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Estimation of quantiles with the exact bootstrap method 

Joanna Kisielińska1 

Abstract 

A problem with the estimation of quantiles occurs when the sample comes from an unknown 
distribution. The estimation uses the bootstrap method in the version that the literature 
refers to as exact. Three bootstrap estimators were used: two of them based on one order 
statistic, and the third on a linear combination of two order statistics (for an integer). The 
distribution of the exact bootstrap estimator based on a single order statistic is known. It has 
been shown that there is no general form of the distribution of the exact bootstrap estimator 
based on two order statistics. However, it is possible to calculate such a distribution – the 
article presents the algorithm that performs such a task. The bootstrap confidence intervals 
were constructed using the exact percentile method. It has been shown that if the estimator 
is based on a single order statistic, it is known in advance which elements of the primary 
sample are the limits of the confidence intervals, so there is no need to resample. The 
intervals determined by the exact percentile method were compared with those constructed 
using other methods. It has been shown that the information on the direction of the 
asymmetry of the distribution that the sample comes from is worth considering when 
selecting the rank of the order statistic used as an estimator. Attention is paid to the influence 
of the quality of the pseudorandom number generators on the results of the Monte Carlo 
simulation. 
Key words: quantile estimation, confidence intervals for quantile, exact bootstrap method, 
exact percentile method, Monte Carlo method. 

1.  Introduction 

Let X be a continuous random variable with cumulative distribution (CDF) F(x) 
and density function (PDF) f(x). Let p  (0,1) be given and let 𝜉௣ be p-quantile of F, 
such that 𝑝 ൌ 𝐹൫𝜉௣൯, 𝜉௣ ൌ 𝐹ିଵሺ𝑝ሻ, and 𝑓൫𝜉௣൯ (e.g. Bahadur (1966, p. 577), Nagaraja 
and Nagaraja (2020, p. 75)). Bahadur (1966, p. 577), gives the conditions to be satisfied 
by F so that 𝜉௣ be unique. 

The p-quantile is most often defined as the left quantile (e.g. Serfling, 1980, p. 3): 
𝜉௣ ൌ 𝐹ିଵሺ𝑝ሻ ൌ 𝑖𝑛𝑓ሼ𝑥:𝐹ሺ𝑥ሻ ൒ 𝑝ሽ.       (1) 
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Sample quantiles are used to estimate quantiles. For a sample ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ from 
distribution F Serfling (1980, p. 74) defines the sample p-quantile 𝜉௣௡ as p-quantile of 
empirical distribution Fn: 

𝜉௣௡ ൌ 𝐹௡ିଵሺ𝑝ሻ ൌ 𝑖𝑛𝑓ሼ𝑥:𝐹௡ሺ𝑥ሻ ൒ 𝑝ሽ.       (2) 

Sample p-quantiles, used as quantile estimators (i.e. when 𝜉መ௣௡ ൌ 𝜉௣௡), are 
presented using order statistics. Let Xnz denote the zth order statistic, i.e. the smallest 
zth element of the sample of size n, and then (Serfling, 1980, p. 88): 

𝜉መ௣௡ ൌ ቊ
𝑋௡,௡௣,      if 𝑛𝑝 is integer       
𝑋௡,ሾ௡௣ሿାଵ, if 𝑛𝑝 is not integer,       (3) 

where [] denotes the floor function. 

Nagaraja and Nagaraja (2020, p. 75) identify the sample p-quantile with the 
following order statistic: 

𝜉መ௣௡ ൌ 𝑋௡,ሾ௡௣ሿାଵ.          (4) 

Hyndman and Fan (1996, p. 361) give many other definitions of sample quantiles 
based on order statistics. Their general form is: 

𝜉௣௡ ൌ ሺ1 െ 𝛾ሻ𝑋௡௝ ൅ 𝛾𝑋௡,௝ାଵ,       (5) 

where ௝ି௠
௡

൑ 𝑝 ൏
௝ି௠ାଵ

௡
 for some m  R and 0    1. The  parameter is a function of j 

and g, where j = [pn + m] and g = pn + m – j. Formula (5) includes the definitions (3) 
and (4). 

With some assumptions (Serfling, 1980 p. 74), the sample p-quantile 𝜉መ௣௡ defined 
by (2) is strongly consistent for estimation of 𝜉௣.  

It is known that the sample p-quantile is asymptotically normal if f is continuous 
and positive at 𝜉௣ (e.g. Serfling, 1980, p. 77), (Nagaraja and Nagaraja, 2020, p. 77). 
The limit distribution has a mean 𝜉௣ and a variance ௣ሺଵି௣ሻ

௙మ൫క೛൯௡
. The sample quantile vector 

൫𝜉መ௣ଵ, … , 𝜉መ௣௞൯ is also asymptotically normal for 0 ൏ 𝑝ଵ ൏ ⋯ ൏ 𝑝௞ ൏ 1 if f is continuous 
and positive at 𝜉௣ଵ, … , 𝜉௣௞. The parameters of this distribution are a mean vector 

൫𝜉௣ଵ, … , 𝜉௣௞൯ and a covariance matrix with elements: ቆ ௣೔ሺଵି௣ೕሻ

௙ቀక೛೔ቁ௙ቀక೛ೕቁ௡
ቇ (Serfling, 1980 p. 80). 

The consequence of the asymptotic normality of the sample quantile vector is the 
asymptotic normality of any linear combination of these quantiles. 

Serfling (1980, p. 94) based on the Bahadur (1966) article indicates that the order 
statistic 𝑋௡௞೙  (where {kn} is a sequence of positive integers (1  kn  n) such that kn/n 
tends to p sufficiently fast) and the sample p-quantile 𝜉መ௣௡ are roughly equivalent as 
estimates of 𝜉௣. Despite this, in the general case difference 𝑋௡௞೙ െ 𝜉௣ has a limit normal 
distribution not centered at 0 (Serfling, 1980, p. 94). 
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If the sample of size n comes from a continuous distribution with CDF F(x) and 
PDF f(x), then the PDF of the zth order statistics Xnz is (e.g. David and Nagaraja, 2003, 
p. 10); (Evans, Leemis and Drew, 2006, p. 20): 

𝑓௑೙೥ሺ𝑥ሻ ൌ
௡!

ሺ௭ିଵሻ!ሺ௡ି௭ሻ!
 𝑓ሺ𝑥ሻሾ𝐹ሺ𝑥ሻሿ௭ିଵሾ1 െ 𝐹ሺ𝑥ሻሿ௡ି௭     (6) 

This formula is the same as that given by Serfling (1980 p. 85), which specifies PDF 
of the sample p-quantile. 

The practical application of the expression (6) is cumbersome (Serfling, 1980, p. 87). 
First, it requires knowledge of the distribution the sample comes from, and secondly, 
the distribution of order statistics is not usually in the class of known and commonly used 
distributions. Pekasiewicz (2015, p. 23) gives the density functions of the order statistics 
Xnz for selected distributions the sample comes from. Using limit distribution is also 
troublesome due to the necessity of knowing 𝑓൫𝜉௣൯. The bootstrap method proposed by 
Efron in 1979 does not have these disadvantages. It does not require knowledge of the 
distribution a sample comes from. Falk and Kaufmann (1991), Falk and Reiss (1989), 
Bickel and Freedman (1981) and Singh (1981) (among others) studied the convergence 
of the bootstrap estimators of the parameters (also quantiles). They showed that bootstrap 
error converges to 0 with probability one. This indicates the correctness of this approach, 
although one can discuss the order of this convergence. 

In the bootstrap method, empirical distribution Fn is an estimator of the 
distribution F. And therefore, the bootstrap estimator distribution (dependent on the Fn) 
is an estimator of the estimator distribution (dependent on the F). Efron (1979, p. 4) 
proposes three methods of computing the bootstrap estimator distribution. The first is 
a theoretical calculation, the second is the Monte Carlo (MC) approximation, and the 
third is the Taylor series expansion. The MC approximation invloves selecting many 
resamples of size n with replacement from the n-element primary sample. Fisher and 
Hall (1991) pointed out that instead of drawing resamples2 (especially for small 
samples), one can generate all resamples. One can then determine all the realizations of 
the bootstrap estimator. This method was called the exact bootstrap method in order 
to distinguish it from the commonly used MC approximation with resampling. 
It should be noted that the distributions of the bootstrap estimators gained with the 
exact bootstrap method are equivalent to those obtained with the first method proposed 
by Efron. The difference is only in the method of their determination. The exact method 
relies on numerical calculations, Efron method on theoretical calculations. In the 
following considerations, the bootstrap method based on all resamples will be called the 
exact method, no matter how the calculations were made. 

                                                           
2 There are nn resamples in total, but the different resamples are ቀ2𝑛 െ 1

𝑛
ቁ

 
 (Fisher and Hall 1991 p. 160). To 

calculate the number of resamples with the same elements, one should compute the number of its permutations. 
One should permute only the elements on positions with non-repeating elements. 
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Taking into consideration all resamples allows to eliminate errors caused by 
resampling (Hutson and Ernst, 2000, p. 94). Resampling may be interpreted as drawing 
bootstrap samples from their entire population (nn). In the MC approximation, some 
resamples may be omitted, while others used multiple times. Kisielinska (2013, p. 1068) 
presented the comparison of the exact bootstrap method and the bootstrap method 
with resampling for any parameter. 

The bootstrap p-quantile estimators 𝜉መ௣௡∗  are also based on order statistics. The order 
statistics of the bootstrap resample 𝑋௡௭∗  is its zth smallest element. Evans, Leemis, Drew 
(2006, p. 23) give the distribution of such statistic – a case of a finite population, 
sampling with replacement. The distribution thus determined is of course the exact 
bootstrap distribution (formula (16) in section 2). 

The bootstrap method is not the only method for estimating quantiles, which does 
not require to know the distribution the sample comes from. For an ample review of 
distribution-free methods to construct confidence intervals, see Nagaraja and Nagaraja 
(2020). 

Confidence intervals for quantiles can be determined using an asymptotic approach 
based on the sample p-quantile. In simulation experiments, the samples come from 
a known distribution, and therefore the values of 𝜉௣ and 𝑓൫𝜉௣൯ are known. One can 
determine 1-  confidence interval of the sample p-quantile from the limit distribution: 

𝐼௣௡஺௔ ൌ ሾ𝐹஺
ିଵሺ∝ 2⁄ ሻ,𝐹஺

ିଵሺ1 െ ∝ 2⁄ ሻሿ       (7) 

where FA is the normal distribution with mean 𝜉௣ and variance ௣ሺଵି௣ሻ
௙మ൫క೛൯௡

. 

Serfling (1980, p. 130) proposes to use an asymptotic approach based on order 
statistics to determine confidence intervals for quantiles. The confidence interval is as 
follows: 

𝐼௣௡஺௕ ൌ ൣ𝑋௡௞భ೙ ,𝑋௡௞మ೙൧          (8) 

where 𝑘ଵ௡ ൌ 𝑛 ∙ ൬𝑝 െ
௨∝ඥ௣ሺଵି௣ሻ

√௡
൰ , 𝑘ଶ௡ ൌ 𝑛 ∙ ൬𝑝 ൅

௨∝ඥ௣ሺଵି௣ሻ

√௡
൰ , and u is the 100(1-/2)th 

percentile point of standard normal distribution. If n   confidence coefficient of the 
interval 𝐼௣௡஺௕ 1- (Serfling, 1980 p. 104). 

The percentile method enables to construct confidence intervals when using the 
bootstrap approach. The main objections to this method relate to applications in the 
cases of small samples. Many authors note that the percentile method produces 
confidence intervals of first-order accuracy only (e.g Falk and Kaufmann (1991), Efron 
and Tibshirani (1993), Nagaraja and Nagaraja, 2020). For this reason, many proposals 
for better solutions have been created. 

Efron (1987) proposed the BCa method (i.e. bias-corrected and accelerated), which 
is second-order accurate (Efron and Tibshirani, 1993) and has higher coverage 
probability. 
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Nagaraja and Nagaraja (2020) proposed a method of adjacent spacings to construct 
quantiles confidence intervals. The method is easy to apply, yet it requires experimental 
selection of two parameters s and t, and knowledge of the critical values of the statistics 
W(s+t). Critical values of the W(s+t) are given by Nagaraja and Nagaraja (2020, p. 88). 
Parameters s and t determine the rank of order statistics, used to construct the 
confidence interval. Nagaraja and Nagaraja (2020) conducted simulation studies to 
compare quantiles confidence intervals obtained using various distribution free-
methods. They assessed the effectiveness of the methods based on the width of 
confidence intervals and coverage probability. 

The problem presented in the article is in the estimation of quantiles when 
a distribution the sample comes from is not known. The novelty of the approach 
presented in the paper consists in estimating the quantiles with an exact bootstrap 
quantile estimator based on a linear combination of two order statistics. The algorithm 
presented in Section 2 allows for determining its distribution exactly, not only in an 
approximate manner. It is also shown that in the case of quantile estimation, confidence 
intervals are much easier to determine with the exact percentile method than with the 
percentile method with resampling, if the estimator is based on a single order statistics. 
Moreover, it is shown that the information about the direction of asymmetry of the 
distribution the sample comes from can be used to determine the rank of the single 
order statistics used as an estimator. 

All calculations were made in Excel using the VBA language for Application. 

2.  Distributions of quantiles bootstrap estimators 

Let the n-element resample, drawn with replacement from the original sample 
ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ, be marked as ሺ𝑋ଵ∗,𝑋ଶ∗, … ,𝑋௡∗ሻ.  Each variable 𝑋௜∗ has a discrete empirical 
distribution Fn. Efron, 1979 assumed equal probabilities pi =1/n for each element of the 
primary sample xi. Due to a finite measurement accuracy of any values, elements of the 
observed sample can be repeated. The empirical distribution is determined by 
probabilities pi for each xi where ∑ 𝑝௜ ൌ 1௞

௜ୀଵ  and k is the number of distinct elements 
in a primary sample. 

The elements of the resample are the discrete random variables 𝑋௜∗ with PDF fn, 
CDF Fn, and survival function (SF) Sn: 

𝑓௡ሺ𝑥ሻ ൌ 𝑃ሺ𝑋௜
∗ ൌ 𝑥ሻ ൌ ൜

𝑝௝ 𝑥 ൌ 𝑥௝ , 𝑗 ൌ 1, … , 𝑘
0 for others 𝑥 ∈ 𝑅    

,     (9) 

  𝐹௡ሺ𝑥ሻ ൌ 𝑃ሺ𝑋௜
∗ ൑ 𝑥ሻ ൌ ∑ 𝑝௝

௞
௝ିଵ;௫ೕஸ௫ ,         (10) 

  𝑆௡ሺ𝑥ሻ ൌ 𝑃ሺ𝑋௜
∗ ൒ 𝑥ሻ ൌ 1 െ 𝐹௡ሺ𝑥ሻ ൅ 𝑓௡ሺ𝑥ሻ.       (11) 
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The bootstrap quantile estimator according to (5) can be written in the general form 
as: 

𝜉መ௣௡∗  ൌ ሺ1 െ 𝛾ሻ𝑋௡௝
∗ ൅ 𝛾𝑋௡,௝ାଵ,

∗         (12) 

where: 0    1, j=[np] (wherein [np]=np for integer np), and 𝑋௡௝∗  is the jth order 
statistics of the resample. 

In the research three bootstrap quantile estimators were used: 

𝜉መ௣௡ଵ∗  ൌ ቊ
𝑋௡,௡௣,
∗      if 𝑛𝑝 is integer       

𝑋௡,ሾ௡௣ሿାଵ
∗ if 𝑛𝑝 is not integer ,       (13) 

𝜉መ௣௡ଶ∗  ൌ 𝑋௡,ሾ௡௣ሿାଵ
∗ ,                                          (14) 

𝜉መ௣௡ଷ∗  ൌ ቊ
ሺ1 െ 𝜀ሻ𝑋௡,௡௣

∗ ൅ 𝜀𝑋௡,௡௣ାଵ,
∗ if 𝑛𝑝 is integer       

𝑋௡,ሾ௡௣ሿାଵ
∗                             if 𝑛𝑝 is not integer ,   (15) 

where:  = (n+1)p-[(n+1)p] as Hutson 2002 p. 332 suggests. 

The estimator 𝜉መ௣௡ଵ∗  was obtained assuming  = 0 for np integer and  = 1 for np not 
integer, the estimator 𝜉መ௣௡ଶ∗  assuming   = 1, and the estimator 𝜉መ௣௡ଷ∗  assuming =  for np 
integer and  = 1 for np not integer. 

In the formulae given below, it was assumed that the primary sample is ordered, 
viz.  x1 x2 ,…, xn-1   xn. 

Distributions of bootstrap quantile estimators based on one order statistics result 
directly from the formula given by Evans, Leemis, Drew (2006, p. 23) and are as follows: 

𝑃ሺ𝑋௡௭∗ ൌ 𝑥௟ሻ  ൌ 

ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧

for 𝑙 ൌ 1                                                                                                               
∑ ቀ

𝑛
𝑤ቁ ሾ𝑓௡ሺ𝑥ଵሻሿ

௡ି௪ሾ𝑆௡ሺ𝑥ଶሻሿ௪௡ି௭
௪ୀ଴                                                                  

for 𝑙 ൌ 2, … , 𝑘 െ 1                                                                                             

∑ ∑ ቀ
𝑛

𝑢,𝑛 െ 𝑢 െ 𝑤,𝑤ቁ ሾ𝐹௡ሺ𝑥௟ିଵሻሿ
௨ሾ𝑓௡ሺ𝑥௟ሻሿ௡ି௨ି௪௡ି௭

௪ୀ଴ ሾ𝑆௡ሺ𝑥௟ାଵሻሿ௪௭ିଵ
௨ୀ଴

for 𝑙 ൌ 𝑘                                                                                                               
∑ ቀ

𝑛
𝑢ቁ ሾ𝐹௡ሺ𝑥௞ିଵሻሿ

௨ሾ𝑓௡ሺ𝑥௞ሻሿ௡ି௨                                                              ௭ିଵ
௨ୀ଴

 (16) 

where z is the rank of the order statistic used as the estimator. 

When np is not integer the estimators 𝜉መ௣௡ଵ∗ , 𝜉መ௣௡ଶ∗ , and 𝜉መ௣௡ଷ∗  are the same. The rank of 
the order statistic used as the bootstrap estimator of p-quantile is z=[np] + 1. When np 
is not integer, the rank of the order statistic used as the bootstrap estimator of p-quantile 
is z=np for estimator 𝜉መ௣௡ଵ∗  and z=np for estimator 𝜉መ௣௡ଶ∗ .  

Only elements of a primary sample can be realizations of the estimators based on 
one order statistics. Realizations of the estimator in the form of a linear combination of 
two order statistics may also be weighted means of all two-element combinations 
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chosen therefrom. This means that the estimator 𝜉መ௣௡ଷ∗  for integer np has a considerably 
higher number of realizations. It is impossible to give a general expressions determining 
these estimator. Nevertheless, one can determine the probabilities that on positions np 
and np+1 in resamples either any lth primary sample element will occur or any two of 
its elements: l1 and l2, with l1 < l2. 

The probability that in an ordered resample element xl occurs at least on two 
positions z = np  and  z + 1 is: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ  ൌ 

ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧

for 𝑙 ൌ 1                                                                                                                  
∑ ቀ

𝑛
𝑤ቁ ሾ𝑓௡ሺ𝑥ଵሻሿ

௡ି௪ሾ𝑆௡ሺ𝑥ଶሻሿ௪௡ି௭ିଵ
௪ୀ଴                                                                  

for 𝑙 ൌ 2, … , 𝑘 െ 1                                                                                                 

∑ ∑ ቀ
𝑛

𝑢,𝑛 െ 𝑢 െ 𝑤,𝑤ቁ ሾ𝐹௡ሺ𝑥௟ିଵሻሿ
௨ሾ𝑓௡ሺ𝑥௟ሻሿ௡ି௨ି௪௡ି௭ିଵ

௪ୀ଴ ሾ𝑆௡ሺ𝑥௟ାଵሻሿ௪௭ିଵ
௨ୀ଴

for 𝑙 ൌ 𝑘                                                                                                                  
∑ ቀ

𝑛
𝑢ቁ ሾ𝐹௡ሺ𝑥௞ିଵሻሿ

௨ሾ𝑓௡ሺ𝑥௞ሻሿ௡ି௨                                                                   ௭ିଵ
௨ୀ଴

 (17) 

The probability that in an ordered resample, element x1 occurs exactly z times, and 
the element 𝑥௟, for 𝑙 ൌ 2, … , 𝑘 െ 1 occurs at least once on position z +1 is equal to: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ ൌ 

ൌ ∑ ቀ
𝑛

𝑧,𝑛 െ 𝑧 െ 𝑤,𝑤ቁ ሾ𝐹௡ሺ𝑥ଵሻሿ
௭ሾ𝑓௡ሺ𝑥௟ሻሿ௡ି௭ି௪ሾ𝑆௡ሺ𝑥௟ାଵሻሿ௪௡ି௭ିଵ

௪ୀ଴ .  (18) 

The probability that in an ordered resample, element 𝑥௟, for 𝑙 ൌ 2, … , 𝑘 െ 1 occurs 
at least once on position z, and element xk occurs exactly n-z times, is: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ ൌ 

ൌ ∑ ቀ
𝑛

𝑢, 𝑧 െ 𝑢,𝑛 െ 𝑧ቁ ሾ𝐹௡ሺ𝑥௟ିଵሻሿ
௨ሾ𝑓௡ሺ𝑥௟ሻሿ௭ି௨ሾ𝑆௡ሺ𝑥௞ሻሿ௡ି௭௭ିଵ

௨ୀ଴ .    (19) 

The probability that element x1 occurs in an ordered resample exactly z times, and 
the elements xk exactly n-z times, is: 

𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ ൌ ቀ

𝑛
𝑧,𝑛 െ 𝑧ቁ ሾ𝑓ሺ𝑥ଵሻሿ

௭ሾ𝑓௡ሺ𝑥௞ሻሿ௡ି௭.  (20) 

The probability that in an ordered resample element 𝑥௟భ  occurs at least once on 
position z, and  element 𝑥௟మ  at least once on position z+1 ⋀ ሺ𝑙ଵழ𝑙ଶሻ∈ሼ2,3, . . , 𝑘 െ 2ሽ× ௟భಬ௟మ

ሼ3,4, . . , 𝑘 െ 1ሽ, is: 

𝑃 ቀ൫𝑋௡௭∗ ൌ 𝑥௟భ൯ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟మ൯ቁ ൌ 

ൌ ∑ ∑ ቀ
𝑛

𝑢, 𝑧 െ 𝑢,𝑛 െ 𝑧 െ 𝑤,𝑤ቁ𝑊
௡ି௭ିଵ
௪ୀ଴

௭ିଵ
௨ୀ଴         (21) 

𝑊 ൌ ൣ𝐹௡൫𝑥௟భିଵ൯൧
௨
ൣ𝑓௡൫𝑥௟భ൯൧

௭ି௨
ൣ𝑓௡൫𝑥௟మ൯൧

௡ି௭ି௪
ൣ𝑆௡൫𝑥௟మାଵ൯൧

௪   
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The exact distribution of bootstrap p-quantile estimator based on two order 
statistics (estimator 𝜉መ௣௡ଷ∗  when np is an integer) is: 

𝑃൫𝜉መ௣௡ଷ∗ ൌ 𝑥௟൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ , for 𝑙 ൌ 1, … , 𝑘 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥ଵ ൅ 𝜀𝑥௟൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟൯ቁ,  

   for  𝑙 ൌ 2, … , 𝑘 െ 1 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥௟ ൅ 𝜀𝑥௞൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥௟ሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ,  

   for  𝑙 ൌ 2, … , 𝑘 െ 1 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥ଵ ൅ 𝜀𝑥௞൯ ൌ 𝑃 ቀሺ𝑋௡௭∗ ൌ 𝑥ଵሻ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௞൯ቁ 

𝑃൫𝜉መ௣௡ଷ∗ ൌ ሺ1 െ 𝜀ሻ𝑥௟భ ൅ 𝜀𝑥௟మ൯ ൌ 𝑃 ቀ൫𝑋௡௭∗ ൌ 𝑥௟భ൯ ∧ ൫𝑋௡,௭ାଵ
∗ ൌ 𝑥௟మ൯ቁ,  

⋀ ሺ𝑙ଵழ𝑙ଶሻ∈ሼ2,3, . . , 𝑘 െ 2ሽ× ሼ3,4, . . , 𝑘 െ 1ሽ௟భಬ௟మ .         (22) 

Some realizations of the 𝜉መ௣௡ଷ∗  estimator may repeat themselves, therefore the 
probabilities corresponding to these realizations should be added. As the number and 
order of the ordered realizations of the estimator based on two order statistics depend 
on the primary sample, one cannot give the general form of its distribution. 

The algorithm for determining the distribution of the estimator based on two order 
statistics is as follows: 
1. For each pair (l1, l2)  {1,2, …, k}  {1,2, …, k} such that  l1  l2, the corresponding 

realization of the estimator should be calculated: 𝑦௝ ൌ ሺ1 െ 𝜀ሻ𝑥௟భ ൅ 𝜀𝑥௟మ and 
probability 𝑃 ቀ൫𝑋௡௭∗ ൌ 𝑥௟భ൯ ∧ ൫𝑋௡,௭ାଵ

∗ ൌ 𝑥௟మ൯ቁ.   
2. Calculate the sum of probabilities determined in point 1 for each unique yj. 
3. If necessary, the estimator realizations should be sorted (e.g. to use the percentile 

method). 
The presented algorithm allows for an exact calculation of the distribution of 

a linear combination of two consecutive order bootstrap statistics. Nagaraja and 
Nagaraja (2020, p. 81) based on the previous work of other authors (Nyblom, 1992), 
(Hettmansperger and Sheather, 1986) give the formulas that allow calculating this 
distribution approximately. 

A useful attribute of quantile estimators distributions based on single order 
statistics is that the probabilities for all estimator realizations are the same for all 
primary samples of a given size, provided that k = n (probabilities given by the 
expression (16) depend only on n and p). Distributions of estimators in the form of 
a linear combination of two order statistics do not have such property. It is worth 
noting, however, that the probabilities given by the expressions (17)–(21) also depend 
only on n and p – if there were no repetition in the sample. The occurrence of 
repetitions only causes that the probabilities for an element occurring multiple times 
in the sample are added together. 
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Knowing the exact bootstrap distribution of the quantile estimator can be useful 
for constructing confidence intervals for quantile. Determining the expected value and 
variance does not require knowing it. These values can be calculated using exact 
analytical expressions for any L-estimator given by Hutson and Ernst (2000). 
All variants of estimators (13)–(15) are L-estimators. If an estimator is based on a single 
order statistics, the expressions for multipliers for a mean (Hutson and Ernst 
(2000, p. 91)) are equivalent to the probabilities given in (16). If the estimator is based 
on two order statistics, the multipliers can be easily obtained from formulas (17)–(21). 
It is worth recalling that the expressions for the mean and variance of the median 
bootstrap estimators were given by Maritz and Jarrett as early as 1978. It was before 
Efron presented the concept of the bootstrap method. 

3.  Confidence intervals for quantiles by the exact bootstrap percentile method 

One may construct the quantiles bootstrap confidence intervals by the percentile 
method described in the paper Wilcox (2001, p. 88), among others. It should be noted 
that the resamples do not need to be drawn from their entire population (size nn). The 
distributions of the bootstrap quantile estimators can be calculated. On this basis, one 
may easily find the limits of the confidence interval. We know in advance numbers of 
the primary sample elements, constituting the limits of confidence intervals when the 
estimator is based on a single order statistic3. The determination of the limits of the 
quantiles confidence intervals requires much larger calculations (when n is big4) if the 
estimator is based on two order statistics, due to the sorting of possible realizations – 
in that case, resampling may be justified but is not necessary. The percentile method 
using all resamples can be called the exact percentile method (by analogy with the exact 
bootstrap method). 

Let yj be a realization of a bootstrap p-quantile estimator 𝜉መ௣௡∗ , for j = 1, …, o.  If an 
estimator is based on a single order statistic, o is equal to k (or n if there were no 
repetitions in the primary sample). Let us mark the bootstrap confidence interval as 
𝐼௣௡∗ ൌ ൣ𝑦௭భ

∗ ,𝑦௭మ
∗ ൧. For a given confidence level of 1-, the lower limit is: 

y୸భ
∗  ൌ sup ቄy୨:𝐹క෠೛೙∗ ൫y୨൯ ൑

∝

ଶ
ቅ,       (23) 

where 𝐹క෠೛೙∗  is the bootstrap quantile estimator distribution. The upper limit is: 

y୸మ
∗  ൌ inf ቄy୨:𝐹క෠೛೙∗ ൫y୨൯ ൒ 1 െ

∝

ଶ
ቅ,       (24) 

                                                           
3 It results from the properties of the exact distribution of the bootstrap percentile estimator (the probabilities 

of individual realizations of the estimator are the same for all samples of a given size). Table 4 lists these numbers 
for p = 0.5 and 1-= 0.95. 

4 Currently, due to the high computing efficiency of computers, computations even for big n are not long-lasting. 
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If the bootstrap p-quantile estimator is based on a single order statistic, the elements 
of the primary sample are the limits of the confidence intervals. If the estimator is based 
on a linear combination of order statistics, the linear combinations of these elements 
may also be the limits. 

Due to the discrete nature of distributions of the bootstrap estimator, besides the 
assumed confidence level 1-, we have a confidence level that can be called actual.  

The number of realizations of bootstrap quantile estimators based on single order 
statistics is much smaller than that based on their linear combination. This has two 
important consequences. First, estimators based on two order statistics will allow 
building narrower confidence intervals than those based on one. Secondly, we can 
suspect that the discrepancy between the assumed and the actual confidence level is 
smaller for the estimator based on two order statistics than for that based on a single 
one (Nagaraja and Nagaraja (2020, p. 81)5 pay attention to this discrepancy). 

4.  Monte Carlo method for quantile estimation 

The bias and variance of the estimators, the widths of the confidence intervals, 
and the coverage probability can be estimated by the Monte Carlo (MC) simulation 
method. These measures can be used, for example, to compare different estimators. 
Calculating them requires drawing R random samples, the so-called replication. If the 
bootstrap estimators are used, a single replication is a single primary sample (which 
may be resampled). 

For sampling, pseudorandom number generators are used, which generate real 
numbers from a uniform distribution on the interval [0; 1]. Let the drawn number (i) 
be the value of a CDF of the distribution the sample comes from. Elements of the sample 
can be designated as xi = F-1(i), for i = 1,…,n. 

Let  denote some target quantity of interest, 𝛽መோ its MC estimate from simulation 
experiment with R replications, and 𝛽መ௥ the estimate based on the rth replication, r = 
1,…, R (Koehler et al. (2009)). The MC estimate of   is then: 

𝛽መோ ൌ
ଵ

ோ
∑ 𝛽መ௥ோ
௥ୀଵ .          (25) 

In statistical experiments, the distributions that the samples come from are known. 
So, it is possible to calculate the MC approximation of the estimator bias relative to the 
true value of the p-quantile. The MC estimate of the bias and variance of some  
p-quantile estimator is: 

𝑏𝚤𝑎𝑠෣
ெ஼ ൌ

ଵ

ோ
∑ ∑ ቀ𝑦௝

௥ ∙ 𝑃൫𝜉መ௣௡௥ ൌ 𝑦௝
௥൯ቁ െ 𝜉௣,௢

௝ୀଵ
ோ
௥ୀଵ       (26) 

                                                           
5 Nagaraja and Nagaraja point out the discrepancy between the assumed confidence level and the coverage 

probability (coverage probability will be discussed in Section 4). Since the coverage probability can be regarded as 
an estimate of the actual level of confidence, both statements are roughly equivalent. 
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𝑉෠ெ஼ ൌ
ଵ

ோ
∑ ൬∑ ൬൫𝑦௝

௥൯
ଶ
∙ 𝑃൫𝜉መ௣௡௥ ൌ 𝑦௝

௥൯൰ െ ቀ∑ ቀ𝑦௝
௥ ∙ 𝑃൫𝜉መ௣௡௥ ൌ 𝑦௝

௥൯ቁ௢
௝ୀଵ ቁ

ଶ
௢
௝ୀଵ ൰ ,ோ

௥ୀଵ   (27) 
where 𝜉መ௣௡௥  is the p-quantile estimator in the rth replication. 

Let the confidence interval determined in the rth replication be marked as 𝐼௣௡௥ ൌ
ൣ𝑦௭భ

௥ ,𝑦௭మ
௥ ൧. The MC estimate of its width and the coverage probability is: 

𝑑መோ ൌ
ଵ

ோ
∑ ൫𝑦௭మ

௥ െ 𝑦௭భ
௥ ൯ோ

௥ୀଵ          (28) 

𝜑ோ ൌ
#൛ൣ௬೥భ

ೝ ,௬೥మ
ೝ ൧:ఝ೛∈ൣ௬೥భ

ೝ ,௬೥మ
ೝ ൧ൟ

ோ
.        (29) 

When the coverage probability is close to the assumed confidence level but not lower 
than it, the method of determining the confidence intervals properly fulfills its task. 

5.  The median estimation – comparison of estimators 

The simulation research using the Monte Carlo method was carried out. Samples 
come from six distributions: two with right asymmetry (LogNormal(1.0.75), 
Gamma(2.2)), two with left asymmetry (-LogNormal(1.0.6) + 5, Gamma(1.25, 2.5) + 5) 
and two symmetrical (N(3.0.5) and N(3.2)). The sample sizes were selected to include 
both small and large samples. 

For different sample sizes n, R = 2,000 times n pseudorandom numbers from the 
interval [0,1] were drawn, which were treated as a CDF value. The same CDF values 
were used for all distributions and methods, which allows for a better comparability of 
results. Such selection makes the results for individual cases independent of the quality 
of the pseudorandom number generator. Based on the n values of the CDF, random 
samples were determined for six distributions. 

The first stage of the simulation studies was to estimate the bias and variance of the 
three bootstrap median estimators 𝜉መ଴.ହ௡

ଵ∗ , 𝜉መ଴.ହ௡
ଶ∗ , and 𝜉መ଴.ହ௡

ଷ∗ , defined by formulas (13), (14) 
and (15). The bias and the variance were estimated according to the formulas (26) and 
(27) by the MC method. 

In the second stage, confidence intervals for quantiles were determined using the 
following methods: 
M1 – exact percentile method and estimator 𝜉መ଴.ହ௡

ଵ∗ , 
M2 – exact percentile method and estimator 𝜉መ଴.ହ௡

ଵ∗ ,  
M3 – exact percentile method and estimator 𝜉መ଴.ହ௡

ଷ∗ ,  
M4 – BCa method (Efron and Tibshirani, 1993 p. 185) and estimator 𝜉መ଴.ହ௡

ଷ∗ , 
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M5 – the adjacent spacings method (Nagaraja and Nagaraja, 2020 p. 89) (calculations 
were made for several combinations of parameters s and t6, choosing those for 
which confidence intervals were narrowest), 

M6 – using the limit distribution of the order statistics corresponding to the sample  
p-quantile (formula (8)),  

M7 – using the limit distribution of p-quantile (formula (7)). 

The widths and coverage probabilities were used to compare confidence intervals 
constructed with different methods, calculated according to (28) and (29). The use of 
the M7 method requires a comment. The confidence intervals constructed using the 
M1 to M6 methods were estimated by the MC method based on R replications. The 
intervals constructed using the M7 method (from the limit distribution of p-quantile) 
are calculated from formula (7). One may suspect (especially for large samples) that the 
confidence intervals determined in this way are close to the real ones and may 
constitute a reference point for the intervals obtained with other methods. Note, 
however, that the use of formula (7) requires knowledge of 𝜉௣ and 𝑓൫𝜉௣൯. In fact, 
we know them very rarely. 

In Figure 1, the bias of the bootstrap median estimators is given, depending on the 
sample size (for n = 10, 15,…, 205). The bias was calculated by the MC method based 
on R = 2,000 samples from six distributions. To improve the readability of the graph, 
the data series are presented as continuous lines. 

If np is not integer (which in the case of the median corresponds to the odd n), the 
tree bootstrap median estimators are based on the same order statistics, so they are the 
same. Estimators differ when n is even. The case n odd was extracted as a separate data 
series to avoid oscillations when the sample size changes from even to odd. This was 
made because those oscillations would completely obscure the image (as in Parrish 
(1990 p. 253)). It is obvious that as the sample size increases, the bias on all estimators 
usually decreases (if bias jumps are omitted when the  sample size changes from even 
to odd and vice versa). This does not mean, however, that the increase in n in the case 
of simulation by the MC method is always accompanied by a decrease in bias. 
The possible increase in bias results from the random selection of R samples. 

The estimator 𝜉መ଴.ହ௡
ଷ∗  shows the smallest jumps in the bias with the change in the 

sample size from odd to even (and vice versa). The data series marked as E123 and E3 
for all distributions almost coincide. 

When samples came from right asymmetry distributions (for even n), the absolute 
value of the bias of the estimator 𝜉መ଴.ହ௡

ଵ∗  was usually the smallest, while that of the 

                                                           
6 Five parameter combinations were used: s = 1 and t = 2, s = 2 and t = 1, s = 2 and t = 2, s = 2 and t = 3, s = 3 

and t = 2. The narrowest confidence intervals were obtained for the last two variants in all simulation experiments. 
The combination of s = 3 and t = 2 was best in the case of samples from right asymmetry distributions, while the 
combination of s = 2 and t = 3 in the case of samples from left asymmetry and symmetrical distributions. 
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estimator 𝜉መ଴.ହ௡
ଶ∗  the largest. When samples came from left asymmetry distributions, the  

opposite  was true usually –  the absolute value of the bias of the estimator 𝜉መ଴.ହ௡
ଶ∗  was the 

smallest, while that of the estimator 𝜉መ଴.ହ௡
ଵ∗  the largest. When samples came from 

symmetrical distributions, the absolute value of the bias of the estimator 𝜉መ଴.ହ௡
ଷ∗  was the 

smallest for almost all n, while that of the estimator 𝜉መ଴.ହ௡
ଵ∗  or 𝜉መ଴.ହ௡

ଶ∗  was the largest. 

  

  

  

 
Figure 1:  The bias of the bootstrap median estimators depending on the sample size (n = 10, 15,…, 

205), calculated by the MC method. Note: In the charts, the data series marked E1, E2 and 
E3 correspond to the estimators 𝜉መ଴.ହ௡

ଵ∗ , 𝜉መ଴.ହ௡
ଶ∗ , and 𝜉መ଴.ହ௡

ଷ∗  for even n, while E123 corresponds 
to all estimators for odd n. 
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When samples came from right asymmetry distributions, the expected value of 
almost all estimators is greater than the median (except for even n and the estimator 
𝜉መ଴.ହ௡
ଵ∗ ). When samples came from left asymmetry distributions, the expected value of 

almost all estimators is less than the median (except for even n and the estimator 𝜉መ଴.ହ௡
ଶ∗ ). 

When samples came from symmetrical distributions, the bias oscillates around zero – 
except for even n and the estimator 𝜉መ଴.ହ௡

ଵ∗  (always negative bias) or the estimator 𝜉መ଴.ହ௡
ଶ∗  

(always positive bias). 
Figure 2 shows the variance of the bootstrap median estimators depending on the 

sample size. The graphs were prepareded only for small samples (n = 10, 11,…,35). The 
differences in the case of large samples were very small. When samples came from 
symmetrical distributions, the variance of the 𝜉መ଴.ହ௡

ଷ∗  estimator was the smallest. When 
samples came from right asymmetry distributions, the variance of the 𝜉መ଴.ହ௡

ଶ∗  estimator 
was the biggest. When samples came from left asymmetry distributions, the variance of 
the 𝜉መ଴.ହ௡

ଵ∗  estimator was the biggest.  
Figure 3 presents the width of 0.95 median confidence intervals depending on the 

sample size. The intervals were calculated by the MC method (the M1-M6 methods) 
and using the limit distribution (the M7 method). The graphs were made up only for 
small samples (n = 10, 15,..,  35). For large samples, the widths of confidence intervals 
constructed with different methods are very similar (except those obtained using the 
M5 method). 

Confidence intervals constructed with the M7 method were usually narrowest, 
especially for samples from left asymmetry distributions and large samples (n above 
115) from symmetrical distributions. Interval widths for M7, M4, and M3 (but only for 
even n) are very similar. If n was even, narrower confidence intervals were usually 
obtained using the M3 method rather than using the M4 for large samples (n above 
180) and samples from left asymmetry distribution. 

There are jumps in the widths of confidence intervals constructed with the exact 
bootstrap estimators (that is for M1, M2, and M3 methods) when n changes from even 
to odd. This is due to the changing the rank of the order statistic used as an estimator 
(we do not observe it for other methods). The narrowest confidence intervals were 
obtained by the M3 method, regardless of the distribution asymmetry type the samples 
came from. This is because the estimator based on two order statistics has much more 
realizations than when based on one order statistic only. If the samples came from right 
asymmetry distribution, narrower confidence intervals were obtained with the M1 
method than with the M2. If the samples came from left asymmetry distribution, the 
effect was opposite. If the samples came from symmetrical distributions, the M1 
method gave the narrower intervals for about half of the cases and the M2 for the other 
half. These conclusions are similar to those obtained for the variance and apply of 
course only to cases when n is even. 
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Figure 2:  The variance of the bootstrap median estimators depending on the sample size (n = 10, 11, 

…, 35), calculated by the MC method. Note: as for Figure 1. 

For almost all sample sizes, the widest confidence intervals were obtained by the 
M5 method (despite using a combination of parameters giving the best results). The 
authors of the method (Nagaraja, Nagaraja (2019 p. 75)) point out that although this 
method gives wider intervals than other methods, it can be used in the case of extreme 
quantiles even if the sample has only a few observations. The M6 method usually gave 
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wider confidence intervals than the M7, M4, and M3 methods (for n even), although 
the differences were small for large samples. 

Figure 4 presents 1- (1-coverage probability) calculated for confidence intervals 
estimated by M1-M6 methods, depending on the sample size for a 0.95 confidence level. 
This probability was illustrateed in three variants. The first variant covers all sample 
sizes, the second only odd sizes, and the third only even sizes. The charts are presented 
only for LogNorm(1.0.75) distribution. The results for the remaining distributions were 
very similar. The chart shows strong fluctuations in the coverage probability when the 
sample size changes, both for all sample sizes and separately for even and odd sizes. De 
Angelis et al. 1993 p. 526 believed the discrete nature of the bootstrap quantile 
estimators distributions to be the reason for the fluctuation. It should be noted that 
fluctuations occur for all methods. Therefore they can only result from the quality of 
random samples generated (for all methods the same pseudorandom numbers were 
used). Although relatively many samples were drawn (R = 2,000), the effect of the work 
of the pseudorandom number generator indicates its imperfection7. 4,000, 8,000, and 
16,000 samples were drawn several times to check whether increasing the number of 
drawn samples would reduce the observed fluctuations. It turned out that the 
differences in the calculated 1- values in individual experiments were large. This 
means that a comparison across methods by simulation experiments requires the same 
conditions. It is advisable to use the same generated pseudorandom numbers in all 
experiments. 

6.  Conclusions 

1.  Information about the asymmetry direction of the distribution the sample came 
from may be a valuable indication when choosing a bootstrap quantile estimator 
(when np is an integer). The sample skewness coefficient can be used for this 
purpose. If the estimator is based on a single order statistic and a sample comes from 
a right asymmetry distribution, the order statistic of the rank np used as an estimator 
gives a smaller bias and narrower confidence intervals. If a sample comes from a left 
asymmetry distribution, an order statistic of the rank np + 1 is a better estimator. 
Most asymmetric distributions used in statistical experiments have a right 
asymmetry distribution. This is why the most common quantiles and sample 
quantiles are defined as left quantiles. For the distributions with left asymmetry, a 
right quantile would be more appropriate. 

                                                           
7 When using simulation methods using random numbers, one should take into account the limited possibilities 

of pseudorandom number generators. It is worth conducting experiments using various pseudorandom number 
generators. Examples of such studies were presented by Sulewski 2019. 
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2.  Quantile estimators in the form of single order statistics are very simple to apply 
(they have the same PDF values for the same sample sizes). To use a linear 
combination of two order statistics as the estimator requires more effort of 
calculations. As the research shows, this effort pays off - the estimated confidence 
intervals  are  narrower,  and  the  coverage  probability  is  closer  to  the assumed  

  

  

 
Figure 3:  The width of median confidence intervals (1- =0.95) depending on the sample size (n = 

10, 15, …, 35).  
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Figure 4:  1- depending on the sample size (n = 10, 15,…, 205) for a 0.95 confidence level. Samples 

came from the LogNorm(1.0.75) distribution. Note: The top chart is for all numbers, the 
middle chart for odd n, and the bottom chart for even n.  

confidence level. The possibility to construct narrower confidence intervals results 
from a bigger number of realizations of the estimator based on two order statistics. 
When np is not an integer, you may consider using the estimator as a linear 
combination of the three order statistics of the ranks [np], [np] +1, and [np] +2. 
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The algorithm for calculating the distribution of such an estimator would be similar 
to the algorithm given in Section 2. Also, in this case, the probability that the given 
elements of the primary sample will occur on three positions: [np], [np] +1, and [np] 
+2 in the ordered resample, is the same for all samples without repetition of the 
same size. This makes it possible to construct statistical tables one can use to 
compute the exact distribution of the estimator for a given primary sample (as it is 
possible for a combination of two order statistics). 

3.  There is no need to use the percentile method with resampling for interval 
estimation of quantiles. The application of the exact percentile method is much 
simpler. When one uses an estimator based on a single order statistic, it is known 
in advance which elements of the ordered primary sample constitute the limits of 
the confidence interval. When one uses an estimator based on two order statistics, 
the computational effort resulting from sorting all its possible realizations is 
probably comparable with the time needed to sort its realizations determined from 
the drawn resamples.8\ 

4.  The coverage probability fluctuations (on changes in the sample size) result from 
the limited capabilities of the pseudorandom number generator. One can conclude 
so because fluctuations occur for all methods. The conducted experiments indicate 
that increasing the number of repetitions in Monte Carlo simulations does not 
reduce the fluctuations. This conclusion was made based on experiments with R = 
2,000, 4,000, and 8,000. This means that it is better to use the same samples when 
you compare different estimation methods. 

5.  The bias and the variance of the bootstrap median estimators, as well as the width 
of the median confidence intervals were estimated using the MC method. 
Fluctuations of these parameters resulted mainly from the change in rank of order 
statistics used as estimators when the sample size changed from even to odd. This 
fact was particularly clear for the estimators in the form of a single order statistic. If 
even and odd samples are considered separately, there are no fluctuations. There are 
also no fluctuations in the width of the confidence intervals estimated with the other 
methods. This is because the discussed measures are calculated as average from all 
replications. The coverage probability is determined for all R repetitions. 
The research conducted and presented in the article is based on a limited set of 

distributions. However, one can assume that conclusions can be generalized for their 
wider collection. Only one pseudorandom number generator was used – an Excel 
generator. The results showed that it is worth researching various pseudorandom 
numbers generators and examining their impact on the quality of the Monte Carlo 
simulations. 

                                                           
8 For a sample with 50 elements, the number of realizations of the estimator based on two order statistics is 

maximally equal to 50 + 4925  = 1275. 
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