., 1963) for SLLog is present in Equation (13). The hazard function increases
fast along with the uni-modality and decreases slowly creating a right skew curve.

h(x) =
2α

β

(
x−γ

β

)2α−1

(
1+

(
x−γ

β

)α)(
1+2

(
x−γ

β

)α) (12)

Similarly, the Inverse hazard rate function of the SLLog distribution is given as:

rh(x) =
2α

β

1((
x−γ

β

)
+
(

x−γ

β

)α+1
) (13)

Furthermore, the cumulative hazard rate function of the SLLog distribution is defined
by H(x) =−ln(R(x)) as given in Equation (14) and the graph is increasing with respect to
the increase in values of variable X , which has been depicted in Figure 5.
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3.7. Entropy Measure of SLLog Distribution

Entropy is defined as the measure of the variation of the uncertainty of a random vari-
able which is used in various situations in science and engineering. Different forms of the
entropy are studied and compared, here we only derived the expression of two types of
entropy Renyi entropy and q-entropy of the SLLog distribution.

3.7.1 Reny Entropy

First of all, for the SLLog random variable X with PDF f (x), the Renyi entropy as
defined by (Renyi, 1961) which has a similar role of kurtosis to measure and compare the
shapes of densities is given as

IR(ρ) =
1

1−ρ
ln
(∫

( f (x))ρ dx
)

Where ρ > 0 and ρ ̸= 1 and ρ is a real non-integer. And the integral is computed as,

∫
∞

γ

( f (x))ρ dx =
∫

∞

γ

(
2α

β

)ρ

(
x−γ

β

)(2α−1)ρ

(
1+

(
x−γ

β

)α)3ρ
dx

= 2ρ

(
α

β

)ρ−1

B
(

2ρα −ρ +1
α

,
4ρ −2ρα −1

α

)
∫

∞

γ

( f (x))ρ dx = 2ρ

(
α

β

)ρ−1 Γ

(
2ρα−ρ+1

α
Γ

4ρ−2ρα−1
α

)
Γ(3ρ)

Therefore, the Renyi entropy of the SLLog distribution can be expressed as

IR(ρ) =
1

1−ρ
ln

2ρ

(
α

β

)ρ−1 Γ

(
2ρα−ρ+1

α
Γ

4ρ−2ρα−1
α

)
Γ(3ρ)

 (15)

3.7.2 q-Entropy

For the SLLog random variable X with PDF f (x), the q-entropy as defined and intro-
duced by Havarda and Charvat (1967) and later applied to physical problems by Tsallis
(1988) is defined as

IR(q) =
1

1−q

(
1−

∫
( f (x))qdx

)
Where q > 0 and q ̸= 1 and q is a real non-integer.
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Therefore, after using the expression of Equation (15) with replace of ρ by q the q-
entropy of the SLLog distribution can be expressed as

IR(q) =
1

1−q

1−2q
(

α

β

)q−1 Γ

(
2qα−q+1

α
Γ

4q−2qα−1
α

)
Γ(3q)

 (16)

Entropy is the average amount of information conveyed by an event when considering
all possible outcomes or events drawn from the probability distribution. It is also used to
measure disorder. It is also used to measure the variation of the uncertainty of a random
variable in various situations in science and engineering.

4. Method of Parameter Estimation

To estimate the parameters involved in the SLLog distribution, the expression is derived
by using the maximum likelihood estimates (MLEs) method. Let X1,X2, . . . ,Xn be a set of n
samples drawn from a SLLog distribution. Then the likelihood function of this distribution
is given by

L =

(
2α

β

)n n

∏
i=1


(

xi−γ

β

)2α−1

(
1+

(
xi−γ

β

)α)3

 (17)

Therefore, the log-likelihood function of the SLLog distribution becomes

lnL = n ln
(

2α

β

)
+(2α −1)

n

∑
i=1

ln
(

xi − γ

β

)
−3

n

∑
i−1

ln
(

1+
(

xi − γ

β

)α)
(18)

The components of the score vector to estimate the parameters associated with the
SLLog distribution are given by

∂ lnL
∂α

=
n
α
+2

n

∑
i=1

ln
(

xi − γ

β

)
−3

n

∑
i−1

(
1+

(
xi − γ

β

)α)−1(xi − γ

β

)α

ln
(

xi − γ

β

)
(19)

∂ lnL
∂β

=− n
β
−n

(
2α −1

β

)
+

3α

β

n

∑
i−1

(
1+

(
xi − γ

β

)α)−1(xi − γ

β

)α

(20)

∂ lnL
∂γ

=−
(

2α −1
β

) n

∑
i=1

(
xi − γ

β

)−1

+
3α

β

n

∑
i−1

(
1+

(
xi − γ

β

)α)−1(xi − γ

β

)α−1

(21)

By solving the nonlinear system of equations simultaneously using suitable numerical
methods by setting the score vector to zero we obtain the value of parameters α, β and γ of
the SLLog distribution.
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5. Application of SLLog Distribution

To test the potentiality of the proposed SLLog distribution, four real data sets are pre-
sented. To test the validity and suitability of the proposed models, Akaike’s Information
Criteria (AIC), and Bayesian Information Criteria (BIC) at the maximum value of Negative
Log-likelihood (NLL) of probability distributions have been applied. The formulas of AIC
and BIC for the fitted models are given as

AIC = 2k−2 lnL (22)

BIC = k ln(n)−2 lnL (23)

where k is the number of parameters associated with the probability distribution. n is the
number of observations and lnL is the log-likelihood function at the maximum likelihood
estimate of that distribution.

The first data set is taken from the Nepal Demographic and Health Survey (NDHS,
2022). Different demographers and researchers used different right-skewed probability dis-
tribution models to test the goodness of fit of Age-Specific Fertility Rates (ASFRs) of dif-
ferent countries viz. Peristera and Kostaki (2007) used the Normal mixture model to capture
both traditional and modern distorted ASFRs. Mazzuco and Scarpa (2011) applied a flexible
generalized skew Normal distribution to fit the fertility pattern of countries that experienced
a bimodal-fertility schedule eg. the USA, the UK, Ireland, and countries that keep a classic
fertility pattern viz. Italy and the Czech Republic. Gaire and Aryal (2015) applied inverse
Gaussian model to describe the distribution pattern of ASFRs of Nepalese mothers. Asili
et al. (2014) used skew-logistic probability to fit ASFRs of Italy and the same model was
applied to fit the ASFRs of India by Mishra et al. (2017). A polynomial model was used
by Gaire et al. (2022). In this paper, the proposed SLLog model is applied to the age of
the mother at the birth of a child to fit ASFRs of Nepal, and the results are compared with
baseline distribution which are presented in Table 2.

Table 2: Parameter estimation and different test statistics for the age of the mother at the
birth of a child

Distribution Parameters NLL AIC BIC
α β γ

LLog 24.612 0.321 17.445 -602.39 1210.77 1210.61
SLLog 5.958 22.914 0.000 -28.280 60.360 60.252

The second data set consists of 100 observations of the waiting time (minutes) of a
customer at the bank before receiving the service and it has been taken from Ghitany et al.
(2008) and recently the same data was applied to Skew-Lomax distribution by Gaire (2022).
The values of parameters and the result of test statistics have been presented in Table 3.
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Figure 6: Empirical and fitted ASFRs of Nepalese Mothers

Figure 7: Empirical and fitted number of customers waiting for a service at the bank

The third data set consists of 10,631 data of age at first marriage of Nepalese women
taken from (NDHS, 2022). The values of the estimated parameters along with the test
statistics have been presented in Table 4.
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Figure 8: Empirical and fitted number of Nepalese women with age at first marriage

Table 3: Parameter Estimation and different test statistics for waiting time of customers

Distribution Parameters NLL AIC BIC
α β γ

LLog 2.185 7.935 0.198 -44.135 94.270 95.178
SLLog 1.811 5.031 0.000 -43.703 93.407 94.315

Finally, the fourth data set consists of 14,349 data on the age of girls at menarche and
has been taken from (NDHS, 2022). The value of the estimated parameter along with the
test statistics have been presented in Table 5.

Table 4: Parameter estimation and different test statistics for age at first marriage

Distribution Parameters NLL AIC BIC
α β γ

LLog 4.694 8.349 8.883 -80.837 167.674 169.799
SLLog 7.994 14.946 0.522 -74.264 154.528 156.446

In general smaller values of NLL, AIC, and BIC values of goodness of fit of the probabil-
ity distribution suggest the best fit to the data. The values of AIC and BIC at the maximum
likelihood estimate for the proposed SLLog distribution are lower than that of the LLog
distribution for all four data sets. This clearly showed that the proposed model is flexible
enough to fit the data better than that of the base distribution.
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Table 5: Parameter estimation and different test statistics for the age of girls at menarche

Distribution Parameters NLL AIC BIC
α β γ

LLog 7.420 6.471 7.677 -63.30 132.60 134.77
SLLog 13.644 13.269 0.000 -49.985 105.970 107.88

6. Conclusions

A new three-parameter skew probability distribution model has been formulated as the
SLLog distribution. Some of the statistical properties of the distribution have been studied.
The parameter estimation method is discussed by using maximum likelihood. To test the
suitability and validity of the proposed model four real data sets, viz. age of the Nepalese
mother at the birth of a child, the waiting time of the customer before receiving the service,
the age at first marriage of Nepalese female, and the age of Nepalese girls at menarche have
been used. The AIC and BIC test criteria have been applied to test the validity and suitability
of the model obtained at the maximum value of negative log-likelihood of the probability
distribution. The observed values of AIC and BIC show that the proposed distribution is
more flexible than the baseline distribution to fit the pattern of these real data sets.

Figure 9: Empirical and fitted number of Nepalese girls at the age of menarche
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A chain ratio-type exponential estimator for population  
mean in double sampling 

Nirupama Sahoo1, Sananda Kumar Jhankar2 

Abstract 

In this paper we have proposed an efficient ratio-type exponential estimator for estimating 
the population mean of the study variable, by incorporating two auxiliary variables in two-
phase (double) sampling. The bias and the mean square error of the proposed estimator have 
been obtained up to the first order of approximation. The newly proposed estimator offers 
more precision in comparison to other competing estimators, theoretically as well as 
empirically, by considering a known value of some population parameter. 

Key words: two-phase sampling, auxiliary variables, study variable, bias, mean square error, 
percent relative efficiency. 

1.  Introduction 

Consider a finite population 𝑈 ൌ ሺ𝑈ଵ,𝑈ଶ, … … … … … . .𝑈ேሻ of  N units. Let 𝑋ത, 𝑌ത 
and �̅� denote the population mean, 𝐶௫, 𝐶௬ and 𝐶௭ denote the coefficient of variation, 
𝜌௬௫, 𝜌௬௭ and 𝜌௫௭ denote the correlation coefficient. Let Y be the study variable and X 
and Z be the auxiliary variables with corresponding value 𝑦௜ , 𝑥௜,𝑧௜ (𝑖 ൌ 1,2, … … …𝑁ሻ. 
The problem is to estimate 𝑌ത in the presence of two auxiliary variable x and z. 

Let 𝑆௬ଶ ൌ ∑ ሺ𝑦௜ െ 𝑌തሻଶ/ሺ𝑁 െ 1ሻ௡
௜ୀଵ  and 𝑆௫ଶ ൌ ∑ ሺ𝑥௜ െ 𝑋തሻଶ௡

௜ୀଵ /ሺ𝑁 െ 1ሻ𝑆௭ଶ ൌ
∑ ሺ𝑧௜ െ �̅�ሻଶ௡
௜ୀଵ /ሺ𝑁 െ 1ሻ and let 𝐶௬ ൌ 𝑆௬ 𝑌ത⁄  and 𝐶௫ ൌ 𝑆௫ 𝑋ത⁄ 𝐶௭ ൌ 𝑆௭ �̅�⁄  be the 

coefficients of variation of 𝑦, 𝑥  and 𝑧  respectively. 𝑓ଵ ൌ ቀ
ଵ

௡
െ

ଵ

ே
ቁ ൌ ቀ

ሺଵି௙ሻ

௡
ቁ,  

𝑓ଶ ൌ ቀ
ଵ

௡ᇲ
െ

ଵ

ே
ቁ ൌ ቀ

ሺଵି௙ᇲሻ

௡ᇲ
ቁ, 𝑓ଷ ൌ 𝑓ଵ െ 𝑓ଶ ൌ ቀ

ሺଵି௙ᇲᇲሻ

௡
ቁ 

where 𝑓 ൌ ௡

ே
 , 𝑓ᇱ ൌ ௡ᇲ

ே
 and 𝑓ᇱᇱ ൌ ௡

௡ᇲ
 
𝑣ሺ𝑦തሻ ൌ 𝑓ଵ𝑌തଶ𝐶௬ଶ 
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2.  Estimator with single auxiliary variable 

When the population mean of the auxiliary variable 𝑥 is not known, Sukhatme 
(1962) defined the two-phase sampling ratio estimator for population mean 𝑌ത as  
 

𝑡ଵ ൌ 𝑦ത ቀ
௫̅ᇲ

௫̅
ቁ                                                                       (1) 

 
𝑀𝑆𝐸ሺ𝑡ଵሻ ൌ 𝑌തଶൣ𝑓ଵ𝐶௬ଶ ൅ 𝑓ଷ൫𝐶௫ଶ െ 2𝜌௬௫𝐶௬𝐶௫൯൧                         (2) 

 
The usual regression estimator in two-phase sampling is defined as  

 
𝑡ଶ ൌ 𝑦ത ൅ 𝑏௬௫ሺ𝑛ሻሺ�̅�ᇱ െ �̅�ሻ                                                           (3) 

 
𝑀𝑆𝐸ሺ𝑡ଶሻ ൌ 𝑌തଶ𝐶௬ଶൣ𝑓ଵ൫1 െ 𝜌௬௫ଶ ൯ ൅ 𝑓ଶ𝜌௬௫ଶ ൧                                             (4) 

 
Singh and Vishwakarma (2007) suggested exponential ratio and product type 

estimator for 𝑌തas  
 

𝑡ଷ ൌ 𝑦ത𝑒𝑥𝑝 ቀ
௫̅ᇲି௫̅

௫̅ᇲା௫̅
ቁ                                                           (5) 

 

𝑡ସ ൌ 𝑦ത𝑒𝑥𝑝 ቀ
௫ି௫̅ᇲ

௫ା௫̅ᇲ
ቁ                                                            (6) 

 
The MSEs of the estimators 𝑡ଷ and 𝑡ସ respectively are  

 
𝑀𝑆𝐸ሺ𝑡ଷሻ ൌ 𝑌തଶ ቂ𝑓ଵ𝐶௬ଶ ൅

௙య
ସ
൫𝐶௫ଶ െ 4𝜌௬௫𝐶௬𝐶௫൯ቃ                                   (7) 

 
𝑀𝑆𝐸ሺ𝑡ସሻ ൌ 𝑌തଶ ቂ𝑓ଵ𝐶௬ଶ ൅

௙య
ସ
൫𝐶௫ଶ ൅ 4𝜌௬௫𝐶௬𝐶௫൯ቃ                                   (8) 

 

3. Estimator with two auxiliary variables 

Chand (1975) suggested a chain ratio-type estimator for the population mean 𝑌ത 
defined as  
 

𝑡ହ ൌ 𝑦ത ቀ
௫̅ᇲ

௫̅
ቁ ቀ

௓ത

௭̅ᇲ
ቁ ;  �̅� ് 0 , 𝑧̅ ് 0                                           (9) 

 
𝑀𝑆𝐸ሺ𝑡ହሻ ൌ 𝑌തଶൣ𝑓ଵ𝐶௬ଶ ൅ 𝑓ଷ൫𝐶௫ଶ െ 2𝜌௬௫𝐶௬𝐶௫൯ ൅ 𝑓ଶ൫𝐶௭ଶ െ 2𝜌௬௭𝐶௬𝐶௭൯൧      (10) 



STATISTICS IN TRANSITION new series, March 2024 

 

65

 
Kiregyera (1980, 1984) suggested some modification of Chand (1975) and 

proposed ratio to regression estimator of population mean given as  
 

𝑡଺ ൌ 𝑦ത ൅ 𝑏௬௫ሺ𝑛ሻ ቀ
௫̅ᇲ

௭̅ᇲ
�̅� െ �̅�ቁ                                        (11) 

 

where 𝑏௬௫ሺ𝑛ሻ:  Sample regresssion coefficient of 𝑦 on 𝑥 based on 𝑠  (Sub-sample) 
𝜌௬௫ ,𝜌௬௭,𝜌௫௭ : Population correlation coefficient between the variables. 
The MSE of estimator 𝑡଺ is as follows: 

 

𝑀𝑆𝐸ሺ𝑡଺ሻ ൌ 𝑌തଶ𝐶௬ଶ ቂ𝑓ଵ൛1 െ 𝜌௬௫ଶ ൟ ൅ 𝑓ଶ ቄ𝜌௬௫ଶ ൅ 𝜌௬௫ଶ
஼೥మ

஼ೣ
మ െ 2𝜌௬௫𝜌௬௭

஼೥
஼ೣ
ቅቃ       (12) 

 
Singh and Khalid (2015) suggested the following estimator: 

 

𝑡଻ ൌ 𝑦ത𝑒𝑥𝑝 ቆ
௫̅ᇲቀ

೥ത∗

ೋഥ
ቁି௫̅

௫̅ᇲቀ೥
ത∗

ೋഥ
ቁା௫̅

ቇ                                                   (13) 

where  
 

𝑧̅∗ ൌ
ሺே௓തି௡ᇲ௭̅ᇲሻ

ሺேି௡ᇲሻ
 and 𝑘 ൌ

௡ᇲ

ሺேି௡ᇲሻ
 

 
The required mean square error of the estimator 𝑡଻ is  

 

𝑀𝑆𝐸ሺ𝑡଻ሻ ൌ 𝑌തଶ ቂ𝑓ଵ𝐶௬ଶ ൅ 𝑓ଶ ቀ
௞మ

ସ
𝐶௭ଶ െ 𝑘𝜌௬௭𝐶௬𝐶௭ቁ ൅

௙య
ସ
൫𝐶௫ଶ െ 4𝜌௬௫𝐶௬𝐶௫൯ቃ(14) 

 
 
 

Singh and Choudhury (2012) developed the following exponential chain-type ratio 
estimators of 𝑌ത under double sampling as  
 

𝑡଼ ൌ 𝑦ത𝑒𝑥𝑝 ൭
൬
ഥೣᇲ

೥തᇲ
൰௓തି௫̅

൬
ഥೣᇲ

೥തᇲ
൰௓തା௫̅

൱                                                (15) 

 
The MSE of the estimator 𝑡଼ is  

 
𝑀𝑆𝐸ሺ𝑡଼ሻ ൌ 𝑌തଶ ቂ𝑓ଵ𝐶௬ଶ ൅

ଵ

ସ
ሺ𝑓ଷ𝐶௫ଶ ൅ 𝑓ଶ𝐶௭ଶሻ െ ൫𝑓ଷ𝜌௬௫𝐶௬𝐶௫ ൅ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൯ቃ        (16) 
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Motivated by Singh and Vishwakarma (2007), Yadav, Singh and Chatterjee (2013) 
suggested a class of chain ratio  exponential type estimator for population mean 𝑌ത using  
information on two auxiliary variables x and z in two phase or double sampling as  
 

𝑡ଽ ൌ 𝑦ത𝑒𝑥𝑝 ൤
௑ത෠ೝ೏ି௫̅

௑ത෠ೝ೏ା௫̅
൨                                                      (17) 

where 

𝑋ത෠௥ௗ ൌ
�̅�ᇱ

ሺ𝑎𝑧̅ᇱ ൅ 𝑏ሻ
ሺ𝑎�̅� ൅ 𝑏ሻ 

 

Thus, the above estimator can be expressed as  

𝑡ଽ ൌ 𝑦ത𝑒𝑥𝑝 ൥
ഥೣᇲ

൫ೌ೥തᇲశ್൯
ሺ௔௓തା௕ሻି௫̅

ഥೣᇲ

൫ೌ೥തᇲశ್൯
ሺ௔௓തା௕ሻା௫̅

൩                                              (18) 

 
The mean square error of the estimator 𝑡ଽ is  

 
𝑀𝑆𝐸 ሺ𝑡ଽሻ ൌ 𝑌തଶ ቂ𝑓ଵ𝐶௬ଶ ൅

௙య
ସ
൫𝐶௫ଶ െ 4𝜌௬௫𝐶௬𝐶௫൯ െ 𝑓ଶ𝜌௬௭ଶ 𝐶௬ଶቃ                        (19) 

 

4.  The suggested class of estimator  

Following the previously discussed estimation procedures for two-phase sampling, 
we have proposed  an efficient ratio-type exponential estimator 

 
𝑡ଵ଴ ൌ 𝑦ത𝑒𝑥𝑝 ቂ𝑘ଵ ቄ

௫̅ᇲି௫̅

௫̅ᇲା௫̅
ቅ ൅ 𝑘ଶ ቄ

௭̅ᇲି௓ത

௭̅ᇲା௓ത
ቅቃ                              (20) 

 
Where  𝑘ଵ and 𝑘ଶ are unknown constants. The values of 𝑘ଵ and 𝑘ଶ can be determined 
by the principle of optimality conditions. 
 

To obtain the mean square error of the proposed estimator 𝑡ଵ଴, we consider  
 

𝑦ത ൌ 𝑌തሺ1 ൅ 𝑒଴ሻ, �̅� ൌ 𝑋തሺ1 ൅ 𝑒ଵሻ  ,    �̅�ᇱ ൌ 𝑋തሺ1 ൅ 𝑒ଶሻ  ,  𝑧̅ᇱ ൌ �̅�ሺ1 ൅ 𝑒ଷሻ 
 

Such that  
 

𝐸ሺ𝑒଴ሻ ൌ 𝐸ሺ𝑒ଵሻ ൌ 𝐸ሺ𝑒ଶሻ ൌ 𝐸ሺ𝑒ଷሻ ൌ 0 
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𝐸ሺ𝑒଴
ଶሻ ൌ ൬

1 െ 𝑓
𝑛

൰𝐶௬ଶ  ,   𝐸ሺ𝑒ଵ
ଶሻ ൌ ൬

1 െ 𝑓
𝑛

൰𝐶௫ଶ 

 

𝐸ሺ𝑒ଶ
ଶሻ ൌ ቀ

ଵି௙ᇲ

௡ᇲ
ቁ 𝐶௫ଶ,   𝐸ሺ𝑒ଷ

ଶሻ ൌ ቀ
ଵି௙ᇲ

௡ᇲ
ቁ 𝐶௭ଶ  

 

𝐸ሺ𝑒଴𝑒ଵሻ ൌ ቀ
ଵି௙

௡
ቁ 𝜌௬௫𝐶௬𝐶௫, 𝐸ሺ𝑒଴𝑒ଶሻ ൌ ቀ

ଵି௙ᇲ

௡ᇲ
ቁ 𝜌௬௫𝐶௬𝐶௫  

 

𝐸ሺ𝑒଴𝑒ଷሻ ൌ ቀ
ଵି௙ᇲ

௡ᇲ
ቁ 𝜌௬௭𝐶௬𝐶௭ , 𝐸ሺ𝑒ଵ𝑒ଶሻ ൌ ቀ

ଵି௙ᇲ

௡ᇲ
ቁ 𝐶௫ଶ  

 

𝐸ሺ𝑒ଵ𝑒ଷሻ ൌ ቀ
ଵି௙ᇲ

௡ᇲ
ቁ 𝜌௫௭𝐶௫𝐶௭, 𝐸ሺ𝑒ଶ𝑒ଷሻ ൌ ቀ

ଵି௙ᇲ

௡ᇲ
ቁ 𝜌௫௭𝐶௫𝐶௭  

 
The mean square error of the proposed estimator 𝑡ଵ଴ is as follows:  

 
𝑡ଵ଴ ൌ 𝑦ത𝑒𝑥𝑝 ቂ𝑘ଵ ቄ

௘మି௘భ
ଶା௘భା௘మ

ቅ ൅ 𝑘ଶ ቄ
௘య

ଶା௘య
ቅቃ  

ൌ 𝑦ത𝑒𝑥𝑝 ቂ𝑘ଵሼ𝑒ଶ െ 𝑒ଵሽ
ଵ

ଶ
ቀ1 െ

௘భ
ଶ
െ

௘మ
ଶ
൅

௘భ
మ

ସ
൅

௘మ
మ

ସ
ቁ ൅ 𝑘ଶ ቄ𝑒ଷ

ଵ

ଶ
ቀ1 െ

௘య
ଶ
൅   

௘య
మ

ସ
ቁቅቃ  

ൌ 𝑦ത𝑒𝑥𝑝 ቂ𝑘ଵ ቄ
௘మ
ଶ
െ

௘భ௘మ
ସ
െ

௘మ
మ

ସ
െ

௘భ
ଶ
൅

௘భ
మ

ସ
൅

௘భ௘మ
ସ
ቅ ൅ 𝑘ଶ ቄ

௘య
ଶ
െ

௘య
మ

ସ
ቅቃ  

 

ൌ 𝑌തሺ1 ൅ 𝑒଴ሻ ൤1 ൅ 𝑘ଵ ቄ
௘మ
ଶ
െ

௘భ௘మ
ସ
െ

௘మ
మ

ସ
െ

௘భ
ଶ
൅

௘భ
మ

ସ
൅

௘భ௘మ
ସ
ቅ ൅ 𝑘ଶ ቄ

௘య
ଶ
െ

௘య
మ

ସ
ቅ ൅

ቄ𝑘ଵ ቀ
௘మ
ଶ
െ

௘భ௘మ
ସ
െ

௘మ
మ

ସ
െ

௘భ
ଶ
൅

 ௘భ
మ

ସ
൅

௘భ௘మ
ସ
ቁቅ

ଶ
൅ ቄ𝑘ଶ ቀ

௘య
ଶ
െ

௘య
మ

ସ
ቁቅ

ଶ
൨  

  
Neglecting the term having power greater than two, we have   

 

𝑡ଵ଴ ൌ 𝑌ത ቂ1 ൅ 𝑘ଵ
௘మ
ଶ
െ 𝑘ଵ

௘మ
మ

ସ
െ 𝑘ଵ

௘భ
ଶ
൅ 𝑘ଵ

 ௘భ
మ

ସ
൅ 𝑘ଶ

௘య
ଶ
െ 𝑘ଶ

௘య
మ

ସ
൅ 𝑘ଵ

ଶ ௘మ
మ

଼
൅

                𝑘ଵ
ଶ ௘భ

మ

଼
൅ 𝑘ଶ

ଶ ௘య
మ

଼
൅ 𝑒଴ ൅ 𝑘ଵ

௘బ௘మ
ଶ
െ 𝑘ଵ

௘బ௘భ
ଶ
൅ 𝑘ଶ

௘బ௘య
ଶ
ቃ  

or 

𝑡ଵ଴ െ 𝑌ത ൌ 𝑌ത ቂ𝑘ଵ
௘మ
ଶ
െ 𝑘ଵ

௘మ
మ

ସ
െ 𝑘ଵ

௘భ
ଶ
൅ 𝑘ଵ

 ௘భ
మ

ସ
൅ 𝑘ଶ

௘య
ଶ
െ 𝑘ଶ

௘య
మ

ସ
൅ 𝑘ଵ

ଶ ௘మ
మ

଼
൅

                       𝑘ଵ
ଶ ௘భ

మ

଼
൅ 𝑘ଶ

ଶ ௘య
మ

଼
൅ 𝑒଴ ൅ 𝑘ଵ

௘బ௘మ
ଶ
െ 𝑘ଵ

௘బ௘భ
ଶ
൅ 𝑘ଶ

௘బ௘య
ଶ
ቃ                                      (21) 

 
The bias of the estimator 𝑡ଵ଴ can be obtained by taking expectation on both sides 

of equation (21) and is given by 

𝑩ሺ𝒕𝟏𝟎ሻ ൌ 𝒀ഥ𝟐 ቂ𝒌𝟏
 𝒆𝟏
𝟐

𝟒
െ 𝒌𝟏

𝒆𝟐
𝟐

𝟒
െ 𝒌𝟐

𝒆𝟑
𝟐

𝟒
൅ 𝒌𝟏

𝟐 𝒆𝟐
𝟐

𝟖
൅ 𝒌𝟏

𝟐 𝒆𝟏
𝟐

𝟖
൅ 𝒌𝟐

𝟐 𝒆𝟑
𝟐

𝟖
൅ 𝒌𝟏

𝒆𝟎𝒆𝟐
𝟐
െ  𝒌𝟏

𝒆𝟎𝒆𝟏
𝟐
൅

𝒌𝟐
𝒆𝟎𝒆𝟑
𝟐
ቃ                                                                                             (22) 
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By squaring and taking expectation on both sides of equation (21), we get the mean 
square error of 𝑡ଵ଴ to the first degree of approximation. 
 

𝐸ሺ𝑡ଵ଴ െ 𝑌തሻଶ ൌ 𝑌തଶ𝐸 ቂ𝑘ଵ
ଶ ௘మ

మ

ସ
൅ 𝑘ଵ

ଶ ௘భ
మ

ସ
൅ 𝑘ଶ

ଶ ௘య
మ

ସ
൅ 𝑒଴

ଶ െ 𝑘ଵ
ଶ ௘భ௘మ

ଶ
൅ 𝑘ଵ𝑘ଶ

௘మ௘య
ଶ
൅     𝑘ଵ𝑒଴𝑒ଶ െ

  𝑘ଵ𝑘ଶ
௘భ௘య
ଶ
െ 𝑘ଵ𝑒଴𝑒ଵ ൅  𝑘ଶ𝑒଴𝑒ଷቃ   

 

ൌ 𝑌തଶ ቂቀ
ଵି௙

௡
ቁ 𝐶௬ଶ ൅

௞భ
మ

ସ
ቀ
ଵି௙ᇲᇲ

௡
ቁ 𝐶௫ଶ ൅

௞మ
మ

ସ
ቀ
ଵି௙ᇲ

௡ᇲ
ቁ 𝐶௭ଶ െ

 𝑘ଵ ቀ
ଵି௙ᇲᇲ

௡
ቁ 𝜌௬௫𝐶௬𝐶௫ ൅     𝑘ଶ ቀ

ଵି௙ᇲ

௡ᇲ
ቁ 𝜌௬௭𝐶௬𝐶௭ቃ  

 

𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ ൌ 𝑌തଶ ቂ𝑓ଵ𝐶௬ଶ ൅
௞భ
మ

ସ
𝑓ଷ𝐶௫ଶ ൅

௞మ
మ

ସ
𝑓ଶ𝐶௭ଶ െ 𝑘ଵ𝑓ଷ𝜌௬௫𝐶௬𝐶௫ ൅

                               𝑘ଶ𝑓ଶ𝜌௬௭𝐶௬𝐶௭ቃ                                                                                         (23) 
 

Now, we have to find out the optimum values of 𝑘ଵ and 𝑘ଶ 
 

                                                             డெௌாሺ௧భబሻ
డ௞భ

ൌ 0  

                                                         ⇒ 𝑘ଵ௢௣௧ ൌ
ଶఘ೤ೣ஼೤஼ೣ

஼ೣ
మ   

                                                         ⇒ 𝑘ଵ௢௣௧ ൌ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ  

 
Now, for  𝑘ଶ 

 

                                                               డ ெௌாሺ௧భబሻ

డ௞మ
ൌ 0  

⇒ 𝑘ଶ௢௣௧ ൌ
2𝜌௬௭𝐶௬𝐶௭

𝐶௭ଶ
 

                                                         ⇒ 𝑘ଶ௢௣௧ ൌ െ2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 

 
By substituting above 𝑘ଵ௢௣௧ and 𝑘ଶ௢௣௧ in equation (23) we obtained the minimum 

mean square error of the estimator 𝑡ଵ଴ as   
 

𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൌ 𝑌തଶ ൥𝑓ଵ𝐶௬ଶ ൅ ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ

                               2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ 2𝜌௬௭ ቀ

஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩                                 (24) 
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5.  Theoretical Comparison  

The proposed estimator 𝑡ଵ଴ under its optimality condition is more efficient than 
the existing estimators 𝑡௜ሺ𝑖 ൌ 1,2 … … 9ሻ if and only if the following conditions hold.  

 
(i) 𝑀𝑆𝐸ሺ𝑡ଵሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ  2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ൣ𝑓ଷ൫𝐶௫ଶ െ 2𝜌௬௫𝐶௬𝐶௫൯൧                                                       (25) 

 
(ii) 𝑀𝑆𝐸ሺ𝑡ଶሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

 

൥𝑓ଵ𝐶௬ଶ ൅ ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ  2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ 𝐶௬ଶൣ𝑓ଵ൫1 െ 𝜌௬௫ଶ ൯ ൅ 𝑓ଶ𝜌௬௫ଶ ൧                                                 (26) 

 
(iii)   𝑀𝑆𝐸ሺ𝑡ଷሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ቂ

௙య
ସ
൫𝐶௫ଶ െ 4𝜌௬௫𝐶௬𝐶௫൯ቃ                                                       (27) 

 
(iv) 𝑀𝑆𝐸ሺ𝑡ସሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ቂ

௙య
ସ
൫𝐶௫ଶ ൅ 4𝜌௬௫𝐶௬𝐶௫൯ቃ                                                       (28) 
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(v) 𝑀𝑆𝐸ሺ𝑡ହሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ൣ𝑓ଷ൫𝐶௫ଶ െ 2𝜌௬௫𝐶௬𝐶௫൯ ൅ 𝑓ଶ൫𝐶௭ଶ െ 2𝜌௬௭𝐶௬𝐶௭൯൧                   (29) 

 
ሺviሻ 𝑀𝑆𝐸ሺ𝑡଺ሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

൥𝑓ଵ𝐶௬ଶ ൅ ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ  2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ 𝐶௬ଶ ቂ𝑓ଵ൛1 െ 𝜌௬௫ଶ ൟ ൅ 𝑓ଶ ቄ𝜌௬௫ଶ ൅ 𝜌௬௫ଶ

஼೥మ

஼ೣ
మ െ 2𝜌௬௫𝜌௬௭

஼೥
஼ೣ
ቅቃ    (30) 

 
(vii) 𝑀𝑆𝐸ሺ𝑡଻ሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ቂ𝑓ଶ ቀ

௞మ

ସ
𝐶௭ଶ െ 𝑘𝜌௬௭𝐶௬𝐶௭ቁ ൅

௙య
ସ
൫𝐶௫ଶ െ 4𝜌௬௫𝐶௬𝐶௫൯ቃ         (31) 

 
(viii) 𝑀𝑆𝐸ሺ𝑡଼ሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ቂ

ଵ

ସ
ሺ𝑓ଷ𝐶௫ଶ ൅ 𝑓ଶ𝐶௭ଶሻ െ ൫𝑓ଷ𝜌௬௫𝐶௬𝐶௫ ൅ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൯ቃ             (32) 

 
(ix) 𝑀𝑆𝐸ሺ𝑡ଽሻ െ 𝑀𝑆𝐸ሺ𝑡ଵ଴ሻ௢௣௧ ൐ 0 

൥ቆ𝜌௬௫ ቀ
஼೤
஼ೣ
ቁቇ

ଶ

𝑓ଷ𝐶௫ଶ ൅ ቆ𝜌௬௭ ቀ
஼೤
஼೥
ቁቇ

ଶ

𝑓ଶ𝐶௭ଶ െ 2𝜌௬௫ ቀ
஼೤
஼ೣ
ቁ 𝑓ଷ𝜌௬௫𝐶௬𝐶௫ െ

2𝜌௬௭ ቀ
஼೤
஼೥
ቁ 𝑓ଶ𝜌௬௭𝐶௬𝐶௭൩ ൏ ቂ

௙య
ସ
൫𝐶௫ଶ െ 4𝜌௬௫𝐶௬𝐶௫൯ െ 𝑓ଶ𝜌௬௭ଶ 𝐶௬ଶቃ                                   (33) 
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6. Empirical Study  

To judge the superiority of our newly proposed estimator over the competing 
estimators we have taken the following numerical values of different population 
parameters from two different population data sets.  
Population-1 [Source: Singh (1967)] 

The variables are  

𝑦:  Number of females employed  

𝑥:  Number of females in services  

𝑧:  Number of educated females 

𝑁 ൌ 61𝑛ᇱ ൌ 20𝑛 ൌ 10𝑌ത ൌ 7.46 

𝑋ത ൌ 5.31�̅� ൌ 179.00𝐶௬ ൌ 0.7103𝐶௫ ൌ 0.7587 

𝐶௭ ൌ 0.2515𝜌௬௫ ൌ 0.7737𝜌௬௭ ൌ െ0.2070𝜌௫௭ ൌ െ0.0033  

 

Population-2 [Source: Murthy (1967) pp. 226] 

The variables are  

𝑦:  Output  

𝑥:  Number of workers  

𝑧:  Fixed capital  

𝑁 ൌ 61𝑛ᇱ ൌ 20𝑛 ൌ 10𝑌ത ൌ 7.46 

𝑋ത ൌ 5.31�̅� ൌ 179.00𝐶௬ ൌ 0.7103𝐶௫ ൌ 0.7587 

𝐶௭ ൌ 0.2515𝜌௬௫ ൌ 0.7737𝜌௬௭ ൌ െ0.2070𝜌௫௭ ൌ െ0.0033 

To compare the efficiency of the proposed estimator and the considered existing 
estimators, we have computed the percent relative efficiencies (PREs).  

The formula for calculating the percent relative efficiency is given by  

𝑃𝑅𝐸ሺ𝑡௜ሻ ൌ ቂ
௩௔௥ሺ௬ሻതതത

ெௌாሺ௧೔ሻ
ቃ ൈ 100 ;                                                   (34) 

where 𝑖 ൌ 1,2,3,4,5,6,7,8,9,10  

Findings are given in Table 1. 
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Table 1:  

Estimators Population-1 Population-2 

𝑡ଵ 144.1214 39.1380 

𝑡ଶ 155.8702 233.9572 

𝑡ଷ 147.6438 180.6875 

𝑡ସ 60.1505 25.6294 

𝑡ହ 124.5640 36.8749 

𝑡଺ 140.9066 607.6388 

𝑡଻ 144.1214 285.2960 

𝑡଼ 139.3606 361.375 

𝑡ଽ 151.3525 373.8362 

𝒕𝟏𝟎 159.9441 677.5781 

7. Conclusion  

On account of the percent relative efficiencies of the estimators as shown in Table 1, 
it has been observed that the performance of the proposed estimator is better than the 
other existing estimators. Hence, it is recommended for use in practice.  
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Improved calibration estimation of population mean in stratified 
sampling using two auxiliary variables 

Abimibola V. Oladugba1, Oluwagbenga T. Babatunde2 

Abstract 

In this paper, a new improved calibration estimator for the population mean in a stratified 
sampling was proposed using two auxiliary variables. A simulation study was carried out to 
evaluate the performance and efficiency of the proposed estimator with respect to three 
estimators considered in the literature for estimating the population mean in a stratified 
sampling using two auxiliary variables. The results showed that the new estimator proved to 
be more efficient than the three existing estimators considered 

Key words: calibration, estimator, stratified sampling, auxiliary variables, mean square 
error, bias, percentage relative efficiency. 

1.  Introduction 

Calibration estimation is a popular approach in sample survey introduced by 
Deville and Sarndal (1992) and meant to improve the precision of the estimated 
population parameter. This is achieved using additional relevant information known as 
auxiliary information or variable. Auxiliary variable is a variable that provides some 
other relevant details about the study variable (Babatunde et al. (2023)). Auxiliary 
variables are correlated to the study variable (Babatunde et al. (2023)) and the efficiency 
of an estimator depends on the level of correlation between the study and auxiliary 
variables (Agunbiade and Ogunyinka (2013)). Agunbiade and Ogunyinka (2013) 
showed that using auxiliary variable that is highly correlated to the study variable 
produces an estimator with smaller variance compared to when the correlation level 
between the auxiliary variable and study variable is medium or low. This implies that 
the choice of auxiliary variables is restricted only to variables that are correlated to the 
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study variable. This poses some limitations on the use of auxiliary variable as not all 
variables can be used as auxiliary variable.  

In estimating the population mean of a stratified sampling using calibration 
approach, the calibration weights are used to replace the stratum weights in the 
estimator. The calibration weights are obtained by minimizing a distance function 
subject to well defined calibration constraints. Most often, calibration constraints 
restrict the sum of the selected sample statistics to be equal to the sum of the population 
parameters in the different strata (see Ozgul (2018), Alam et al. (2021), Adubi et al. 
(2022), Babatunde et al. (2023)).  

Several calibration estimators for the population mean in a stratified sampling 
using different parameters of one auxiliary variable in the calibration constraints have 
been proposed in the literature (see Tracey, Singh and Arnab (2003), Rao, Tekabu and 
Khan (2016), Koyuncu and Kadilar (2016), Sisodia, Singh and Singh (2017), Alam, 
Singh and Shabbir (2019), Garg and Pachori (2019), Alam and Shabbir (2020), 
Babatunde et al. (2023), Oladugba et al. (2023) etc.). Several calibration estimators were 
arrived at by modifying existing estimators (see Kadilar and Cingi (2006), Garg and 
Pachori (2019)). Calibration estimators of the population mean have been shown to be 
more efficient than the general population estimator in a stratified sampling (see Rao, 
Khan and Khan (2012), Ozgul (2018) and Alam et al. (2019)). The use of two auxiliary 
variables have also been explored in the calibration estimation of the population mean 
in stratified sampling. Rao et al. (2012), Ozgul (2018) and Rai, Singh and Qasim (2021) 
proposed different calibration estimators for population mean in a stratified sampling 
using different calibration constraints based on two auxiliary variables. 

In this paper, we propose a new improved calibration estimator for the population 
mean in a stratified sampling based on two auxiliary variables by modifying the 
estimator proposed in Ozgul (2018) with the aim of achieving a more efficient 
estimator. The standard deviation of the two auxiliary variables was used to define the 
calibration constraints. 

The remainder of this paper is as follows: notations are presented in Section 2, some 
of the existing calibration estimators based on two auxiliary variables were discussed 
in Section 3. In Section 4, the proposed calibration estimator was presented. The 
simulation study carried out and conclusions are presented in Sections 5 and 6, 
respectively. 

2. Notations 

Consider a situation where it is desired to estimate the population mean 
in stratified sampling using additional information from two auxiliary variables. Let M 
be a finite population consisting of N units, i.e. . Let ,  and 

Y

 1 2, ,... NM M M M iy 1ix
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 be the  value of the study variable, first auxiliary variable and second auxiliary 
variable respectively, i = 1, 2, … N. Let M be divided into Z distinct homogenous strata 

with each stratum containing   units, h = 1, 2, …, Z such that . A sample 

of size n is drawn from M using simple random sampling without replacement 

(SRSWOR) by selecting units from thh  stratum such that . The mean of 

the sample and population of the study variable in each stratum are given as 

1

1 hn

h hi
ih

y y
n 

   and 
1

1 hN

h hi
ih

Y y
N 

  respectively. The mean of the sample and population 

of the first auxiliary variable in each stratum are given as 1 1
1

1 hn

h hi
ih

x x
n 

   and 

1 1
1

1 hN

h hi
ih

X x
N 

   respectively. The mean of the sample and population of the second 

auxiliary variable are given as 2 2
1

1 hn

h hi
ih

x x
n 

   and 2 2
1

1 hN

h hi
ih

X x
N 

   respectively. The 

sample and population standard deviation of the first auxiliary variable in each stratum 

are given as 
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1 1
1
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 respectively. The sample and 

population standard deviation of the second auxiliary variable in each stratum are given 

as 
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x
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
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 respectively. The population mean of 

the auxiliary variables are 
1 1

1

1 N

i
i

X x
N 

   and 
2 2

1

1 N

i
i

X x
N 

   respectively. 

The population mean of a stratified sampling is estimated by: 

                                                                                           (2.1) 

where   is the thh  stratum weights. 

The precision of the estimator in (2.1) is improved upon using the calibration 
approach which replaces the stratum weights with calibrated weights obtained by 
optimizing the Chi-square distance function defined below: 

                                                                              (2.2) 

2ix thi

hN
1

Z

h
h

N N




hn
1

Z

h
h

n n




1

Z

st h h
h

y W y


  

h
h

N
W

N


hW

   2

1

,
Z

h h
h h

h h h

W
D W

W Q

 
 



80                                                        A. V. Oladugba, O. T. Babatunde: Improved calibration estimation… 

 

 

Subject to well defined calibration constraints. 
where are the calibrated weights and  are defined weights for obtaining different 
versions of the estimator (Alam and Shabbir (2020)). 

3. Some Calibration Estimators in Stratified Sampling Using Two Auxiliary 
Variables 

Different calibration estimators have been proposed for the population mean of 
a stratified sampling using several known parameters of the auxiliary variables. Some 
of the existing calibration estimators using two auxiliary variables are reviewed below. 

3.1. Rao et al. (2012) 

Rao et al. (2012) proposed a calibration estimator with two auxiliary variables using 
the mean of the auxiliary variables in the calibration constraints as:  

                                                
                                                     (3.1) 

where  the calibrated weights Ω௛ோ are obtained by minimizing the Chi-square distance 
function in (2.2) subject to the calibration constraints given by: 

                                                                                                     (3.2) 

                                                 
                                                   (3.3) 

By minimizing the function in (2.2) subject to (3.1) and (3.2), the optimum 
weights obtained are: 

                                                                 (3.4) 
where 
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By substituting (3.5) and (3.6) into (3.4) and substituting (3.4) into (3.1), the 
obtained estimator can be expressed as: 

              
                        (3.7) 

where 

    

   (3.8) 

 

(3.9) 

3.2. Ozgul (2018) 

Ozgul (2018) proposed a calibration estimator with two auxiliary variables using 
the ratio of the mean of the auxiliary variables in the calibration constraints as:  

                                        
                                                (3.10) 

where  the calibrated weights Ω௛ை are obtained by minimizing the Chi-square distance 
function in (2.2) subject to the calibration constraints given by: 

                                       
                                               (3.11) 

                                                                            (3.12) 

where and  

By minimizing the function in (2.2) subject to (3.11) and (3.12), the optimum 
weights obtained are: 
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                                                     (3.16) 

By substituting (3.14) and (3.15) into (3.13) and substituting (3.13) into (3.12), 
the obtained estimator can be expressed as: 

                                                                   (3.17) 

where 

 

        (3.18) 

3.3. Rai et al. (2021) 

Rai et al. (2021) proposed a calibration estimator with two auxiliary variables using 
the sample and population mean of the auxiliary variables in the calibration constraints 
as: 

           
                                                  (3.19) 

where  the calibrated weights Ω௛஼  are obtained by minimizing the Chi-square distance 
function in (2.2) subject to the calibration constraints given by: 
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By minimizing the function in (2.2) subject to (3.20) and (3.21), the optimum 
weights obtained are: 
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(3.24) 
where 

                                                                             (3.25) 

                                                                 (3.26) 

By substituting (3.23) and (3.24) into (3.22) and substituting (3.22) into (3.19), 
the obtained estimator can be expressed as: 

                           
                                     (3.27) 

where 
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4. Proposed Calibration Estimator 

The calibration estimator proposed in Ozgul (2018) was improved upon in this 
paper by modifying the calibration constraints. Let be the ith observation of the study 
variable and  and , i = 1,2,3,…,N; h = 1,2,3,…,Z be the ith observation of the two 
auxiliary variables. The study variable Y and the auxiliary variables X1 and X2 contain 
N observations divided into h strata with each stratum containing Nh observations such 

that . 

We proposed a new improved calibration estimator as: 
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subject to the calibration constraints defined below: 

                                          
                                                         (4.2) 
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where are the calibrated weights of the proposed estimator 
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The optimum value for the proposed calibrated weight for each stratum was 
obtained by minimizing (2.2) subject to the constraints in (4.2) and (4.3) using 
Lagrange optimization method. The Lagrange function for minimizing (2.2) subject to 
(4.2) and (4.3) is expressed as: 

   

                      (4.4) 
where  and are defined as the Lagrange multipliers. 

By differentiating (4.4) with respect to and equating the resultant expression to 
zero, we obtained the optimum calibration weight as: 

                                                                                    (4.5) 

where  and are obtained by replacing  in (4.2) and (4.3) with the optimum value 
of in (4.5). 
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Then by substituting (4.6) and (4.7) into (4.5), the optimum calibrated weights are 
expressed as: 
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By substituting  obtained in (4.8) into (4.1), we obtained the proposed 
calibration estimator as: 

                                                                          (4.9) 

where 

                      (4.10) 

In most situations, is assumed to be equal to 1 (Ozgul, 2018). For calibration 
estimator involving one auxiliary variable,  is assumed to be equal to the reciprocal 
of the sample mean and any other statistic of the auxiliary variable (see Garg and 
Pachori (2019) and Babatunde et al. (2023)). Since the calibration estimators considered 
in this paper involve two auxiliary variables, we suggested  to be the reciprocal of the 
sum of the sample mean and sample standard deviation of the two auxiliary variables, 

i.e.  and . 

The different values of  were used to obtain different versions of the proposed 
calibration estimator as: 
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where 

 

           (4.12) 

Case II: 
 1 2

1
h

h h

Q
x x




 

                                                            (4.13) 

where 

              

   (4.14) 

hp

 
1 1

ˆˆ
Z Z

p h h h h h
h h

y W y W T T
 

   

1 1 1 1
2

2

1 1 1

ˆ ˆ

ˆ

ˆ ˆ

Z Z Z Z

h h h h h h h h h h h h
h h h h

Z Z Z

h h h h h h h h
h h h

W Q T y W Q W Q y W Q T

W Q W Q T W Q T

    

  

          
     

        
    

   

  

hQ

hQ

hQ

 1 2

1

h hx x  
1 2

1

h hx xs s

hQ

1hQ 

 1 1
1 1

ˆˆ
Z Z

p h h h h h
h h

y W y W T T
 

   

1 1 1 1
1 2

2

1 1 1

ˆ ˆ

ˆ

ˆ ˆ

Z Z Z Z

h h h h h h h h
h h h h

Z Z Z

h h h h h
h h h

W T y W W y W T

W W T W T

    

  

          
     

        
    

   

  

 2 2
1 1

ˆˆ
Z Z

p h h h h h
h h

y W y W T T
 

   

       

     

1 1 1 11 2 1 2 1 2 1 2
2 2

2

1 1 11 2 1 2 1 2

ˆ ˆ

ˆ
ˆ ˆ

Z Z Z Z
h h h h h h h h

h h h hh h h h h h h h

Z Z Z
h h h h h

h h hh h h h h h

W T y W W y W T

x x x x x x x x

W W T W T

x x x x x x

    

  

     
     

        
    

    
      

   

  



86                                                        A. V. Oladugba, O. T. Babatunde: Improved calibration estimation… 

 

 

Case III:   
1 2

1

h h

h

x x

Q
s s




 

                                                     (4.15) 
where 

     

      (4.16) 

5. Simulation Study 

We demonstrated the efficiency of the proposed calibration estimator over the 
estimators proposed in Rao et al. (2012), Ozgul (2018) and Rai et al. (2021) through 
a simulation study. A simulation study establishes the consistency of the obtained result 
under different scenarios. The study population is MU284 obtained from Sarndal, 
Swensson and Wretman (1992, pp. 652–659) consisting of 284 municipalities from 
Sweden partitioned by geographical region into eight strata. The study variable is the 
1985 populations (in thousands) while the first and second auxiliary variables are the 
1975 populations (in thousands) and total number of seats in municipal council 
respectively. The population parameters in each stratum are presented in Table 1. Using 
SRSWOR, a random sample of size n; n1 = 57, n2 = 71, n3 = 85, n4 = 99 and n5 = 114, 
which correspond to 20%, 25%, 30%, 35% and 40% of the population units respectively, 
were drawn. The sample size for each stratum  was obtained using proportional 
allocation. 

For each sample size, we simulated K = 50,000 samples and computed both the 
proposed and existing estimators considered in this work for all the simulated samples. 
The performance and efficiency of the calibration estimators were assessed using the 
absolute relative bias (ARB), empirical mean square error (MSE) and percentage 
relative efficiency (PRE) expressed in (5.1), (5.2) and (5.3) respectively. The results 
obtained are presented in Tables 2, 3 and 4. 
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Table 1:  Population parameters of the study and auxiliary variables   

Strata 
Mean Standard Deviation 

Y X1 X2 Y X1 X2 

1 62.4400 59.5200 51.1600 122.0685 126.1038 13.7860 
2 29.6042 29.1667 47.6667 35.9547 34.6791 12.7628 
3 24.0625 23.9375 50.2500 20.7710 20.5790 10.1704 
4 31.0000 30.6316 48.4737 38.6775 40.9373 8.9406 
5 29.4107 28.7143 46.3571 56.2348 59.1731 9.8060 
6 20.8293 20.9756 46.5610 17.5359 17.1343 8.1272 
7 26.6667 26.6000 54.2000 23.8038 23.2975 11.0224 
8 17.5172 17.1379 40.1724 21.4164 19.7968 9.7912 
                                              
 
 

Table 2:  Absolute Relative Bias of the Calibrated Estimators Using Two Auxiliary Variables 

 

Sample size    RARB y   

n1 0.003880 0.031470 0.035461 0.035462 
n2 0.002748 0.029486 0.032508 0.032509 
n3 0.002305 0.028617 0.030898 0.030899 
n4 0.001492 0.027078 0.029139 0.029140 
n5 0.002690 0.024627 0.026226 0.026227 

 

n1 0.008747 0.029921 0.033910 0.033911 
n2 0.002528 0.027947 0.030941 0.030942 
n3 0.001439 0.027323 0.029546 0.029547 
n4 0.004879 0.024616 0.026268 0.026269 
n5 0.000527 0.023686 0.025184 0.025185 

 

n1 0.009412 0.033364 0.037549 0.037550 
n2 0.001385 0.033441 0.036775 0.036776 
n3 0.002847 0.033369 0.035985 0.035986 
n4 0.000918 0.031900 0.034010 0.034011 
n5 0.008633 0.030618 0.032596 0.032598 
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Table 3:  Mean Square Error of the Calibrated Estimators Using Two Auxiliary Variables 

 

Sample size     

n1 648.97 42693.33 54207.70 54211.06 
n2 325.51 37478.80 45554.96 45558.00 
n3 229.09 35302.94 41153.64 41156.49 
n4 95.95 31608.20 36603.02 36605.67 
n5 311.98 26144.38 29650.31 29652.67 

 

n1 3298.22 38593.30 49568.96 49572.17 
n2 275.58 33670.15 41268.60 41271.48 
n3 89.27 32182.77 37631.68 37634.39 
n4 1026.02 26122.38 29745.02 29747.40 
n5 11.97 24184.35 27340.07 27342.33 

 

n1 5002.00 51977.03 65263.01 65266.74 
n2 85.05 48265.29 58361.29 58365.28 
n3 334.90 48173.62 56008.55 56011.90 
n4 36.29 43866.74 49862.30 49865.42 
n5 3212.79 40411.47 45803.84 45806.80 

 

Table 4:  Percentage Relative Efficiency of the Proposed Estimator 

 

Sample size    

n1 65.79 83.53 83.53 
n2 115.14 139.95 139.96 
n3 154.10 179.64 179.65 
n4 329.42 381.48 381.51 
n5 83.80 95.04 95.05 

 

n1 11.70 15.03 15.03 
n2 122.18 149.75 149.76 
n3 360.51 421.55 421.58 
n4 25.46 28.99 28.99 
n5 2020.41 2284.05 2284.24 

 

n1 10.39 13.05 13.05 
n2 567.49 686.20 686.25 
n3 143.84 167.24 167.25 
n4 1208.78 1374.00 1374.08 
n5 12.58 14.26 14.26 
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Table 2 presents the absolute relative bias for all the calibration estimators.  
The proposed estimator has the least absolute relative bias followed by the estimators 
proposed by Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) for all the cases of  
considered. This implies that the estimates of the population mean obtained from the 
proposed estimator are closer to the population mean compared to the estimates 
obtained from the estimators proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. 
(2021). For all the different sample sizes considered, the ARB values of the proposed 
estimators are smaller compared to the ARB values of the estimators proposed in Ozgul 
(2018), Rao et al. (2012) and Rai et al. (2021). For =1, the ARB values of the proposed 
estimator reduced as the sample size increases except for n5 = 114 where the ARB value 
increased but for  and , the ARB values are not 

consistent. For =1 and , the least ARB value is observed when the 

sample size n4 = 99 while for  the least ARB value is observed when the 
sample size n5 = 114. This suggest that the proposed estimator performed better with 
a large sample size. 

The results in Table 3 are the mean square errors for all the calibration estimators. 
The proposed estimator has the least mean square error followed by the estimators 
proposed by Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) for all the cases of  
considered. For all the different sample sizes considered, the MSE values of the 
proposed estimators are smaller compared to the MSE values of the estimators 
proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. (2021). For =1, the MSE 
values of the proposed estimator reduced as the sample size increases except for  
n5 = 114 where the MSE value increased but for  and , 

the MSE values are not consistent. For =1 and  the least MSE value 
is observed when the sample size n4 = 99 while for  the least MSE value 
is observed when the sample size n5 = 114.  

From Table 4, all the percentage relative efficiencies obtained are greater than 100% 
implying that the proposed estimator is more efficient when compared to the estimators 
proposed by Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) for all the cases of  
considered. For all the different sample sizes considered, the proposed estimator is 
more efficient compared to the estimators proposed in Ozgul (2018), Rao et al. (2012) 
and Rai et al. (2021). However, the result of this study shows that the proposed 
estimator is more efficient when compared to the estimators proposed in Ozgul (2018), 
Rao et al. (2012) and Rai et al. (2021) for large sample sizes. For example, for =1 and 

, the efficiency of the proposed estimator compared to the estimators 
proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) was higher for sample 
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size n4 = 99 while for  the efficiency of the proposed estimator compared 
to the estimators proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) was 
higher for sample size n5 = 114. 

6. Conclusion 

The standard estimator of the population mean in a stratified sampling was 
improved in this paper through calibration estimation approach using two auxiliary 
variables. The calibration estimator proposed in Ozgul (2018) was modified by defining 
a new set of calibration constraints. Through a simulation study, the efficiency of the 
proposed calibration estimator was assessed and compared to the estimators proposed 
in Rao et al. (2012), Ozgul (2018) and Rai et al. (2021). The proposed estimator has the 
least absolute relative bias and mean square error for all the cases of  considered. 
These results are consistent with the results obtained in Ozgul (2018), where the 
absolute relative bias and mean square error of the estimators proposed by Ozgul (2018) 
and Rao et al. (2018) were compared for . Also, the proposed estimator is more 
efficient when compared to the estimators proposed in Rao et al. (2012), Ozgul (2018) 
and Rai et al. (2021) for all the cases of  considered. Furthermore, the efficiency of 
the proposed estimator was found to be higher for large sample sizes.  
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Inter-voivodship migration in Poland in the 2000–2020
period based on Markov chain analysis

Agnieszka Palma1, Dorota Kału̇za-Kopias2

Abstract

The paper presents the scale and directions of inter-voivodship migration in Poland in se-
lected years of the 2000–2020 period. The study focused on permanent residence migration 
and aimed to identify areas of migration attractiveness and migration catchment voivod-
ships. To study the stochastic nature of these migrations, a Markov chain model was used, 
in which the states were voivodships. An important aspect of the study involved determining 
the properties of the transition probability matrix as well as stationary probability in order to 
characterise the mechanism of inter-voivodship migrations in the years 2000, 2010 and 2020. 
Data obtained from Statistics Poland were used in the analysis. The transition probability 
matrix showed that the states were connected and irreducible to each other, while the sta-
tionary probability of migration to Dolnośl˛ askie, Małopolskie, Pomorskie, and Wielkopol-
skie voivodships increased in 2020 compared to 2000. The analysis of the mechanism of 
migration in the years 2000, 2010, 2020 indicated that Mazowieckie Voivodship was still the 
main destination for migrants, with the highest stationary probability reaching 0.18 in 2010.

Key words: inter-voivodship migration, Markov chain, random transition count, transition 
probability matrix, stationary probability, mechanism of migration.

1. Introduction

Migration, after births and deaths, is the third basic factor influencing the population
dynamics of an area. Its importance in influencing population growth and decline and
in modifying the demographic characteristics of areas of origin and destination has long
been obvious and recognised. The measurement and analysis of migration are important in
preparing population estimates and projections for a nation or part of a nation.

The issue of the migration phenomenon is very broad (foreign migration, internal migra-
tion) and concerns every spatial scale, starting from the national scale, through the regional
(provincial) level, other selected functional administrative units, up to complex settlement
systems (Śleszyński et al. 2018). In addition, it deals with explaining the reasons for the
variation in migration volumes. Certainly, many factors influence the intensity and direc-
tion of migration flows. One of them is the pace of socio-economic development of a given
region, employment opportunities, housing or land prices, cost of living, availability of in-
frastructure, to a large extent family ties, and the age of migrants.
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The topic of internal migration for permanent residence in Poland has been addressed
in several works. Pietrzak (2013) described inter-regional migration using a gravity model.
Roszko (2018) found a strong relationship between the standard of living of residents ex-
pressed by Gross Domestic Product per capita and the number of incoming new residents
and the balance of interprovincial migration. Several works have addressed internal mi-
gration in a specific province: Rosner (2014), Ilnicki (2020), Józefowicz (2020), Kałuża-
Kopias (2021), Ilnicki (2021).

To investigate the stochastic nature of inter-regional migration in Poland in the period
2000–2020, a Markov chain model was used. Markov chains describe many real-world pro-
cesses, and they are used in many different fields such as physics, geography, chemistry,
biology, medicine, music, economics and finance, game theory, sports, and more. Many
examples of their application can be found in the literature, see for example: Clark (1960),
Marble (1967), Iosifescu (2007), Privault (2018). Collins (1972) used Markov chains in
forecasting industrial migration, while Berry (1971) in outlined a short-term model of neigh-
bourhood turnover, Bourne (1976) suggested this method to monitor changes in Toronto’s
spatial structure, Azizah (2019) applied Markov chain to forecast rainfall data and Chu
(2020) used a Markov chain model to forecast future land use change, Barra (2020) to count
and model migraine attacks and Romeu (2020) to analyse covid-19 survival.

Markov chain models are useful and convenient tools for describing and analysing the
nature of dynamic changes of a phenomenon or process of interest. They are an important
tool for geographers who deal with mobility problems. These can be movements from one
place to another, as well as movements from one state to another. State can be defined in
different ways, it can refer to a class of provinces, municipalities, city size or income or
type of land use or some other variable. They can also be used to forecast future changes:
Sempewo (2016), Rahimipour (2018).

One of the applications of Markov chains is their use in migration studies, mainly to
determine the dominant direction or rate of change, as well as the development of a system,
for example, an urban system. Thanks to Markov chains we can determine which cities,
provinces, or other territorial units have a tendency to increase in population and which to
decrease. The study takes into account permanent migration movements between provinces
to analyse the changes taking place.

In order to analyse the changes taking place in the years 2000–2020, the migration
movements for permanent residence taking place between provinces were taken into ac-
count, and the probability matrices of the transition between states and the corresponding
stationary distributions were determined. The empirical material used in the study was data
from the Local Data Bank of Statistics Poland concerning the inflow and outflow of the
population in individual voivodships. They allowed measuring the migration volume with
the Markov chain model. It should be emphasised that data from public statistics do not
allow for a reliable assessment of the migration situation in Poland. It results mainly from
the fact that they are based on registration data, thus they do not register real permanent
migration, which is not connected with checking out or registering. Despite the continu-
ous improvement of current migration statistics both in terms of data collection methods
and compilation techniques, some authors are critical of their quality (e.g. Jończy 2014;
Śleszyński 2005, 2011). Theoretically, the number of previous and current places of regis-
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tration for migrants should be equal, but in practice, the differences can be significant. The
largest underestimation of internal migration concerns large cities and their suburban zones,
as a large part of the inflow remains unregistered, Korcelii (1997). Although the source of
information on migration is not perfect, it should be emphasised that data from registration
registers, due to their continuity and updating, form the basis of migration reporting.

2. Migration between voivodships in Poland in dynamic terms

The last two decades have seen a decrease in the size of internal migration in Poland.
Between 2000 and 2020, on average, the number of inter-regional migrations decreased by
about 0.5% from year to year, (the calculated geometric mean value for 2000–2020 was
0.995). In spatial terms, the effect of these movements is the migration balance.

Table 1: Internal migration by voivodships

Net migration Net migration per 1000 people Index of migration attractiveness
voivodships 2000 2010 2020 2000 2010 2020 2000 2010 2020
Dolnośląskie -573 1579 3295 -0,2 0,54 1,14 -0,04 0,1 0,22
Kujawsko-pomorskie -407 -1443 -2112 -0,2 -0,69 -1,02 -0,04 -0,14 -0,21
Lubelskie -2969 -4867 -4685 -1,35 -2,23 -2,23 -0,27 -0,41 -0,43
Lubuskie -440 -474 -842 -0,44 -0,46 -0,83 -0,06 -0,07 -0,14
Łódzkie -1107 -1757 -1812 -0,42 -0,69 -0,74 -0,09 -0,15 -0,19
Małopolskie 2376 3673 3412 0,74 1,1 1 0,16 0,24 0,23
Mazowieckie 8825 12687 10448 1,73 2,41 1,92 0,32 0,4 0,38
Opolskie -88 -671 -747 -0,08 -0,66 -0,76 -0,01 -0,1 -0,13
Podkarpackie -1730 -1973 -2226 -0,82 -0,93 -1,05 -0,2 -0,22 -0,25
Podlaskie -1255 -1616 -1702 -1,04 -1,34 -1,45 -0,19 -0,26 -0,31
Pomorskie 1651 2749 3825 0,76 1,21 1,63 0,14 0,22 0,3
Śląskie -1652 -3194 -3342 -0,35 -0,69 -0,74 -0,07 -0,16 -0,2
Świętokrzyskie -2061 -2567 -2143 -1,58 -2 -1,74 -0,23 -0,31 -0,31
Warmińsko-Mazurskie -2002 -2721 -2113 -1,4 -1,87 -1,49 -0,18 -0,26 -0,23
Wielkopolskie 1595 1706 1491 0,48 0,5 0,43 0,11 0,12 0,11
Zachodniopomorskie -163 -1111 -747 -0,1 -0,64 -0,44 -0,01 -0,11 -0,09

Source: Authors’ own calculations.

Most of the voivodships in Poland were characterized by a negative balance of inter-
voivodship movements. In 2000, 12 voivodships had negative migration balances. The
regions with the lowest urbanisation level - Świętokrzyskie and Lubelskie - had relatively
the largest population migration losses exceeding 2,000 people (Table 1). The largest pos-
itive net migration volumes occurred in the Mazowieckie, Pomorskie, Wielkopolskie, and
Małopolskie voivodships. In subsequent years, Dolnośląskie joined the group of voivod-
ships with a positive migration balance. The regions characterized by permanent migration
losses of the population were traditionally the areas of eastern and north-eastern Poland,
which are mostly poorly urbanised agricultural areas. Relating migration balances to the
population in individual voivodships, it turns out that in 2000, only in one region out of four
with positive inter-voivodship migration balances, there was a migration increase exceeding
1 person per 1000 population (Table 1).

As regards the intensity of the migration loss of inhabitants, the northeastern voivodships
had relatively the largest negative balances: Warmińsko-Mazurskie (-1.4 persons per 1,000
inhabitants) and Świętokrzyskie (-1.58). Over the years, there was a clear advantage in the
size of positive migration balances (both in absolute and relative terms) of the Mazowieckie
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voivodship over other regions with higher inflows than outflows. Similarly, in the case
of voivodships characterized by negative migration balances, in the subsequent years the
migration loss of inhabitants assumed (in most regions) greater dimensions than in 2000. It
should be noted, however, that - when assessing the size of migration - it is worth relating
the size of migration balances to the overall migration turnover (inflow and outflow), as the
same values of migration balances may be the result of a large inflow and outflow on the
one hand or a much smaller size of these components (Obraniak 2007). As a measure of
migration attractiveness (in demographic literature, the name "migration efficiency index"
is also used), an index representing the ratio of migration balance to migration turnover was
adopted (Table 1). Due to its construction and ease of interpretation, it is a quite commonly
used measure (Potrykowska, Śleszyński 1999; Obraniak 2007; Kałuża-Kopias 2021). The
calculated values of the index for 2000 indicate that the Mazowieckie voivodship was the
most attractive in terms of migration (Table 1). The following places were occupied by
agglomeration voivodships: Małopolskie, Pomorskie, Wielkopolskie. The list was closed
by the voivodships of north-eastern, eastern, and central Poland - Lubelskie, Podlaskie,
Warmińsko-Mazurskie, Podkarpackie, and Świętokrzyskie.

3. Mathematical model description and calculations

3.1. Markov chain model.

Let n and k be elements of N, such that n ≥ 1 and k ≥ 1. Define S = {1, . . . ,k}. Consider
a sequence of random variables {X1,X2, . . . ,Xn} such that

pi j = P(Xd+1 = j|Xd = i) = P(Xd+1 = j|X1 = i1, X2 = i2, . . . , Xd = i)

is independent of d for all i, j ∈ S. Then, the sequence {X1,X2, . . . ,Xn} is a first-order
Markov chain with state space S and transition probabilities pi j for i, j ∈ S.

The process starts in one of the states and moves successively from one state to another.
Each move is called a step. If the chain is currently in state i, then it moves to state j at
the next step with a probability denoted by pi j, and this probability does not depend upon
which state the chain was in before the current state.
The transition probability matrix P= [pi j]i, j∈S of finite Markov chains, is defined as follows:

P =


p11 p12 . . . p1k

p21 p22 . . . p2k
...

...
. . .

...
pk1 pk2 . . . pkk

 . (1)

Since the elements of row i of this matrix represent the conditional probabilities for all
possible state changes from state i, they must satisfy

∀i, j∈S pi j ≥ 0,
k

∑
j=1

pi j = 1 for each i ∈ S. (2)
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A square matrix for which all elements are non-negative and the sum of the elements
in each row is 1 is called a stochastic matrix. It follows from this definition that a Markov
chain with known probability distribution of the initial state is completely characterized by
a k× k matrix containing the transition probabilities pi j.

Transition probability matrix P shows transition probabilities from one state to another
in one step of Markov chain. Transition probabilities from state i to state j in n steps is
noted as

p(n)i j = P(Xd+n = j|Xd = i) for i, j ∈ S, and d,n ∈ N. (3)

Transition probability matrix in n steps is P(n).

Throughout the paper we are dealing with a random transition count matrix M, which is
defined in the usual way as

M =


m11 m12 . . . m1k

m21 m22 . . . m2k
...

...
. . .

...
mk1 mk2 . . . mkk

 , (4)

where mi j denotes number of transitions from state i to state j, where i, j ∈ S.

Let ∑
k
j=1 mi j = mi., ∑

k
i=1 mi j = m. j and ∑

k
i, j=1 mi j = m...

Then,

Table 2: Random transition count

States 1 2 . . . k Total
1 m11 m12 . . . m1k m1.

2 m21 m22 . . . m2k m2.
...

...
...

. . .
...

...
k mk1 mk2 . . . mkk mk.

m.1 m.2 . . . m.k m..

We are interested in the estimation of the elements pi j of matrix P; we denote them by
p̂i j.

Using the maximum likelihood estimation method (Bhat and Miller, 2002; Billingsley,
1961) we obtain an estimate of the matrix P and denote it as

P = [p̂i j], where p̂i j =
mi j

mi.
for each i, j ∈ {1, . . . ,k}. (5)

3.2. Markov chain’s state space and calculations of migration

In our Markov chain model the states are voivodships. For the convenience of the reader
we denote voivodships respectively 1,2, . . . ,16 and we give this below.
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Table 3: States and corresponding voivodships

States voivodships
1 Dolnośląskie
2 Kujawsko-Pomorskie
3 Lubelskie
4 Lubuskie
5 Łódzkie
6 Małopolskie
7 Mazowieckie
8 Opolskie
9 Podkarpackie

10 Podlaskie
11 Pomorskie
12 Śląskie
13 Świętokrzyskie
14 Warmińsko-Mazurskie
15 Wielkopolskie
16 Zachodniopomorskie

In this way we obtain the state space S = {1,2, . . . ,16}.
Input data were obtained from Statistics Poland. They are available in the Local Data

Bank (BDL) and the Demography database. Data on migration volumes are presented in
a matrix system. The matrix shows the internal migration of the population for permanent
residence by voivodship of previous and current place of residence. The elements mi j, i, j ∈
S, of the matrix Mi, i = 1,2,3, denote the number of migrants who emigrated and stayed
in another voivodship in Poland, respectively in the years 2000, 2010, 2020. Migrants are
people who changed their place of permanent residence and moved to another province.

Based on the input data Mi, i= 1,2,3, after applying the maximum likelihood estimation
defined by formula (5), we obtain an estimate of the probability of migration from i- th
province to j-th province. In this way, the transition probability matrices P1, P2, P3 for
migration in Poland were determined for the years 2000, 2010, and 2020, respectively.

3.3. Test for first-order Markov chain

In this section, we will check whether the transition probability matrix for migration
in 2000, 2010, and 2020 satisfies the assumption of a first-order Markov chain. To check
the validity of the Markov chain model, the chi-square test of goodness of fit is used. The
hypothesis to be tested is the null hypothesis that the collected observations are independent
of the alternative hypothesis that the observed process is a first-order Markov chain. The
hypothesis is Ho : P = P0, where P0 has identical rows under the assumption of indepen-
dence. The χ2 statistic to test independence against the first order Markov Chain (Bhat and
Miller, 2002; Billingsley, 1961) is calculated from the following relationship:
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χ
2 =

k

∑
i=1

k

∑
j=1

(mi j −
mi.m. j

m..
)2

mi.m. j
m..

with the degrees of freedom (k− 1)2 − d, where d is number of zero cells. For the input
data, χ2 statistics were determined as well as Cramer’s association coefficient. The results
are given below:

Table 4: χ2 test of independence for data migration in 2000, 2010, 2020

Migration data χ2 statistic p-value Cramer’s V
2000 82103 <0.0000 0.234
2010 85064 <0.0000 0.238
2020 85425 <0.0000 0.251

Source: Authors’ own calculations.

It follows from Table 4, that the assumption of independence can be rejected (p-value<
0.0000). Based on these results, it can be concluded that modelling the data as a first-order
Markov chain is reasonable.

3.4. Stationary distribution

As we progress through time, the probability of being in certain states more likely than
others. Over the long run, the distribution will reach equilibrium with an associated prob-
ability of being in each state. This is known as the stationary distribution. A stationary
distribution π is a vector whose entries are non-negative and sum to 1, is unchanged by the
operation of transition matrix P on it, so it satisfied (Bhat 2002),

π j = ∑
i∈S

πi · pi j and ∀ j∈S π j ≥ 0, ∑
j

π j = 1.

In the matrix notation, it can be written as

π = π ·Pi for i = 1,2,3,

where π is some distribution, which is a row vector with the number of columns equal to
the states in the state space S and Pi, i = 1,2,3, is the transition probability matrix.

The stationary probability can also be found from limiting transition probability matrix

lim
n→∞

p(n)i j = π j.

Comparison of stationary distribution between the years 2000, 2010, 2020 for individual
voivodships is presented in Figure 1.
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Figure 1: Comparison of stationary inter-voivodship migration distributions in Poland in
2000, 2010, 2020

Table 5: Stationary probability π

Transition matrix π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13 π14 π15 π16

P1 0.07 0.06 0.04 0.04 0.06 0.07 0.16 0.03 0.03 0.03 0.07 0.1 0.04 0.05 0.08 0.06
P2 0.08 0.05 0.04 0.04 0.06 0.08 0.18 0.03 0.04 0.03 0.08 0.09 0.03 0.05 0.08 0.05
P3 0.1 0.05 0.04 0.04 0.05 0.08 0.17 0.03 0.04 0.03 0.09 0.08 0.03 0.05 0.09 0.05

Source: Authors’ own calculations.

Figure 1 and Table 5 - the results of the analysis of stationary probability show that
the variation for the following provinces: Dolnośląskie, Mazowieckie, Pomorskie, Śląskie
is greater compared to the remaining provinces, for which the stationary distributions are
differentiated, but the changes are relatively small. The values of stationary probabilities
indicate that the probability of migration to Łódzkie decreased from 0.062 in 2000 to 0.05 in
2020, while for Śląskie from 0.103 to 0.077. On the other hand, the probability of migration
to Dolnośląskie increased from 0.07 to 0.095, for the Pomorskie voivodship from 0.069 to
0.089, analogically, for the Podkarpackie and Wielkopolskie voivodships, the probabilities
increased, although to a smaller extent. Based on these results, one may conclude that the
Mazowieckie voivodship will continue to be the main direction of migration in the future.
However, it is worth noting that in 2020 the probability of migration to the Mazowieckie
voivodship decreased in comparison to 2010.
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3.5. Mechanism of the inter-voivodship migration in Poland

In order to characterize the mechanism of interprovincial migration in Poland, one
should first estimate the transition probability matrix using the procedure given in Bhat
and Miller (2002) and Miall (1973) as follows:

P0 =


0 m.2

m..−m.1

m.3
m..−m.1

. . . m.k
m..−m.1

m.1
m..−m.2

0 m.3
m..−m.2

. . . m.k
m..−m.2

...
...

...
. . .

...
m.1

m..−m.k

m.2
m..−m.k

m.3
m..−m.k

. . . 0

 . (6)

To analyze the mechanism of the inter-voivodship migration in Poland, we find the
estimated transition probability matrix P0 by formula (6) and using M1, M2, M3 - data from
Statistics Poland for the 2000, 2010, 2020, respectively. The results of these calculations
are presented, as an example, only for the matrix P0

1 . The matrices P0
2 , P0

3 are determined
analogically.

P0
1 =



0 0.06 0.04 0.04 0.06 0.09 0.2 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0 0.04 0.04 0.06 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0.06 0 0.04 0.06 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0.05 0.04 0 0.06 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0.06 0.04 0.04 0 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.08 0.06 0.04 0.04 0.06 0 0.2 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.09 0.06
0.09 0.06 0.05 0.04 0.07 0.1 0 0.04 0.04 0.03 0.08 0.13 0.04 0.05 0.1 0.07
0.07 0.05 0.04 0.04 0.06 0.09 0.19 0 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0.05 0.04 0.04 0.06 0.09 0.19 0.03 0 0.03 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0.05 0.04 0.04 0.06 0.09 0.19 0.03 0.04 0 0.07 0.11 0.04 0.05 0.08 0.06
0.07 0.06 0.04 0.04 0.06 0.09 0.2 0.03 0.04 0.03 0 0.11 0.04 0.05 0.08 0.06
0.08 0.06 0.04 0.04 0.06 0.09 0.2 0.04 0.04 0.03 0.08 0 0.04 0.05 0.09 0.06
0.07 0.05 0.04 0.04 0.06 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0 0.05 0.08 0.06
0.07 0.06 0.04 0.04 0.06 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0.04 0 0.08 0.06
0.08 0.06 0.04 0.04 0.06 0.09 0.2 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0 0.06
0.07 0.06 0.04 0.04 0.06 0.09 0.19 0.03 0.04 0.03 0.07 0.11 0.04 0.05 0.08 0



,

In the next step, transition probability difference matrices is created, assuming that the
transition probabilities are given by (5) and (6), so that the properties of the migration mech-
anism can be inferred. In this case, we compute the difference matrices

Di = Pi −P0
i for each i ∈ {1,2,3}.

Below, we present only the matrix D1, to illustrate the method used.
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D1 =



0 −0.03 −0.01 0.08 0 −0.02 −0.08 0.09 −0.01 −0.01 −0.04 −0.01 −0.01 −0.03 0.07 0
−0.04 0 −0.03 −0.01 −0.02 −0.07 −0.01 −0.03 −0.03 −0.02 0.13 −0.05 −0.03 0.03 0.13 0.03
−0.03 −0.04 0 −0.02 −0.03 −0.02 0.27 −0.02 0.05 −0.01 −0.02 −0.03 0 −0.03 −0.06 −0.02
0.17 −0.02 −0.03 0 −0.02 −0.06 −0.12 −0.01 −0.02 −0.02 −0.04 −0.06 −0.03 −0.03 0.18 0.1
−0.01 −0.01 −0.02 −0.02 0 −0.05 0.13 0 −0.02 −0.01 −0.03 0.05 0 −0.03 0.03 −0.01
−0.02 −0.04 −0.01 −0.02 −0.03 0 −0.07 −0.01 0.09 −0.02 −0.05 0.26 0.05 −0.04 −0.06 −0.04
−0.04 0.01 0.07 −0.03 0.06 −0.05 0 −0.02 −0.01 0.05 0 −0.05 0.03 0.06 −0.05 −0.02

0.2 −0.04 −0.03 −0.01 0.01 −0.03 −0.1 0 −0.01 −0.02 −0.06 0.2 −0.02 −0.03 −0.03 −0.03
−0.02 −0.04 0.08 −0.02 −0.03 0.22 −0.03 −0.02 0 −0.02 −0.05 0.02 0.03 −0.03 −0.05 −0.03
−0.05 −0.03 −0.01 −0.03 −0.03 −0.06 0.26 −0.03 −0.02 0 0.01 −0.06 −0.03 0.15 −0.06 −0.03
−0.04 0.11 −0.02 −0.01 −0.02 −0.06 −0.02 −0.02 −0.02 0 0 −0.07 −0.02 0.09 0.01 0.11
0.01 −0.02 0 −0.02 0.02 0.14 −0.09 0.05 0.01 −0.01 −0.04 0 0.03 −0.01 −0.04 −0.02
−0.03 −0.05 0 −0.03 0.01 0.09 0.08 −0.02 0.04 −0.02 −0.04 0.11 0 −0.04 −0.06 −0.04
−0.05 0.04 −0.02 −0.02 −0.03 −0.07 0.09 −0.02 −0.03 0.11 0.14 −0.05 −0.03 0 −0.04 −0.02
0.07 0.11 −0.02 0.08 0.03 −0.06 −0.09 −0.01 −0.03 −0.02 −0.01 −0.05 −0.03 −0.03 0 0.06

0 0.04 −0.01 0.06 −0.01 −0.06 −0.05 −0.02 −0.02 −0.02 0.09 −0.05 −0.02 −0.02 0.1 0


,

The positive elements of the matrices D1, D2, D3 represent those transitions which have
higher probability of occurrence. This makes it possible to characterize the mechanism of
the process of interregional migration in the years 2000, 2010, 2020.

The stationary distribution allowed finding voivodships that are migration catchment
areas, while the values of the matrix Di, i = 1,2,3, indicate areas attractive to migration for
individual voivodships.

Table 6: Positive values of matrix Di, i = 1,2,3, i.e. mechanism of migration between
voivodships in the years 2000, 2010, 2020

state Dolnośląskie Kujawsko- Lubelskie Lubuskie Łódzkie Małopolskie Mazowieckie Opolskie Podkarpackie Podlaskie Pomorskie Śląskie Świętokrzyskie Warmińsko- Wielkopolskie Zachodnio- year
Pomorskie Mazurskie pomorskie

Dolnośląskie
0.08 0.09 0.07 2000
0.10 0.08 0.01 0.08 2010
0.08 0.01 0.09 0.01 0.08 0.01 2020

Kujawsko-
Pomorskie

0.13 0.03 0.13 0.03 2000
0.16 0.01 0.16 0.01 2010
0.14 0.02 0.15 0.01 2020

Lubelskie
0.27 0.05 2000
0.32 0.04 2010
0.33 0.05 2020

Lubuskie
0.17 0.18 0.10 2000
0.15 0.20 0.08 2010
0.20 0.21 0.10 2020

Łódzkie
0.13 0.05 0.03 2000

0.01 0.15 0.03 0.02 2010
0.04 0.12 0.03 0.03 2020

Małopolskie
0.09 0.26 0.05 2000
0.10 0.26 0.03 2010
0.11 0.24 0.04 2020

Mazowieckie
0.01 0.07 0.06 0.05 0.03 0.06 2000
0.01 0.08 0.07 0.05 0.02 0.05 2010
0.01 0.09 0.05 0.05 0.02 0.06 2020

Opolskie
0.20 0.01 0.20 2000
0.27 0.17 2010
0.31 0.15 2020

Podkarpackie
0.08 0.22 0.02 0.03 2000
0.05 0.24 0.01 0.03 2010
0.05 0.29 0.02 2020

Podlaskie
0.26 0.01 0.15 2000
0.28 0.13 2010
0.29 0.12 2020

Pomorskie
0.11 0.09 0.01 0.11 2000
0.11 0.01 0.10 2010
0.11 0.12 0.10 2020

Śląskie
0.01 0.02 0.14 0.05 0.01 0.03 2000
0.01 0.01 0.16 0.05 0.01 0.03 2010
0.02 0.02 0.17 0.06 0.02 2020

Świętokrzyskie
0.01 0.09 0.08 0.04 0.11 2000

0.01 0.01 0.11 0.09 0.04 0.04 2010
0.01 0.01 0.14 0.10 0.04 0.02 2020

Warmińsko-
Mazurskie

0.04 0.09 0.11 0.14 2000
0.03 0.07 0.07 0.20 2010
0.03 0.06 0.07 0.25 2020

Wielkopolskie
0.07 0.11 0.08 0.03 0.06 2000
0.09 0.09 0.06 0.03 0.07 2010
0.11 0.08 0.06 0.03 0.06 2020

Zachodnio-
pomorskie

0.04 0.06 0.09 0.10 2000
0.02 0.08 0.08 0.11 2010
0.01 0.08 0.08 0.14 2020

Source: Authors’ own calculations.

Figure 2 presents graphically the mechanism of inter-voivodship migration in 2020. In-
dividual voivodships have been marked with appropriate colours, depending on the values
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of probabilities πi, i ∈ {1,2, · · · ,16} of the stationary distribution P3 in Table 5. The ar-
rows between provinces are of different thickness, corresponding to the values of the matrix
D3 and showing the intensity of migration between provinces. For the convenience of the
reader, the arrows coming out of different provinces are marked with different colours.

Figure 2: The mechanism of the inter-voivodship migration in Poland in 2020

4. Conclusions

The aim of this study was to analyse the scale and spatial range of inter-voivodship
migrations of Poland’s population in the years 2000, 2010, 2020. The application of the
Markov chain model allows for a meticulous evaluation of the population flow between in-
dividual voivodships. The results of the study indicate that the most favourable situation
remains in the Mazowieckie voivodship, which is the most attractive area of settlement for
people from other regions of the country, mainly from the Lubelskie, Podlaskie, and Łódzkie
voivodships, and to a lesser extent from Świętokrzyskie and Warmińsko-Mazurskie voivod-
ships. However, during the analysed period, the inflow from the Łódzkie and Warmińsko-
Mazurskie voivodships decreased, while for the remaining voivodships the inflow increased.
The Mazowieckie voivodship is the most populous region in Poland and the largest in terms
of area, and also very spatially diversified in terms of socio-economic development (Struzik
2007). The Dolnośląskie voivodship is ranked next. It is an attractive area for migrants from
the Opolskie, Lubuskie, and Wielkopolskie voivodships. The inflow to the Dolnośląskie
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voivodship from those voivodships increased in the analysed period. In Figure 2, Wielkopol-
skie, Śląskie, Małopolskie, and Pomorskie voivodships are marked with the same colour
and their probability of stationary distribution is at the level of 0.09-0.12. Migrants come
to Wielkopolskie voivodship from Lubuskie, Zachodniopomorskie, Kujawsko-Pomorskie,
Dolnośląskie, and to a small extent from Łódzkie. The weakest regions are Opolskie, Świę-
tokrzyskie, and Podlaskie, which are not attractive in terms of migration. Migratory move-
ment of people between voivodships is characterized by an inflow of people mainly from
the areas of the neighbouring voivodships.

In reality, the inflow to the most attractive voivodships may be much higher. Due to
imperfections in the analysed statistical data, the probabilities of inter-voivodship migration
calculated on their basis reflect only the main trends in migration movement in the analysed
period.

Certainly, many factors influence the intensity and direction of interprovincial move-
ments. One of them is the pace of social and economic development of a given voivodship,
more precisely, the possibility of employment, housing or land prices, cost of living, ac-
cessibility to infrastructure, to a large extent family ties, as well as the age of the migrants.
According to Kałuża-Kopias (2021), we find that the most mobile group is made up of peo-
ple aged 25-29, who have the largest spatial extent of migration. The least mobile group
includes those aged 35-39 (people who have achieved stabilisation in the labour market and
in their family life, and are presumably moving in order to improve their quality of life and
rather over short distances) and 65-69 year-olds (retired people).

Another impacting factor for the scale of inter-voivodship flows is migration policy,
which is the responsibility of the central government. Local governments have little in-
fluence on the government’s migration policy instruments (Gońda 2021, Leśniewska, Ma-
tuszczyk 2018). However, they can impact the migration decisions of residents by introduc-
ing appropriate measures to encourage arrivals and settlement. In the case of all provinces,
references to the issue of migration can be found in strategic documents on regional devel-
opment 3. In these strategies, the problem of migration is discussed only in the context of
the demographic situation in the region as a factor accelerating population ageing and de-
population in the voivodship. Undoubtedly, conducting an active and conscious population
policy taking into account the problem of population migration should become an important
element of the regional development policy.

Rakowska (2009) points out that since the subject of the study is inter-voivodship mi-
grations, the scale of population inflow will also depend on the size of the voivodship area,
the number of its inhabitants, the number of rural communes and towns, its geographical
location in relation to other voivodships, as well as socio-economic ties with the nearest
surroundings and the level of development and the rate of economic growth.

These subjects are another challenge in migration research.

3https://strateg.stat.gov.pl//strategie/wojewodzkie
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Śleszyński, P., (2011). Oszacowanie rzeczywistej liczby ludności gmin województwa ma-
zowieckiego z wykorzystaniem danych ZUS, Studia demograficzne, 2, pp. 35–58.
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Implementation of K-Nearest Neighbor using the oversampling 
technique on mixed data for the classification of household  

welfare status 

Nur Mutmainnah Djafar1, Achmad Fauzan2 

Abstract 

Welfare is closely related to poverty and the socio-economic disparities in a society. Based 
on data from the Central Bureau of Statistics, Kulon Progo in Indonesia had the highest 
poverty rate in the province of the Special Region of Yogyakarta; an increasing trend was 
observed every year from 2019 to 2021; Kulon Progo also had a low poverty line (after 
Gunung Kidul) compared to other regencies/cities in this province. This study aimed to 
classify the household welfare status in Kulon Progo in March 2021 using the K-Nearest 
Neighbor (KNN) method. Since imbalance was found between the poor and non-poor 
classes, an oversampling technique was employed. Imbalanced data affect classification, 
particularly when predicting the results of the classification. The following oversampling 
techniques were employed in this study: Random Oversampling (RO), the Adaptive 
Synthetic (ADASYN) and the Synthetic Minority Oversampling Technique (SMOTE). 
It was found that, of the three techniques, RO was the most efficient with k = 5, which yielded 
the best performance in terms of sensitivity, specificity, the G-mean, and accuracy reaching 
0.643, 0.805, 0.719, and 78.873%, respectively. Therefore, it can be concluded that the 
classification model performed well enough to classify household welfare status, especially 
among the poor (minority class). 

Key words: ADASYN, KNN, random oversampling, SMOTE, welfare. 

1.  Introduction 

The development and progress made these days have become one of the challenges 
for countries to also develop and make progress over time, so these countries must 
make efforts to improve the welfare for their community. Welfare is a benchmark 
in social life, in which the society members are prosperous. It can be measured from the 
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society’s health, economic conditions, happiness, and quality of life (Suud & Harsono, 
2006). Welfare, however, has a close association with poverty and socio-economic 
disparities in society. Poverty is an economic, material, and physical inability to meet 
basic needs, including both food and non-food items, as measured by expenditure. 

Poverty alleviation is the main responsibility for all central and regional 
governments throughout the world. Therefore, this is also the responsibility of the 
government of Indonesia, including the government of Kulon Progo Regency and the 
Province of the Special Region of Yogyakarta (DIY), Indonesia. Kulon Progo is one of 
the regencies in DIY which has 12 sub-districts and 88 villages. This regency has an area 
of 586.28 km2 and a population in the first half of 2021 of 442,838 people. In the last 
three years, the poverty rate in Kulon Progo had an increasing trend every year from 
2019 to 2021, reaching 18.38%, which means that there was a total of 81,140 poor people 
in this regency. In addition, in 2021 Kulon Progo had the highest poverty rate compared 
to other regencies/city in DIY (BPS-Statistics of DI Yogyakarta Province, 2021). 

In addition to using the monthly per capita consumption, according to research by 
Suryadarma et al. (2005), poverty can also be classified using other important 
indicators, namely information on asset ownership such as housing, employment 
status, family health, livestock ownership, food consumption, etc. In addition, it can 
also be identified from the Head of the Household (KRT), including age, gender, 
marital status, education level, the number of dependents, and income of the head of 
the household. 

Based on the above-mentioned description, welfare-related issues, particularly 
poverty in Kulon Progo, is an interesting topic of discussion. The classification of 
household welfare status uses many indicators as influencing factors. A total of 
17 variables were used in this study. The classification method was K-Nearest Neighbor 
(KNN), i.e. a non-parametric classification based on the closest neighbor according to 
the distance-based k value (Haseela H A, 2022). The KNN method was used in this 
study because KNN has several benefits, including a fast, simple, and effective training 
process although involving large training data. Such simplicity was used in this study 
to determine the results of classification using the research data. In addition, KNN can 
also classify data which contain categorical and numerical data. 

The data on the welfare status of Kulon Progo showed that very few households 
were classified as poor compared to those classified as non-poor. The resulting 
classification, however, tends to classify the majority class well, but it has a poor 
performance in predicting the minority class, thus causing (Jian et al., 2016). One of the 
solutions to such imbalance is oversampling. Oversampling is a method to oversample 
the minority class data to be close to or equal to the majority class (Chawla, 2005). There 
are various oversampling methods, some of which were used in this research, including 
Random Oversampling (RO), Adaptive Synthetic Sampling (ADASYN), and Synthetic 
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Minority Oversampling Technique (SMOTE). The three oversampling techniques have 
different procedures and all of them were applied to the imbalanced data to determine 
their effectiveness. RO duplicates existing data, ADASYN uses weighted distribution, 
and SMOTE generates replicated data. 

The study aimed to determine the general description of household welfare status 
data and to determine the comparison of the results of the KNN classification on data 
without oversampling and data with different oversampling techniques, namely RO, 
ADASYN, and SMOTE. 

2. Method 

2.1. Data 

The study used data from the National Socioeconomic Survey (SUSENAS) by the 
Central Bureau of Statistics in Kulon Progo Regency, Indonesia in March 2021 accessed 
from http://silastik.bps.go.id. SUSENAS was carried out by direct interviews or self-
administered questionnaires. 

There were 18 variables used in this study, consisting of 17 independent variables 
defined as X and 1 dependent variable defined as Y, i.e. household welfare status which 
was classified into two categories, namely poor (0) and non-poor (1). The variables used 
are presented in Table 1. 

No. Variables Type of data 

1. Welfare status  Nominal 
2. Age of head of household Numerical 
3. Family size Numerical 
4. Area of house Numerical 
5. Gender of head of household Categorical 
6. Marital status of head of household Categorical 
7. Main source of household income  Categorical 
8. Type of home ownership  Categorical 
9. Latest education of head of household  Categorical 

10.  Bank account ownership of head of household Categorical 
11.  Head of household works in the last one week Categorical 
12.  Head of household’s health issues in the last one month Categorical 
13.  Main light source Categorical 
14.  Main source of energy used for cooking Categorical 
15.  Main source of drinking water Categorical 
16.  Main source of water for washing Categorical 
17.  Mobile phone ownership of head of household Categorical 
18.  Laptop/notebook ownership of head of household Categorical 
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2.2. K-Nearest Neighbors (KNN) 

KNN was developed by Evelyn Fix and Joseph Hodges in 1951. KNN is a non-
parametric classification method based on the closest neighbor according to a distance-
based k value (Haseela H A, 2022). KNN classification requires a distance that is in line 
with the type of research data (Wu et al., 2008). Several papers on the KNN technique 
and its development included Alsammak et al. (2020) conducting research to improve 
the performance of the K-Nearest Neighbor (KNN) classifier to satisfy emerging big 
data requirements. Kirtania et al. (2020) is working on a new adaptive KNN classifier 
for addressing imbalances in Magnetic Resonance Imaging (MRI) brain. Awotunde et 
al. (2022) investigated the feature choice based KNN Model for Rapid Software Defect 
Prediction. Hoque et al. (2021) created a KNN-DK classifier, which is a modified KNN 
classifier with dynamic k nearest neighbors.  

Wilson & Martinez (1997a)  explained that one of the distances for numerical and 
categorical data types is the Heterogeneous Euclidean-Overlap Metric (HEOM).  
HEOM handles both continuous and nominal attributes with overlap metric for 
nominal attributes and normalize Euclidean distance for linear attributes (ChitraDevi 
et al., 2012; Tusyakdiah, 2021). A heterogeneous distance function that uses different 
attribute distance functions on diverse categories of features has been used to address 
the issues of applications with continuous and nominal attributes. The unique 
technique is the overlap metric for combined nominal attributes and normalized 
Euclidean distance for linear features or numerical data (Dalatu & Midi, 2020). 
Numerical data are calculated using normalized Euclidean distance (Randall et al., 
2000; Wilson & Martinez, 1997), written in equation (1). 

𝐷൫𝑥௜௧ , 𝑧௝௧൯ ൌ
|𝑥௜௧ െ 𝑤௝௧|

maxሺ𝑥௜௧ሻ െ min ሺ𝑥௜௧ሻ
, 𝑡 ൌ 1,2,3, … ,𝑚௡ (1) 

Categorical data are calculated using overlap metrics, written in equation (2). 

𝐷ଶ൫𝑥௜௧, 𝑧௝௧൯ ൌ ൜
0      𝑥௜௧ ൌ 𝑧௝௧
1      𝑥௜௧ ് 𝑧௝௧

 ,   𝑡 ൌ 1,2,3, … ,𝑚௖ (2) 
After the distances for both numerical and categorical data have been obtained, 

the square root of the sum of the two distances was calculated to obtain the HEOM 
distance in equation (3). 

𝐷ுாைெ൫𝑥௜ , 𝑧௝൯ ൌ ඩ෍𝐷൫𝑥௜௧ , 𝑧௝௧൯

௠೙

௧ୀଵ

൅෍𝐷ଶ൫𝑥௜௧, 𝑧௝௧൯

௠೎

௧ୀଵ

 
(3) 

with D: distance, 𝒙𝒊𝒕: training data value, 𝒘𝒋𝒕 : data testing value, a: data variable to-
𝒊, max: the maximum value of each numeric variable, min: the minimum value of each 
numeric variable, 𝒎𝒏: numeric data type, and 𝒎𝒄: categorical data type. The use of 
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HEOM distance will remove the impacts of arbitrary nominal value ordering, but it is 
an overly simplistic approach to dealing with nominal attributes that fails to make use 
of extra information offered by nominal attribute values that can aid in generalization 
(Wilson & Martinez, 1997). The usage of HEOM distance fits this study extremely well, 
in this case, since the data in this study are mixed data, as seen in Table 1.  

2.3. Class Imbalance  

Class imbalance is one of the problems in data mining. It is a condition where the 
minority class is very small compared to the majority class (Ren et al., 2017). 
In a classification with imbalanced data, the accuracy of the minority class tends to be 
low due to the dominance of the majority class, thus causing biases (Jian et al., 2016). 
In addition, class imbalance and noise can affect the quality of data in classification 
performance (Gao et al., 2014). 

One of the solutions to class imbalance is resampling. Resampling is a preprocessing 
technique to balance data distribution to reduce the effect of class imbalance. There are 
three types of resampling, namely oversampling, undersampling, and hybrid, which 
combines both over and undersampling (Jian et al., 2016). Oversampling is used 
because of its benefits, i.e. adding data to the minority class to prevent the loss of data 
information. 

2.4. Oversampling 

Oversampling is a method to oversample the minority class data to be close to or 
equal to the majority class (Chawla, 2005). There are various oversampling methods, 
some of which were used in this research, including Random Oversampling (RO), 
Adaptive Synthetic Sampling (ADASYN), and Synthetic Minority Oversampling 
Technique (SMOTE). 

2.4.1. Random Oversampling (RO) 
Random Oversampling is a technique to randomly add data from the minority class 

to the training data, in which the addition process is repeated until the data in the 
minority class are equal in number to those in the majority class. The difference 
between the majority and minority classes is first calculated. Then, the repetition is 
randomly done as many times as the difference resulting from the calculation and 
added to the dataset.  

2.4.2. Adaptive Synthetic Sampling (ADASYN) 
ADASYN uses the weighted distribution of the data in the minority class, in which 

synthetic data are generated from the minority class (Rahayu et al., 2017). The steps for 
performing ADASYN are as follows (He et al., 2008). 



114                     Nur Mutmainnah Djafar, Achmad Fauzan: Implementation of K-Nearest Neighbor… 

 

 

i. Calculating the degree of data imbalance. 

𝑑௖ ൌ
𝑚௦

𝑚௟
 

(4) 
with 𝑑 ∈ ሾ0.1ሿ. 𝑚௦ is the number of minority class data and 𝑚௟ is the number of 
majority class data. 

ii. If 𝑑௖ ൏ 𝑑௧௛, where 𝑑௧௛ is the threshold for the maximum degree of class imbalance, 
so: 
1. Calculating the amount of synthetic data to be generalized for the minority class. 

𝐺 ൌ ሺ𝑚௟ െ 𝑚௦ሻ ൈ 𝛽 (5) 
where 𝛽 ∈ ሾ0,1ሿ is the parameter used to set the level, balance expected after the 
synthetic data has been generalized. 𝛽 ൌ 1 means completely balanced data after 
the generalization. 

2. For each 𝑥௜  ∈ minority class, determining the k-nearest neighbor based on 
HEOM distance in equation (3) in n dimensional space and calculating ratio (𝑟௜). 

𝑟௜ ൌ
∆௜
𝐾

, 𝑖 ൌ 1, … ,𝑚௦ (6) 
with 𝑟௜: ration, Δ௜: the number of samples in KNN but from data that include 
all classes except the minority and 𝐾: the number k in KNN, and interval of  𝑟௜ ∈
ሾ0,1ሿ,   

3. Normalizing 𝑟௜ 

�̂�௜ ൌ
𝑟௜

∑ 𝑟௜௠
௜ୀଵ

 
(7) 

4. Calculating the amount of synthetic data to be generated for each 𝑥௜  in the 
minority class. 

𝑔௜ ൌ �̂�௜ ൈ 𝐺 (8) 
𝐺 is the total amount of synthetic data to be generated for the minority class in 
equation (5). 

5. For each 𝑥௜  in the minority class, generating synthetic data as many times as 𝑔௜ 
by making repetition from 1 to 𝑔௜ with the steps as follows: 

iii. Randomly selecting one of the data in the minority class from 𝑥௞௡௡ in data 𝑥௜  

iv. Generating synthetic data by equation (9). 
𝑥௔ௗ௔௦௬௡ ൌ 𝑥௜ ൅ ሺ𝑥௞௡௡ െ 𝑥௜ሻ ൈ 𝜆 (9) 

where 𝜆 is random [0,1] 

2.4.3. Synthetic Minority Oversampling Technique (SMOTE) 
SMOTE is done by adding more data in the minority class by generating synthetic 

or artificial data. The synthetic data are generated based on the attributes from the k-
nearest neighbor. Several studies related to oversampling with the SMOTE technique 
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include Elreedy & Atiya (2019), Li et al. (2021), Noorhalim et al. (2019), and Srinilta & 
Kanharattanachai (2021). The steps for performing SMOTE are as follows (Chawla, 
2005): 
i. Determining the data to be replicated ሺ𝑥௜) from a randomly selected minority class. 

ii. Determining the value of k (the number of the nearest neighbors), then calculating 
the distance from data 𝑥௜  to the nearest neighbor data ሺ𝑥௞௡௡) in the same minority 
class. 

iii. For each 𝑥௞௡௡ that is selected, calculating the difference between 𝑥௜  and 𝑥௞௡௡, then 
multiplying the difference by a random number [0,1], and adding it to the features 
under study.  

𝑥௦௜௡௧௘௦௜௦ ൌ 𝑥௜ ൅ ሺ𝑥௞௡௡ െ 𝑥௜ሻ ൈ 𝛿 (10) 
where 𝛿 is random [0,1] 

2.5. Validation Technique 

In data mining, there are many techniques to measure the performance of an 
algorithm, one of which is confusion matrix, which is a binary table, where classes are 
divided into 2 categories (Pramana et al., 2018). Confusion matrix is a table that states 
the amount of testing data correctly classified, and the amount of testing data 
misclassified (Indriani, 2014). 

Table 2:  Confusion Matrix 

Real Classes 
Predicted Classes 

Poor Non-Poor 
Poor TP FN 
Non-Poor FP TN 

 True Positive (TP) is the number of poor classes predicted to be poor; False Positive 
(FP) is the number of non-poor classes predicted to be poor; False Negative (FN) is the 
number of poor classes predicted to be non-poor; True Negative (TN) is the number of 
non-poor classes predicted to be poor. 

Based on the confusion matrix, several evaluation metrics including accuracy, 
sensitivity, specificity, and G-mean can be derived. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁 ൅ 𝐹𝑃
ൈ 100% (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
 (12) 

𝐺 െ𝑚𝑒𝑎𝑛 ൌ ඥ𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൈ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (13) 
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Accuracy is a comparison value between correctly classified data and real data. This 
measurement is used to measure the correctness of the classification (Hamel, 2009). 
The higher the accuracy value, the better the resulting classification (Widayati et al., 
2021). The value of classification accuracy needs to be increased as a measure of 
standard criteria, especially in cases of class imbalance. Because it will produce good 
accuracy only for the majority class, while the resulting predictions will be dire for the 
minority class (Pangastuti, 2018), evaluation of the performance of the method as a 
whole can be done using the geometric mean (Kubát & Matwin, 1997). 

Sensitivity is a value that shows the results of the actual data classification, which is 
a positive class, and the predicted value is also a positive class (Hamel, 2009). The higher 
the sensitivity value, the less likely the results of the positive class classification are 
wrong (Zhu et al., 2010).  Specificity is a value that shows the results of the actual data 
classification, which is labeled negative, and the predicted value is also labeled negative 
(Jahangiri et al., 2020). The higher the specificity value, the better the classification 
performance for making predictions because it has low false positives (Maxim et al., 
2014). A good classification is a classification that has high sensitivity and specificity 
values (Zhu et al., 2010). The G-mean is the geometric average value used to measure 
overall performance. Poor classification results will produce a small G-mean value 
(Bekkar et al., 2013). 

3. Results and Discussion 

Based on BPS-Statistics of DI Yogyakarta Province data, there are 71 households in 
the poor category and 638 households in the non-poor category, or it can be said that 
there is an imbalance in the data. KNN classification was performed by dividing 80% 
for the training data and 20% for the testing data. Oversampling was performed using 
567 training data. 

3.1. RO, ADASYN, and SMOTE Oversampling 

RO was done by making 447 repetitions by randomly taking data from the minority 
class. The ADASYN was performed using 𝑘 ൌ 11 and 𝛽 ൌ 1 (with the expected 
balance of 100%) using the HEOM distance to determine the nearest neighbor. 
Synthesized data were generated by taking from the poor class, resulting in an addition 
of 450 data. SMOTE was performed on the data from the minority class using 𝑘 ൌ 11 
and generated 8 times from the total observations of the poor class (8×57) using the 
HEOM distance to determine the nearest neighbor. The replicated data were equivalent 
to the non-poor class, namely 399 data. Illustration of data results after oversampling 
and without oversampling is presented in Figure 1. 
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Figure 1: Illustration of data after oversampling. 

3.2. KNN with HEOM Distance 

The classification using KNN with HEOM distance was simulated using the data as 
shown in Table 3. 

Table 3:  Simulation Data  

Data 𝑥௜ଵ 𝑥௜ଶ 𝑥௜ଷ 𝑥௜ସ … 𝑥௜ଵହ 𝑥௜ଵ଺ 𝑥௜ଵ଻ Y 

Training data 1 (𝑥ଵ௧) 65 1 56 0 … 2 0 1 0 

Training data 2 (𝑥ଶ௧) 57 2 96 0 … 4 0 1 1 

Training data 3 (𝑥ଷ௧) 35 1 87 0 … 3 0 1 1 

Training data 4 (𝑥ସ௧) 62 0 54 0 … 4 0 1 0 

Testing data 1 (𝑧ଵ௧ሻ 45 1 184 1 … 4 0 1 ? (predicted) 

Based on Table 3, the household welfare status in testing data 1 (𝑧ଵ௧) was predicted, 
whether it was classified as either poor or non-poor class. The distances for the 
numerical data, namely 𝑋ଵ, 𝑋ଶ, and 𝑋ଷ were firstly calculated. The distance calculation 
used the normalized Euclidean distance according to equation (1). 

The distance between testing data (𝑧ଵ௧ሻ and training data 1 (𝑥ଵ௧) 

෍𝐷ଶሺ𝑥ଵ௧ , 𝑧ଵ௧ሻ ൌ ቆ
|65 െ 45|

97 െ 21
ቇ
ଶ

൅ ቆ
|1 െ 1|

5 െ 0
ቇ
ଶ

൅ ቆ
|56 െ 184|

240 െ 9
ቇ
ଶଷ

௧ୀଵ

ൌ 0.57 

The distance between testing data (𝑧ଵ௧ሻ and training data 2 (𝑥ଶ௧) 

෍𝐷ଶሺ𝑥ଶ௧ , 𝑧ଵ௧ሻ ൌ ቆ
|57 െ 45|

97 െ 21
ቇ
ଶ

൅ ቆ
|2 െ 1|

5 െ 0
ቇ
ଶ

൅ ቆ
|96 െ 184|

240 െ 9
ቇ
ଶଷ

௧ୀଵ

ൌ 0.21 
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The distance between testing data (𝑧ଵ௧ሻ and training data 3 (𝑥ଷ௧) 

෍𝐷ଶሺ𝑥ଷ௧ , 𝑧ଵ௧ሻ ൌ ቆ
|35 െ 45|

97 െ 21
ቇ
ଶ

൅ ቆ
|1 െ 1|

5 െ 0
ቇ
ଶ

൅ ቆ
|87 െ 184|

240 െ 9
ቇ
ଶଷ

௧ୀଵ

ൌ 0.193 

The distance between testing data (𝑧ଵ௧ሻ and training data 4 (𝑥ସ௧) 

෍𝐷ଶሺ𝑥ସ௧ , 𝑧ଵ௧ሻ ൌ ቆ
|62 െ 45|

97 െ 21
ቇ
ଶ

൅ ቆ
|0 െ 1|

5 െ 0
ቇ
ଶ

൅ ቆ
|54 െ 184|

240 െ 9
ቇ
ଶଷ

௧ୀଵ

ൌ 0.407 

Once the distance for the numerical data had been obtained, the distance for the 
categorical data on variables 𝑋ସ to 𝑋ଵ଻ had to be calculated using the overlap metric 
method by observing the incompatibility of the two vectors, i.e. if vector 𝑥௜  was different 
from vector 𝑧௝, then the value = 1.  

The HEOM distance was calculated by calculating distances (𝑧ଵ௧ሻ and (𝑥௜௧) in each 
categorical variable based on equation (2). 

The distance between testing data (𝑧ଵ௧ሻ and training data 1 (𝑥ଵ௧) 

෍𝐷ଶ ሺ𝑥ଵ௧ , 𝑧ଵ௧ሻ ൌ ሾ𝐷ଶሺ𝑥ଵସ, 𝑧ଵସሻ ൅  𝐷ଶሺ𝑥ଵହ, 𝑧ଵହሻ
ଵ଻

௧ୀସ

൅ ⋯൅ 𝐷ଶ൫𝑥ଵ,ଵ଻, 𝑧ଵ,ଵ଻൯ 

ൌ ሾ𝐷ଶሺ0,1ሻ ൅ 𝐷ଶሺ1,3ሻ ൅ 𝐷ଶሺ0,0ሻ ൅ ⋯൅ 𝐷ଶሺ1,0ሻሿ ൌ ሾ1ଶ ൅ 1ଶ ൅ 0ଶ ൅ ⋯൅ 1ଶሿ ൌ 9 

The distance between testing data (𝑧ଵ௧ሻ and training data 2 (𝑥ଶ௧) 

෍𝐷ଶሺ𝑥ଶ௧ , 𝑧ଵ௧ሻ ൌ ሾ𝐷ଶሺ𝑥ଶସ, 𝑧ଵସሻ ൅  𝐷ଶሺ𝑥ଶହ, 𝑧ଵହሻ
ଵ଻

௧ୀସ

൅ 𝐷ଶሺ𝑥ଶ଺, 𝑧ଵ଺ሻ ൅ ⋯൅ 𝐷ଶ൫𝑥ଶ,ଵ଻, 𝑧ଵ,ଵ଻൯ 

ൌ ሾ𝐷ଶሺ0,1ሻ ൅ 𝐷ଶሺ3,3ሻ ൅ 𝐷ଶሺ0,0ሻ ൅ ⋯൅ 𝐷ଶሺ1,0ሻሿ ൌ ሾ1ଶ ൅ 0ଶ ൅ 0ଶ ൅ ⋯൅ 1ଶሿ ൌ 6 

The distance between testing data (𝑧ଵ௧ሻ and training data 3 (𝑥ଷ௧) 

෍𝐷ଶሺ𝑥ଷ௧ , 𝑧ଵ௧ሻ ൌ ሾ𝐷ଶሺ𝑥ଷସ, 𝑧ଵସሻ ൅  𝐷ଶሺ𝑥ଷହ, 𝑧ଵହሻ
ଵ଻

௧ୀସ

൅ 𝐷ଶሺ𝑥ଷ଺, 𝑧ଵ଺ሻ ൅ ⋯൅ 𝐷ଶ൫𝑥ଷ,ଵ଻, 𝑧ଵ,ଵ଻൯ 

 ൌ ሾ𝐷ଶሺ0,1ሻ ൅ 𝐷ଶሺ1,3ሻ ൅ 𝐷ଶሺ0,0ሻ ൅ ⋯൅ 𝐷ଶሺ1,0ሻሿ ൌ ሾ1ଶ ൅ 1ଶ ൅ 0ଶ ൅ ⋯൅ 1ଶሿ ൌ 7 

The distance between testing data (𝑧ଵ௧ሻ and training data 4 (𝑥ସ௧) 

෍𝐷ଶሺ𝑥ସ௧ , 𝑧ଵ௧ሻ ൌ ሾ𝐷ଶሺ𝑥ସସ, 𝑧ଵସሻ ൅  𝐷ଶሺ𝑥ସହ, 𝑧ଵହሻ
ଵ଻

௧ୀସ

൅ 𝐷ଶሺ𝑥ସ଺, 𝑧ଵ଺ሻ ൅ ⋯൅ 𝐷ଶ൫𝑥ସ,ଵ଻, 𝑧ଵ,ଵ଻൯ 

 ൌ ሾ𝐷ଶሺ0,1ሻ ൅ 𝐷ଶሺ0,3ሻ ൅ 𝐷ଶሺ0,0ሻ ൅ ⋯൅ 𝐷ଶሺ1,0ሻሿ ൌ ሾ1ଶ ൅ 1ଶ ൅ 0ଶ ൅ ⋯൅ 1ଶሿ ൌ 7 

After the distance for the numerical data had been obtained using the normalized 
difference and for the categorical data using the overlap metric, the two distances were 
combined to obtain the overall distance ሺ𝑥௜ , 𝑧௝ሻ according to equation (3). 

HEOM Dist ሺxଵ, zଵሻ ൌ √0.57 ൅ 9 ൌ 3.094 
HEOM Dist ሺxଶ, zଵሻ ൌ √0.21 ൅ 6 ൌ 2.492 
HEOM Dist ሺxଷ, zଵሻ ൌ √0.193 ൅ 7 ൌ 2.682 
HEOM Dist ሺxସ, zଵሻ ൌ √0.407 ൅ 7 ൌ 2.722 
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After the distance of each object had been obtained, the classification using KNN 
was done with the specified k. The following is an illustration for 𝑘 = 1 and 𝑘 = 3 using 
R Programming. 

Table 4:  Classification Results of Simulation  

Data Y (Welfare Status) Distance 𝑘 ൌ 1 𝑘 ൌ 3 
ሺ𝑥ଵ, 𝑧ଵሻ Poor 3.094   
ሺ𝑥ଶ, 𝑧ଵሻ Non-poor 2.492 Non-poor Non-poor 
ሺ𝑥ଷ, 𝑧ଵሻ Non-poor 2.682  Non-poor 
ሺ𝑥ସ, 𝑧ଵሻ Poor 2.722  Poor 

To classify using KNN, the classification results were obtained from the training 
data with the nearest distance to the testing data. Using 𝑘 ൌ 1, the classification results 
were non-poor because the nearest distance was training data 2 with category 1 (non-
poor). Using 𝑘 ൌ 3, the classification results were still non-poor because the nearest 
distance was training data 2 and 3 with category 1 (non-poor), while training data 
4 with category 0 (poor) only had 1 data. In other words, the dominant class was used 
as the classification result. 

The classification using KNN was carried out four times with four data, namely 
data without any oversampling treatment (imbalanced data), data with RO, ADASYN, 
and SMOTE treatment.  Validation was carried out with various values of k (3,5,7,9) 
based on the confusion matrix obtained, by using the R program the results are 
presented in Table 5. 

Table 5:  Classification Results 

𝑘 Data Sensitivity Specificity G-mean Accuracy 
3 Data without oversampling 0.071 1 0.267 90.845% 
 RO 0.500 0.867 0.658 83.099% 
 ADASYN 0.500 0.836 0.647 80.281% 
 SMOTE 0.429  0.820  0.593  78.170%  
5 Data without oversampling 0  1  0  90.141%  
 RO 0.643  0.805  0.719  78.873%  
 ADASYN 0.500  0.852  0.653  81.691%  
 SMOTE 0.500  0.773  0.622  74.648%  
7 Data without oversampling 0  1  0  90.141%  
 RO 0.714  0.734  0.724  73.240%  
 ADASYN 0.500  0.836  0.647  80.282%  
 SMOTE 0.500  0.758  0.616  73.240%  
9 Data without oversampling 0  1  0  90.141%  
 RO 0.786  0.664  0.722  67.606%  
 ADASYN 0.500  0.820  0.640  78.873%  
 SMOTE 0.643  0.688  0.665  68.310%  
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It was insufficient to validate the results of the classification through the accuracy 
due to the imbalanced data between the poor and non-poor classes. Based on Table 5, 
the data without any oversampling treatment obtained high accuracy and sensitivity, 
but very low specificity. This means that the model was very bad for the non-poor class 
classification, yet very good for the poor class classification. Thus, the data without any 
oversampling treatment were not good in this classification because the results of the 
classification were dominated by the accuracy of the minority class.   

The G-mean is one of the best measurements for evaluating classification, 
especially in class imbalances in data (Pristyanto et al., 2018). Based on Table 5, all G-
mean values in the data that were not oversampled resulted in low values with 𝑘 values 
of 3, 5, 7, and 9. Meanwhile, if using data that had been treated RO, ADASYN, and 
SMOTE with a value of 𝑘=5 produces a G-mean of 0.719, 0.653, and 0.622, which means 
that with balanced data, the resulting classification is good enough for the poor and 
non-poor classes.  

Based on Table 5, it can also be said that with oversampling, the RO oversampling 
technique with a value of 𝑘=5 gives the best results when viewed from the G-mean, 
accuracy, and ease of forming nearest neighbors. With a G-mean value and accuracy of 
0.719 and 78.873%. After calculating the accuracy, sensitivity, specificity, and G-mean, 
the best classification was generated with the RO-treated data. The model can classify 
object classes well, especially in the welfare status classification. The findings of this 
study are also consistent with the findings of several other studies, including Akbar et 
al. (2019), Hussain et al. (2022), and Xin & Rashid (2021) which specify the 
performance of k-NN sensitivity values more precisely. Furthermore, research from 
Islam et al. (2022) and Shi ( 2020) dealing with imbalance data with oversampling 
approaches raises the value of precision. 

4. Conclusions 

This research begins by performing oversampling techniques with three methods, 
including Random Oversampling (RO), Adaptive Synthetic Sampling (ADASYN), and 
Synthetic Minority Oversampling Technique (SMOTE), and comparing with data 
without oversampling techniques. Since the data used are mixed (numeric and 
categorical), the Heterogeneous Euclidean-Overlap Metric (HEOM) distance is more 
appropriate for calculating the distance. Then, from the oversampling results, 
classification is carried out using the k-nearest neighbors (KNN) method with various 
simulated k values.  With the division of 80% training data and 20% testing data, the 
classification using KNN with k = 5 and the HEOM distance produced the best results 
on data with a RO treatment. This is evident from the sensitivity, specificity, G-mean, 
and accuracy i.e. 0.643, 0.805, 0.719, and 78.873% respectively. This means that the 
classification model was quite good in classifying welfare status, especially in the 
minority class (poor class). 
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On Bayesian inference of reliability parameter in Burr-type XII 
model based on imprecise data: a survey on fuzzy modelling

Iman Makhdoom1, Abbas Pak2

Abstract
There are always two major sources of uncertainty in measurements related to lifetime sur-
veys: variation among the observations and imprecision of individual observation called
fuzziness. The typical statistical analysis is based on variation among the observations and
does not consider the imprecision due to individual observation. However, ignoring the im-
precision of individual observations may cause losing information and getting misleading
results. It is mandatory to analyse such data, to extend the real numbers classically and
Bayesian estimation methods to fuzzy numbers. Inference on the Burr-type (BT) XII model,
based on precise measurements, is carried out by researchers, yet the problem of estimating
parameters, in the presence of fuzzy data, remains unresolved. We are estimating the BT
XII distribution parameters and their corresponding reliability when the available data are
in the fuzzy numbers. The maximum likelihood estimation (MLE), the Bayesian method
and the method of moments are used for estimating parameters. Finally, these estimators are
compared via a Monte-Carlo simulation study.
Key words: Bayesian estimation, Burr-type XII distribution, Maximum likelihood esti-
mates, Markov chain Monte Carlo, EM algorithm, Fuzzy data analysis.

1. Introduction

One of the important application of statistics is to analyse the lifetime data. Various
distributions are suggested to model the existing real lifetime data. In this regard, Burr
(1942), in his original paper, presented a system of distributions that contains twelve differ-
ent types of distribution functions useful in lifetime studies, which yield a variety of density
shapes. The two-parameter Burr-type (BT) XII model has the cumulative distribution func-
tion (CDF) and the probability density function (PDF) as follows:

F(x;c,k) = 1− (xc +1)−k , f (x;c,k) =
kcxc−1

(1+ xc)k+1 , x > 0 (1)

respectively, where c > 0 and k > 0 are the shape parameters. The corresponding reliability
function (RF) and failure rate function (FR) are also given by

R(t) = (1+ tc)−k, γ(t) =
cktc−1

1+ tc t > 0. (2)
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respectively. Figure 1 represents the PDFs of BT XII distribution for various quantities of c
and k.
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Figure 1: Probability density function for different values of c and k.

This family of distributions, especially types III, X, and XII, have been considered and
frequently studied in recent years. Investigations on the BT XII distribution, from point
of view its flexibilities, have been carried out by many authors (Hate (1949), Burr (1973),
Rodriguez (1977) and Singh, Singh and Kumar (2016)). Wingo (1983) has presented the
maximum likelihood methods for fitting of the BT XII model to life test. Wingo (1993)
also extended his work and obtained the estimating parameters of this distribution for the
progressively censored scheme in life test data. See also Wu and Yu (2005), Xiuchun,
Yimin, Jieqiong and Jian (2007), Soliman (2005), Moore and Papadopoulos (2000), Mousa,
and Jaheen (2002), for a nice account of it.

The above inference methods, to estimate the parameters of the BT XII distribution, are
limited to crisp data. But a matter of concern for the statisticians has been the exact measure-
ment of continuous real variables. For this, numerous methods are considered to measure
continuous variables precisely, yet the problem of precise measurement is unresolved, and
the numbers solely are approximated.

So, there are always situations that data sometimes cannot be measured and recorded
precisely due to machine errors, human error, or unexpected situations and it always re-
mained a problem for the researchers. Note that the problem here is different from censor-
ing and our interest is not the imprecision arising from inspection times, but it is the result
of random experiment reported from the observer and its limited perception or recollection
of the precise numerical value.

Here, we mention a few examples for fuzzy data. The measurement of the depth of
a river because of its water level fluctuation is an imprecise quantity. It may be said that
its depth is approximately 40 meters. It cannot be measured precisely at blood pressure,
differentiation between a high or low blood pressure. The measurement of temperature is
fuzziness. High or low temperature is imprecise quantity due to lack of differentiated be-
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tween high and low temperature. The effective or ineffective teacher is also one example
of fuzziness. Now, we present one case for fuzzy lifetime data as follows. The lifetime
of some shafts may be stated as vague values such as: “about 1000 hours",“approximately
1400 hours", “almost between 1000 and 1200 hours", “essentially less than 1200 hours" and
so on. Hence, we can conclude that there are always two types of uncertainty in measure-
ments: variation among the observations and imprecision of individual observations ( see
Viertl (2011) ).

The conventional statistical analysis is only related to variation among the observations
and does not consider the vagueness of individual observations. Ignoring this imprecision
may be the reason why we lose some information and get false results. The vagueness of
such data can be characterized using fuzzy sets that were first introduced by Zadeh (1965).
Realizing the importance of fuzziness in recent years, several authors get deep concentra-
tion on the fuzzy sets to estimation theory; but still, in most of the publications fuzziness is
ignored. Gertner and Zhu (1996) considered Bayesian approximation in the forest studies
when samples or prior knowledges are fuzzy. Wu (2004) obtained the Bayesian estimates on
lifetime data for fuzzy environments. Gil, López-Diaz and Ralescu (2006) indicated a back-
ward analysis on interpretation, modelling, and impact of the meaning of the fuzzy random
variable. Huang, Zuo and Sun (2006) proposed a new method to determine the membership
function of the estimates of the parameters and the reliability function of multiparameter
lifetime distributions. Coppi, Gilb and Kiersc (2006) presented some applications of fuzzy
techniques in statistical analysis. Viertl (2006) discussed a generalization of classical statis-
tical inference methods for univariate fuzzy numbers. Akbari and Rezaei (2007) proposed
a new method for uniformly minimum variance unbiased fuzzy point estimation. Zarei,
Amini, Taheri and Rezaei (2012) considered the Bayesian estimation of failure rate and the
mean time to failure based on vague set theory in the case of complete and censored data
sets. Pak, Parham and Saraj (2013, 2014) carried out a series of studies to develop the infer-
ential procedures for the lifetime distributions based on vague information and Shafiq and
Atif (2015) obtained the survival models that deal with imprecise lifetime measurements.
Very recently, Pak (2016) has investigated some inferences for the Lindley distribution based
on fuzzy data.

To our knowledge, there exist no interpretation on estimating the parameters of BT XII
distribution from fuzzy data. Since the classical statistical estimation procedures are not
suitable for the fuzzy sets; we have to extend the conventional methods to estimate the
parameters of BT XII distribution in the new situations. Therefore our main object is to
develop the inferential procedures for BT XII parameters when the available data are fuzzy
numbers.

The rest of the paper is set up as follows. In Section 2, we consider a review on the
original understandings and basic definition of fuzzy set theory. A generalized likelihood
function based on fuzzy data is introduced in Section 3. We also present the common
method of maximum likelihood for estimating the parameters c and k by taking advantage of
the Newton-Raphson (NR) and Expectation Maximization (EM) algorithms in this section.
In Section 4, we carry out the estimating parameters of c and k using the moment method.
In Section 5, we apply a Bayesian approach for estimating of the unknown parameters
using the approximation forms of Tirney and Kadane (1986) and Markov Chain Monte
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Carlo (MCMC) technique. Extensive numerical experiments are performed to compare the
accuracy of the various proposed methods in Section 6. Finally, Section 7 concludes this
research.

2. Preliminary concepts of fuzzy sets theory

Let us first review the fundamental notation and basic definitions of fuzzy set theory
used in the paper. In the following, we explaine some special concepts of fuzzy sets theory
from Viertl, (2011) and Zadeh (1965, 1968).

Notice an experiment determined by a probability space X = (X ,BX ,Pθ ), where a mea-
surable space is as (X ,BX ) and Pθ belongs to a certain family of probability measures
{Pθ , θ ∈ Θ} on (X ,BX ). Consider that the observer cannot distinguish or transmit with ex-
actness the outcome in the performance of X , but that rather the available observation may
be described in terms of fuzzy information, which is defined as follows:
Definition 1 A fuzzy event x̃ on X , determined by a Borel measurable membership function
µx̃(x) from X to [0,1], where µx̃(x) represents the “grade of membership" of x to x̃, is called
fuzzy information associated with the experiment X .
The set consisting of all observable events from the experiment X determines a fuzzy infor-
mation system associated with it, which is defined as follows.
Definition 2 (see Tanaka, Okuda and Asai (1979)). A fuzzy information system (f.i.s.) X̃

associated with the experiment X is a fuzzy partition {x̃1, ..., x̃k}, i.e., a set of fuzzy events
on X satisfying the orthogonality condition ∑

k
i=1 µx̃i(x) = 1 for all x ∈ X .

On the other hand, according to Zadeh (1968) given the experiment X = (X ,BX ,Pθ ),
θ ∈ Θ, and a f.i.s. X̃ associated with it, each probability measure Pθ on (X ,BX ) induces a
probability measure on X̃ defined as follows:
Definition 3 The probability distribution on X̃ induced by Pθ is the mapping P from X̃ to
[0,1] such that

P(x̃) =
∫

X
µx̃(x)dPθ (x), x̃ ∈ X̃ . (3)

In particular, the conditional density of a continuous random variable Y with PDF g(y)
given the fuzzy event Ã can be defined as

g(y|Ã) = µÃ(y)g(y)∫
µÃ(u)g(u)du

. (4)

Definition 4 (see Shafiq and Viertl (2014)): A subset x̃ of the set of real numbers (denoted by
R) is named fuzzy number and is characterized by the so-called membership function µx̃(.).
A fuzzy number must fulfill µx̃ : R−→ [0,1] is Borel-measurable; ∃x0 ∈ R : µx̃(x0) = 1;
and the so-called λ−cuts (0 < λ ≤ 1), defined as Bλ (x̃) = {x ∈ R : µx̃(x) ≥ λ}, are all
closed interval, i.e., Bλ (x̃) = [aλ ,bλ ].

The conventional membership functions for analysing of fuzzy lifetime data are called as
triangular and trapezoidal fuzzy numbers. A triangular fuzzy number is described as
x̃ = (ν ,ω,δ ) and the trapezoidal fuzzy number can also be characterized as x̃ = (δ ,ν ,ω,η)
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with the corresponding membership functions

µx̃(x) =


x−ν

ω−ν
ν ≤ x ≤ ω,

δ−x
δ−ω

ω ≤ x ≤ δ ,

0 otherwise.
, µx̃(x) =


x−δ

ν−δ
δ ≤ x ≤ ν ,

1 ν ≤ x ≤ ω,
η−x
η−ω

ω ≤ x ≤ η ,

0 otherwise.

respectively. For a detailed study on the fuzzy sets, membership functions and triangular
and trapezoidal fuzzy numbers one can refer to Singpurwalla and Booker (2004) and Pak,
Parham and Saraj (2013).

3. Maximum likelihood estimation

Let X1, ...,Xn be a random sample of size n from the BT XII distribution with PDF
given by (1). Let X = (X1, ...,Xn) denotes the corresponding random vector. If a realization
x = (x1, ...,xn) of X is known exactly, we can obtain the complete data likelihood function
as

L(c,k;x) = (kc)n
n

∏
i=1

xc−1
i

(1+ xc
i )

k+1 (5)

Now, consider the problem where the results of an experimental performance are not
recorded or measured precisely, but that rather the available data are identified by means
of fuzzy observation x̃ = (x̃1, ..., x̃n) with the Borel measurable membership function µx̃(x).
In practice, the grade of membership µx̃(x) is often regarded as a kind of probability with
which the observer gets the information x̃ when he really has obtained the exact outcome x .
Once x̃ is given, and assuming the joint membership function µx̃(x) to be decomposable as
µx̃(x) = µx̃1(x1)× ...×µx̃n(xn), its probability can be computed based on Zadeh’s definition
(see Zadeh (1968)) of the probability of a fuzzy event. By using the expression (3), the
observed-data likelihood function based on the fuzzy sample x̃ can then be obtained as

Lo(c,k; x̃) = P(x̃;c,k) =
∫

f (x;c,k)µx̃(x)dx. (6)

Since the data vector x is a realization of an independent identically distributed (i.i.d.)
random vector X, the likelihood function (6) can be written as:

Lo∗(c,k; x̃) = (kc)n
n

∏
i=1

∫ xc−1

(1+ xc)k+1 µx̃i(x)dx (7)

Then, the observed data log-likelihood function is as follows:

L∗∗(c,k, x̃) = n ln(kc)+
n

∑
i=1

ln
(∫ xc−1

(1+ xc)k+1 µx̃i(x)dx
)
. (8)

The maximum likelihood estimate (MLE) of parameters c and k can be obtained by max-
imizing the log-likelihood L∗∗(c,k, x̃). Equating the partial derivatives of the log-likelihood
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(8) with respect to c and k to zero, the resulting two equations are:

∂

∂k
L∗∗(c,k, x̃) =

n
k
−

n

∑
i=1

∫
xc−1(1+ xc)−k−1 ln(1+ xc)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx
= 0 (9)

and

∂

∂c
L∗∗(c,k, x̃) =

n
c
+

n

∑
i=1

∫
xc−1(1+ xc)−k−1(1− (k+1)(1+ xc)−1xc) ln(x)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx
= 0.

(10)
There is no closed form solution for the likelihood equation, therefore an iterative nu-

merical search is used to obtain the MLEs. In next section the Newton-Raphson method
and EM algorithm are used to obtain the MLE of the c and k parameters.

3.1. Newton-Raphson Algorithm

In this method, the solution of the likelihood equations is obtained through an iterative
procedure. Let θ = (k,c)T be the parameter vector. Then, at (h+ 1)th step of iteration
process, the updated parameter is computed as

θ
(h+1) = θ

(h)−
[

∂ 2L∗∗(θ ; x̃)
∂θ∂θ T |

θ=θ (h)

]−1 [
∂L∗∗(θ ; x̃)

∂θ
|
θ=θ (h)

]
(11)

in which

∂L∗∗(θ ; x̃)
∂θ

=

(
∂L∗∗(c,k;x̃)

∂c
∂L∗∗(c,k;x̃)

∂k

)
,

∂ 2L∗∗(θ ; x̃)
∂θ∂θ T =

(
∂L∗∗(c,k;x̃)

∂c2
∂L∗∗(c,k;x̃)

∂c∂k
∂L∗∗(c,k;x̃)

∂k∂c
∂L∗∗(c,k;x̃)

∂k2

)
.

For proceeding with the NR method, we need the second-order derivatives of the log-
likelihood with respect to the parameters that are obtained as follows.

∂ 2

∂c2 L∗∗(c,k, x̃) = −n
c2 (12)

+∑
n
i=1

{∫ xc−1(1+xc)−k−1mdx−
∫
(k+1)(1+xc)−k−2x2c−1mdx}B
B2

+∑
n
i=1

{∫ (k+1)(1+xc)−k−3x2c−1 ln2 xµx̃i (x)dx−
∫

x2c−1(k+1)(1+xc)−k−2 ln2 xµx̃i (x)dx}B
B2

−∑
n
i=1

{∫ xc−1(1+xc)−k−1 lnxµx̃i (x)dx−
∫
(k+1)(1+xc)−k−2x2c−1 lnxµx̃i (x)dx}A
B2 ,

∂ 2

∂k2 L∗∗(c,k, x̃) = −n
k2 (13)

+∑
n
i=1

(∫
xc−1(1+xc)−k−1 ln2(1+xc)µx̃i(x)

dx
)

B

B2 −∑
n
i=1

(∫
xc−1(1+xc)−k−1 ln(1+xc)µx̃i(x)

dx
)2

B2 ,

∂ 2

∂c∂k L∗∗(c,k, x̃) = (14)

∑
n
i=1

(−
∫

xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(1+xc) lnxµx̃i (x)dx−
∫
(1+xc)−k−2x2c−1 lnxµx̃i (x)dx)B

B2

+∑
n
i=1

(
∫

xc−1 ln(1+xc)(1+xc)−k−1µx̃i (x)dx)
(∫

xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(x)µx̃i(x)
dx
)

B2 ,
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in which, m=(1−(k+1)(1+xc)−1xc) ln2(x)µx̃i(x), A=
∫

xc−1(1+xc)−k−1(1−(k+1)(1+
xc)−1xc) ln(x)µx̃i(x)dx, B=

∫
xc−1(1+xc)−k−1µx̃i(x)dx. The iteration process continues until

convergence, i.e., until ∥θ (h+1)−θ (h)∥< ε for some pre-fixed ε > 0.
Note that the second-order derivatives of the log-likelihood are needed at every iteration

in this method. The calculation of the derivatives based on fuzzy data can be some tedious
in most of the time. To solve this problem, an EM algorithm will be present in the following
section.

3.2. EM Algorithm

The EM algorithm is a convenient method for incomplete data problems. Since the
observed fuzzy data x̃ can be considered an incomplete data vector x, therefore an EM
algorithm is used to obtain the MLE of the unknown parameters c and k, (see Denoeux
(2011)).
From the Eq. (5), the log-likelihood function for the complete data vector x is given by,

lnL(c,k,x) = n lnk+n lnc+(c−1)
n

∑
i=1

lnxi − (k+1)
n

∑
i=1

ln(1+ xc
i ) (15)

Taking the derivative with respect to c and k, respectively, on (15), the following likeli-
hood equations are obtained:

n
c
= (k+1)

n

∑
i=1

xc
i lnxi

1+ xc
i
−

n

∑
i=1

lnxi,
n
k
=

n

∑
i=1

ln(1+ xc
i ). (16)

So, the EM algorithm is given by the following iterative process:

• Given starting values of c and k say c(0) and k(0) and set h = 0. In the (h+ 1)-th
iteration, the E-step requires to compute the following conditional expectations using
the expression (4):

E1i = Ec(h),k(h)(lnX |x̃i) =

∫
xc(h)−1(lnx)(1+ xc(h))−k(h)−1µx̃i(x)dx∫

xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx
(17)

E2i = Ec(h),k(h)(
Xc lnX
1+Xc |x̃i) =

∫
x2c(h)−1(lnx)(1+ xc(h))−k(h)−2µx̃i(x)dx∫

xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx
(18)

E3i = Ec(h),k(h)(ln(1+Xc)|x̃i) =

∫
xc(h)−1(ln(1+ xc(h))(1+ xc(h))−k(h)−1µx̃i(x)dx∫

xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx
.

(19)
The likelihood equations (16) are replaced by

n
c
= (k+1)

n

∑
i=1

E2i −
n

∑
i=1

E1i,
n
k
=

n

∑
i=1

E3i. (20)

The M-step requires to solve the Eqs. in (20), and obtain the next values, c(h+1) and



132 Iman Makhdoom, Abbas Pak: On Bayesian inference of reliability parameter...

k(h+1), of c and k, respectively, as follows:

c(h+1) =
n

(k(h+1)+1)∑
n
i=1 E2i −∑

n
i=1 E1i

, k(h+1) =
n

∑
n
i=1 E3i

. (21)

• Checking convergence, if the convergence occurs then the current c(h+1) and k(h+1)

are the maximum likelihood estimates of c and k using the EM algorithm; otherwise,
set h = h+1 and go to previous step.

The maximum likelihood estimate of (c,k) by applying the EM algorithm is thereafter
refereed to as “(ĉEM, k̂EM)” in this article.

4. Method of moment

The rth moment of the BT XII distribution (see Rodriguez (1977)) is given by

E(X r) = kB
( r

c
+1,k− r

c

)
=

Γ( r
c +1)Γ(k− r

c )

Γ(k)
(22)

in which, B(.) and Γ(.) are the beta and the complete gamma functions, respectively.
By equating the first and the second sample moments to the corresponding population

moments, to obtain the estimates of moments approach, the following equations are used:

Γ( 1
c +1)Γ(k− 1

c )

Γ(k)
=

1
n

n

∑
i=1

Ec,k(X |x̃i),
Γ( 2

c +1)Γ(k− 2
c )

Γ(k)
=

1
n

n

∑
i=1

Ec,k(X2|x̃i). (23)

Since the closed form of the solutions to Eqs. in (23) could not be obtained, to achieve
the parameter estimates we use the following iterative numerical process. Let the initial
estimates of c and k, say c(0) and k(0) with h = 0. In the (h + 1) th iteration, we first
compute

Ec(h),k(h)(X
r|x̃i) =

∫
xc(h)+r−1(1+ xc(h))−k(h)−1µx̃i(x)dx∫
xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx

, r = 1,2.

We have to solve the system of two equations and two unknowns in the Eqs. (23).
These equations are the complex nonlinear equations. Consequently, we may need to use
an iterative numerical method to handle the finding of the roots c and k of equations in (23).

5. Bayesian approach

A robust and valid alternative to traditional statistical perspectives has been called Bayesian
inference in recent decades. It received frequent attention for statistical inference. In this
section the Bayesian estimates under the assumptions that c and k have independent gamma
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priors are obtained with the pdfs respectively,

π1(c) =
ba1

1
Γ(a1)

ca1−1 exp(−cb1), c > 0 (24)

and

π2(k) =
ba2

2
Γ(a2)

ka2−1 exp(−kb2), k > 0 (25)

with the parameters c ∼ Gamma(a1,b1) and k ∼ Gamma(a2,b2) (see Singh, Singh and Ku-
mar (2016)). Due to the likelihood function in Eq. (7) and the prior distributions mentioned
in (24) and (25) the complete form of the posterior function is as follows:

π(θ |x̃) ∝ L∗∗(θ , x̃)(ca1−1 exp(−cb1))(ka2−1 exp(−kb2)). (26)

Hence, the joint posterior density function of c and k given the data can be written as
follows:

π(c,k|x̃) = π1(c)π2(k)Lo∗(c,k; x̃)∫
∞

0
∫

∞

0 π1(c)π2(k)Lo∗(c,k; x̃)dcdk
. (27)

Therefore, the Bayes estimate of any function of c and k, say g(c,k), under a squared
error loss function is

E(g(c,k)|x̃) =
∫

∞

0
∫

∞

0 g(c,k)π1(c)π2(k)Lo∗(c,k; x̃)dcdk∫
∞

0
∫

∞

0 π1(c)π2(k)Lo∗(c,k; x̃)dcdk
. (28)

But, we cannot evaluate these estimates explicitly. Hence, we suggest Tierney and
Kadane’s procedure and MCMC method to approximate them.

5.1. Tierney and Kadane’s method

The Eq. (28) can be re-written as follows:

E(g(c,k)|x̃) =
∫

∞

0
∫

∞

0 g(c,k)eQ(c,k)dcdk∫
∞

0
∫

∞

0 eQ(c,k)dcdk
(29)

in which, Q(c,k) = ln[π1(c)π2(k)]+ lnLo∗(c,k; x̃)≡ ρ(c,k)+L∗∗(c,k). Note that Eq. (29)
cannot be obtained analytically. Using this approximation can be useful to solve this issue.

Setting H(c,k) = Q(c,k)
n and H∗(c,k) = [lng(c,k)+Q(c,k)]

n , the expression in (29) can be
reexpressed as

E(g(c,k)|x̃) =
∫

∞

0
∫

∞

0 enH∗(c,k)dcdk∫
∞

0
∫

∞

0 enH(c,k)dcdk
. (30)

Following the Tierney & Kadane method, which is based on Laplace’s method ( Tierney
and Kadane (1986)), Eq. (30) can be computed as follows:

ĝBayes(c,k) =
[

det ∑
∗

det ∑

] 1
2

exp
{

n
[
H∗(c∗,k

∗
)−H(c,k)

]}
(31)
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in which(c∗,k
∗
) and (c,k) maximize H∗(c,k) and H(c,k), respectively. Also, ∑

∗ and ∑ are
the negatives of the inverse Hessians of H∗(c,k) and H(c,k) at (c∗,k

∗
) and (c,k), respec-

tively.

For our case, we have

H(c,k) =
1
n
{K∗+(a1 −1+n) lnc+(a2 −1+n) lnk−b1c−b2k} (32)

+
1
n

{
n

∑
i=1

ln
(∫ xc−1

(1+ xc)k+1 µx̃i(x)dx
)}

in which K∗ is a constant. So, we can obtain (c,k) by solving the following two equations:

∂

∂c
H(c,k) =

1
n

{
a1 −1+n

c
−b1

}
(33)

+
1
n

{
n

∑
i=1

∫
xc−1(1+ xc)−k−1(1− (k+1)(1+ xc)−1xc) ln(x)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx

}
∂

∂k
H(c,k) =

1
n

{
a2 −1+n

k
−b2

}
(34)

− 1
n

{
n

∑
i=1

∫
xc−1(1+ xc)−k−1 ln(1+ xc)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx

}
.

The determinant of the negative of the inverse Hessian of H(c,k) at (c,k) is as follows:

det ∑ =
(
H11H22 −H2

12
)−1

, (35)

in which,

H11 =
1
n
−(a1−1+n)

c2 (36)

+ 1
n ∑

n
i=1

{∫
xc−1(1+xc)−k−1mdx−

∫
(k+1)(1+xc)−k−2x2c−1mdx

}
B

B2

+ 1
n ∑

n
i=1

{∫
(k+1)(1+xc)−k−3x2c−1 ln2 xµx̃i (x)dx−

∫
x2c−1(k+1)(1+xc)−k−2 ln2 xµx̃i (x)dx

}
B

B2

− 1
n ∑

n
i=1

{∫
xc−1(1+xc)−k−1 lnxµx̃i (x)dx−

∫
(k+1)(1+xc)−k−2x2c−1 lnxµx̃i (x)dx

}
A

B2 ,

H22 =
1
n
−(a2−1+n)

k2 (37)

− 1
n ∑

n
i=1

(∫
xc−1(1+xc)−k−1 ln2(1+xc)µx̃i(x)

dx
)

B

B2 + 1
n ∑

n
i=1

(∫
xc−1(1+xc)−k−1 ln(1+xc)µx̃i(x)

dx
)2

B2 ,

H12 = (38)

− 1
n ∑

n
i=1

(∫
xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(1+xc) lnxµx̃i (x)dx+

∫
(1+xc)−k−2x2c−1 lnxµx̃i (x)dx

)
B

B2

+ 1
n ∑

n
i=1

(∫
xc−1 ln(1+xc)(1+xc)−k−1µx̃i (x)dx

)(∫
xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(x)µx̃i(x)

dx
)

B2 ,
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in which m=(1−(k+1)(1+xc)−1xc) ln2(x)µx̃i(x), A=
∫

xc−1(1+xc)−k−1(1−(k+1)(1+
xc)−1xc) ln(x)µx̃i(x)dx, B=

∫
xc−1(1+xc)−k−1µx̃i(x)dx. Now, following the same arguments

with g(c,k) = c and k, respectively, in H∗(c,k), ĉBayes and k̂Bayes in Eq. (31) can then be
obtained in a straightforward manner.

5.2. MCMC Method

MCMC methods use the computer simulation procedure to get a Markov sequence with
ergodic properties in such a way that they have a limiting distribution. We know if the loss
function is squared error, then the Bayes estimates of the parameters θ = (c,k) are their
respective posteriors mean. But due to the complexity of the extraction of samples from the
posterior function, we have to apply the well-known “Gibbs sampling ” technique. Gibbs
sampling defines a broad class of MCMC methods that is used in Bayesian analysis. It
is also a special example of a general approach referred to as Metropolis-Hasting (MH)
algorithm (Hanagl and Ahmadi (2009)).Thus, a multivariate version of MH algorithm is
Gibbs sampling. In the following, the Gibbs sampler method is appropriated to compute the
Bayes estimates numerically.

The posterior PDFs of c and k are given by,

π
∗
1 (c|k, x̃) ∝ ca1−1+n exp(−cb1)

n

∏
i=1

∫ xc−1

(1+ xc)k+1 µx̃i(x)dx (39)

and

π
∗
2 (k|c, x̃) ∝ ka2−1+n exp(−kb2)

n

∏
i=1

∫ xc−1

(1+ xc)k+1 µx̃i(x)dx (40)

Note that the posterior PDFs of c and k in (39) and (40) respectively, are unknown.
Hence, we use the MH method to generate a random sample from these distributions. We
use the normal distribution as the proposal distribution for the method. So, the Gibbs sam-
pling algorithm is as follows:

Step 1: Start with an initial value (c(0),k(0)) and fix t = 1.

Step 2: Generate c(0) from (39) by using of the MH with the N(c(t−1),1) proposal distribu-
tion and generate k(0) from (40) by using of the MH with the N(k(t−1),1) proposal
distribution. Fix t = t +1.

Step 3: Repeat Step 2, T times.

For running the algorithm above, we need to perform the MH algorithm in Step 2. These
algorithms are given by,

I : Fix t=1.

II : Let v1 = c(t−1)
i and v2 = k(t−1)

i . Generate w1 and w2 from the proposal distributions

q∼N(c(t−1)
i ,1) and q∼N(k(t−1)

i ,1), respectively. Let p∗1(v1,w1)=min
{

1, π∗
1 (w1|x̃)q(v1)

π∗
1 (v1|x̃)q(w1)

}
and p2(v2,w2) = min

{
1, π∗

2 (w2|x̃)q(v2)

π∗
2 (v2|x̃)q(w2)

}
. Generate u from Uni f orm(0,1). If u <
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p1(v1,w1) we accept w1 and else accept v1 and also if u < p2(v2,w2) we accept w2

and else accept v2. Fix t = t +1.

III : Repeat Step II , T times.

So, the retained sample values, say c1, . . . ,cT−M1 , and k1, . . . ,kT−M2 are random samples
from the posterior densities in the equations of (39) and (40 ), respectively. Now, by using
Monte Carlo integration technique (Rodriguez (1977)), the Bayes estimates of c and k under
squared error loss function are given by,

ĉBayes =
1

T −M1

T

∑
i=M1+1

c(i)i , k̂Bayes =
1

T −M2

T

∑
i=M2+1

k(i)i ,

where M1 and M2 are the burn-in periods in generating c(i)i and k(i)i ,(i = 1, . . . ,n) respec-
tively. We can also conduct the highest posterior density (HPD) confidence interval of
parameter θ = (c,k). First order c(i)1 , . . . ,c(i)M1

as c(i)
(1) < .. . < c(i)

(M1)
, then construct all the

(100(1−η)%) confidence intervals of c are given by(
c(i)
(1),c

(i)
([M1(1−η)])

)
, . . . ,

(
c(i)
([M1η ])

,c(i)
([M1])

)
, (41)

where [M] is symbolized as the largest integer less than or equal to M. So, the HPD con-
fidence interval of c is the shortest length interval. Similarly, we can make a 100(1−η)%
HPD confidence interval of k as follows:(

k(i)
(1),k

(i)
([M2(1−η)])

)
, . . . ,

(
k(i)
([M2η ])

,k(i)
([M2])

)
. (42)
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Figure 2: Fuzzy information system used to encode the simulated data.

6. Numerical Study

In the present section, some of the simulation studies are done to compare the per-
formance of Bayesian estimation methods. All numerical computations are made using
MAT LAB software.
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6.1. Monte Carlo simulations

In this section, some numerical results via Monte Carlo simulations are used to see
how the different methods behave for various sample sizes. We evaluate the estimate of
unknown parameters c and k using the methods provided in the preceding sections. For
this reason the i.i.d. random samples, say x of the BT XII distribution for parameter values,
namely, (c,k) = (1,1),(2,3),(3,1) and various choices of n = 10,20,30,40,50,70,100 are
generated. Each realization of x was produced using the method proposed by Pak, Parham
and Saraj (2014). By employing fuzzy information system (f.i.s.) {x̃1, . . . , x̃11} shown in
Fig. 2, the corresponding membership functions are given by

µx̃1(x) =


1 x ≤ 0.08,
0.3−x
0.22 0.08 ≤ x ≤ 0.3,

0 otherwise,
µx̃2(x) =


x−0.08

0.22 0.08 ≤ x ≤ 0.3,
0.4−x

0.1 0.3 ≤ x ≤ 0.4,
0 otherwise,

µx̃3(x) =


x−0.3

0.1 0.3 ≤ x ≤ 0.4,
0.6−x

0.2 0.4 ≤ x ≤ 0.6,
0 otherwise,

µx̃4(x) =


x−0.4

0.2 0.4 ≤ x ≤ 0.6,
0.8−x

0.2 0.6 ≤ x ≤ 0.8,
0 otherwise,

µx̃5(x) =


x−0.6

0.2 0.6 ≤ x ≤ 0.8,
1−x
0.2 0.8 ≤ x ≤ 1,

0 otherwise,
µx̃6(x) =


x−0.8

0.2 0.8 ≤ x ≤ 1,
1.2−x

0.2 1 ≤ x ≤ 1.2,
0 otherwise,

µx̃7(x) =


x−1
0.2 1 ≤ x ≤ 1.2,
1.4−x

0.2 1.2 ≤ x ≤ 1.4,
0 otherwise,

µx̃8(x) =


x−1.2

0.2 1.2 ≤ x ≤ 1.4,
1.7−x

0.3 1.4 ≤ x ≤ 1.7,
0 otherwise,

µx̃9(x) =


x−1.4

0.3 1.4 ≤ x ≤ 1.7,
2−x
0.3 1.7 ≤ x ≤ 2,

0 otherwise,
µx̃10(x) =


x−1.7

0.3 1.7 ≤ x ≤ 2,
2.5−x

0.5 2 ≤ x ≤ 2.5,
0 otherwise,

µx̃11(x) =


x−2
0.5 2 ≤ x ≤ 2.5

1 x ≥ 2.5,
0 otherwise,

6.2. Implementation

Since the MCMC method will stabilize asymptotically, it needs to examine the reliabil-
ity of the chain outcome. Burn-in is a significant problem that is necessary to be considered.
It means that discarding the number of iterations is essential. Some diagnostic tests that in-
dicate the convergence problem can be found in the literature. One of them is trace plot in
which the history of the chain is exhibited (see Fig. 3). Plots in Fig. 3, after discarding
the initial 3000 iterates, show that the sequences have a stationary pattern. The estimates of
the parameters c, k, and R for the fuzzy sample were obtained using the Bayesian approach.
For simulation purpose, we have assumed that c, k have gamma priors, including the nonin-
formative prior (Prior I), i.e. a1 = b1 = a2 = b2 = 0, less informative prior (Prior II), i.e.



138 Iman Makhdoom, Abbas Pak: On Bayesian inference of reliability parameter...

a1 = b1 = a2 = b2 = 0.01, and most informative prior (Prior III), i.e. a1 = b1 = a2 = b2 = 4.
We replicate the process 15000 times and use 12000 iterates after discarding the initial 3000
iterates as Burn-in to make the inference. We have also reported the average values (AV)
and mean squared errors (MSE) of the estimates through Tables 1-3.

Table 1: The average values (AV) and the mean squared errors (MSE) of the estimate of
parameters θ = (c,k) = (3,2), and R = 0.7901.

n priorI
AV(c) MSE(c) AV(k) MSE(k) AV(R) MSE(R)

10 3.6086 0.3704 3.5707 2.4673 0.7417 0.0031
20 3.3724 0.1387 2.4171 0.3905 0.7909 0.0023
30 3.0210 0.0864 2.6249 0.2004 0.7337 0.0017
40 3.0133 0.0166 2.4477 0.1739 0.7484 0.0014
50 2.7060 0.0102 1.9781 0.0007 0.7518 0.0004
70 2.8709 0.0004 2.0273 0.0004 0.7692 0.0002
100 2.8987 0.0001 2.0015 0.0000 0.7759 0.0001
n priorII
10 3.6193 0.3836 3.5889 2.5247 0.7427 0.0032
20 3.3789 0.1435 2.4162 0.3839 0.7920 0.0022
30 3.0121 0.0836 2.6196 0.1732 0.7331 0.0014
40 2.7108 0.0836 1.9768 0.0009 0.7526 0.0014
50 2.7108 0.0159 1.9768 0.0005 0.7526 0.0004
70 2.8737 0.0114 2.0306 0.0005 0.7693 0.0002
100 2.8930 0.0001 2.0027 0.0001 0.7750 0.0001
n priorIII
10 2.3191 0.4635 1.8712 0.0270 0.7080 0.0067
20 2.6611 0.2570 1.8932 0.0169 0.7526 0.0057
30 2.5557 0.1973 2.1302 0.0165 0.7140 0.0034
40 2.6613 0.1147 2.1151 0.0132 0.7310 0.0026
50 2.4930 0.1146 1.8355 0.0113 0.7389 0.0014
70 2.6819 0.1011 1.9200 0.0063 0.7557 0.0011
100 2.7654 0.0550 1.9227 0.0059 0.7669 0.0005

7. Conclusion

In this paper, we have examined the classical and Bayesian inference procedures for
the BT XII distribution parameters, as well as the corresponding reliability parameter when
the available data are described regarding fuzzy numbers. In this context, we considered
three priors as noninformative prior, i.e. a1 = b1 = a2 = b2 = 0, less informative prior,
i.e. a1 = b1 = a2 = b2 = 0.01, and informative prior, i.e. a1 = b1 = a2 = b2 = 4. The
general results can be made from Tables 1-3 as follows. Considering the criterion MSE for
all methods, with increasing n, the estimates are improved. The performance of the Bayes
estimates with assumptions of noninformative prior and less informative prior regarding
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AVs and MSEs, are almost identical. So, we prefer the prior XII since it will make the priors
proper. The simulation study for all methods shows that the estimate of R is satisfactory,
even for samples with sizes small and moderate. Using the NR or EM algorithms for the
computation of MLEs gives similar estimation results. Because these two procedures have
different features in the complexity of the iterative numerical search, we let users choose
which to be used based on their preferences. The Bayes estimates obtained by Tierney and
Kadane’s approximation and the MCMC method behave in a very similar manner. However,
from the computational point of view, Tierney and Kadane’s procedure is easier to obtain.
Note that these estimation results cannot be attributed to the assumed fuzzy numbers in
Fig. 2. We have implemented the estimation procedures for different fuzzy numbers (not
reported here) and found that the rationale for such fuzzy numbers, which are characterized
by the membership functions µx̃(.) will not influence the estimate results.

Table 2: The AV and MSE of the estimate of parameters θ = (c,k) = (2,3), and R= 0.5120.

n priorI
AV(c) MSE(c) AV(k) MSE(k) AV(R) MSE(R)

10 2.0763 0.0333 6.2226 1.3855 0.3228 0.0357
20 2.0096 0.0058 3.9389 1.1535 0.4333 0.0126
30 1.9341 0.0043 4.0740 0.8816 0.3995 0.0067
40 2.0035 0.0029 3.8693 0.7557 0.4298 0.0061
50 1.8174 0.0002 3.0318 0.0300 0.4725 0.0015
70 1.9459 0.0002 3.1732 0.0010 0.4832 0.0008
100 1.9836 0.0001 3.0189 0.0003 0.5076 0.0001
n priorII
10 2.0566 0.0309 6.0537 9.3255 0.3306 0.0328
20 2.0021 0.0049 3.9133 1.1654 0.4336 0.0129
30 1.9297 0.0032 4.0795 0.8342 0.3982 0.0068
40 1.9996 0.0031 3.8646 0.7476 0.4292 0.0061
50 1.8241 0.0001 3.0440 0.0260 0.4727 0.0015
70 1.9438 0.0002 3.1613 0.0019 0.4841 0.0007
100 1.9867 0.0001 3.0146 0.0002 0.5088 0.0001
n priorIII
10 1.4479 0.3048 2.1876 0.6598 0.5174 0.0017
20 1.6671 0.1170 2.4551 0.2968 0.5173 0.0010
30 1.6578 0.1108 2.7872 0.1753 0.4702 0.0001
40 1.7714 0.0880 2.8966 0.0610 0.4794 0.0001
50 1.7032 0.0522 2.5812 0.0487 0.5034 0.0001
70 1.8432 0.0245 2.7791 0.0452 0.5069 0.0001
100 1.9136 0.0074 2.7528 0.0106 0.5242 0.0001
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Table 3: The AV and MSE of the estimate of parameters θ = (c,k) = (1,1), and R= 0.6667.

n priorI
AV(c) MSE(c) AV(k) MSE(k) AV(R) MSE(R)

10 1.4393 0.1930 2.0352 1.0717 0.5414 0.0156
20 1.2573 0.1049 1.3105 0.0964 0.6350 0.0053
30 1.1349 0.0873 1.1559 0.0243 0.6497 0.0036
40 1.2375 0.0662 1.1183 0.0140 0.6740 0.0011
50 1.1726 0.0564 0.9733 0.0110 0.6999 0.0009
70 1.2954 0.0298 0.9305 0.0048 0.7274 0.0002
100 1.3239 0.0182 0.8951 0.0007 0.7399 0.0001
n priorII
10 1.4468 0.1996 2.0446 1.0913 0.5417 0.0156
20 1.2510 0.1058 1.3056 0.0934 0.6348 0.0052
30 1.1340 0.0891 1.1553 0.0241 0.6497 0.0036
40 1.2430 0.0630 1.1158 0.0134 0.6754 0.0012
50 1.1782 0.0590 0.9689 0.0103 0.7019 0.0010
70 1.2986 0.0317 0.9340 0.0043 0.7269 0.0002
100 1.3254 0.0179 0.8980 0.0009 0.7393 0.0001
n priorIII
10 1.2976 0.0903 1.5289 0.2797 0.5985 0.0046
20 1.2102 0.0886 1.2267 0.0514 0.6454 0.0045
30 1.1188 0.0732 1.1325 0.0175 0.6527 0.0029
40 1.2164 0.0468 1.1010 0.0102 0.6750 0.0009
50 1.1589 0.0441 0.9768 0.0086 0.6969 0.0004
70 1.2705 0.0252 0.9427 0.0032 0.7210 0.0002
100 1.3005 0.0141 0.9071 0.0005 0.7339 0.0001
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Figure 3: Plots of generated c versus iteration of MCMC (Gibss algorithm).
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Estimation of quantiles with the exact bootstrap method 

Joanna Kisielińska1 

Abstract 

A problem with the estimation of quantiles occurs when the sample comes from an unknown 
distribution. The estimation uses the bootstrap method in the version that the literature 
refers to as exact. Three bootstrap estimators were used: two of them based on one order 
statistic, and the third on a linear combination of two order statistics (for an integer). The 
distribution of the exact bootstrap estimator based on a single order statistic is known. It has 
been shown that there is no general form of the distribution of the exact bootstrap estimator 
based on two order statistics. However, it is possible to calculate such a distribution – the 
article presents the algorithm that performs such a task. The bootstrap confidence intervals 
were constructed using the exact percentile method. It has been shown that if the estimator 
is based on a single order statistic, it is known in advance which elements of the primary 
sample are the limits of the confidence intervals, so there is no need to resample. The 
intervals determined by the exact percentile method were compared with those constructed 
using other methods. It has been shown that the information on the direction of the 
asymmetry of the distribution that the sample comes from is worth considering when 
selecting the rank of the order statistic used as an estimator. Attention is paid to the influence 
of the quality of the pseudorandom number generators on the results of the Monte Carlo 
simulation. 
Key words: quantile estimation, confidence intervals for quantile, exact bootstrap method, 
exact percentile method, Monte Carlo method. 

1.  Introduction 

Let X be a continuous random variable with cumulative distribution (CDF) F(x) 
and density function (PDF) f(x). Let p  (0,1) be given and let 𝜉௣ be p-quantile of F, 
such that 𝑝 ൌ 𝐹൫𝜉௣൯, 𝜉௣ ൌ 𝐹ିଵሺ𝑝ሻ, and 𝑓൫𝜉௣൯ (e.g. Bahadur (1966, p. 577), Nagaraja 
and Nagaraja (2020, p. 75)). Bahadur (1966, p. 577), gives the conditions to be satisfied 
by F so that 𝜉௣ be unique. 

The p-quantile is most often defined as the left quantile (e.g. Serfling, 1980, p. 3): 
𝜉௣ ൌ 𝐹ିଵሺ𝑝ሻ ൌ 𝑖𝑛𝑓ሼ𝑥:𝐹ሺ𝑥ሻ ൒ 𝑝ሽ.       (1) 
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Sample quantiles are used to estimate quantiles. For a sample ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ from 
distribution F Serfling (1980, p. 74) defines the sample p-quantile 𝜉௣௡ as p-quantile of 
empirical distribution Fn: 

𝜉௣௡ ൌ 𝐹௡ିଵሺ𝑝ሻ ൌ 𝑖𝑛𝑓ሼ𝑥:𝐹௡ሺ𝑥ሻ ൒ 𝑝ሽ.       (2) 

Sample p-quantiles, used as quantile estimators (i.e. when 𝜉መ௣௡ ൌ 𝜉௣௡), are 
presented using order statistics. Let Xnz denote the zth order statistic, i.e. the smallest 
zth element of the sample of size n, and then (Serfling, 1980, p. 88): 

𝜉መ௣௡ ൌ ቊ
𝑋௡,௡௣,      if 𝑛𝑝 is integer       
𝑋௡,ሾ௡௣ሿାଵ, if 𝑛𝑝 is not integer,       (3) 

where [] denotes the floor function. 

Nagaraja and Nagaraja (2020, p. 75) identify the sample p-quantile with the 
following order statistic: 

𝜉መ௣௡ ൌ 𝑋௡,ሾ௡௣ሿାଵ.          (4) 

Hyndman and Fan (1996, p. 361) give many other definitions of sample quantiles 
based on order statistics. Their general form is: 

𝜉௣௡ ൌ ሺ1 െ 𝛾ሻ𝑋௡௝ ൅ 𝛾𝑋௡,௝ାଵ,       (5) 

where ௝ି௠
௡

൑ 𝑝 ൏
௝ି௠ାଵ

௡
 for some m  R and 0    1. The  parameter is a function of j 

and g, where j = [pn + m] and g = pn + m – j. Formula (5) includes the definitions (3) 
and (4). 

With some assumptions (Serfling, 1980 p. 74), the sample p-quantile 𝜉መ௣௡ defined 
by (2) is strongly consistent for estimation of 𝜉௣.  

It is known that the sample p-quantile is asymptotically normal if f is continuous 
and positive at 𝜉௣ (e.g. Serfling, 1980, p. 77), (Nagaraja and Nagaraja, 2020, p. 77). 
The limit distribution has a mean 𝜉௣ and a variance ௣ሺଵି௣ሻ

௙మ൫క೛൯௡
. The sample quantile vector 

൫𝜉መ௣ଵ, … , 𝜉መ௣௞൯ is also asymptotically normal for 0 ൏ 𝑝ଵ ൏ ⋯ ൏ 𝑝௞ ൏ 1 if f is continuous 
and positive at 𝜉௣ଵ, … , 𝜉௣௞. The parameters of this distribution are a mean vector 

൫𝜉௣ଵ, … , 𝜉௣௞൯ and a covariance matrix with elements: ቆ ௣೔ሺଵି௣ೕሻ

௙ቀక೛೔ቁ௙ቀక೛ೕቁ௡
ቇ (Serfling, 1980 p. 80). 

The consequence of the asymptotic normality of the sample quantile vector is the 
asymptotic normality of any linear combination of these quantiles. 

Serfling (1980, p. 94) based on the Bahadur (1966) article indicates that the order 
statistic 𝑋௡௞೙  (where {kn} is a sequence of positive integers (1  kn  n) such that kn/n 
tends to p sufficiently fast) and the sample p-quantile 𝜉መ௣௡ are roughly equivalent as 
estimates of 𝜉௣. Despite this, in the general case difference 𝑋௡௞೙ െ 𝜉௣ has a limit normal 
distribution not centered at 0 (Serfling, 1980, p. 94). 
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If the sample of size n comes from a continuous distribution with CDF F(x) and 
PDF f(x), then the PDF of the zth order statistics Xnz is (e.g. David and Nagaraja, 2003, 
p. 10); (Evans, Leemis and Drew, 2006, p. 20): 

𝑓௑೙೥ሺ𝑥ሻ ൌ
௡!

ሺ௭ିଵሻ!ሺ௡ି௭ሻ!
 𝑓ሺ𝑥ሻሾ𝐹ሺ𝑥ሻሿ௭ିଵሾ1 െ 𝐹ሺ𝑥ሻሿ௡ି௭     (6) 

This formula is the same as that given by Serfling (1980 p. 85), which specifies PDF 
of the sample p-quantile. 

The practical application of the expression (6) is cumbersome (Serfling, 1980, p. 87). 
First, it requires knowledge of the distribution the sample comes from, and secondly, 
the distribution of order statistics is not usually in the class of known and commonly used 
distributions. Pekasiewicz (2015, p. 23) gives the density functions of the order statistics 
Xnz for selected distributions the sample comes from. Using limit distribution is also 
troublesome due to the necessity of knowing 𝑓൫𝜉௣൯. The bootstrap method proposed by 
Efron in 1979 does not have these disadvantages. It does not require knowledge of the 
distribution a sample comes from. Falk and Kaufmann (1991), Falk and Reiss (1989), 
Bickel and Freedman (1981) and Singh (1981) (among others) studied the convergence 
of the bootstrap estimators of the parameters (also quantiles). They showed that bootstrap 
error converges to 0 with probability one. This indicates the correctness of this approach, 
although one can discuss the order of this convergence. 

In the bootstrap method, empirical distribution Fn is an estimator of the 
distribution F. And therefore, the bootstrap estimator distribution (dependent on the Fn) 
is an estimator of the estimator distribution (dependent on the F). Efron (1979, p. 4) 
proposes three methods of computing the bootstrap estimator distribution. The first is 
a theoretical calculation, the second is the Monte Carlo (MC) approximation, and the 
third is the Taylor series expansion. The MC approximation invloves selecting many 
resamples of size n with replacement from the n-element primary sample. Fisher and 
Hall (1991) pointed out that instead of drawing resamples2 (especially for small 
samples), one can generate all resamples. One can then determine all the realizations of 
the bootstrap estimator. This method was called the exact bootstrap method in order 
to distinguish it from the commonly used MC approximation with resampling. 
It should be noted that the distributions of the bootstrap estimators gained with the 
exact bootstrap method are equivalent to those obtained with the first method proposed 
by Efron. The difference is only in the method of their determination. The exact method 
relies on numerical calculations, Efron method on theoretical calculations. In the 
following considerations, the bootstrap method based on all resamples will be called the 
exact method, no matter how the calculations were made. 

                                                           
2 There are nn resamples in total, but the different resamples are ቀ2𝑛 െ 1

𝑛
ቁ

 
 (Fisher and Hall 1991 p. 160). To 

calculate the number of resamples with the same elements, one should compute the number of its permutations. 
One should permute only the elements on positions with non-repeating elements. 
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Taking into consideration all resamples allows to eliminate errors caused by 
resampling (Hutson and Ernst, 2000, p. 94). Resampling may be interpreted as drawing 
bootstrap samples from their entire population (nn). In the MC approximation, some 
resamples may be omitted, while others used multiple times. Kisielinska (2013, p. 1068) 
presented the comparison of the exact bootstrap method and the bootstrap method 
with resampling for any parameter. 

The bootstrap p-quantile estimators 𝜉መ௣௡∗  are also based on order statistics. The order 
statistics of the bootstrap resample 𝑋௡௭∗  is its zth smallest element. Evans, Leemis, Drew 
(2006, p. 23) give the distribution of such statistic – a case of a finite population, 
sampling with replacement. The distribution thus determined is of course the exact 
bootstrap distribution (formula (16) in section 2). 

The bootstrap method is not the only method for estimating quantiles, which does 
not require to know the distribution the sample comes from. For an ample review of 
distribution-free methods to construct confidence intervals, see Nagaraja and Nagaraja 
(2020). 

Confidence intervals for quantiles can be determined using an asymptotic approach 
based on the sample p-quantile. In simulation experiments, the samples come from 
a known distribution, and therefore the values of 𝜉௣ and 𝑓൫𝜉௣൯ are known. One can 
determine 1-  confidence interval of the sample p-quantile from the limit distribution: 

𝐼௣௡஺௔ ൌ ሾ𝐹஺
ିଵሺ∝ 2⁄ ሻ,𝐹஺

ିଵሺ1 െ ∝ 2⁄ ሻሿ       (7) 

where FA is the normal distribution with mean 𝜉௣ and variance ௣ሺଵି௣ሻ
௙మ൫క೛൯௡

. 

Serfling (1980, p. 130) proposes to use an asymptotic approach based on order 
statistics to determine confidence intervals for quantiles. The confidence interval is as 
follows: 

𝐼௣௡஺௕ ൌ ൣ𝑋௡௞భ೙ ,𝑋௡௞మ೙൧          (8) 

where 𝑘ଵ௡ ൌ 𝑛 ∙ ൬𝑝 െ
௨∝ඥ௣ሺଵି௣ሻ

√௡
൰ , 𝑘ଶ௡ ൌ 𝑛 ∙ ൬𝑝 ൅

௨∝ඥ௣ሺଵି௣ሻ

√௡
൰ , and u is the 100(1-/2)th 

percentile point of standard normal distribution. If n   confidence coefficient of the 
interval 𝐼௣௡஺௕ 1- (Serfling, 1980 p. 104). 

The percentile method enables to construct confidence intervals when using the 
bootstrap approach. The main objections to this method relate to applications in the 
cases of small samples. Many authors note that the percentile method produces 
confidence intervals of first-order accuracy only (e.g Falk and Kaufmann (1991), Efron 
and Tibshirani (1993), Nagaraja and Nagaraja, 2020). For this reason, many proposals 
for better solutions have been created. 

Efron (1987) proposed the BCa method (i.e. bias-corrected and accelerated), which 
is second-order accurate (Efron and Tibshirani, 1993) and has higher coverage 
probability. 
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Nagaraja and Nagaraja (2020) proposed a method of adjacent spacings to construct 
quantiles confidence intervals. The method is easy to apply, yet it requires experimental 
selection of two parameters s and t, and knowledge of the critical values of the statistics 
W(s+t). Critical values of the W(s+t) are given by Nagaraja and Nagaraja (2020, p. 88). 
Parameters s and t determine the rank of order statistics, used to construct the 
confidence interval. Nagaraja and Nagaraja (2020) conducted simulation studies to 
compare quantiles confidence intervals obtained using various distribution free-
methods. They assessed the effectiveness of the methods based on the width of 
confidence intervals and coverage probability. 

The problem presented in the article is in the estimation of quantiles when 
a distribution the sample comes from is not known. The novelty of the approach 
presented in the paper consists in estimating the quantiles with an exact bootstrap 
quantile estimator based on a linear combination of two order statistics. The algorithm 
presented in Section 2 allows for determining its distribution exactly, not only in an 
approximate manner. It is also shown that in the case of quantile estimation, confidence 
intervals are much easier to determine with the exact percentile method than with the 
percentile method with resampling, if the estimator is based on a single order statistics. 
Moreover, it is shown that the information about the direction of asymmetry of the 
distribution the sample comes from can be used to determine the rank of the single 
order statistics used as an estimator. 

All calculations were made in Excel using the VBA language for Application. 

2.  Distributions of quantiles bootstrap estimators 

Let the n-element resample, drawn with replacement from the original sample 
ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ, be marked as ሺ𝑋ଵ∗,𝑋ଶ∗, … ,𝑋௡∗ሻ.  Each variable 𝑋௜∗ has a discrete empirical 
distribution Fn. Efron, 1979 assumed equal probabilities pi =1/n for each element of the 
primary sample xi. Due to a finite measurement accuracy of any values, elements of the 
observed sample can be repeated. The empirical distribution is determined by 
probabilities pi for each xi where ∑ 𝑝௜ ൌ 1௞

௜ୀଵ  and k is the number of distinct elements 
in a primary sample. 

The elements of the resample are the discrete random variables 𝑋௜∗ with PDF fn, 
CDF Fn, and survival function (SF) Sn: 

𝑓௡ሺ𝑥ሻ ൌ 𝑃ሺ𝑋௜
∗ ൌ 𝑥ሻ ൌ ൜

𝑝௝ 𝑥 ൌ 𝑥௝ , 𝑗 ൌ 1, … , 𝑘
0 for others 𝑥 ∈ 𝑅    

,     (9) 

  𝐹௡ሺ𝑥ሻ ൌ 𝑃ሺ𝑋௜
∗ ൑ 𝑥ሻ ൌ ∑ 𝑝௝

௞
௝ିଵ;௫ೕஸ௫ ,         (10) 

  𝑆௡ሺ𝑥ሻ ൌ 𝑃ሺ𝑋௜
∗ ൒ 𝑥ሻ ൌ 1 െ 𝐹௡ሺ𝑥ሻ ൅ 𝑓௡ሺ𝑥ሻ.       (11) 
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The bootstrap quantile estimator according to (5) can be written in the general form 
as: 

𝜉መ௣௡∗  ൌ ሺ1 െ 𝛾ሻ𝑋௡௝
∗ ൅ 𝛾𝑋௡,௝ାଵ,

∗         (12) 

where: 0    1, j=[np] (wherein [np]=np for integer np), and 𝑋௡௝∗  is the jth order 
statistics of the resample. 

In the research three bootstrap quantile estimators were used: 

𝜉መ௣௡ଵ∗  ൌ ቊ
𝑋௡,௡௣,
∗      if 𝑛𝑝 is integer       

𝑋௡,ሾ௡௣ሿାଵ
∗ if 𝑛𝑝 is not integer ,       (13) 

𝜉መ௣௡ଶ∗  ൌ 𝑋௡,ሾ௡௣ሿାଵ
∗ ,                                          (14) 

𝜉መ௣௡ଷ∗  ൌ ቊ
ሺ1 െ 𝜀ሻ𝑋௡,௡௣

∗ ൅ 𝜀𝑋௡,௡௣ାଵ,
∗ if 𝑛𝑝 is integer       

𝑋௡,ሾ௡௣ሿାଵ
∗                             if 𝑛𝑝 is not integer ,   (15) 

where:  = (n+1)p-[(n+1)p] as Hutson 2002 p. 332 suggests. 

The estimator 𝜉መ௣௡ଵ∗  was obtained assuming  = 0 for np integer and  = 1 for np not 
integer, the estimator 𝜉መ௣௡ଶ∗  assuming   = 1, and the estimator 𝜉መ௣௡ଷ∗  assuming =  for np 
integer and  = 1 for np not integer. 

In the formulae given below, it was assumed that the primary sample is ordered, 
viz.  x1 x2 ,…, xn-1   xn. 

Distributions of bootstrap quantile estimators based on one order statistics result 
directly from the formula given by Evans, Leemis, Drew (2006, p. 23) and are as follows: 

𝑃ሺ𝑋௡௭∗ ൌ 𝑥௟ሻ  ൌ 

ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧

for 𝑙 ൌ 1                                                                                                               
∑ ቀ

𝑛
𝑤ቁ ሾ𝑓௡ሺ𝑥ଵሻሿ

௡ି௪ሾ𝑆௡ሺ𝑥ଶሻሿ௪௡ି௭
௪ୀ଴                                                                  

for 𝑙 ൌ 2, … , 𝑘 െ 1                                                                                             

∑ ∑ ቀ
𝑛

𝑢,𝑛 െ 𝑢 െ 𝑤,𝑤ቁ ሾ𝐹௡ሺ𝑥௟ିଵሻሿ
௨ሾ𝑓௡ሺ𝑥௟ሻሿ௡ି௨ି௪௡ି௭

௪ୀ଴ ሾ𝑆௡ሺ𝑥௟ାଵሻሿ௪௭ିଵ
௨ୀ଴

for 𝑙 ൌ 𝑘                                                                                                               
∑ ቀ

𝑛
𝑢ቁ ሾ𝐹௡ሺ𝑥௞ିଵሻሿ

௨ሾ𝑓௡ሺ𝑥௞ሻሿ௡ି௨                                                              ௭ିଵ
௨ୀ଴

 (16) 

where z is the rank of the order statistic used as the estimator. 

When np is not integer the estimators 𝜉መ௣௡ଵ∗ , 𝜉መ௣௡ଶ∗ , and 𝜉መ௣௡ଷ∗  are the same. The rank of 
the order statistic used as the bootstrap estimator of p-quantile is z=[np] + 1. When np 
is not integer, the rank of the order statistic used as the bootstrap estimator of p-quantile 
is z=np for estimator 𝜉መ௣௡ଵ∗  and z=np for estimator 𝜉መ௣௡ଶ∗ .  

Only elements of a primary sample can be realizations of the estimators based on 
one order statistics. Realizations of the estimator in the form of a linear combination of 
two order statistics may also be weighted means of all two-element combinations 
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chosen therefrom. This means that the estimator 𝜉መ௣௡ଷ∗  for integer np has a considerably 
higher number of realizations. It is impossible to give a general expressions determining 
these estimator. Nevertheless, one can determine the probabilities that on positions np 
and np+1 in resamples either any lth primary sample element will occur or any two of 
its elements: l1 and l2, with l1 < l2. 

The probability that in an ordered resample element xl occurs at least on two 
positions z = np  and  z + 1 is: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ  ൌ 

ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧

for 𝑙 ൌ 1                                                                                                                  
∑ ቀ

𝑛
𝑤ቁ ሾ𝑓௡ሺ𝑥ଵሻሿ

௡ି௪ሾ𝑆௡ሺ𝑥ଶሻሿ௪௡ି௭ିଵ
௪ୀ଴                                                                  

for 𝑙 ൌ 2, … , 𝑘 െ 1                                                                                                 

∑ ∑ ቀ
𝑛

𝑢,𝑛 െ 𝑢 െ 𝑤,𝑤ቁ ሾ𝐹௡ሺ𝑥௟ିଵሻሿ
௨ሾ𝑓௡ሺ𝑥௟ሻሿ௡ି௨ି௪௡ି௭ିଵ

௪ୀ଴ ሾ𝑆௡ሺ𝑥௟ାଵሻሿ௪௭ିଵ
௨ୀ଴

for 𝑙 ൌ 𝑘                                                                                                                  
∑ ቀ

𝑛
𝑢ቁ ሾ𝐹௡ሺ𝑥௞ିଵሻሿ

௨ሾ𝑓௡ሺ𝑥௞ሻሿ௡ି௨                                                                   ௭ିଵ
௨ୀ଴

 (17) 

The probability that in an ordered resample, element x1 occurs exactly z times, and 
the element 𝑥௟, for 𝑙 ൌ 2, … , 𝑘 െ 1 occurs at least once on position z +1 is equal to: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ ൌ 

ൌ ∑ ቀ
𝑛

𝑧,𝑛 െ 𝑧 െ 𝑤,𝑤ቁ ሾ𝐹௡ሺ𝑥ଵሻሿ
௭ሾ𝑓௡ሺ𝑥௟ሻሿ௡ି௭ି௪ሾ𝑆௡ሺ𝑥௟ାଵሻሿ௪௡ି௭ିଵ

௪ୀ଴ .  (18) 

The probability that in an ordered resample, element 𝑥௟, for 𝑙 ൌ 2, … , 𝑘 െ 1 occurs 
at least once on position z, and element xk occurs exactly n-z times, is: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ ൌ 

ൌ ∑ ቀ
𝑛

𝑢, 𝑧 െ 𝑢,𝑛 െ 𝑧ቁ ሾ𝐹௡ሺ𝑥௟ିଵሻሿ
௨ሾ𝑓௡ሺ𝑥௟ሻሿ௭ି௨ሾ𝑆௡ሺ𝑥௞ሻሿ௡ି௭௭ିଵ

௨ୀ଴ .    (19) 

The probability that element x1 occurs in an ordered resample exactly z times, and 
the elements xk exactly n-z times, is: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ ൌ ቀ

𝑛
𝑧,𝑛 െ 𝑧ቁ ሾ𝑓ሺ𝑥ଵሻሿ

௭ሾ𝑓௡ሺ𝑥௞ሻሿ௡ି௭.  (20) 

The probability that in an ordered resample element 𝑥௟భ  occurs at least once on 
position z, and  element 𝑥௟మ  at least once on position z+1 ⋀ ሺ𝑙ଵழ𝑙ଶሻ∈ሼ2,3, . . , 𝑘 െ 2ሽ× ௟భಬ௟మ

ሼ3,4, . . , 𝑘 െ 1ሽ, is: 

𝑃 ቀ൫𝑋௡௭∗ ൌ 𝑥௟భ൯ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟మ൯ቁ ൌ 

ൌ ∑ ∑ ቀ
𝑛

𝑢, 𝑧 െ 𝑢,𝑛 െ 𝑧 െ 𝑤,𝑤ቁ𝑊
௡ି௭ିଵ
௪ୀ଴

௭ିଵ
௨ୀ଴         (21) 

𝑊 ൌ ൣ𝐹௡൫𝑥௟భିଵ൯൧
௨
ൣ𝑓௡൫𝑥௟భ൯൧

௭ି௨
ൣ𝑓௡൫𝑥௟మ൯൧

௡ି௭ି௪
ൣ𝑆௡൫𝑥௟మାଵ൯൧

௪   
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The exact distribution of bootstrap p-quantile estimator based on two order 
statistics (estimator 𝜉መ௣௡ଷ∗  when np is an integer) is: 

𝑃൫𝜉መ௣௡ଷ∗ ൌ 𝑥௟൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ , for 𝑙 ൌ 1, … , 𝑘 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥ଵ ൅ 𝜀𝑥௟൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ,  

   for  𝑙 ൌ 2, … , 𝑘 െ 1 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥௟ ൅ 𝜀𝑥௞൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ,  

   for  𝑙 ൌ 2, … , 𝑘 െ 1 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥ଵ ൅ 𝜀𝑥௞൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥௟భ ൅ 𝜀𝑥௟మ൯ ൌ 𝑃 ቀ൫𝑋௡௭∗ ൌ 𝑥௟భ൯ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟మ൯ቁ,  

⋀ ሺ𝑙ଵழ𝑙ଶሻ∈ሼ2,3, . . , 𝑘 െ 2ሽ× ሼ3,4, . . , 𝑘 െ 1ሽ௟భಬ௟మ .         (22) 

Some realizations of the 𝜉መ௣௡ଷ∗  estimator may repeat themselves, therefore the 
probabilities corresponding to these realizations should be added. As the number and 
order of the ordered realizations of the estimator based on two order statistics depend 
on the primary sample, one cannot give the general form of its distribution. 

The algorithm for determining the distribution of the estimator based on two order 
statistics is as follows: 
1. For each pair (l1, l2)  {1,2, …, k}  {1,2, …, k} such that  l1  l2, the corresponding 

realization of the estimator should be calculated: 𝑦௝ ൌ ሺ1 െ 𝜀ሻ𝑥௟భ ൅ 𝜀𝑥௟మ and 
probability 𝑃 ቀ൫𝑋௡௭∗ ൌ 𝑥௟భ൯ ∧ ൫𝑋௡,௭ାଵ

∗ ൌ 𝑥௟మ൯ቁ.   
2. Calculate the sum of probabilities determined in point 1 for each unique yj. 
3. If necessary, the estimator realizations should be sorted (e.g. to use the percentile 

method). 
The presented algorithm allows for an exact calculation of the distribution of 

a linear combination of two consecutive order bootstrap statistics. Nagaraja and 
Nagaraja (2020, p. 81) based on the previous work of other authors (Nyblom, 1992), 
(Hettmansperger and Sheather, 1986) give the formulas that allow calculating this 
distribution approximately. 

A useful attribute of quantile estimators distributions based on single order 
statistics is that the probabilities for all estimator realizations are the same for all 
primary samples of a given size, provided that k = n (probabilities given by the 
expression (16) depend only on n and p). Distributions of estimators in the form of 
a linear combination of two order statistics do not have such property. It is worth 
noting, however, that the probabilities given by the expressions (17)–(21) also depend 
only on n and p – if there were no repetition in the sample. The occurrence of 
repetitions only causes that the probabilities for an element occurring multiple times 
in the sample are added together. 
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Knowing the exact bootstrap distribution of the quantile estimator can be useful 
for constructing confidence intervals for quantile. Determining the expected value and 
variance does not require knowing it. These values can be calculated using exact 
analytical expressions for any L-estimator given by Hutson and Ernst (2000). 
All variants of estimators (13)–(15) are L-estimators. If an estimator is based on a single 
order statistics, the expressions for multipliers for a mean (Hutson and Ernst 
(2000, p. 91)) are equivalent to the probabilities given in (16). If the estimator is based 
on two order statistics, the multipliers can be easily obtained from formulas (17)–(21). 
It is worth recalling that the expressions for the mean and variance of the median 
bootstrap estimators were given by Maritz and Jarrett as early as 1978. It was before 
Efron presented the concept of the bootstrap method. 

3.  Confidence intervals for quantiles by the exact bootstrap percentile method 

One may construct the quantiles bootstrap confidence intervals by the percentile 
method described in the paper Wilcox (2001, p. 88), among others. It should be noted 
that the resamples do not need to be drawn from their entire population (size nn). The 
distributions of the bootstrap quantile estimators can be calculated. On this basis, one 
may easily find the limits of the confidence interval. We know in advance numbers of 
the primary sample elements, constituting the limits of confidence intervals when the 
estimator is based on a single order statistic3. The determination of the limits of the 
quantiles confidence intervals requires much larger calculations (when n is big4) if the 
estimator is based on two order statistics, due to the sorting of possible realizations – 
in that case, resampling may be justified but is not necessary. The percentile method 
using all resamples can be called the exact percentile method (by analogy with the exact 
bootstrap method). 

Let yj be a realization of a bootstrap p-quantile estimator 𝜉መ௣௡∗ , for j = 1, …, o.  If an 
estimator is based on a single order statistic, o is equal to k (or n if there were no 
repetitions in the primary sample). Let us mark the bootstrap confidence interval as 
𝐼௣௡∗ ൌ ൣ𝑦௭భ

∗ ,𝑦௭మ
∗ ൧. For a given confidence level of 1-, the lower limit is: 

y୸భ
∗  ൌ sup ቄy୨:𝐹క෠೛೙∗ ൫y୨൯ ൑

∝

ଶ
ቅ,       (23) 

where 𝐹క෠೛೙∗  is the bootstrap quantile estimator distribution. The upper limit is: 

y୸మ
∗  ൌ inf ቄy୨:𝐹క෠೛೙∗ ൫y୨൯ ൒ 1 െ

∝

ଶ
ቅ,       (24) 

                                                           
3 It results from the properties of the exact distribution of the bootstrap percentile estimator (the probabilities 

of individual realizations of the estimator are the same for all samples of a given size). Table 4 lists these numbers 
for p = 0.5 and 1-= 0.95. 

4 Currently, due to the high computing efficiency of computers, computations even for big n are not long-lasting. 
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If the bootstrap p-quantile estimator is based on a single order statistic, the elements 
of the primary sample are the limits of the confidence intervals. If the estimator is based 
on a linear combination of order statistics, the linear combinations of these elements 
may also be the limits. 

Due to the discrete nature of distributions of the bootstrap estimator, besides the 
assumed confidence level 1-, we have a confidence level that can be called actual.  

The number of realizations of bootstrap quantile estimators based on single order 
statistics is much smaller than that based on their linear combination. This has two 
important consequences. First, estimators based on two order statistics will allow 
building narrower confidence intervals than those based on one. Secondly, we can 
suspect that the discrepancy between the assumed and the actual confidence level is 
smaller for the estimator based on two order statistics than for that based on a single 
one (Nagaraja and Nagaraja (2020, p. 81)5 pay attention to this discrepancy). 

4.  Monte Carlo method for quantile estimation 

The bias and variance of the estimators, the widths of the confidence intervals, 
and the coverage probability can be estimated by the Monte Carlo (MC) simulation 
method. These measures can be used, for example, to compare different estimators. 
Calculating them requires drawing R random samples, the so-called replication. If the 
bootstrap estimators are used, a single replication is a single primary sample (which 
may be resampled). 

For sampling, pseudorandom number generators are used, which generate real 
numbers from a uniform distribution on the interval [0; 1]. Let the drawn number (i) 
be the value of a CDF of the distribution the sample comes from. Elements of the sample 
can be designated as xi = F-1(i), for i = 1,…,n. 

Let  denote some target quantity of interest, 𝛽መோ its MC estimate from simulation 
experiment with R replications, and 𝛽መ௥ the estimate based on the rth replication, r = 
1,…, R (Koehler et al. (2009)). The MC estimate of   is then: 

𝛽መோ ൌ
ଵ

ோ
∑ 𝛽መ௥ோ
௥ୀଵ .          (25) 

In statistical experiments, the distributions that the samples come from are known. 
So, it is possible to calculate the MC approximation of the estimator bias relative to the 
true value of the p-quantile. The MC estimate of the bias and variance of some  
p-quantile estimator is: 

𝑏𝚤𝑎𝑠෣
ெ஼ ൌ

ଵ

ோ
∑ ∑ ቀ𝑦௝

௥ ∙ 𝑃൫𝜉መ௣௡௥ ൌ 𝑦௝
௥൯ቁ െ 𝜉௣,௢

௝ୀଵ
ோ
௥ୀଵ       (26) 

                                                           
5 Nagaraja and Nagaraja point out the discrepancy between the assumed confidence level and the coverage 

probability (coverage probability will be discussed in Section 4). Since the coverage probability can be regarded as 
an estimate of the actual level of confidence, both statements are roughly equivalent. 
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𝑉෠ெ஼ ൌ
ଵ

ோ
∑ ൬∑ ൬൫𝑦௝

௥൯
ଶ
∙ 𝑃൫𝜉መ௣௡௥ ൌ 𝑦௝

௥൯൰ െ ቀ∑ ቀ𝑦௝
௥ ∙ 𝑃൫𝜉መ௣௡௥ ൌ 𝑦௝

௥൯ቁ௢
௝ୀଵ ቁ

ଶ
௢
௝ୀଵ ൰ ,ோ

௥ୀଵ   (27) 
where 𝜉መ௣௡௥  is the p-quantile estimator in the rth replication. 

Let the confidence interval determined in the rth replication be marked as 𝐼௣௡௥ ൌ
ൣ𝑦௭భ

௥ ,𝑦௭మ
௥ ൧. The MC estimate of its width and the coverage probability is: 

𝑑መோ ൌ
ଵ

ோ
∑ ൫𝑦௭మ

௥ െ 𝑦௭భ
௥ ൯ோ

௥ୀଵ          (28) 

𝜑ோ ൌ
#൛ൣ௬೥భ

ೝ ,௬೥మ
ೝ ൧:ఝ೛∈ൣ௬೥భ

ೝ ,௬೥మ
ೝ ൧ൟ

ோ
.        (29) 

When the coverage probability is close to the assumed confidence level but not lower 
than it, the method of determining the confidence intervals properly fulfills its task. 

5.  The median estimation – comparison of estimators 

The simulation research using the Monte Carlo method was carried out. Samples 
come from six distributions: two with right asymmetry (LogNormal(1.0.75), 
Gamma(2.2)), two with left asymmetry (-LogNormal(1.0.6) + 5, Gamma(1.25, 2.5) + 5) 
and two symmetrical (N(3.0.5) and N(3.2)). The sample sizes were selected to include 
both small and large samples. 

For different sample sizes n, R = 2,000 times n pseudorandom numbers from the 
interval [0,1] were drawn, which were treated as a CDF value. The same CDF values 
were used for all distributions and methods, which allows for a better comparability of 
results. Such selection makes the results for individual cases independent of the quality 
of the pseudorandom number generator. Based on the n values of the CDF, random 
samples were determined for six distributions. 

The first stage of the simulation studies was to estimate the bias and variance of the 
three bootstrap median estimators 𝜉መ଴.ହ௡

ଵ∗ , 𝜉መ଴.ହ௡
ଶ∗ , and 𝜉መ଴.ହ௡

ଷ∗ , defined by formulas (13), (14) 
and (15). The bias and the variance were estimated according to the formulas (26) and 
(27) by the MC method. 

In the second stage, confidence intervals for quantiles were determined using the 
following methods: 
M1 – exact percentile method and estimator 𝜉መ଴.ହ௡

ଵ∗ , 
M2 – exact percentile method and estimator 𝜉መ଴.ହ௡

ଵ∗ ,  
M3 – exact percentile method and estimator 𝜉መ଴.ହ௡

ଷ∗ ,  
M4 – BCa method (Efron and Tibshirani, 1993 p. 185) and estimator 𝜉መ଴.ହ௡

ଷ∗ , 
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M5 – the adjacent spacings method (Nagaraja and Nagaraja, 2020 p. 89) (calculations 
were made for several combinations of parameters s and t6, choosing those for 
which confidence intervals were narrowest), 

M6 – using the limit distribution of the order statistics corresponding to the sample  
p-quantile (formula (8)),  

M7 – using the limit distribution of p-quantile (formula (7)). 

The widths and coverage probabilities were used to compare confidence intervals 
constructed with different methods, calculated according to (28) and (29). The use of 
the M7 method requires a comment. The confidence intervals constructed using the 
M1 to M6 methods were estimated by the MC method based on R replications. The 
intervals constructed using the M7 method (from the limit distribution of p-quantile) 
are calculated from formula (7). One may suspect (especially for large samples) that the 
confidence intervals determined in this way are close to the real ones and may 
constitute a reference point for the intervals obtained with other methods. Note, 
however, that the use of formula (7) requires knowledge of 𝜉௣ and 𝑓൫𝜉௣൯. In fact, 
we know them very rarely. 

In Figure 1, the bias of the bootstrap median estimators is given, depending on the 
sample size (for n = 10, 15,…, 205). The bias was calculated by the MC method based 
on R = 2,000 samples from six distributions. To improve the readability of the graph, 
the data series are presented as continuous lines. 

If np is not integer (which in the case of the median corresponds to the odd n), the 
tree bootstrap median estimators are based on the same order statistics, so they are the 
same. Estimators differ when n is even. The case n odd was extracted as a separate data 
series to avoid oscillations when the sample size changes from even to odd. This was 
made because those oscillations would completely obscure the image (as in Parrish 
(1990 p. 253)). It is obvious that as the sample size increases, the bias on all estimators 
usually decreases (if bias jumps are omitted when the  sample size changes from even 
to odd and vice versa). This does not mean, however, that the increase in n in the case 
of simulation by the MC method is always accompanied by a decrease in bias. 
The possible increase in bias results from the random selection of R samples. 

The estimator 𝜉መ଴.ହ௡
ଷ∗  shows the smallest jumps in the bias with the change in the 

sample size from odd to even (and vice versa). The data series marked as E123 and E3 
for all distributions almost coincide. 

When samples came from right asymmetry distributions (for even n), the absolute 
value of the bias of the estimator 𝜉መ଴.ହ௡

ଵ∗  was usually the smallest, while that of the 

                                                           
6 Five parameter combinations were used: s = 1 and t = 2, s = 2 and t = 1, s = 2 and t = 2, s = 2 and t = 3, s = 3 

and t = 2. The narrowest confidence intervals were obtained for the last two variants in all simulation experiments. 
The combination of s = 3 and t = 2 was best in the case of samples from right asymmetry distributions, while the 
combination of s = 2 and t = 3 in the case of samples from left asymmetry and symmetrical distributions. 
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estimator 𝜉መ଴.ହ௡
ଶ∗  the largest. When samples came from left asymmetry distributions, the  

opposite  was true usually –  the absolute value of the bias of the estimator 𝜉መ଴.ହ௡
ଶ∗  was the 

smallest, while that of the estimator 𝜉መ଴.ହ௡
ଵ∗  the largest. When samples came from 

symmetrical distributions, the absolute value of the bias of the estimator 𝜉መ଴.ହ௡
ଷ∗  was the 

smallest for almost all n, while that of the estimator 𝜉መ଴.ହ௡
ଵ∗  or 𝜉መ଴.ହ௡

ଶ∗  was the largest. 

  

  

  

 
Figure 1:  The bias of the bootstrap median estimators depending on the sample size (n = 10, 15,…, 

205), calculated by the MC method. Note: In the charts, the data series marked E1, E2 and 
E3 correspond to the estimators 𝜉መ଴.ହ௡

ଵ∗ , 𝜉መ଴.ହ௡
ଶ∗ , and 𝜉መ଴.ହ௡

ଷ∗  for even n, while E123 corresponds 
to all estimators for odd n. 
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When samples came from right asymmetry distributions, the expected value of 
almost all estimators is greater than the median (except for even n and the estimator 
𝜉መ଴.ହ௡
ଵ∗ ). When samples came from left asymmetry distributions, the expected value of 

almost all estimators is less than the median (except for even n and the estimator 𝜉መ଴.ହ௡
ଶ∗ ). 

When samples came from symmetrical distributions, the bias oscillates around zero – 
except for even n and the estimator 𝜉መ଴.ହ௡

ଵ∗  (always negative bias) or the estimator 𝜉መ଴.ହ௡
ଶ∗  

(always positive bias). 
Figure 2 shows the variance of the bootstrap median estimators depending on the 

sample size. The graphs were prepareded only for small samples (n = 10, 11,…,35). The 
differences in the case of large samples were very small. When samples came from 
symmetrical distributions, the variance of the 𝜉መ଴.ହ௡

ଷ∗  estimator was the smallest. When 
samples came from right asymmetry distributions, the variance of the 𝜉መ଴.ହ௡

ଶ∗  estimator 
was the biggest. When samples came from left asymmetry distributions, the variance of 
the 𝜉መ଴.ହ௡

ଵ∗  estimator was the biggest.  
Figure 3 presents the width of 0.95 median confidence intervals depending on the 

sample size. The intervals were calculated by the MC method (the M1-M6 methods) 
and using the limit distribution (the M7 method). The graphs were made up only for 
small samples (n = 10, 15,..,  35). For large samples, the widths of confidence intervals 
constructed with different methods are very similar (except those obtained using the 
M5 method). 

Confidence intervals constructed with the M7 method were usually narrowest, 
especially for samples from left asymmetry distributions and large samples (n above 
115) from symmetrical distributions. Interval widths for M7, M4, and M3 (but only for 
even n) are very similar. If n was even, narrower confidence intervals were usually 
obtained using the M3 method rather than using the M4 for large samples (n above 
180) and samples from left asymmetry distribution. 

There are jumps in the widths of confidence intervals constructed with the exact 
bootstrap estimators (that is for M1, M2, and M3 methods) when n changes from even 
to odd. This is due to the changing the rank of the order statistic used as an estimator 
(we do not observe it for other methods). The narrowest confidence intervals were 
obtained by the M3 method, regardless of the distribution asymmetry type the samples 
came from. This is because the estimator based on two order statistics has much more 
realizations than when based on one order statistic only. If the samples came from right 
asymmetry distribution, narrower confidence intervals were obtained with the M1 
method than with the M2. If the samples came from left asymmetry distribution, the 
effect was opposite. If the samples came from symmetrical distributions, the M1 
method gave the narrower intervals for about half of the cases and the M2 for the other 
half. These conclusions are similar to those obtained for the variance and apply of 
course only to cases when n is even. 
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Figure 2:  The variance of the bootstrap median estimators depending on the sample size (n = 10, 11, 

…, 35), calculated by the MC method. Note: as for Figure 1. 

For almost all sample sizes, the widest confidence intervals were obtained by the 
M5 method (despite using a combination of parameters giving the best results). The 
authors of the method (Nagaraja, Nagaraja (2019 p. 75)) point out that although this 
method gives wider intervals than other methods, it can be used in the case of extreme 
quantiles even if the sample has only a few observations. The M6 method usually gave 
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wider confidence intervals than the M7, M4, and M3 methods (for n even), although 
the differences were small for large samples. 

Figure 4 presents 1- (1-coverage probability) calculated for confidence intervals 
estimated by M1-M6 methods, depending on the sample size for a 0.95 confidence level. 
This probability was illustrateed in three variants. The first variant covers all sample 
sizes, the second only odd sizes, and the third only even sizes. The charts are presented 
only for LogNorm(1.0.75) distribution. The results for the remaining distributions were 
very similar. The chart shows strong fluctuations in the coverage probability when the 
sample size changes, both for all sample sizes and separately for even and odd sizes. De 
Angelis et al. 1993 p. 526 believed the discrete nature of the bootstrap quantile 
estimators distributions to be the reason for the fluctuation. It should be noted that 
fluctuations occur for all methods. Therefore they can only result from the quality of 
random samples generated (for all methods the same pseudorandom numbers were 
used). Although relatively many samples were drawn (R = 2,000), the effect of the work 
of the pseudorandom number generator indicates its imperfection7. 4,000, 8,000, and 
16,000 samples were drawn several times to check whether increasing the number of 
drawn samples would reduce the observed fluctuations. It turned out that the 
differences in the calculated 1- values in individual experiments were large. This 
means that a comparison across methods by simulation experiments requires the same 
conditions. It is advisable to use the same generated pseudorandom numbers in all 
experiments. 

6.  Conclusions 

1.  Information about the asymmetry direction of the distribution the sample came 
from may be a valuable indication when choosing a bootstrap quantile estimator 
(when np is an integer). The sample skewness coefficient can be used for this 
purpose. If the estimator is based on a single order statistic and a sample comes from 
a right asymmetry distribution, the order statistic of the rank np used as an estimator 
gives a smaller bias and narrower confidence intervals. If a sample comes from a left 
asymmetry distribution, an order statistic of the rank np + 1 is a better estimator. 
Most asymmetric distributions used in statistical experiments have a right 
asymmetry distribution. This is why the most common quantiles and sample 
quantiles are defined as left quantiles. For the distributions with left asymmetry, a 
right quantile would be more appropriate. 

                                                           
7 When using simulation methods using random numbers, one should take into account the limited possibilities 

of pseudorandom number generators. It is worth conducting experiments using various pseudorandom number 
generators. Examples of such studies were presented by Sulewski 2019. 



STATISTICS IN TRANSITION new series, March 2024 

 

161

2.  Quantile estimators in the form of single order statistics are very simple to apply 
(they have the same PDF values for the same sample sizes). To use a linear 
combination of two order statistics as the estimator requires more effort of 
calculations. As the research shows, this effort pays off - the estimated confidence 
intervals  are  narrower,  and  the  coverage  probability  is  closer  to  the assumed  

  

  

 
Figure 3:  The width of median confidence intervals (1- =0.95) depending on the sample size (n = 

10, 15, …, 35).  
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Figure 4:  1- depending on the sample size (n = 10, 15,…, 205) for a 0.95 confidence level. Samples 

came from the LogNorm(1.0.75) distribution. Note: The top chart is for all numbers, the 
middle chart for odd n, and the bottom chart for even n.  

confidence level. The possibility to construct narrower confidence intervals results 
from a bigger number of realizations of the estimator based on two order statistics. 
When np is not an integer, you may consider using the estimator as a linear 
combination of the three order statistics of the ranks [np], [np] +1, and [np] +2. 
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The algorithm for calculating the distribution of such an estimator would be similar 
to the algorithm given in Section 2. Also, in this case, the probability that the given 
elements of the primary sample will occur on three positions: [np], [np] +1, and [np] 
+2 in the ordered resample, is the same for all samples without repetition of the 
same size. This makes it possible to construct statistical tables one can use to 
compute the exact distribution of the estimator for a given primary sample (as it is 
possible for a combination of two order statistics). 

3.  There is no need to use the percentile method with resampling for interval 
estimation of quantiles. The application of the exact percentile method is much 
simpler. When one uses an estimator based on a single order statistic, it is known 
in advance which elements of the ordered primary sample constitute the limits of 
the confidence interval. When one uses an estimator based on two order statistics, 
the computational effort resulting from sorting all its possible realizations is 
probably comparable with the time needed to sort its realizations determined from 
the drawn resamples.8\ 

4.  The coverage probability fluctuations (on changes in the sample size) result from 
the limited capabilities of the pseudorandom number generator. One can conclude 
so because fluctuations occur for all methods. The conducted experiments indicate 
that increasing the number of repetitions in Monte Carlo simulations does not 
reduce the fluctuations. This conclusion was made based on experiments with R = 
2,000, 4,000, and 8,000. This means that it is better to use the same samples when 
you compare different estimation methods. 

5.  The bias and the variance of the bootstrap median estimators, as well as the width 
of the median confidence intervals were estimated using the MC method. 
Fluctuations of these parameters resulted mainly from the change in rank of order 
statistics used as estimators when the sample size changed from even to odd. This 
fact was particularly clear for the estimators in the form of a single order statistic. If 
even and odd samples are considered separately, there are no fluctuations. There are 
also no fluctuations in the width of the confidence intervals estimated with the other 
methods. This is because the discussed measures are calculated as average from all 
replications. The coverage probability is determined for all R repetitions. 
The research conducted and presented in the article is based on a limited set of 

distributions. However, one can assume that conclusions can be generalized for their 
wider collection. Only one pseudorandom number generator was used – an Excel 
generator. The results showed that it is worth researching various pseudorandom 
numbers generators and examining their impact on the quality of the Monte Carlo 
simulations. 

                                                           
8 For a sample with 50 elements, the number of realizations of the estimator based on two order statistics is 

maximally equal to 50 + 4925  = 1275. 
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Reliability for Zeghdoudi distribution with an outlier,  
fuzzy reliability and application 

Thara Belhamra1, Halim Zeghdoudi2, Vinoth Raman3 

Abstract 

This study focuses on estimating reliability P[Y<X], where Y has a Zeghdoudi distribution 
with parameter a, X has a Zeghdoudi distribution with one outlier present and parameter c, 
and the remaining (n – 1) random variables are from a Zeghdoudi distribution with 
parameter b, in order for X and Y to be independent. Several findings of a simulation study 
and the maximum likelihood estimate of R are provided. We also present some results 
related to fuzzy dependability. Finally, using actual data on survival durations (in days) of 
72 Algerians infected with a coronavirus, we demonstrate how the Zeghdoudi distribution 
may be applied to other distributions in order to demonstrate its adaptability. 

Key words: Zeghdoudi distribution, maximum likelihood estimator, Newton-Raphson 
method, outlier, fuzzy reliability 

1.  Introduction 

Inferences regarding 𝑅 ൌ 𝑃ሺ𝑌 ൏ 𝑋ሻ, when X and Y are independently distributed, 
are of relevance in the reliability context and play a significant role in many practical 
domains, including engineering, medicine, and quality control. In the statistical 
literature, R estimation is a highly common practice. It calculates the likelihood that 
a component's stress Y will be greater than its random strength X. Additionally, R offers 
the likelihood that a system would malfunction if the applied stress exceeds its capacity.  

The earliest research on this issue dates back to Birnbaum (1956) and Birnbaum 
and McCarty (1958). Kapur and Lamberson have also discussed the reliability under 
stress (1977). R was estimated for the negative binomial distribution by Sathe and Dixit 
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(2001). In the presence of outliers produced by uniform distributions, Dixit and Nasiri 
(2001) provided an estimation of the parameters of the exponential distribution. Then, 
in the exponential and gamma cases, respectively, Baklizi and Dayyeh (2003) performed 
a shrinkage estimation of R, Kundu and Gupta (2005) considered an estimation of 
𝑃ሾ𝑌 ൏ 𝑋ሿ for a generalized exponential distribution, and Deiri (2011) performed an 
estimation of R with the presence of two outliers. Jafari (2011) obtained the moment, 
maximum likelihood, and mixture estimators of R in the Rayleigh distribution in the 
presence of one outlier, and Jabbari (2013) discussed the estimation of R in the Lindley 
distribution with an Outlier. Deiri (2010) considered the estimation of reliability for the 
exponential case in the presence of one outlier. And most recently, Lindley distributions 
have been used to draw conclusions on stress-strength reliability by Mutairi, Guitani, 
and Kundu (2013). 

With one outlier generated from the same distribution, we obtain the maximum 
likelihood estimate of R for the Zeghdoudi distribution in this study. The Zeghdoudi 
distribution with parameter a, probability density function (pdf) is given by 

𝑓ሺ𝑦,𝑎ሻ ൌ
𝑎ଷ

2 ൅ 𝑎
𝑦ሺ1 ൅ 𝑦ሻ𝑒ି௔௬   𝑎 ൐ 0 

In this study, it is assumed that the random variables ሺ𝑌ଵ,𝑌ଶ, … ,𝑌௠ሻ have 
a Zeghdoudi distribution with parameter a, while the random variables ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ 
are such that one of them comes from a Zeghdoudi distribution with parameter 𝑐 and 
the remaining ሺ𝑛 െ 1ሻ random variables come from a Zeghdoudi distribution with 
parameter 𝑏.  

The body of the article is structured as follows. The joint distribution of 
ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ in the presence of one outlier is obtained in Section 2. The MLE of 𝑅 
and the method of maximum likelihood estimators of parameters are discussed 
in Sections 3 and 4, respectively. The simulation studies are provided in Section 5. 
Section 6 discusses illustrative combinations of the Zeghdoudi distribution with other 
distributions to demonstrate the adaptability of this distribution. Finally, Section 7 is 
the conclusion of the study.    

2.  Joint distribution of ሺ𝑿𝟏,  𝑿𝟐, ,𝑿𝒏ሻ with an outlier 

Consider that ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ are distributed with p.d.f 𝑔ሺ𝑥, 𝑐ሻ as 𝑍𝑒𝑔ℎ𝑑𝑜𝑢𝑑𝑖 ሺ𝑐ሻ 
and remaining ሺ𝑛 െ 1ሻ of them are distributed with p.d.f 𝑓ሺ𝑥, 𝑏ሻ as 𝑍𝑒𝑔ℎ𝑑𝑜𝑢𝑑𝑖 ሺ𝑏ሻ. 
The joint distribution of ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ can be expressed as  

𝑓ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡;𝑏, 𝑐ሻ ൌ
ሺ𝑛 െ 1ሻ!

𝑛!
ෑ𝑓ሺ𝑥, 𝑏ሻ
௡

௜ୀଵ

෍
𝑔ሺ𝑥௜; 𝑐ሻ

𝑓ሺ𝑥௜;𝑏ሻ

௡

௜ୀଵ
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ൌ
ሺ𝑛 െ 1ሻ!

𝑛!
ෑ

𝑏ଷ

2 ൅ 𝑏
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௕௫෍቎

ቀ
௖య

ଶା௖
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௖௫ቁ

ቀ
௕య

ଶା௕
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௕௫ቁ

቏

௡

௜ୀଵ

௡

௜ୀଵ

 

 ൌ
ሺ𝑛 െ 1ሻ!

𝑛!
𝑏ଷ௡

ሺ2 ൅ 𝑏ሻ௡
ෑ𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒ି௕

∑ ௫೔
೙
೔సభ ෍቎

ቀ
௖య

ଶା௖
𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒ି௖௫೔ቁ

ቀ
௕య

ଶା௕
𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒ି௕௫೔ቁ

቏

௡

௜ୀଵ

௡

௜ୀଵ

 

 

ൌ
ሺ௡ିଵሻ!

௡!

௕య೙షయ

ሺଶା௕ሻ೙షభ
௖య

ଶା௖
∏ 𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒ି௕

∑ ௫೔
೙
೔సభ ∑ 𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ       ௡

௜ୀଵ    (1) 

The marginal distribution of 𝑋 is  

𝑓ሺ𝑥; 𝑏, 𝑐ሻ ൌ
ଵ

௡

௖య

ଶା௖
𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒ି௖௫ ൅

௡ିଵ

௡

௕య

ଶା௕
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௕௫                   (2) 

Using ሺ2ሻ to obtain 𝑅 ൌ ሺ𝑌 ൏ 𝑋ሻ. 

3.  Maximum likelihood estimators of parameters 

Let ሺ𝑌ଵ,𝑌ଶ, … ,𝑌௠ሻ be a random sample for 𝑌 with pdf,  

𝑓ሺ𝑦; 𝑎ሻ ൌ
𝑎ଷ

2 ൅ 𝑎
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௔௬       𝑥,𝑎 ൐ 0 

The log likelihood function is given by  

𝐿ሺ𝑎ሻ ൌ 3𝑚𝑙𝑛𝑎ሺ𝑎 ൅ 2ሻ ൅෍ lnሺ𝑦௜ ൅ 𝑦௜ଶሻ െ 𝑎෍𝑦௜

௠

௜ୀଵ

௠

௜ୀଵ

 

The 𝑀𝐿𝐸 of 𝑎 is obtained by taking the derivative with regard to 𝑎 and equating it 
to 0. 

𝑎ො ൌ
ଵ

௬
൫െ𝑦ത ൅ ඥ4𝑦ത ൅ 𝑦തଶ ൅ 1 ൅ 1൯                                                  (3) 

Now, consider 𝑋ଵ,𝑋ଶ, … ,𝑋௡ as a random sample for 𝑋 with one outlier present and 
pdf,  

𝑓ሺ𝑥; 𝑏, 𝑐ሻ ൌ
1
𝑛

𝑐ଷ

2 ൅ 𝑐
𝑥௜ሺ1 ൅ 𝑥௜ሻ𝑒ି௖௫ ൅

𝑛 െ 1
𝑛

𝑏ଷ

2 ൅ 𝑏
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௕௫ 

From (1), the log likelihood function is given by 

𝐿ሺ𝑏, 𝑐ሻ ൌ lnቆ
ሺ𝑛 ൅ 1ሻ!

𝑛!
ቇ ൅ ሺ3𝑛 ൅ 3ሻ𝑙𝑛𝑏 െ ሺ𝑛 െ 1ሻ lnሺ2 ൅ 𝑏ሻ ൅ 3𝑙𝑛𝑐 

െ lnሺ2 ൅ 𝑐ሻ ൅෍ ln൫𝑥௜ሺ1 ൅ 𝑥௜ሻ൯ െ 𝑏෍𝑥௜ ൅ ln ෍𝑒௫೔ሺ௕ି௖ሻ
௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ
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We derive the normal equations by taking the derivative with regard to 𝑏 and 𝑐 and 
equating the results to 0. 

ఋ௅ሺ௕,௖ሻ

ఋ௕
ൌ

ଷ௡ିଷ

௕
െ

௡ିଵ

ଶା௕
െ ∑ 𝑥௜ ൅

∑ ௫೔௘
ೣ೔ሺ್ష೎ሻ೙

೔సభ

∑ ௘ೣ೔ሺ್ష೎ሻ೙
೔సభ

௡
௜ୀଵ                          (4) 

ఋ௅ሺ௕,௖ሻ

ఋ௖
ൌ

ଷ

௖
െ

ଵ

ଵା௖
െ

∑ ௫೔௘
ೣ೔ሺ್ష೎ሻ೙

೔సభ

∑ ௘ೣ೔ሺ್ష೎ሻ೙
೔సభ

                                        (5) 

This system of equations lacks a closed-form solution, so the authors use the 
Newton-Raphson method to iteratively find the values of 𝑏෠and �̂�. In this instance, we 
will iteratively estimate 𝛽መ ൌ ൫𝑏෠, �̂�൯. 

𝛽መ௜ାଵ ൌ 𝛽መ௜ െ 𝐾ିଵ𝑘                                                          (6) 
where 𝑘 is the vector of normal equations for which we want 

𝑘 ൌ ሾ𝑘ଵ,𝑘ଶሿ 

with  

𝑘ଵ ൌ
3𝑛 െ 3
𝑏

െ
𝑛 െ 1
2 ൅ 𝑏

െ෍𝑥௜ ൅
∑ 𝑥௜𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

௡

௜ୀଵ

 

𝑘ଶ ൌ
3
𝑐
െ

1
1 ൅ 𝑐

െ
∑ 𝑥௜𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

 

and 𝐾 is the matrix of second derivatives  

𝐾 ൌ ൦

𝑑𝑘ଵ
𝑑𝑏

𝑑𝑘ଵ
𝑑𝑐

𝑑𝑘ଶ
𝑑𝑏

𝑑𝑘ଶ
𝑑𝑐

൪ 

where  

𝑑𝑘ଵ
𝑑𝑏

ൌ
3 െ 3𝑛
𝑏ଶ

൅
𝑛 െ 1
ሺ1 ൅ 𝑏ሻଶ

൅
∑ 𝑥௜ଶ𝑒௫೔ሺ௕ି௖ሻ
௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

െ ቆ
∑ 𝑥௜ଶ𝑒௫೔ሺ௕ି௖ሻ
௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

ቇ
ଶ

 

𝑑𝑘ଶ
𝑑𝑏

ൌ െ
∑ 𝑥௜ଶ𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

൅ ቆ
∑ 𝑥௜ଶ𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

ቇ
ଶ

 

𝑑𝑘ଶ
𝑑𝑐

ൌ െ
3
𝑐ଶ
൅

1
ሺ1 ൅ 𝑐ሻଶ

൅
∑ 𝑥௜ଶ𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

െ ቆ
∑ 𝑥௜ଶ𝑒௫೔

ሺ௕ି௖ሻ௡
௜ୀଵ

∑ 𝑒௫೔ሺ௕ି௖ሻ௡
௜ୀଵ

ቇ
ଶ

 

 

As our estimate of 𝑏 and 𝑐 fluctuate by less than a permitted amount with each 
subsequent iteration, the Newton-Raphson method converges to 𝑏෠ and �̂�. 
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4.  Fuzzy reliability of Zeghdoudi distribution 

Let T denote the time until a system fails, which is a continuous random variable 
(component). The fuzzy probability in formula can then be used to compute the fuzzy 
dependability. 

𝑅ிሺ𝑡ሻ ൌ 𝑃ሺ𝑇 ൐ 𝑡ሻ ൌ න 𝜇ሺ𝑥ሻ𝑓 ሺ𝑥ሻ𝑑𝑥,    0 ൑ 𝑡 ൑ 𝑥 ൏ ∞,
ஶ

௧
 

where 𝜇ሺ𝑥ሻ is a membership function that expresses how much a given universe’s 
elements belong to a fuzzy set. Assume now that 𝜇ሺ𝑥ሻ is  

𝜇ሺ𝑥ሻ ൌ ൞

0,                                     𝑥 ൑ 𝑡ଵ
𝑥 െ 𝑡ଵ
𝑡଴ െ 𝑡ଵ

,          𝑡ଵ ൏ 𝑥 ൏ 𝑡ଶ,   𝑡ଵ ൒ 0

 1,                                   𝑥 ൒ 𝑡ଶ

 

For 𝜇ሺ𝑥ሻ, by the computational analysis of the function of fuzzy numbers, the 
lifetime 𝑥ሺ𝛾ሻ can be obtained corresponds to a certain value of 𝛾 െ 𝐶𝑢𝑡, 𝛾 ∈ ሾ0,1ሿ, can 
be obtained by 𝜇ሺ𝑥ሻ ൌ 𝛾 →

௫ି௧భ
௧బି௧భ

ൌ 𝛾, then 

ቐ
𝑥ሺ𝛾ሻ ൑ 𝑡ଵ,                                         𝛾 ൌ 0
𝑥ሺ𝛾ሻ ൌ 𝑡ଵ ൅ 𝛾ሺ𝑡ଶ െ 𝑡ଵሻ, 0 ൏ 𝛾 ൏ 1
𝑥ሺ𝛾ሻ ൒ 𝑡ଶ,                                          𝛾 ൌ 1

 

As a result, it is possible to determine the fuzzy reliability values for all 𝛾 values. 
The fuzzy reliability definition establishes the Zeghdoudi distribution's fuzzy 
dependability. The Zeghdoudi distribution's fuzziness dependability is defined as 

𝑅ிሺ𝑡ሻ ൌ ቆ
𝑥ଶ𝑎ଶ ൅ 𝑎ሺ2 ൅ 𝑎ሻ𝑥 ൅ 𝑎 ൅ 2 

𝑎 ൅ 2
ቇ 𝑒ି௔௫

െ ቆ
𝑥ሺ𝛾ሻଶ𝑎ଶ ൅ 𝑎ሺ2 ൅ 𝑎ሻ𝑥ሺ𝛾ሻ ൅ 𝑎 ൅ 2 

𝑎 ൅ 2
ቇ 𝑒ି௔௫ሺఊሻ 

Then 𝑅ிሺ𝑡ሻ ൌ 0. 

4.1.  Numerical values of fuzzy reliability 

We compared traditional reliability and fuzzy reliability in this subsection, where 

traditional reliability is a survival function as 𝑅ሺ𝑥ሻ ൌ ቀ
௫మ௔మା௔ሺଶା௔ሻ௫ା௔ାଶ 

௔ାଶ
ቁ 𝑒ି௔௫ 
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The comparison was discussed in Table 1. Based on findings, the following 
observations are made: 

 when 𝛾 െ 𝐶𝑢𝑡 is increased, the Fuzzy reliability increases. 

 when 𝑡ଶ interval of membership function is increased, the Fuzzy reliability 
increases. 

 when 𝑡ଵ is decreased, the fuzzy reliability increases, and vice versa. 

 the traditional reliability with  𝑡ଶ is lower than the traditional reliability with 𝑡ଵ. 

A sequence of drawings from the Zeghdoudi distribution is produced by the fuzzy 
estimating procedure. 

Algorithm: fuzzy estimation algorithm 
 Input: initial values of 𝑎, interval time ሺ𝑡ଵ, 𝑡ଶሻ and 𝛾 where 0 ൏ 𝛾 ൏ 1. 
 Calculate: 𝑥ሺ𝛾ሻ ൌ 𝑡ଵ ൅ 𝛾ሺ𝑡ଶ െ 𝑡ଵሻ. 
 For each method do  

Set: i=1. 

Estimate parameter as 𝑎ො. 

Calculate 

𝑅෠ிሺ𝑡ሻ ൌ ቆ
𝑡ଵଶ𝑎ଶ ൅ 𝑎ሺ2 ൅ 𝑎ሻ𝑡ଵ ൅ 𝑎 ൅ 2 

𝑎 ൅ 2
ቇ 𝑒ି௔௧భ

െ ቆ
𝑥ሺ𝛾ሻଶ𝑎ଶ ൅ 𝑎ሺ2 ൅ 𝑎ሻ𝑥ሺ𝛾ሻ ൅ 𝑎 ൅ 2 

𝑎 ൅ 2
ቇ 𝑒ି௔௫ሺఊሻ 

 End 

Table 1:  Fuzzy reliability with different values of  𝑎, 𝑡ଵ, 𝑡ଶ , 𝛾. 

𝑎 𝑡ଵ 𝑡ଶ 𝑅ሺ𝑡ଵሻ 𝑅ሺ𝑡ଶሻ 
𝑅ி  

0.25 0.5 0.9 

0.2 0.01 1 1 0.99736 0.00013 0.00057 0.00208 

0.5 0.5 2 0.99297 0.88291 0.01542 0.03953 0.09393 

    1 0.1 3 0.99834 0.34851 0.58082 0.88103 0.96981 

    3 0.2 1 0.91761 0.28876 0.16824 0.34766 0.58321 

    5 0.1 1.5 0.93146 0.00914 0.51268 0.79802 0.91541 
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4.2.  The maximum likelihood estimator of 𝑹 

Let 𝑌~𝑍𝑒𝑔ℎ𝑑𝑜𝑢𝑑𝑖ሺ𝑎ሻ with pdf ℎሺ𝑦;𝑎ሻ and 𝑋 be distributed with pdf 𝑓ሺ𝑥; 𝑏, 𝑐ሻ 
given in ሺ2ሻ. The parameter 𝑅 is estimated as 

𝑅 ൌ 𝑃ሺ𝑌 ൏ 𝑋ሻ ൌ න න ℎሺ𝑦;𝑎ሻ𝑓ሺ𝑥; 𝑏, 𝑐ሻ𝑑𝑦𝑑𝑥
௫

଴

ஶ

଴
 

                           ൌ
1
𝑛
න න

𝑎ଷ

2 ൅ 𝑎
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௔௬

𝑐ଷ

2 ൅ 𝑐
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௖௫𝑑𝑦𝑑𝑥

௫

଴

ஶ

଴

൅
𝑛 െ 1
𝑛

න න
𝑎ଷ

2 ൅ 𝑎
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௔௬

𝑏ଷ

2 ൅ 𝑏
𝑥ሺ1 ൅ 𝑥ሻ𝑒ି௕௫𝑑𝑦𝑑𝑥

௫

଴

ஶ

଴
 

 

ൌ
1
𝑛
ቈ1 െ

𝑐ଷ

ሺ𝑎 ൅ 2ሻሺ𝑐 ൅ 2ሻ
ቆ
𝑎 ൅ 2
ሺ𝑎 ൅ 𝑐ሻଶ

൅
ሺ2𝑎ଶ ൅ 6𝑎 ൅ 4ሻ

ሺ𝑎 ൅ 𝑐ሻଷ
൅

12𝑎ሺ𝑎 ൅ 2ሻ
ሺ𝑎 ൅ 𝑐ሻସ

൅
24𝑎ଶ

ሺ𝑎 ൅ 𝑐ሻହ
ቇ቉ 

൅
𝑛 െ 1
𝑛

ቈ1 െ
𝑏ଷ

ሺ𝑎 ൅ 2ሻሺ𝑏 ൅ 2ሻ
ቆ
𝑎 ൅ 2

ሺ𝑎 ൅ 𝑏ሻଶ
൅
ሺ2𝑎ଶ ൅ 6𝑎 ൅ 4ሻ

ሺ𝑎 ൅ 𝑏ሻଷ
൅

12𝑎ሺ𝑎 ൅ 2ሻ
ሺ𝑎 ൅ 𝑏ሻସ

൅
24𝑎ଶ

ሺ𝑎 ൅ 𝑏ሻହ
ቇ቉   

(7) 

 
Thus, by invariant property for MLEs, the MLE of 𝑅 is  
 

𝑅෠ ൌ
1
𝑛
ቈ1 െ

�̂�ଷ

ሺ𝑎ො ൅ 2ሻሺ�̂� ൅ 2ሻ
ቆ
𝑎ො ൅ 2
ሺ𝑎ො ൅ �̂�ሻଶ

൅
ሺ2𝑎ොଶ ൅ 6𝑎ො ൅ 4ሻ

ሺ𝑎ො ൅ �̂�ሻଷ
൅

12𝑎ොሺ𝑎ො ൅ 2ሻ
ሺ𝑎ො ൅ �̂�ሻସ

൅
24𝑎ොଶ

ሺ𝑎ො ൅ �̂�ሻହ
ቇ቉ 

൅
𝑛 െ 1
𝑛

൥1 െ
𝑏෠ଷ

ሺ𝑎ො ൅ 2ሻሺ𝑏෠ ൅ 2ሻ
൭

𝑎ො ൅ 2

൫𝑎ො ൅ 𝑏෠൯
ଶ ൅

ሺ2𝑎ොଶ ൅ 6𝑎ො ൅ 4ሻ

൫𝑎ො ൅ 𝑏෠൯
ଷ ൅

12𝑎ොሺ𝑎ො ൅ 2ሻ

൫𝑎ො ൅ 𝑏෠൯
ସ ൅

24𝑎ොଶ

൫𝑎ො ൅ 𝑏෠൯
ହ൱൩ 

 
Where 𝑎ො, 𝑏෠ and �̂� can be obtained from ሺ3ሻ and ሺ6ሻ. 

5.  Simulation study 

In this section, using the accept-reject approach and Maple software, we generate 
random numbers from the Zeghdoudi distribution (both with and without an outlier). 
We obtain the maximum likelihood estimators of the parameters 𝑎, 𝑏 and 𝑐 using these 
samples and the Newton-Raphson technique. The MLE of R is then calculated using 
these parameters. The values of biases and MSEs of these estimates are presented 
in Table 2, for 𝑎 ൌ 1, 𝑏 ൌ 2 and 𝑐 ൌ 1.3, 1.4, 1.5, 1.6, 1.9, 2.0, 2.1, 2.6, 2.7, 2.9,
3.1, 3.5, 6.0. All the results are based on 100 replications. 
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Table 2:  Biases and (MSE)s of the MLEs of R, for a=1, b=2, and different values of c 

𝑛 ⟶ 
𝑐 ⤓ n=10 n=20 n=30 n=50 n=60 n= 80 n=90 

1.3 0.0013611 0.0012772 0.0012493 0.0012269 0.0012213 0.0012143 0.001212 

1.4 0.0013274 0.0012604 0.0012380 0.0012202 0.0012157 0.0012101 0.001208 

1.5 0.0012977 0.0012455 0.0012281 0.0012142 0.0012107 0.0012064 0.001205 

1.6 0.0012714 0.0012324 0.0012194 0.0012090 0.0012064 0.0012031 0.001202 

1.9 0.0012095 0.0012014 0.0011987 0.0011966 0.0011961 0.0011954 0.0011952 

2.0 0.0011934 0.0011934 0.0011934 0.0011934 0.0011934 0.0011934 0.0011934 

2.1 0.0011791 0.0011862 0.0011886 0.0011905 0.0011910 0.0011916 0.0011918 

2.6 0.0011281 0.0011607 0.0011716 0.0011803 0.0011825 0.0011852 0.0011861 

2.7 0.0011209 0.0011572 0.0011692 0.0011789 0.0011813 0.0011843 0.0011853 

2.9 0.0011088 0.0011511 0.0011652 0.0011765 0.0011793 0.0011828 0.0011840 

3.1 0.0010991 0.0011462 0.0011619 0.0011745 0.0011777 0.0011816 0.0011829 

3.5 0.0010850 0.0011392 0.0011572 0.0011717 0.0011753 0.0011798 0.0011813 

6 0.0010638 0.0011269 0.0011490 0.0011668 0.0011712 0.0011712 0.0011786 

6.  Illustrative application 

To demonstrate the adaptability of the Zeghdoudi distribution, we offer an 
example application of it with other distributions in this section. Therefore, we 
examine the Lindley, exponential, and Zeghdoudi distributions using real data on the 
survival times (in days) of 72 Algerians who had contracted a coronavirus 
(https://www.who.int/fr/news/item), Table 3. 

Table 3:  Comparison between Lindley, exponential and Zeghdoudi distributions 

Survival time  
𝑚 ൌ 3.2 

Obsfreq Lindley  
Ө෡ ൌ 0.50 

Exp 
Ө෡ ൌ 0.30 

Zeghdoudi 
Ө෡ ൌ 0.6 

[0, 2] 34 27.30 33.90 30.05 

[2, 4]             17 22.10 20.50 19.81 

[4, 6]             11 12.15 7.43 10.05 

[6, 8]             7 7.28 6.67 7.02 

[8, 10]            3 3.17 3.50 3.07 

Total 92 92 92 92 

𝜒ଶ  2.946 2.400 1.0095 
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Figure 1:  Comparison between distributions 

As shown in Table 2 and Figure 1, the Zeghdoudi distribution offers the smallest 
 𝜒ଶ value in comparison to the Lindley and exponential distributions, and as a result, 
best fits the data of all the distributions taken into consideration.  

7.  Conclusion 

The challenge of estimating P(Y < X) for the Zeghdoudi distribution in the presence 
of one outlier has been addressed in this study. Studies have been done on the 
maximum likelihood estimator for R and fuzzy dependability.  

Table 1 contains all of the results, which were based on 100 replications. According 
to the simulation's findings, biases and MSEs frequently hover around zero when 
parameters b and c are close to one another, and they rise when the difference between 
b and c approaches one. 

In order to demonstrate the adaptability of the Zeghdoudi distribution, the authors 
suggested an exemplary application using real data on the survival times (in days) of 
72 Algerian people who were infected with coronaviruses, and then compared the 
outcomes with those of other distributions. 
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Composite estimators for domain estimation and sensitivity 
performance interval of their weights 

Piyush Kant Rai1, Sweta Singh2 

Abstract 

Some composite estimators based on various combinations of two different existing 
estimators are obtained for domain estimation. The estimation of weights and thus 
obtaining optimum weights to combine two or more different existing direct and indirect 
estimators to form composite estimators are not an easy task for practitioners due to many 
reasons. To account for the absence of optimum weights, we obtained the sensitivity 
performance intervals for weights with respect to the proposed composite estimator. 
Subsequently, we determined the sensible values of the involved weights. The aim of this 
procedure was to confine the superiority for different composite combinations i.e., simple 
direct vs. direct ratio, simple direct vs. synthetic ratio and direct ratio vs. synthetic ratio 
composite estimators as compared to the existing estimators. 

Key words: domain estimation, synthetic and composite estimation, optimum weight, 
sensitivity performance interval. 

1.  Introduction 

Generally, sample surveys are used as a cost-effective means for data collection but 
they are not able to provide estimates with competent precision for domains 
(subpopulations). Domains may be socio-demographic or geographic subdivision of 
the population for which separate estimates are required. Direct estimators perform 
better than synthetic estimators if the sample size is large for the domain while synthetic 
estimator is better in terms of mean square error (MSE) than direct estimator if the 
sample size is small for the domain along with the corresponding synthetic assumptions 
being satisfied, i.e., smaller area resembles larger area in their properties (Gonzalez, 
1973). Further, the composite estimator is used, which is a weighted sum of two or more 
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estimators having smaller MSE in comparison with MSE of either its component 
estimators. Evaluation of the optimal weight for the composite estimators is generally 
difficult and complex in domain estimation. One of the many causes is to involve 
population parameters in the formula used for its estimation. 

Sometimes a difficulty occurs with the weights due to sampling frame problems, 
which results in some sampled elements being selected with less desired probabilities. 
The main purpose of weighting adjustments is to reduce the bias in the survey estimates 
that non-response and non-coverage can cause. Also, a challenging task in the 
construction of composite estimator is to set the weights of each input variable. 
Basically, an irritant that needs to be tackled lies in assuming the knowledge of the 
optimum value of the weighting factor which involves the population quantities. Thus, 
the main concern of the present article is to develop the performance intervals of weight 
which ensure the superiority of composite estimators as compared to its individual 
component estimators. 

In the absence of optimum weights, we need an interval of weight with a view to 
maintaining the efficiency of the composite estimator as compared to its component 
estimators.In this direction many works are in progress while a very rich literature is 
available based on estimation of weights. Agrawal and Roy (1999) discussed the 
performance of efficient estimators of small domains. The generalized class of 
composite estimator is developed and analyzed by Tikkiwal and Ghiya (2004), 
including group of estimators which are convexly combined with weights. Further, 
Pandey and Tikkiwal (2006) also discussed the generalized class of composite 
estimators under Lahiri-Midzuno sampling scheme. Tikkiwal and Rai (2009) also 
proposed composite estimators and their sensitivity interval for small domains. King-
Jong Lui (2020) discussed notes on the use of the composite estimator for improvement 
of the ratio estimator. 

Here, in the present work we considered the situation of absence of optimum 
weights and thus obtained the sensitivity performance intervals for weights in respect 
to the proposed composite estimators and figured out sensible values of the involved 
weights with a view to confining superiority for different composite combinations. 

2.  Notations and Formulation of the Problem 

Suppose a finite population U={1, 2, ..., i, ..., N} is divided into ‘A’ domains Ua 

having size Na (a=1, …, A). We represent the study characteristic by ‘y’ and auxiliary 
characteristic by ‘x’. A random sample ‘s’ of size ‘n’ is drawn using simple random 
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sampling without replacement (SRSWOR) from population U such that ‘na’ units in the 
sample ‘s’ comes from domain Ua (a=1, …, A). We denote 

1

A

a
a

N N


      and     
1

A

a
a

n n


  

Notations used are given as follows: 

X : Mean of the population based on ‘N’ observations of x. 
aX : Mean of the domain ‘a’ based on ‘Na’ observations of x. 

x : Mean of the sample ‘s’ based on ‘n’ observations of x. 
ax : Mean of the sample of domain ‘a’ based on ‘na’ observations of x. 

Y : Mean of the population based on ‘N’ observations of y. 
aY : Mean of the domain ‘a’ based on ‘Na’ observations of y. 

y : Mean of the sample ‘s’ based on ‘n’ observations of y. 

ay : Mean of the sample of domain ‘a’ based on ‘na’ observations of y. 

Let Xai (a=1, …, A; i=1, …, Na) denote the ith observation of ath domain for the 
characteristic x and Yai (a=1, …, A; i=1, …, Na) denote the ith observation of ath domain 
for the characteristic y. The corresponding various mean squares and coefficient of 
variations of domain Ua for direct estimators for study and auxiliary characteristics are 
given as follows: 
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The corresponding various mean squares and coefficient of variations of domain 
Ua for synthetic estimators are given as follows: 
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3.  Domain Estimator under Study 

As we have discussed, separate estimates are required for the domain under study. 
There are different direct and indirect methods of estimation for the study of domain 
of interest. For our case, we consider the composite estimators for the estimation of 
domains.  

3.1.  Composite Estimators 

The following three cases of composite estimators for ath domain are considered: 

(i) Simple direct estimator with direct ratio estimator 

, (1) , , ,(1 )c a d a d r ay y y     

where ,d ay = simple direct estimator and , ,d r ay = direct ratio estimator. 

Here, the bias and MSE terms of 𝑦തௗ,௔ and 𝑦തௗ,௥,௔ can be obtained as, 

,( ) 0d aBias y                                                                                     (3.1.1) 
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(3.1.4) 

(ii) Simple direct estimator with synthetic ratio estimator 

, (2) , , ,(1 )c a d a syn r ay y y     

where  ,d ay = simple direct estimator and , ,syn r ay = synthetic ratio estimator. 

The bias and MSE of 𝑦ത௦௬௡,௥,௔ will be obtained as, 
2
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                                      (3.1.5) 
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      
                            

(3.1.6) 

(iii) Direct ratio estimator with synthetic ratio estimator 

, (3) , , , ,(1 )c a d r a syn r ay y y     
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where  , ,d r ay = direct ratio estimator and , ,syn r ay = synthetic ratio estimator. The bias 

and MSE terms of , ,d r ay  and , ,syn r ay  have been already mentioned above. 

3.2.  Performance Intervals for Weight  

Let us consider composite estimator 3t as a linear combination of components 1t  

and 2t  i.e., 

3 1 1 2 2 1 2(1 )t t t t t                                               (3.2.1) 

Here 
1 2 1   , where 1   and 2 1   ;  is the assigned weight. 

For better performing interval of composite estimator 3t , MSE( 3t ) is less than equal 

to either of MSE( 1t ) or MSE( 2t ).Now, we have two conditions, the first one is: 

3 1( ) ( )MSE t MSE t                                                                                                          (3.2.2)
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On solving the above quadratic equation and assuming that the covariance term is 
small relative to MSE( 2t ),we get, 
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As 1 is an integer value of  , we take the other values of   as, 
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(3.2.3) 

Again, the second condition is: 

3 2( ) ( )MSE t MSE t                                                   (3.2.4) 

Similarly, on solving equation (3.2.4), we get, 
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(3.2.5) 

So, the better performing interval of 3t estimator is given as, 
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Now, let us consider the three cases for 1t  and 2t estimators as discussed before in 
previous Section 3.1, as follows: 

(i) Simple direct estimator with direct ratio estimator 

, (1) , , ,(1 )c a d a d r ay y y    , where 1t =
,d ay  and 2t = , ,d r ay . 

Putting the formulae of MSE from the expressions (3.1.2) and (3.1.4)in the 
expression of the left-hand part and right-hand part of (3.2.6),we get, 
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(3.2.7) 

(ii) Simple direct estimator with synthetic ratio estimator 

, (2) , , ,(1 )c a d a syn r ay y y     , where 1t = ,d ay  and 2t = , ,syn r ay . 

After putting the MSE expressions, the expression (3.2.6) provides, 
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(3.2.8) 

(iii) Direct ratio estimator with synthetic ratio estimator 

, (3) , , , ,(1 )c a d r a syn r ay y y     , where 1t = , ,d r ay  and 2t = , ,syn r ay . 

The MSE of , ,d r ay and , ,syn r ay are given by expressions (3.1.4) and (3.1.6) respectively. 
Thus, expression (3.2.6) provides, 
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(3.2.9) 
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3.3.  Sensitivity Performance Intervals for Weight  

Let us consider ‘P’ as the proportional inflation in the MSE of 3t  due to use of some 

  other than  .opt ,i.e. 

3 . 3

. 3

( ) ( )

( )
opt

opt

MSE t MSE t
P

MSE t




                                                
(3.3.1) 

For the sake of convenience neglecting the covariance term which does not 
hampered the equation and on substituting the formula of MSE of 3t  under   and 

.opt , we get: 
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Divide numerator and denominator by 2
.(1 )opt and taking  2

1   common from 
first term of numerator, we have; 
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where,                                   
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As P is a ratio of two positive quantity (as numerator and denominator of P are 
positive quantity) so, 0P  , which implies 
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Therefore,  
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On simplifying equation (3.3.5), we have; 
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Now, we have to find the optimum weight for composite estimator 3t . 

3 1 2(1 )t t t     
2 2

3 1 2 1 2( ) ( ) (1 ) ( ) 2 (1 )cov( , )MSE t MSE t MSE t t t                       (3.3.7) 
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On differentiating eq. (3.3.7) with respect to  and equating it to zero after 
neglecting the covariance term, assuming that the covariance term is relatively small, 
we get, 
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                                             (3.3.8) 

Using (3.3.6) and (3.3.8), we have, 
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(3.3.9) 

Thus, the sensitivity performance interval for  is given as: 
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Now, the sensitivity performance interval of the involved weight for the above three 
composite estimators as discussed before in previous Section 3 are given as follows: 

(i) Simple direct estimator with direct ratio estimator 

, (1) , , ,(1 )c a d a d r ay y y    , where 1t = ,d ay  and 2t = , ,d r ay . 

Here, the expression of sensitivity interval is obtained as 
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(3.3.11) 

(ii) Simple direct estimator with synthetic ratio estimator 

, (2) , , ,(1 )c a d a syn r ay y y    , where 1t = ,d ay  and 2t = , ,syn r ay  

The sensitivity performance interval for  in this case is obtained as 
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(iii) Direct ratio estimator with synthetic ratio estimator 

, (3) , , , ,(1 )c a d r a syn r ay y y    , where 1t = , ,d r ay  and 2t = , ,syn r ay . 

Here, the sensitivity performance interval will be obtained as 
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(3.3.13) 

4.  Numerical Illustration 

We consider the data from Sarndal et al. (1992), Appendix B of Sweden Municipalities 
which are classified into eight geographical regions. We take all eight geographical 
regions for the study purpose with sizes 25, 48, 32, 38, 56, 41, 15 and 29 respectively and 
select a sample of 5, 10, 6, 8, 11, 8, 3, 6sampling units from each domain respectively. 
We take the study variable ‘y’ as RMT85 (Revenues from the 1985 municipal taxation 
(in millions of kronor)) and the auxiliary variable ‘x’ as P85 (1985 population 
(in thousands)). The performance intervals for weight derived in equations (3.2.7), 
(3.2.8), (3.2.9)and sensitivity performance intervals for weight derived in equations 
(3.3.11), (3.3.12), (3.3.13)are presented in Table 4.1 and 4.2 respectively. 

Table 4.1:  Performance intervals for weight of three different composite estimators 

Domain 

Simple Direct with 
Direct Ratio 

, (1)c ay  

Simple Direct with 
Synthetic Ratio 

, (2)c ay  

Direct Ratio with 
Synthetic Ratio 

, (3)c ay  

1 2     1 2     
1 2     

1 [-0.9843,0.0157] [-0.9950,0.0050] [-0.5191,0.4808] 
2 [-0.9867,0.0132] [-0.8200,0.1799] [0.8737,1.8737] 
3 [-0.8767,0.1232] [-0.6234,0.3765] [0.5587,1.5587] 
4 [-0.6600,0.3399] [-0.9626,0.0374] [-0.8297,0.1703] 
5 [-0.6903,0.3097] [-0.9818,0.0182] [-0.9043,0.0957] 
6 [-0.9712,0.0288] [-0.4356,0.5644] [0.9284,1.9284] 
7 [-0.9748,0.0252] [-0.8565,0.1435] [0.7166,1.7166] 
8 [-0.9703,0.0297] [-0.7278,0.2722] [0.8253,1.8253] 
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Table 4.2:  Sensitivity performance intervals for weight of three composite estimators 

Domain 

Simple Direct with 
Direct Ratio 

, (1)c ay  

Simple Direct with 
Synthetic Ratio 

, (2)c ay  

Direct Ratio with 
Synthetic Ratio 

, (3)c ay  

1 2     
1 2     

1 2     

1 [0.0078,0.0157] [0.0025,0.0050] [0.2404,0.4808] 
2 [0.0066,0.0132] [0.0899,0.1799] [0.9368,1.8737] 
3 [0.0616,0.1232] [0.1882,0.3765] [0.7793,1.5587] 
4 [0.1699,0.3399] [0.0187,0.0374] [0.0852,0.1703] 
5 [0.1548,0.3097] [0.0091,0.0182] [0.0478,0.0957] 
6 [0.0144,0.0288] [0.2822,0.5644] [0.9642,1.9284] 
7 [0.0126,0.0252] [0.0718,0.1435] [0.8583, 1.7166] 
8 [0.0148,0.0297] [0.1361,0.2722] [0.9126,1.8253] 

 
From the above two tables we see that the performance intervals for weight of  

, (1)c ay , , (2)c ay  and , (3)c ay  are ranging from -0.9867 to 0.3399, -0.9950 to 0.5644 and -
0.9043 to 1.9284 respectively. It means all three composite estimators retain its 
superiority for values of  ranging from -0.9950 to 1.9284. Also, we observe that the 
length of the performance intervals for weight of composite estimators is one which 
follows from the expression (3.2.6). Table 4.2 clearly shows that the sensitivity 
performance interval for weight of composite estimators lies between 0.0025  to 1.9284. 

5.  Conclusions 

Composite estimators provide efficient estimates for the unknown population 
parameters as compared to their constituent estimators. The estimation of weights in 
the composite estimators are not easy task and due to this reason, this is not a popular 
estimator among users and practitioners. Here, in the present study an effort is made 
to get sensitivity performance intervals of the weight that guarantee the superiority of 
the proposed composite estimator with respect to its component estimators in the field 
of domain estimation also. 

From the above analysis of three different composite estimators, we obtain the 
performance intervals of weight which ensure supremacy of composite estimators  
as compared to their component estimators. As an example, we show that the 
combination of direct ratio estimator with synthetic ratio estimator performs better 
within performance intervals obtained in Table 4.1in terms of MSE. It is also concluded 
that the composite estimators for the weights lie in the sensitivity performance intervals 
are less varying in terms of MSE. The outcomes of the study will be useful to develop 
efficient composite estimators for the domain estimation in general and for small area 
estimation in particular. 
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