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From the Editor 

It is with great pleasure that we present our readers with the September issue 
consisting of 12 articles arranged, as usual, in three sections: Research papers, Other 
articles, and Research communicates and letters. A wide spectrum of topics is discussed 
in these papers by 25 authors from a large group of countries: Czechia, Poland, India, 
Cameroon, Brazil, Jordan, Saudi Arabia, Nigeria, Iran, and Botswana. 

Research articles 

The issue starts with the paper by Kamila Hasilová, Ivana Horová, David Vališ, 
and Stanislav Zámecník, entitled A comprehensive exploration of complete cross-
validation for circular data. The aim of the article is to propose a novel circular-
specific method that is based on a crossvalidation procedure with a von Mises density 
used as a kernel function. Using simulated data as well as real-world circular data sets, 
the authors evaluate and validate the proposed method and compare it with the existing 
methods. This method extends the estimate of the MISE and has better theoretical 
properties than the LSCV. From the presented results and outcomes it was concluded 
that the CCV is applicable to various data types with a respective success rate. From the 
data-driven method of bandwidth selection, the authors focused only on the cross-
validation methods which target the MISE to have the consistent group of methods to 
compare.  

Adam Szulc’s paper Reconstruction of the social cash transfers system in Poland 
and household wellbeing: 2015–2018 evidence examines the impact of changes in the 
social benefits system on the wellbeing, poverty, and economic activity in Poland. The 
core element of those changes was a programme of large cash transfers, referred to as 
Family 500+, introduced in 2016. It was intended to support families with children, 
especially the least affluent ones, and to foster fertility. The impact of the transfers is 
examined through the observation of changes in the monetary and multidimensional 
wellbeing of households. The study also analyzed the changes in recipients’ economic 
activity using estimates of regression models and treatment effects. The Family 500+ 
programme proved to be successful as an anti-poverty tool and also resulted in the 
increase in the average wellbeing for the whole population.  

In the paper On autoregressive processes with Lindley-distributed innovations: 
modeling and simulation K. U. Nitha and S. D. Krishnarani develop an autoregressive 
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process of order one, assuming that the innovation random variable has a Lindley 
distribution. The key properties of the process under investigation embrace five distinct 
estimation techniques employed to estimate the respective parameters. Parametric and 
non-parametric estimating techniques are effectively employed. The authors explored 
a first order autoregressive model with the Lindley error distribution and its properties. 
The stationarity of the process is tested using a unit root test. The application of the 
proposed process to the analysis of time series data is demonstrated using real data sets. 
Based on some important statistical measures, the analysis of the data sets reveals that 
the proposed model fits well, and the errors are independent and Lindley-distributed. 
The stationary series of additive autoregressive models could feature non-Gaussian 
errors and marginal.  

In the next article, Comparing logistic regression and neural networks for 
predicting skewed credit score: a LIME-based explainability approach, Jane Wangui 
Wanjohi, Berthine Nyunga Mpinda, and Olushina Olawale Awe compare the 
predictive ability of Logistic Regression (LR) and a Multilayer Perceptron (MLP) using 
two types of data sets, with an advanced model explainability technique - Local 
Interpretable Model-Agnostic Explanations (LIME). The findings show that all models 
performed better after the data were balanced. MLP had higher scores than LR in terms 
of balanced accuracy, Matthews correlation coefficient, and F1 score. From the 
findings, this study recommends that lending companies with small amounts of data 
use a logistic regression model but for companies with vast amounts of data a multilayer 
perceptron will ease their credit offer processes. The study also highlights the 
importance of using explainable artificial intelligence. With the LIME explanation 
approach, authors were able to see how each feature influences the predicted class of 
a model for a given instance. 

Anna Czapkiewicz’s and Katarzyna Brzozowska-Rup’s paper entitled The 
Measurement of the Gross Domestic Product affected by the shadow economy presents 
a method for balancing Gross Domestic Product (GDP) when the measurements of its 
components are distorted by the existence of the shadow economy using a multiple 
ultrastructural model (MUM), where the explanatory variables are subject to error. The 
expected value of GDP can be divided into two parts: the first part concerns data related 
to registered activities and the second part concerns unobserved data which may be 
partly related to the shadow economy. The empirical analysis utilizes the annual data 
of the Local Data Bank, for years 2000–2019. The results show that the unobservable 
part of the variables necessary to balance GDP on the production side does not exceed 
1% of GDP, and on the expenditure side, it mostly reaches about 3% of GDP. 

In the paper entitled Extropy and entropy estimation based on progressive Type-I 
interval censoring Huda H. Qubbaj, Husam A. Bayoud, and Hisham M. Hilow 
discuss the problem of estimation of the extropy and entropy measures based on 
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progressive Type-I interval censoring samples. Nonparametric-based methods 
involving moments and linear approximations have been proposed to this aim. The 
performance of the proposed estimates have been studied via simulation studies and 
real data sets considering various censoring schemes and three probability 
distributions: uniform, exponential and normal distributions. The proposed estimates 
of the extropy and entropy measures shown to be affected by the sample size, censoring 
schemes and the type of distribution. Yet, the estimates based on linear approximation 
outperform the other estimate in the majority of cases under study. 

The paper by R. R. Sinha, Bharti, Improved estimation of the mean through 
regressed exponential estimators based on sub-sampling non-respondents, discusses 
the issue of estimating the population mean and presents and improved regressed 
exponential estimators using different parameters of an auxiliary character based on 
sub-sampling of non-respondents. The mean square error (MSE) of the proposed 
estimators for the most pragmatic simple random sampling without replacement 
(SRSWOR) scheme have been derived up to the first order of approximation (i.e. the 
expression containing errors up to the power of two so that the expectation comes only 
in terms of the mean, variance and covariance). The optimum value of the MSE of the 
estimators is found, along with the necessary conditions for optimizing the MSE. The 
effectiveness of the suggested estimators, outperforming the existing ones in terms of 
their MSE, has been studied theoretically, while the empirical illustration using the 
simulation studies have confirmed these findings. 

Idowu Oluwasayo Ayodeji’s paper, Forecasts of the mortality risk of COVID-19 
using the Markov-switching autoregressive model: a case study of Nigeria (2020–
2022), discusses some aspects of the global pandemic due to SARS-Cov-2 and attempts 
to predict future occurrences of such cases in order to prevent or combat effectively 
consequences of the virus. This study modeled daily fatality rate in Nigeria from March 
23, 2020 to March 19, 2022 and forecasts future occurrences using Markov switching 
model (MSM). It revealed that as of 19th March, 2022, Nigeria remained at the low-risk 
regime in which 1 (95%CI: 0, 1) person, on the average, died of coronavirus daily; 
however, the most probable scenario in the nearest future was the medium-risk state 
in which an average of 4 persons would die daily with 48.7% probability. The study 
concluded that Nigerian COVID mortality risks followed a switching pattern which 
fluctuated within low-, medium- and high-risks; however, the medium-risk state was 
most likely in the future. The results indicated that the quarantine measures adopted 
by the governments yielded positive results. It also underscored the need for 
governments and individuals to intensify efforts to ensure that the country remained at 
the low-risk zone until the virus would be eventually eradicated. 

In the paper Nonparametric Bayesian optimal designs for Unit Exponential 
regression model with respect to prior processes (with the truncated normal as the base 
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measure) Anita Abdollahi Nanvapisheh, Soleiman Khazaei, and Habib Jafari 
present a Bayesian optimal design by utilizing the Dirichlet process as a prior. The 
Dirichlet process serves as a fundamental tool in the exploration of Nonparametric 
Bayesian inference, offering multiple representations that are well-suited for 
application. Authors introduce a novel one-parameter model, referred to as the ’Unit-
Exponential distribution’, specifically designed for the unit interval. Additionally, 
a stick-breaking representation to approximate the D-optimality criterion considering 
the Dirichlet process as a functional tool was employed. This approach allows to explore 
and evaluate the performance of the nonparametric Bayesian optimal design under 
varying levels of concentration parameter α. The empirical results reveal interesting 
findings: for small parameter values, there are no two-point designs observed.  

Jacek Białek’s paper The use of the Bennet indicators and their transitive versions 
for scanner data analysis revises the price and quantity Bennet indicators and their 
multilateral versions for the analysis of scanner data. Specifically, instead of considering 
comparisons across firms, countries or regions, the transitive versions of the Bennet 
indicators are adapted to work on scanner data sets observed over a fixed time window. 
Since the scanner data sets have a high turnover of products, which can make it difficult 
to interpret the difference in sales values over the compared time periods, the paper also 
considers a matched sample approach. One of the objectives of the study is to compare 
bilateral and multilateral Bennet indicator results across all available products or strictly 
matched products over time. It also examines the impact of data filters used and the 
level of data aggregation on the price and quantity. 

Other articles 
XXXXI Multivariate Statistical Analysis 2023, Lodz, Poland. Conference Papers 

The article by Adam Idczak and Jerzy Korzeniewski, Language independent 
algorithm for clustering text documents with respect to their sentiment, presents 
a novel unsupervised algorithm for documents written in any language using 
documents written in Polish as an example. The clustering of Polish language texts with 
respect to their sentiment is poorly developed in the literature on the subject. The 
novelty of the proposed algorithm involves the abandonment of stoplists and 
lemmatisation. Instead, the authors propose translating all documents into English and 
performing a two-stage document grouping. In the first step of the algorithm, selected 
documents are assigned to a class of positive or negative documents based on a set of 
lexical and grammatical rules as well as a set of key-terms. Key-terms do not have to be 
entered by the user, the algorithm finds them. In the second step, the remaining 
documents are attached to one of the classes according to the rules based on the 
vocabulary found in the documents grouped in the first step. The algorithm was tested 
on three corpora of documents and achieved very good results.  
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Research Communicates and Letters 

In this section, the paper by R. Sivasamy, A finite state Markovian queue to let 
in impatient customers only during K-vacations, investigates a matrix analysis study 
for a single-server Markovian queue with finite capacity. During the vacation periods 
of the server, every customer becomes impatient and leaves the queues. If the server 
detects that the system is idle during service startup, the server rests. If the vacation 
server finds a customer after the vacation ends, the server immediately returns to serve 
the customer. Otherwise, the server takes consecutive vacations until the server takes 
a maximum number of vacation periods, e.g. K, after which the server is idle and waits 
to serve the next arrival. During vacation, customers often lose patience and opt for 
scheduled deadlines independently. If the customer’s service is not terminated before 
the customer’s timer expires, the customer is removed from the queue and will not 
return. Matrix analysis provides a computational form for a balanced queue length 
distribution and several other performance metrics. 

Włodzimierz Okrasa 
Editor  

© Włodzimierz Okrasa. Article available under the CC BY-SA 4.0 licence  

https://creativecommons.org/licenses/by-sa/4.0/legalcode
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A comprehensive exploration of complete cross-validation for 
circular data

Kamila Hasilová1, Ivana Horová2, David Vališ3, Stanislav Zámečník4 

Abstract

Kernel density estimation of circular data has recently received considerable attention for its
ability to model and analyse distributions on unit circles and other periodic domains. Our
aim is to contribute to the literature on data-driven bandwidth selectors in circular kernel
density estimation. We propose a novel circular-specific method that is based on a cross-
validation procedure with a von Mises density used as a kernel function. Using simulated
data as well as real-world circular datasets, we evaluate and validate the proposed method
and compare it with the existing methods.

Key words: circular data, kernel density estimation, von Mises density, cross-validation
method.

1. Introduction

The analysis of data in terms of directions in a plane/space, or equivalently in terms of
positions of points on a circle/sphere, is required in many content areas in the Earth sciences,
astrophysics, social sciences, and other fields. This type of data – known as circular data –
is generally defined by the main circular measuring devices – the compass and the clock.
Wind directions, animal movements, biological and social rhythms, times of occurrence of
an event are illustrative examples of such observations (Mardia and Jupp, 2000; Ley and
Verdebout, 2017).

The treatment of these data can also be realised by means of kernel smoothing methods.
Kernel smoothing belongs to a category of nonparametric curve estimation techniques. The
aim of kernel smoothing is, i.a., to estimate the entire probability density function with as
few assumptions about the density as possible (Wand and Jones, 1995).

The main issue here is bandwidth selection. Among the earliest fully automatic and
data-driven bandwidth selection methods are those based on cross-validation ideas (see,
e.g. Rudemo, 1982; Bowman, 1984; Silverman, 1986; Scott, 1992). The main idea of these
methods is a natural approximation to the mean integrated square error.

1Department of Quantitative Methods, Faculty of Military Leadership, University of Defence, Brno, Czech
Republic. E-mail: kamila.hasilova@unob.cz. ORCID: https://orcid.org/0000-0003-1540-3489.

2Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic.
E-mail: horova@math.muni.cz.

3Department of Combat and Special Vehicles, Faculty of Military Technology, University of Defence, Brno,
Czech Republic. E-mail: david.valis@unob.cz.

4Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic.
E-mail: zamecnik.stanislav@gmail.com.
© K. Hasilová, I. Horová, D. Vališ, S. Zámečník. Article available under the CC BY-SA 4.0 licence
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Jones and Kappenman (1991) gave an overview of bandwidth selection methods: least
square cross-validation, biased cross-validation, plug-in, and presmoothed cross-validation
for linear data. Further, they proposed a new type of cross-validation. The new method
is called complete cross-validation. This procedure estimates the entire mean integrated
square error as opposed to least square cross-validation estimation, which omits the part
depending on the unknown density.

The main point of this paper is to apply a modification of the above mentioned method
to the circular data. It is not a straightforward task because circular data are fundamentally
different from linear data, there is no true zero, any classification of low or high values is
arbitrary. In addition, the periodic nature of the circular data complicates their analysis,
as standard methods for linear data in Euclidean space are inappropriate for circular data
analysis.

2. Circular kernel density estimation

Let Θ1, . . . ,Θn ∈ [0,2π) be a random sample of angles drawn from a distribution with a
density function f . The kernel estimate of this density at a point (angle) θ is defined as

f̂ (θ ,ν) =
1
n

n

∑
i=1

Kν(θ −Θi), (1)

where Kν(·) is a circular kernel function and ν > 0 is a concentration parameter playing the
role of a smoothing parameter. For parameter ν it is required that ν → ∞,

√
νn−1 → 0 for

n → ∞ (Oliveira et al., 2012; Tsuruta and Sagae, 2017).
As a circular kernel, the von Mises density function can be considered. The von Mises

distribution, vM(µ,κ), is a symmetric unimodal distribution with a mean direction, µ ∈
[0,2π), and a concentration parameter, κ > 0. Its density function takes the following form

g(θ ; µ,κ) =
[
2πI0(κ)

]−1 exp(κ cos(θ −µ)),

where I0(κ) is the modified Bessel function of order zero (Jammalamadaka and SenGupta,
2001).

A critical issue in the application of this estimator in practice is the selection of the
smoothing parameter which controls the smoothness of the estimate. Small values of the
smoothing parameter imply less concentrated data and provide oversmoothed estimates.
On the other hand, large values result in undersmoothed estimates, which may reveal local
structure in the data.

Data-driven procedures for selecting ν are usually based on error performance measures.
One of these is the bandwidth minimising the mean integrated square error (MISE) of f̂ ,
which is defined as

MISE(ν) = E
∫ 2π

0

[
f̂ (θ ,ν)− f (θ)

]2 dθ .

Denoting R(w,z) = E
∫ 2π

0 w · zdθ and R(z) = R(z,z), we can write

MISE(ν) = R( f̂ )−2R( f̂ , f )+R( f ). (2)
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3. Bandwidth selection

The above expression does not give a practical procedure for choosing the optimal
smoothing parameter, because some of the MISE terms depend on the unknown density f .
However, one can estimate these f -dependent quantities by those that include f̂ and then
select the optimal bandwidth (Hall and Marron, 1987).

In the following computations, we restrict ourselves to using the von Mises density as
the kernel function, i.e. Kν(θ) =

[
2πI0(ν)

]−1 · exp(ν cosθ), since it plays a similar role in
the circular case as the Gaussian density does in the linear case.

Let us denote the ratio of the Bessel functions as Ak(ν) = Ik(ν)/I0(ν) and the difference
between the sample values as Θi j = Θi −Θ j. This notation is useful for the derivations and
calculations in the following sections.

3.1. Least square cross-validation

The least square cross-validation selector aims to minimise (2) with the term R( f )
dropped. It is defined as the minimum of the function

LSCV(ν) = R( f̂ )− 2
n

n

∑
i=1

f̂−i(Θi,ν),

where f̂−i denotes the estimate (1) with the i-th observation omitted

f̂−i(Θi,ν) =
1

n−1

n

∑
i=1
j ̸=i

Kν(Θi j), i = 1, . . . ,n.

Rewriting the formulas using a kernel function, the LSCV objective function takes the
form (where ∗ denotes the convolution)

LSCV(ν) =
1
n2

n

∑
i=1

n

∑
j=1

(Kν ∗Kν)(Θi j)−
2

n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

Kν(Θi j). (3)

It is possible to prove that (3) is an unbiased estimator of the quantity MISE(ν)−R( f )
(Hall et al., 1987).

3.2. Complete cross-validation

Jones and Kappenman (1991) investigated a class of data-driven bandwidth selection
procedures for linear kernel density estimation. They proposed a new method (from the
family of cross-validation methods) called complete cross-validation (CCV). Their proposal
estimates the entire MISE function, as opposed to the LSCV method, which targets the
difference MISE(ν)−R( f ).
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Here, we present an adaptation of the CCV method to the circular case. Let us defined
functionals Tm in a similar manner as those specified by Jones and Kappenman (1991):

Tm(ν) = (−1)m[n(n−1)]−1
n

∑
i=1

n

∑
j=1
j ̸=i

K(2m)
ν (Θi j),

where K(2m)
ν is the (2m)-th derivative of Kν . Then, we define the CCV function as

CCV(ν) =
1
n2

n

∑
i=1

n

∑
j=1

(Kν ∗Kν)(Θi j)−T0(ν)+
A1(ν)

2ν
T1(ν)+

2A2
1(ν)−A2(ν)

8ν2 T2(ν).

Lemma. E[CCV(ν)] = MISE(ν)+o(ν−2).

Proof. See the Appendix. □

4. Small sample behaviour

We carried out a small simulation study to compare the proposed CCV method and
known LSCV method with eight simulation scenarios, see Figure 1 and Table 1.

Figure 1: Graphical representation of models M1–M8

Table 1: Probability distributions and their parameters: von Mises (vM), cardioid (C),
wrapped Cauchy (WC) and mixtures of two von Mises distributions

model distribution model distribution
M1 vM(0;1) M5 0.5vM(0;4)+0.5vM(π/3;2)
M2 vM(0;2.5) M6 0.5vM(0;3)+0.5vM(π/2;2)
M3 C(0;0.5) M7 0.5vM(0;2)+0.5vM(2π/3;2)
M4 WC(0;0.5) M8 0.5vM(0;2)+0.5vM(π;2)
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Table 2: Mean and standard deviation of ISE for all the simulation scenarios
model method n = 50 n = 100 n = 200

M1
LSCV 0.0150 (0.0226) 0.0083 (0.0096) 0.0046 (0.0046)
CCV 0.0302 (0.0081) 0.0279 (0.0058) 0.0262 (0.0059)

M2
LSCV 0.0233 (0.0231) 0.0143 (0.0141) 0.0087 (0.0077)
CCV 0.1197 (0.0670) 0.0904 (0.0770) 0.0525 (0.0717)

M3
LSCV 0.0135 (0.0215) 0.0076 (0.0093) 0.0044 (0.0051)
CCV 0.0319 (0.0079) 0.0298 (0.0057) 0.0281 (0.0061)

M4
LSCV 0.0215 (0.0243) 0.0127 (0.0122) 0.0069 (0.0054)
CCV 0.0545 (0.0165) 0.0491 (0.0199) 0.0405 (0.0251)

M5
LSCV 0.0218 (0.0272) 0.0125 (0.0132) 0.0073 (0.0071)
CCV 0.0726 (0.0207) 0.0669 (0.0272) 0.0648 (0.0289)

M6
LSCV 0.0182 (0.0241) 0.0101 (0.0102) 0.0062 (0.0055)
CCV 0.0415 (0.0100) 0.0388 (0.0108) 0.0363 (0.0123)

M7
LSCV 0.0173 (0.0201) 0.0093 (0.0082) 0.0057 (0.0045)
CCV 0.0281 (0.0077) 0.0253 (0.0071) 0.0220 (0.0084)

M8
LSCV 0.0208 (0.0194) 0.0109 (0.0089) 0.0063 (0.0043)
CCV 0.0212 (0.0097) 0.0143 (0.0105) 0.0074 (0.0075)

Taking f to be a von Mises distribution (M1, M2), cardioid distribution (M3), wrapped
Cauchy distribution (M4), and mixture of two von Mises distributions (M5–M8), we gener-
ated 200 random samples of size n = 50, n = 100, and n = 200.

The performance and comparison of the presented circular density estimators, i.e. LSCV
and CCV, is assessed by the integrated square error, ISE =

∫
( f̂ − f )2 dθ , which was calcu-

lated numerically using the trapezoidal rule with 500 points. The mean values of ISE (with
standard deviations) are summarised in Table 2.

Even though the CCV method has better theoretical properties, the results show that
when applied to simulated data, the ISE error is greater than for the LSCV method. This is
due to the fact that the CCV function comes from the family of cross-validation functions
based on the estimate of MISE. Cross-validation methods tend to underestimate the resulting
function in the linear case, which, given the nature of the smoothing parameter, leads to an
oversmoothed estimate in the circular case.

Sometimes, cross-validation objective functions have more than one local minimum
(Wand and Jones, 1995), see Figure 2, where we denote these two possible outcomes as
Type I (with one minimum) and Type II (with two minima). For Type II objective functions,
νCCV should be taken to be the ‘largest’ local minimiser of CCV.

In Table 3, we summarise the percentage of the Type I CCV objective functions in
the simulation scenarios. Type II is more common for data sets larger in size and more
concentrated (see models M2, M4, and M8).

Comparing the bandwidth parameters of the two methods, we can see that the ratio
νCCV/νLSCV ranges on average from 0.3 to 0.75. Although this ratio appears to be quite
large and may imply that the LSCV estimate is undersmoothed (or similarly, the CCV es-
timate is oversmoothed), we can obtain decent results, as can be seen in Figure 3, which
shows selected random samples of size n = 200 from the model M5 and their kernel density
estimates with the bandwidth chosen by both methods. These methods (νLSCV = 27.81,
νCCV = 13.34) provide similar results for sample (a). For sample (b), the LSCV method
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Figure 2: Two types of CCV objective functions

Table 3: Percentage of CCV function type I for the simulation models
model n = 50 n = 100 n = 200

M1 93.5 93 91.5
M2 69.5 52.5 29.5
M3 92 93.5 91.5
M4 85.5 80 67
M5 82.5 80 79.5
M6 87 87.5 85
M7 89 86.5 81
M8 93.5 80.5 68

gives a very good estimate (νLSCV = 9.52), but the CCV method gives an oversmoothed es-
timate (νCCV = 0.80). However, the LSCV is not always an optimal method, as we can see
in the graph of sample (c), which gives an undersmoothed LSCV estimate (νLSCV = 107.47)
and a very good CCV estimate (νCCV = 17.37).

Figure 3: Selected samples from the model M5 and their estimates LSCV (blue, dotted),
CCV (orange, full) with the true density (black, thin)

Admitting that there is no universally applicable method for circular kernel density es-
timation, we can see from the simulations that the CCV method is an acceptable alternative
to the LSCV method. Looking at the graphs in Figure 3, we can consider applying the
so-called averaging technique (Baszczyńska, 2017) to obtain the estimate that combines the
local and global insight into the structure of the data.
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5. Real data applications

The proposed method is applied to a few real data sets, each of them being similar to
one of the models of the simulation study.

Example 1. Hisada (1972) studied dragonflies and their behaviour. The data set, avail-
able in the R package NPCirc (Oliveira et al., 2014), consists of 214 orientations of drag-
onflies with respect to the solar azimuth (measured in degrees). Figure 4(a) shows the data
– zero corresponds to the azimuth of the sun – and the resulting kernel estimates obtained
with optimal smoothing parameters νLSCV = 63.87 and νCCV = 53.44. As we can see, the
CCV method gives almost the same density estimate as the LSCV method. As expected
from the simulation study, the two methods provide almost the same results for data with
two directly opposite modes (model M8).

Example 2. The Czech Hydrometeorological Institute has kindly provided the wind
direction data. The data set represents the wind direction from Brno-Tuřany airport, the
data were recorded every 10 minutes, resulting in 144 measurements for one day. For the
analysis, 7 November 2021 was chosen. The optimal smoothing parameters obtained by
the cross-validation methods are νLSCV = 50.51 and νCCV = 30.77, respectively. The data
set shows bimodality (like model M7) and the resulting density estimates are similar, see
Figure 4(b).

Figure 4: Kernel density estimates of the (a) dragonfly data and (b) wind data. Black points
inside the circle represent the data, LSCV (dotted blue line) and CCV (full orange line)
estimate

Example 3. In cooperation with the Lublin Municipal Transport Company, we collected
data on bus subsystem failures over a period of more than seven years. The failures of each
subsystem were recorded monthly, i.e. we only know the month of the specific failure,
but not the exact date. The air conditioning (AC) subsystem (n = 45) was selected for
investigation. The optimal smoothing parameters are νLSCV = 2.37 and νCCV = 0.70. Such
small values leading to underestimated densities are due to the fact that these are aggregated
data. Still, we can see that the failure occurrence is more likely to happen in early summer,
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i.e. in May, June, and July. The resulting estimated densities are displayed in Figure 5.

Figure 5: Kernel density estimate of the AC failure data (black points) with LSCV estimate
(dotted blue) and CCV estimate (full orange)

6. Conclusion

We proposed a new complete cross-validation (CCV) method of bandwidth selection
in circular density estimation. This method extends the estimate of the MISE and has bet-
ter theoretical properties than the LSCV. From the presented results and outcomes we can
conclude that the CCV is applicable to various data types with respective success rate.

From the data-driven method of bandwidth selection, we focus only on the cross-vali-
dation methods which target the MISE to have the consistent group of methods to compare.
We have considered alternative approaches (see, e.g. Taylor, 2008; Oliveira et al., 2012;
García-Portugués, 2013), but they target different type of error function – the asymptotic
mean integrated square error. From the theoretical point of view also the augmented cross-
validation (Tsuruta and Sagae, 2020), but this one cannot be used in real data application.

Although the CCV presents a theoretical concept, our aim is to make the method appli-
cable to practical situations. The form and structure of the original datasets (corresponding
to the true density) have to be taken into account. The size of the data set also plays an
important role in producing results with some degree of validity. In datasets where data
records are short, sparse or even missing, we cannot expect relevant estimates and results.

However, we are confident that the CCV method provides realistic and applicable re-
sults, not only in terms of key statistical results such as circular kernel density estimation,
but also in terms of other measures that can be successfully applied in other areas such as
reliability and safety engineering.
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Appendix

Convolution of the von Mises kernel Kν(θ) with itself is (Jammalamadaka and SenGupta,
2001):

(Kν ∗Kν)(θ) =
I0
(√

2ν2(1+ cosθ)
)

2πI2
0 (ν)

.

Functionals T : Derivatives of the von Mises kernel can be expressed using the recurrence
relationship

Kν(θ) = [2πI0(ν)]
−1 exp(ν cosθ) P1(θ) =−ν cosθ

K(n)
ν (θ) = Kν(θ) ·Pn(θ) Pn+1(θ) =−ν sinθ ·Pn(θ)+P′

n(θ).

Then, the exact form of functionals T0, T1 and T2 with the von Mises kernel is

T0 =
1

n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

Kν(Θi j) =
1

2πI0(ν)n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

exp(ν cosΘi j),

T1 =− 1
n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

K(2)
ν (Θi j)

=− 1
2πI0(ν)n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

exp(ν cosΘi j) ·
(
ν

2 sin2
Θi j −ν cosΘi j

)
,

T2 =
1

n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

K(4)
ν (Θi j)

=
1

2πI0(ν)n(n−1)

n

∑
i=1

n

∑
j=1
j ̸=i

exp(ν cosΘi j) ·
(

ν
4 sin4

Θi j −6ν
3 sin2

Θi j cosΘi j

+3ν
2(cos2

Θi j − sin2
Θi j)−ν

2 sin2
Θi j +ν cosΘi j

)
.

Proof of the Lemma: First, we show expectations of functionals Tm(ν).

ET0(ν) = E
[
Kν(θ1 −θ2)

]
= R( f )− A1(ν)

2ν
R( f ′)+

A2(ν)

8ν2 R( f ′′)+o(ν−2),

ET1(ν) = E
[
−K′′

ν (θ1 −θ2)
]
= R( f ′)− A1(ν)

2ν
R( f ′′)+o(ν−1),

ET2(ν) = E
[
K(4)

ν (θ1 −θ2)
]
= R( f ′′)+o(1).
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Thus

E[CCV(ν)] = E[R( f̂ )]−ET0(ν)+
A1(ν)

2ν
ET1(ν)+

1
8ν2

(
2A2

1(ν)−A2(ν)
)
ET2(ν)+o(ν−2)

= E[R( f̂ )]−R( f )+
A1(ν)

ν
R( f ′)− A2(ν)

4ν2 R( f ′′)+o(ν−2).

On the other hand, the middle term of MISE can be expressed as follows:

E
∫

f̂ (θ ,ν) f (θ)dθ =
∫∫

Kν(θ −α) f (α) f (θ)dα dθ

= R( f )− A1(ν)

2ν
R( f ′)+

A2(ν)

8ν2 R( f ′′)+o(ν−2)

and the whole MISE reads as

MISE = E[R( f̂ )]−2E
∫

f̂ (θ ,ν) f (θ)dθ +R( f )

= E[R( f̂ )]−2R( f )+2
A1(ν)

2ν
R( f ′)−2

A2(ν)

8ν2 R( f ′′)+R( f )+o(ν−2)

= E[R( f̂ )]−R( f )+
A1(ν)

ν
R( f ′)− A2(ν)

4ν2 R( f ′′)+o(ν−2).
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Reconstruction of the social cash transfers system in Poland 
and household wellbeing: 2015–2018 evidence 

Adam Szulc1 

Abstract 

This study examines the impact of changes in the social benefits system on the wellbeing, 
poverty, and economic activity in Poland. The core element of those changes was 
a programme of large cash transfers, referred to as Family 500+, introduced in 2016. It was 
intended to support families with children, especially the least affluent ones, and to foster 
fertility. The impact of the transfers has been examined through the observation of changes 
in the monetary and multidimensional wellbeing of households. The study also analysed the 
changes in recipients’ economic activity using estimates of regression models and treatment 
effects. The Family 500+ programme proved to be successful as an anti-poverty tool and also 
resulted in the increase in the average wellbeing for the whole population. However, its side-
effects included the fall in the economic activity of some recipients, especially in 2016 and 
2017. The above trends partly reversed in 2018. As some income data in the lower parts of 
the distribution seemed to be flawed, income imputations, based on regression on income 
correlates, were applied in the study. 
Key words: family benefits, monetary and multidimensional poverty, income imputation. 

1. Introduction

In this study, the effects of the changes in the system of social cash transfers
in Poland between 2015 and 2018 are examined. In April 2016, the state family support 
programme, which seriously changed the volume and structure of social benefits, was 
launched. It is known as “Family 500+” and ensures the monthly unconditional support 
of tax-free 500 PLN (złoty) per each child in families with two or more children and 
means-tested support of the same amount for families with one child. In 2016, 500 PLN 
was equal to 26% of the mean monthly equivalent income. Total spending in 2017 was 
equal to 6% of the state budget. Family 500+ also changed the composition of the social 
transfers – the contribution of all family benefits to their total amount (excluding 
retirement and invalid pensions) increased from 63% in 2015 to 86% in 2018. For more 
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details on Family 500+, see Brzeziński and Najsztub (2017), and Ministerstwo Rodziny 
i Polityki Społecznej (2021). The effects of the abovementioned social policy 
reconstruction are examined by observing resulting changes in the standards of living, 
especially monetary and multidimensional poverty. The following changes in the 
labour activity of the recipients are also explored. 

The declared goals of Family 500+ were: (i) to reduce child poverty, and (ii) to 
increase fertility (which was among the European lowest in 2015 in Poland). The 
opponents argued that there would be a negative impact on the labour supply and a low 
efficiency resulting from also covering non-poor families with at least two children 
through the programme. Among several analyses using formal quantitative methods, 
some of them claimed or anticipated negative effects from Family 500+. For instance, 
Brzeziński and Najsztub (2017), using microsimulation models, predicted a low 
efficiency of the program due to its structure. Magda et al. (2021) estimated, using the 
difference-in-difference method, its negative impact on the female labour supply, 
however those findings stand in opposition with the conclusions reached by Premik 
(2022). Wilk (2021) reported a low response to the programme in terms of the fertility 
rate. On the other hand, it is not surprising that Family 500+ has been effective 
in reducing the economic hardship of the families with children (Milovanska-
Farrington, 2021). This is also claimed by simulation results presented by Brzeziński 
and Najsztub (2017). 

In the present study, the abovementioned issues, excluding demographic ones, are 
analyzed further, using data for 2015–2018. The findings confirm many of the 
observations described above for the 2016–2017 period. However, in 2018 some trends 
reversed. The analysis reported here covers the effects of all social benefits not related 
to the social insurance system, i.e. retirement and invalid pensions. The effects do not 
differ much from those obtained solely for Family 500+. This suggests that this type of 
child allowance did not lead to unpredictable results and has generally been in line with 
the effects of the cash transfers observed for some post-communist countries (Szulc, 
2012; Harumová, 2016).  

The remaining part of the paper is organized as follows. In Section 2, the theoretical 
concepts employed in the study are discussed. In Section 3, basic statistics on the Polish 
social transfers system are provided. Section 4 is devoted to the impact of the transfers 
on monetary and multidimensional poverty. In Section 5, changes in economic activity 
of the recipients are examined. Section 6 concludes the paper. 

2. Conceptual framework

2.1.  Data 

The individual data on households and persons employed in this research come 
from the household budget surveys collected annually by the central statistical office – 
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Statistics Poland. The yearly samples cover from 37,148 (2015) to 36,166 (2018) 
households. The reference period of observation is one month. Basic methodological 
details may be found in Główny Urząd Statystyczny – Statistics Poland (2018). The 
household data include a wide set of economic, demographic and sociological variables, 
allowing the evaluation of various aspects of households’ and individuals’ economic 
positions. Those utilised in the present study encompass, inter alia, information on 
household disposable income and its components, expenditures, assets, durables, 
dwelling conditions, demographic and socio-economic attributes, and answers to 
subjective income questions. There are two-year panel components covering from 
15,635 (2015–2016) to 15,155 (2017–2018) households included in the samples. The 
survey data were weighted using the 2011 National Census results to minimise 
differences between the structure of the surveyed sample and the population. 

There are reasons to assume that for some households their incomes are 
misreported, especially at the bottom of the distribution. This problem is tackled by 
income imputations. Some observable variables that may be assumed to be more 
reliable and stable in time are used to provide the estimates. They capture information 
on housing, consumer durables, education and some expenses related to standards of 
living. The income imputation is based on algorithm for missing data imputation 
proposed by Rubin (1987). More details may be found in Szulc (2022, pp. 4–5). 

2.2.  Well-being measurement 

Household equivalent disposable income (employing OECD 70/50 equivalence 
scales) is used as a monetary well-being indicator. As it is generally accepted that 
monetary poverty measurement does not suffice as a tool for capturing the nature of 
poverty, a multidimensional approach has also been adopted in the present study. It 
comprises the following components: (i) income, (ii) housing and equipment, and (iii) 
subjective evaluations of one’s own standard of living. The first one is represented by 
a function of equivalent income defined by eqn. (1), while the two remaining are 
composed of sets of single variables aggregated in one indicator. The final measure is 
defined as a weighted mean of indicators calculated for all three dimensions separately. 

At the first stage poverty measures are calculated. If a variable describing poverty 
at the lowest level of aggregation is binary, it is equal to 0 when a symptom of poverty 
(e.g. a lack of some consumer goods) is not observed and 1 otherwise. For continuous 
(e.g. the equivalent income or dwelling size) and discrete ordinal (e.g. subjective 
evaluation of own economic conditions) variables, the concept of well-being indicator 
is based on the “Totally Fuzzy and Relative” (TFR) approach to multidimensional 
poverty measurement proposed by Cheli and Lemmi (1995). In the “fuzzy” approach, 
as opposed to the dichotomous approach, no single poverty line is set. Instead, for 
a variable y used as a single dimension well-being measure, the degree of poverty based 
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on preselected interval, say [y*, y**], is calculated for each unit (individual or 
household). A poverty measure for the i-th unit is equal to 1 when y ≤ y* and equal to 
0 when y ≥ y**. To measure poverty for y∈(y*,y**) the following TFR function is applied 
as the “fuzzy” poverty indicator for i-th unit: 

𝑝𝑝𝑖𝑖 = 𝑝𝑝(𝑦𝑦𝑖𝑖) = �

0  𝑖𝑖𝑖𝑖 𝑦𝑦 ≥  𝑦𝑦 ∗∗
𝑝𝑝(𝑦𝑦𝑖𝑖−1) + 𝐹𝐹(𝑦𝑦𝑖𝑖)−𝐹𝐹(𝑦𝑦𝑖𝑖−1)

1−𝐹𝐹(𝑦𝑦∗)
1  𝑖𝑖𝑖𝑖 ≤  𝑦𝑦  𝑦𝑦 ∗

 𝑖𝑖𝑖𝑖   𝑦𝑦 ∈ (𝑦𝑦 ∗,𝑦𝑦 ∗∗)           (1) 

where F stands for an empirical cumulative distribution function. By definition, pi fits 
the interval [0; 1]. When y is a discrete ordinal variable (like subjective income 
questions ranging from “very bad” to “very good”), it is natural to set y* = ymin and y** 
= ymax. Formally, the same choice may be applied to continuous variables, like income, 
but it seems to be more rational to set y* > ymin and y** < ymax to relax impact of outliers. 
Moreover, when y* = ymin and y** = ymax, the indicator pi is “totally relative” and its value 
depends on the shape of the distribution only. In this study, comparisons between years 
are performed, hence fixing y* and y** over time is a better choice. For income, the 
bottom limit is equal to the 2015 existence minimum, while the upper limit is three 
times the social minimum (both thresholds are calculated by the Institute of Labour 
and Social Affairs, 2020). For other (nearly) continuous variables, like dwelling size, y* 
and y** are set at the 0.05 and 0.95 percentiles obtained for 2015, respectively. 

Once individual measures are defined, they should be aggregated to mid-level 
dimensions, i.e. equivalent income, housing and equipment, and subjective evaluations 
of the own economic conditions. As the first one is represented by a single variable, the 
problem of aggregation is relevant for the two remaining dimensions only. The 
weighting system within those dimensions was proposed by Cheli and Lemmi (1995). 
For the j-th item it is calculated as: 

𝑤𝑤𝑗𝑗 = 𝑙𝑙𝑙𝑙 �
1
𝐻𝐻𝚥𝚥���
�

where 𝐻𝐻𝚥𝚥��� denotes the proportion of units that are poor with respect to the j-th item. It is 
presumed that a more frequent poverty syndrome (e.g. the lack of a passenger car) is 
a less important symptom of poverty than a less frequent one (e.g. the lack of a ref-
rigerator). However, that form of weighting is problematic when three mid-level 
components are to be aggregated in one well-being indicator, as it assumes the equal 
importance of all dimensions. Hence, at the highest level of aggregation arbitrary 
weights are applied: 0.5 for income and 0.25 for both remaining dimensions. 
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In the present study, the impact of social transfers on the standards of living is one 
of the main goals. Therefore, it is more convenient to define a multidimensional well-
being measure instead of a poverty measure to make it compatible with equivalent 
income. This may be easily done by defining the multidimensional well-being indicator 
F = 1 - P where P is an aggregate poverty indicator. 

2.3.  Measurement of the transfers’ effects on the well-being 

The final impact of the social transfers on the well-being depends on their volume 
and allocation. Comparing actual poverty indices and pre-transfer (simulated) ones 
allows for the evaluation of the simultaneous effect of both abovementioned attributes. 
Indices gauging poverty incidence  and depth are used for that purpose and the poverty 
lines are set at the first decile and first quartile. Moreover, the elasticity of the effect with 
respect to the poverty threshold is evaluated using graphical methods. Poverty indices 
are calculated for each year separately, for all types of households together and for 
households with children. Simulated indices of income poverty are calculated by means 
of actual incomes reduced by transfer values. For multidimensional poverty, regression 
models are estimated to predict changes in well-being levels due to changes in incomes. 

A static evaluation of the transfers is supplemented by a dynamic one aimed at 
answering two questions: how well the non-poor are protected from falling into poverty 
and to what extent transfers allow the poor to leave the poverty zone. For that purpose, 
joint (two year) well-being distribution is constructed using panel data. Both income 
and multidimensional poverty are included in the analyses. The concept applied in the 
present study follows the idea of protection and promotion effects proposed by 
Ravallion et al. (1995). If the analysis is restricted to transitions to and out of poverty, 
the effects may be estimated as follows. A protection effect takes the form of a relative 
difference between the simulated number (subscripted by S) of new poor and the actual 
one (subscripted by A): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁[𝑦𝑦𝑆𝑆(0)≥𝑧𝑧0  &  𝑦𝑦𝑆𝑆(1)<𝑧𝑧1]−𝑁𝑁[𝑦𝑦𝐴𝐴(0)≥𝑧𝑧0 &  𝑦𝑦𝐴𝐴(1)<𝑧𝑧1]
𝑁𝑁[𝑦𝑦𝑆𝑆(0)≥𝑧𝑧0  &  𝑦𝑦𝑆𝑆(1)<𝑧𝑧1]   (2) 

where 𝑁𝑁�𝑦𝑦𝐴𝐴/𝑆𝑆(0) ≥ 𝑧𝑧𝑡𝑡 &  𝑦𝑦𝐴𝐴/𝑆𝑆(1) < 𝑧𝑧𝑡𝑡�  is the number of individuals who were not 
poor in period 0 and became poor in period 1. Similarly, the promotion effect takes 
a form of a relative difference between the actual number of new non-poor and the 
corresponding simulated number: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁[𝑦𝑦𝐴𝐴(0)<𝑧𝑧0 &  𝑦𝑦𝐴𝐴(1)≥𝑧𝑧1]−𝑁𝑁[𝑦𝑦𝑆𝑆(0)<𝑧𝑧0  &  𝑦𝑦𝑆𝑆(1)≥𝑧𝑧1]
𝑁𝑁[𝑦𝑦𝐴𝐴(0)<𝑧𝑧0 &  𝑦𝑦𝐴𝐴(1)≥𝑧𝑧1]  (3)
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where 𝑁𝑁�𝑦𝑦𝐴𝐴/𝑆𝑆(0) < 𝑧𝑧𝑡𝑡 & 𝑦𝑦𝐴𝐴/𝑆𝑆(1) ≥ 𝑧𝑧𝑡𝑡� is the number of individuals who were poor 
in period 0 and non-poor in period 1. The simulations are intended to answer the 
question: what would happen if the transfers were terminated. 

Finally, the impact of the transfers on the labour activity measured by means of the 
changes in economically active people is gauged. A static version is based on two 
treatment effect estimates: a propensity score matching (see Abadie and Imbens, 2012, 
or Wooldridge, 2010, pp. 903–936) and inverse probability weighted regression 
adjustment (hereafter: IPWRA, see Wooldridge, 2007, or Cattaneo et al., 2013). 
In a dynamic approach, changes in outcome variables of interest are regressed on 
changes in transfers using two-year panels. Both matching estimation and IPWRA are 
intended to produce unbiased estimates of a treatment effect, which in the present case 
is defined as receiving a certain type of benefits. 

Using panel data in both static and dynamic analysis gives an opportunity to reduce 
the bias caused by endogeneity (regression models) or violating the unconfoundedness 
assumption (the estimation of treatment effect). Both types of bias result from the 
occurrence of omitted variables in the model, especially unobservable ones like the 
capability to earn income related to psychological attributes or hidden skills. Omitting 
them in the model usually results in a downward bias in the estimation of the effect of 
benefits if they are means-tested. When panel data are available it is possible to use 
benefits received in the basic period as proxies for abovementioned unobservable 
control variables. 

3. General review of the social benefits in Poland: descriptive statistics

Between 2015 and 2018, the considerable growth of mean standards of living could 
be observed: the mean equivalent income rose by 19.8% and the multidimensional well-
being indicator by 2.8%. In 2016 and 2017, but not in 2018, the recipients of social 
benefits experienced higher than average well-being increases. At the same time, due to 
the growing number of children, for recipients of 500+ the growth rate was lower than 
for all the beneficiaries of social transfers. The main feature of the changes in the system 
of social cash transfers  (see Table 1) was the huge growth of family benefits under the 
relative stability of the remaining ones. For the whole sample, the mean real value of 
the first rose by 291%, while the mean value of the latter by 10%. The mean value of all 
transfers increased by 188% for the whole sample and among recipients of the benefits 
by 99% and by 222% among households  with children. Those growths were 
accompanied by moderate increases in the proportion of recipients of all types of 
transfers: from 29% to 33%. As might be expected, the proportion of family benefits 
recipients greatly increased, at  the cost of the remaining benefits. A huge growth was 
also observed for households with children. 
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Table 1: Social benefits: basic statistics (monthly means in 2015 prices) 

Type of the benefit 2015 2016 2017 2018 

mean benefits 

All types 191 430 563 550 
Family 121 353 488 473 
  incl. 500+ - 219 352 334 
Other 70 78 75 77 
All types – recipients only 560 996 1092 1116 
All types – hh with children only 291 716 952 936 

proportion of the recipients 

All types 0.287 0.328 0.369 0.331 
Family 0.101 0.167 0.224 0.213 
  incl. 500+ - 0.112 0.199 0.190 
Other 0.186 0.161 0.146 0.118 
All types – hh with children only 0.367 0.529 0.682 0.680 

proportion of the households with children 

- 0.338 0.333 0.326 0.316 

Source: author’s own calculations based on the household budget surveys. 

Although expanding the value of social benefits usually results in easing the 
economic hardship of recipients, it may also lead to dependency on the social system 
(see, e.g. Kotlikoff et al., 2006 and Shepherd et al., 2011). As displayed in Table 2, the 
average proportion of social benefits in the household income between 2015 and 2018 
rose from 6.6% to 11.8% for the whole sample and from 19.4% to 24% for the recipients. 
Moreover, the proportion of households for which social benefits contribute more than 
50% to the whole income increased from 8.4% to 10.4%. Other side effects of the social 
transfers, especially the reduction of economic activity, are analyzed in Section 5. 

Table 2: Contribution of the social transfers to household income 

Specification 2015 2016 2017 2018 

Share of the transfers: all households 0.066 0.102 0.126 0.118 
Share of the transfers: all recipients 0.194 0.237 0.244 0.240 
Share of the transfers: households with children 0.094 0.161 0.204 0.193 
Share of the transfers < 0.2 0.730 0.656 0.641 0.646 
0.2 < share of the transfers < 0.5 0.186 0.240 0.253 0.251 
Share of the transfers > 0.5 0.084 0.103 0.106 0.104 
% of poverty gap, poverty line at the first quartile 79 140 170 148 
100% of poverty gap if poverty line at centile 21 31 35 33 

Source: author’s own calculations based on the household budget surveys. 
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4. Impact of the transfers on incidence and depth of the poverty

4.1.  Static analysis 

A conventional measure of an effect of social transfers takes the form of the 
difference between poverty indices calculated with the use of actual and pre-transfer 
incomes. For income poverty such a difference may be obtained just by subtracting cash 
transfers from actual incomes and then calculating simulated indices of poverty. For 
multidimensional poverty changes in indices may be predicted conditionally on 
changes in income. In the present study, this measure is implemented using regression 
models with a multidimensional well-being indicator as a dependent variable regressed 
on a quadratic polynomial of equivalent income. To estimate this model, the sample 
was restricted to the incomes between the first decile and the median. Censoring the 
lowest incomes is intended to reduce the impact of data errors mentioned in Section 
2.1 which result, inter alia, in nonsensical relations between equivalent income and 
multidimensional poverty (see Szulc, pp. 19–20). Hence, indices measuring poverty are 
calculated for both types of incomes. The results are reported in Table 3 (income 
poverty) and in Table 4 (multidimensional poverty). 

Table 3: Income poverty rates and depth: before and after transfers differences 

Poverty measure 
2015 2016 2017 2018 2015 2016 2017 2018 

declared incomes corrected incomes 
poverty line at the first quartile, all households 

Rate, before 0.289 0.336 0.355 0.349 0.292 0.338 0.357 0.350 
Difference 0.039 0.086 0.105 0.099 0.042 0.088 0.107 0.100 
Depth, before 0.340 0.345 0.349 0.345 0.264 0.284 0.300 0.290 
Difference 0.071 0.100 0.123 0.110 0.078 0.119 0.140 0.131 

poverty line at the first quartile, households with children 
Rate before 0.372 0.429 0.447 0.442 0.376 0.433 0.454 0.445 
Difference 0.055 0.137 0.175 0.167 0.058 0.140 0.177 0.167 
Depth, before 0.356 0.369 0.378 0.372 0.283 0.314 0.340 0.330 
Difference 0.081 0.126 0.164 0.148 0.089 0.150 0.182 0.171 

poverty line at the first decile, all households 
Rate before 0.147 0.189 0.219 0.210 0.155 0.203 0.228 0.220 
Difference 0.047 0.089 0.119 0.110 0.055 0.103 0.128 0.120 
Depth, before 0.343 0.347 0.345 0.343 0.252 0.279 0.292 0.275 
Difference 0.096 0.110 0.120 0.103 0.122 0.164 0.183 0.174 

poverty line at the first decile, households with children 
Rate before 0.200 0.262 0.299 0.287 0.214 0.283 0.320 0.311 
Difference 0.068 0.145 0.198 0.185 0.079 0.166 0.211 0.201 
Depth, before 0.351 0.358 0.361 0.357 0.264 0.303 0.323 0.304 
Difference 0.109 0.129 0.152 0.128 0.129 0.190 0.214 0.205 

Source: author’s own calculations based on the household budget surveys. 
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Table 4: Multidimensional poverty incidence and depth: before and after transfers differences 

Poverty measure 
2015 2016 2017 2018 2015 2016 2017 2018 

declared incomes corrected incomes 

poverty line at the first quartile, all households 

Rate before 0.291 0.338 0.354 0.347 0.302 0.357 0.371 0.363 
Difference 0.041 0.088 0.104 0.097 0.052 0.107 0.121 0.113 
Depth, before 0.279 0.291 0.304 0.282 0.275 0.346 0.365 0.350 
Difference 0.077 0.100 0.121 0.103 0.079 0.158 0.180 0.171 

poverty line at the first quartile, households with children 

Rate before 0.364 0.420 0.437 0.436 0.374 0.440 0.455 0.451 
Difference 0.061 0.142 0.175 0.167 0.071 0.162 0.192 0.179 
Depth, before 0.288 0.308 0.326 0.302 0.286 0.370 0.394 0.379 
Difference 0.088 0.128 0.164 0.137 0.090 0.192 0.225 0.211 

poverty line at the first decile, all households 

Rate before 0.158 0.203 0.229 0.216 0.153 0.230 0.255 0.248 
Difference 0.058 0.103 0.129 0.116 0.053 0.130 0.155 0.148 
Depth, before 0.268 0.276 0.284 0.253 0.293 0.352 0.366 0.344 
Difference 0.094 0.105 0.119 0.105 0.122 0.189 0.201 0.198 

poverty line at the first decile, households with children 

Rate before 0.206 0.271 0.304 0.291 0.201 0.303 0.334 0.329 
Difference 0.084 0.168 0.213 0.193 0.079 0.200 0.240 0.227 
Depth, before 0.270 0.283 0.296 0.265 0.294 0.365 0.385 0.362 
Difference 0.102 0.125 0.153 0.135 0.125 0.216 0.236 0.229 

Source: author’s own calculations based on the household budget surveys. 

Poverty lines are set at the first deciles and the first quartiles of the well-being for 
the whole samples. Comparisons based on the raw survey data lead to two general 
conclusions: (i) the impact of the transfers increased sharply in 2016 and then in 2017, 
and (ii) the lower the poverty line, the stronger the impact. This finding is valid for both 
poverty incidence and depth. All estimates of the effects are significant below the 0.01 
level. It is not surprising that the effects on poverty are stronger for the households with 
children, especially after 2015. However, even in 2015 the family allowances were 
sufficient to provide stronger that average reduction of the pre-transfer poverty. 
Comparing the abovementioned results with those obtained by means of corrected 
incomes yields similar general conclusions, although estimates of the effects are greater 
in the latter case. It may be assumed that due to removing some “fake poor” from the 
sample (more precisely: moving them to higher ranges of the distribution), those 
estimates of the effects are more reliable. To display changes in the effects of the 
transfers not attached to a fixed poverty line, the effects are plotted over a variable 
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poverty line for 2015 and 2018. When declared survey incomes are utilised, the impact 
on the poverty depth for poverty lines set below the first decile do not necessarily 
decrease with respect to the poverty threshold, which is rather a counterintuitive result. 
There are reasons to believe that this may be an effect of income data errors: the “fake 
poor” less frequently receive benefits and therefore after-transfer poverty is reduced to 
low extent. The plots (see Fig. 1 and Fig. 2) produced with the use of corrected incomes 
support this hypothesis: observed changes in the effects due to the poverty line are 
much more reliable. 

Figure 1:  Difference between after and before transfer income poverty incidence and depth, corrected 
incomes, 2015; vertical dotted lines at the first decile and the first quartile 

Figure 2:  Difference between after and before transfer income poverty incidence and depth, corrected 
incomes, 2018; vertical dotted lines at the first decile and the first quartile 
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Conclusions on multidimensional poverty do not differ much from those derived 
from the estimates obtained for corrected incomes: considerable increases of the effects 
in 2016 and in 2017 and decreases of the effect due to the increase in the poverty line 
may be observed. This is true for the results attained by means of both declared and 
corrected incomes. The impact of the transfers on poverty depth is noticeably stronger 
when corrected incomes are applied. 

4.2.  Dynamic analysis 

Due to using two-year panel data, it is possible to estimate the protection and 
promotion effects of the transfers described in Subsection 2.3. Both these measures 
display simulated transitions between the poverty and non-poverty zones due to 
changes in social transfers. In Table 5a and Table 5b, the simulated effects of removing 
all social benefits are reported. For instance, the protection effect 0.171 observed for 
2015 - 2016 period suggests that the number of “new poor” in 2016 would increase by 
17.1% without the transfers. The protection effect 0.278 observed for the same period 
should be interpreted as 27.8% increase in the number those who escaped poverty in 
2016 after receiving the transfers. Unlike in the case of static effects, negative 
protection/promotion effects are likely and they occurred in the 2017–18 period. 
Naturally, this does not mean a counterproductive effect of the benefits, as simulated 
poverty rates are still much higher than actual ones (see Tables 3 and 4). Rather, the 
negative value suggests that there are sources for successfully coping with poverty other 
than social benefits. The increases in labour activity observed between 2017 and 2018 
(see Table 6) support this hypothesis. Nevertheless, most of the protection/promotion 
effects appeared to be positive and significant, usually below the 0.01 level. As might 
also be observed in the case of static effects, the lower the poverty line, the stronger the 
effect. The effects for multidimensional poverty are stronger than those for income 
poverty. 

Table 5a:  Protection and promotion effect for income poverty 

Specification 2015/16 2016/17 2017/18 

poverty line at the first quartile 

Protection 0.171*** 0.019 -0.166**
Promotion 0.278*** 0.134*** -0.023

poverty line at the first decile 

Protection 0.562*** 0.629*** 0.642*** 
Promotion 0.430*** 0.444** 0.304*** 

Source: author’s own calculations based on the household budget surveys. 

Legend: ***: significant at 0.01, **: significant at 0.05, *: significant at 0.1 (bootstrap standard errors) 
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Table 5b:  Protection and promotion effect for multidimensional poverty 

Specification 2015/16 2016/17 2017/18 

poverty line at the first quartile 

Protection 0.430*** 0.490*** 0.469*** 
Promotion 0.322*** 0.344*** 0.236*** 

poverty line at the first decile 

Protection 0.669*** 0.706*** 0.685*** 
Promotion 0.396*** 0.371** 0.221*** 

Source: author’s own calculations based on the household budget surveys. 

Legend: ***: significant at 0.01, **: significant at 0.05, *: significant at 0.1 (bootstrap standard errors) 

5. Changes in economic activity following the cash transfers

Examining the household response to receiving increased benefits, especially
Family 500+ is another goal of the present study. Impact on the labour activity of the 
recipients, measured by the changes  in the numbers of economically active people, 
is investigated by means of univariate and multivariate analyses. The latter ones employ 
regression methods, with a Heckman (1976) correction when necessary, and the 
estimation of treatment effects (matching estimation and IPWRA). Regression models 
for i-th unit take a general form: 

∆𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1∆𝑋𝑋𝑖𝑖 + 𝛼𝛼2𝒁𝒁𝒊𝒊 + 𝜀𝜀𝑖𝑖 (4) 

where ∆𝑌𝑌𝑖𝑖 stands for a change in indicator of well-being or economic activity, ∆𝑋𝑋𝑖𝑖 is 
a change in the benefit value, and Zi represents a set of control variables assumed to be 
correlated with a response variable. 

Table 6: Changes in economic activity: whole sample vs new Family 500+ recipients 

Specification 2015/16 2016/17 2017/18 

Change in: 

income from economic activity   0.069 0.094 0.074 
income from economic activity, 

new 500+ 0.045 0.028 -0.135
non-social income 0.071 0.092 0.097
non-social income, new 500+ 0.018 0.040 -0.117
no. of active women -0.026 -0.023 -0.023
no. of active women, new 500+ -0.024 -0.016 0.095
no. of active men -0.034 -0.031 -0.025
no. of active men, new 500+ -0.034 -0.036 0.119

Source: author’s own calculations based on the household budget surveys. 
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In Table 6 some univariate statistics for the whole sample and for households 
receiving 500+ for the first time are reported. It is not surprising that the recipients’ 
incomes originating from economic activity (employment and self-employment, 
including unpaid work in a family firm/farm) were growing at a slower pace, as 
compared to the whole sample, and even dropped in 2018. Similar trends can be 
observed for all non-social incomes (including old age and invalid pensions). Due to 
the low number of new  500+ recipients in 2018 (1.7% of the whole sample), the results 
for the 2017–2018 period may be not very reliable due to sampling errors. This problem 
is resolved further by estimating regression models on the whole panel sample 
(the results are reported in Table 7) that allow controlling for changes in other variables 
having impact on the variable(s) of interest.  

In the regression models the yearly change in economic activity (income from 
economic activity and the number of active people) is a dependent variable and the 
yearly change in 500+ is an independent one. The sets of control variables (varying 
between estimations) comprise changes in remaining benefits, various household 
attributes, and the number of economic active men and women, as well as the benefits 
and incomes in the basic year. All estimates are performed on a sub-sample of the 
households with children. There are at least two potential problems with the estimation 
of such a model. First, omitted unobservable variables, like people’s attitudes, may 
result in endogeneity which, in a scarcity of potential instrumental variables, is a serious 
problem. As Family 500+ for households with one child is means-tested, the recipients’ 
earning income ability is likely to be lower than that of the non-recipients. Using panel 
data may be an alternative to the instrumental variables estimation. It is possible to relax 
the impact of omitted variables by including the values of income and benefits during 
a basic year as proxy variables for the earning ability. Another problem with the 
estimation stems from the selection of the subsample of recipients. As households with 
children are more likely to pay more attention to family values at the cost of economic 
activity, they are also more likely to reach a lower income which is not necessarily a side 
effect of receiving benefits. In other words, people bearing children may be more likely 
to stay at home rather than enter the labour market if their potential earnings are lower 
than their reservation wage. To receive unbiased estimators of eqn. 4 regression models 
with a Heckman correction are applied. The results are reported in Table 7. The impact 
of the social benefits is also evaluated by means of estimates of the treatment effects and 
IPWRA using panel data sets to provide more complete information on household 
earning ability. Omitting it would probably result in violating the unconfoundedness 
assumption in the matching estimation. As in the case of regression models presented 
above, information on transfers of the basic year is included in the estimation. The 
results of the estimations are displayed in Table 8. In general, conclusions on the 
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negative impact of the transfers on labour/self-employment income are consistent 
irrespectively to the method of estimation. On the other hand, those effect in 2018 
appeared to be less significant than in the previous years. 

Table 7: Impact of social benefits using regression: on Family 500+ and on all transfers (1 unit = 
100 PLN) 

Specification 2015/16 2016/17 2017/18 

Income from economic activity on: 
 500+ (Heckman regression) -25.785*** -41.7375*** -43.2491***
 all transfers (LSQ) -24.4548*** -35.1543*** -28.4337***

No. of active women on: 
 500+ (Heckman regression) -0.0051*** -0.0033** 0.0017 
 all transfers (LSQ) -0.0037*** -0.0009 0.0009 

No. of active men on: 
 500+ (Heckman regression) -0.0045*** -0.0037** -0.0008
 all transfers (LSQ) -0.0035** -0.0004 0.0010

Source: author’s own calculations based on the household budget surveys. 

Legend: ***: significant at 0.01, **: significant at 0.05, *: significant at 0.1 (bootstrap standard errors). 

Table 8: Impact of social benefits using treatment effect estimation: on Family 500+ and on all 
transfers 

Specification 
2015/16 2016/17 2017/18 

matching IPWRA matching IPWRA matching IPWRA 

Income from 
economic 
activity on: 
 500+ -185.2416*** x -184.5467 x -156.2497 x 
 all transfers -327.35*** x -89.2194 -227.03*** -212.18*** -256.84***

No. of active 
women on: 
 500+ -0.0391** -0.0307** -0.1843** -0.0366 0.0659 -0.0481
 all transfers -0.0794** -0.0510*** -0.0200 -0.0899*** 0.0097 -0.1396**

No. of active 
men on: 
 500+ -0.0146 -0.0547*** 0.1078 0.0393 0.2122** 0.1386 
 all transfers -0.0217 -0.0416*** 0.2924*** 0.0633** 0.0862 -0.0963**

Source: author’s own calculations based on the household budget surveys. 

Legend: ***: significant at 0.01, **: significant at 0.05, *: significant at 0.1 (bootstrap standard errors); 
x: convergence not achieved   
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Table 9: Impact of social benefits using 3 level treatment effect estimation (IPWRA): on Family 500+ 
and on all transfers 

Specification 2015/2016 2016/2017 2017/2018 

Income from economic 
activity on: 

   500+ x -141.4552*** x 
  all transfers x -431.4383* x 

No. of active women on: 
 500+ -0.0250*** -0.0126 -0.1049***
 all transfers 0.0362 -0.0798 -0.2115*

No. of active men on: 
 500+ -0.0253*** -0.0190** -0.0799***
 all transfers -0.1084* -0.0391 -0.9569***

Source: author’s own calculations based on the household budget surveys. 

Legend: ***: significant at 0.01, **: significant at 0.05, *: significant at 0.1 (bootstrap standard errors); 
x: convergence not achieved 

The natural question is which results, based on regression or on treatment effects 
estimates, are more reliable. The previous method is more sensitive to the specification 
of the model, however it allows continuous variables representing the transfers while 
in a conventional matching estimation only binary variable may be used. This 
restriction may be partly overcome by applying multilevel treatment effect IPWRA 
models. In this study the social transfers are represented by a discrete variable V that 
equals 0 if no transfers are received by the households, 1 if transfers without 500+ are 
received and 2 if other transfers including 500+ are received. The respective estimates 
are displayed in Table 8. When the estimates are statistically significant they are close 
to those obtained by means of regression (changes in the number of men and women 
that are economically active are reported in four last rows of Table 6). They were 
calculated for the whole sample and for the people living in the households of recipients 
of Family 500+. Due to the ageing society and the increasing number of pensioners 
(which grew by 9.2% between 2015 and 2018), the number of economically active 
persons decreased over that period. Nevertheless, the number of economically active 
women decreased at a lower-than-average pace between 2015 and 2017 and rose 
substantially in 2018 (by 9.5%). The corresponding indicators for the men were slightly 
above the average, but the increase  in 2018 was even higher than that for the women 
(by 11.9%). On the other hand, a small sample of the new Family 500+ recipients 
in 2018 probably resulted in large sampling errors. Relatively minor declines 
in economic activity may be easily explained by the fact that adults in household 
bearing children are usually below the retirement age. This suggests that the 
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abovementioned changes might be related to changes in social transfers. As in the 
previous section, this issue is analysed further by means of the estimation of regression 
models and treatment effects. The results are reported in last six rows of Table 7 
(regression), Table 8 (matching estimation with a binary treatment) and Table 9 
(IPWRA with a three-level treatment). 

6. Concluding remarks

Changes in the system of social cash transfers following the introduction of Family 
500+ in 2016 increased their total amount enormously. The mean value was equal to 
79% of the poverty gap calculated with the use of poverty line at the first income 
quartile, to 140% in 2016 and to 170% in 2017. Therefore, it is not surprising that the 
reduction of monetary and multidimensional poverty was meaningful. Moreover, 
the growth of the transfer resulted in a reduction in the economic activity of the 
recipients, especially in 2016 and 2017. In 2018 some of the abovementioned trends 
reversed. This may be attributed to the relative decrease in Family 500+ values, resulting 
from increases in mean incomes and from the inflation (3.5% between 2016 and 2018). 
Distinguishing between income and multidimensional poverty generally does not lead 
to basically opposite results, although the impact of the transfers on multidimensional 
poverty is usually stronger than that on income poverty. This applies also to estimates 
of the protection and promotion effects in a dynamic analysis of poverty and also is 
confirmed by concentration curves and coefficients (see Szulc, 2022, pp. 14–16). This 
suggests that the administration does not employ only an income criterion when 
addressing the benefits (see Ravallion, 2009, for a wider general discussion of the issue). 

Increases in the transfers’ volume resulted in a minor reduction of the economic 
activity of the new recipients, especially in the first two years of the Family 500+ 
programme. Univariate analysis revealed drops in the numbers of economically active 
people, both men and women, in 2016 and 2017 followed by massive increases in 2018 
(although the latter may be overestimated due to a very small sample size of new 500+ 
recipients). Nevertheless, the benefits appeared to be large enough to compensate for 
the reduction in economic activity and the incomes of the recipients were increasing at 
a higher pace between 2015 and 2017. In 2018 this trend partly reversed, due to a lack 
of indexation of the 500+. Multivariate analysis, based on regression models and on 
estimates of the treatment effect claimed negative impact of the benefits, of any type, 
on employment and self-employment incomes. Comparing the impact of Family 500+ 
and the social benefits altogether yields very similar conclusions. 

One of the problems in analyses using household surveys is the quality of survey 
income data, especially at the bottom of the distribution. This problem was tackled by 
means of income imputations based on regressions on selected income correlates 
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performed for middle ranges of incomes. Applying this method suggests the 
underestimation of the transfer impact on poverty when declared, uncorrected incomes 
are utilised. Due to the non-random selection of observations replaced by the estimated 
incomes, formal statistical inference on imputed values could not be performed. 
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On autoregressive processes with Lindley-distributed
innovations: modeling and simulation

K. U. Nitha1, S. D. Krishnarani2

Abstract

In this paper, we develop an autoregressive process of order one, assuming that the inno-
vation random variable has a Lindley distribution. The key properties of the process are 
investigated. Five distinct estimation techniques are used to estimate the parameters and 
simulation studies are conducted. The stationarity of the process is tested using a unit root 
test. The application of the proposed process to the analysis of time series data is demon-
strated using real data sets. Based on some important statistical measures, the analysis of 
the data sets reveals that the proposed model fits well, and the errors a re independent and 
Lindley-distributed.
Key words: AR(1) process, Lindley distribution, innovations.

1. Introduction

In recent years, the development of information technology has brought changes in the
structure of data sets. Practitioners and data analysts have been reformulating models for
analyzing such data sets. Time series analysis is concerned with data that emerge over time.
The normality assumption of the innovation random variables is one of the assumptions in
the analysis of time series data. This assumption is always questionable because it is far
away from reality in a number of applications. As a result, researchers have been experi-
menting with various models based on competitive and better distributional assumptions for
the innovation random variable. One of the important models for time series data analysis is
the linear autoregressive process of order 1 (AR(1)) model, in the form Xt = aXt−1 + εt . As
stated previously, the innovation random variable εt can be non-normally distributed, partic-
ularly in finance, hydrology, economics, and biological sciences. EAR(1) and GAR(1) mod-
els of Gaver and Lewis (1980), Andel (1988), Hutton (1990), and Jenny and Vance (1992)
are some examples in this regard. See Tiku et al. (2000), Ghasami et al. (2020), Altun
(2019a), Sharafi and Nematollahi (2016), and references therein for more recent attempts
in this category. For the estimation methods and further studies see, Bell and Smith (1986).
So, the non-normality of the observed series and of the innovations are to be taken care of
while modeling time series data sets. One may recall that these kinds of situations were con-
fronted in the case of minification models, volatility models, and other non-Gaussian time
series models. This motivates us to consider an AR(1) model with non-Gaussian error. In
this paper, we consider an AR(1) model with a non-normal, specifically Lindley-distributed,
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innovation distribution. Several researchers have discussed the significance of this distribu-
tion, and the details are provided below.

A Lindley distribution with parameter θ is a mixture of exponential(θ ) and gamma(θ ,2)
distributions. It has numerous advantages over other distributions, which several authors
have thoroughly researched. The Lindley distribution, having support on the positive real
line is introduced by Ghitany et al. (2008). Further, there has been extensive and detailed
research conducted into its generalizations. Algarni (2021), Altun (2019b), Asgharzadeh
et al. (2016), Bhati et al. (2015), Hamed and Alzaghal (2021), Ekhosuehi and Opone
(2018), Elbatal et al. (2013), Oluyede and Yang (2015), Zeghdoudi and Bouchahed (2018)
and Beghriche et al. (2022) are a few among them. However, time series applications of
Lindley distribution are less explored except for a few listed in the next paragraph. The
probability density function (p.d.f) of a random variable following the Lindley distribution
ε

d∼ L(θ) is given by

f (ε) =
θ 2

θ +1
(1+ ε)e−θε ; ε > 0, θ > 0. (1)

The mean, variance, and characteristic function of the Lindley distribution are respec-
tively given by

E(ε) =
θ +2

θ(θ +1)
, (2)

var(ε) =
θ 2 +4θ +2
θ 2(θ +1)2 , (3)

and φε(s) =
θ 2(θ − is+1)
(θ +1)(θ − is)2 . (4)

Practitioners were using this particular distribution in reliability studies and modeling
different non-negative data sets, from its beginning as seen in Sankaran (1970) and Ghitany
et al. (2008). The applications of this distribution in time series are studied by introducing
an autoregressive model with a Lindley distribution as marginal in Bakouch and Popovic
(2016). In that model, the error distribution is a mixture distribution, which is easily deriv-
able because of the assumptions of the marginal. The innovation series can thus be in closed
form, but the marginal need not be for stationary time series data sets that may be charac-
terized by an additive process. So, here, in this paper, an attempt is made to construct such
models with innovation as Lindley, and explore further properties. The appealing algebraic
formulation of the Lindley distribution is an added advantage in this study.

The paper is organized as follows. In Section 2, the first-order Lindley autoregressive
error process is introduced. Estimation of the parameters and simulation studies are done
in Section 3. Unit root test is carried out in Section 4 and the application of the model is
illustrated with the help of two real data sets in Section 5. Concluding remarks are given
in the last Section.
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2. Lindley error process

Let {Xn,n ≥ 1} be a stationary process generated by an autoregressive model given by

Xn = aXn−1 + εn (5)

where 0 < a < 1, and {εn} is a sequence of independent and identically distributed (i.i.d)
random variables such that εn is independent of Xi,(i < n). Here, we assume that the inno-
vation sequence {εn} follows Lindley probability distribution with parameter θ , denoted as
L(θ). So, we call the process, defined by (5) as a Lindley error process of order 1, and it is
abbreviated as LER(1). Since an AR(1) process can be written as the sum of the innovation
sequence {εn}, we may write Xn as,

Xn = εn +aεn−1 + ...+an−1
ε1 +anX0 (6)

= anX0 +
n−1

∑
r=0

ar
εn−r, as n = 1,2,3, ... (7)

This can also be written as an infinite sum,

Xn =
∞

∑
r=0

ar
εn−r.

Therefore, the characteristic function corresponding to Xn is given by,

φXn(s) =
∞

∏
r=0

θ 2(θ − iars+1)
(θ +1)(θ − iars)2 . (8)

Because of the complexity in the structure of (8), it is strenuous to identify the distribution
of Xn analytically. We derive the basic analytical properties of {Xn} defined by (5), using
the distributional properties of {εn}. For this, let us assume, µ0 = E(X0), σ2

0 = var(X0),
µ1 = E(εn) and σ2

1 = var(εn). Using (7), we obtain,

E(Xn) = an
µ0 +

1−an

1−a
µ1. (9)

Similarly, the variance of Xn is given by

var(Xn) = a2n
σ

2
0 +

1−a2n

1−a2 σ
2
1 (10)

and covariance between Xn and Xn+k is,

cov(Xn,Xn+k) = ak
[

σ
2
0 a2n +σ

2
1

1−a2n

1−a2

]
. (11)
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Defining Mn, the average of Xn’s as

Mn =
X0 +X1 + ...+Xn−1

n
,n = 1,2, ...,

and using the recursive form of Xn,

Mn =
1
n

(
X0 +aX0 + ε1 +a2X0 +aε1 + ε2 + ...+an−1X0 +

n−2

∑
r=0

ar
εn−r−1

)

=
1
n

[
1−an

1−a
X0 +

n−1

∑
r=1

1−ar

1−a
εn−r

]
.

Therefore,

E(Mn) =
1

n(1−a)

[
(1−an)µ0 +µ1

(
(n−1)− a(1−an−1)

1−a

)]
. (12)

Similarly, the variance

var(Mn) =
1

n2(1−a)2

[
(1−an)2

σ
2
0 +σ

2
1

(
(n−1)− 2a(1−an−1)

1−a
+a2 1−a2(n−1)

1−a2

)]
.

(13)
But when n becomes very large, from (9) and (12), we have both,

E(Xn) and E(Mn)−→
µ1

1−a
.

From (10) and (13), var(Xn) and var(
√

nMn)−→
σ2

1
1−a2 .

Using (11), cov(Xn,Xk) = 0 as n,k −→ ∞.

As n → ∞, cov(Xn,Xn+k) =
ak

1−a2 σ2
1 , and corr(Xn,Xn+k) = ak.

In the next section, we discuss different estimation methods of parameters in the LER(1)
process.

3. Estimation methods of LER(1) process

3.1. Maximum likelihood estimation

In this section, we focus on estimating the parameters of the proposed process. The
parameters involved in the process are θ and a. We take the index set in the LER(1) process
defined in (5) as t with the structure, Xt = aXt−1 + εt . For the realizations x1,x2, ...,xn we
can write the likelihood function of the process as,

L =

(
θ 2

θ +1

)n
(

n

∏
t=2

(1+ xt −axt−1)

)
e−θ ∑

n
t=2(xt−axt−1).
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The corresponding log-likelihood can be written as

logL = nlog(θ 2)−nlog(θ +1)+
n

∑
t=2

log(1+ xt −axt−1)−θ

n

∑
t=2

(xt −axt−1) . (14)

Differentiating the log-likelihood equation (14) with respect to the parameters, we get the
first-order partial derivatives. It should be noted that if the second-order partial derivatives
are negative, the critical point corresponds to the maximum point. So, we found the first
and second-order partial derivatives as,

∂ logL
∂a

=−
n

∑
t=2

xt−1

(1+ xt −axt−1)
+θ

n

∑
t=2

xt−1, (15)

∂ logL
∂θ

=
2n
θ

− n
θ +1

−
n

∑
t=2

(xt −axt−1), (16)

∂ 2logL
∂a2 =−

n

∑
t=2

(
xt−1

1+ xt −axt−1

)2

,

∂ 2logL
∂θ 2 =

−2n
θ 2 +

n
(θ +1)2 .

Next, we equate (15) and (16) to zero to get the estimates of the parameters. However, an
explicit form for the parameter estimators is not derivable from the above expressions. So,
numerical maximization of the log-likelihood function is the next possible alternative. The
Nelder-Mead optimization in R software is used to maximize the log-likelihood function to
get the maximum likelihood estimates.

Next, we use the well-known method of moments to estimate the parameters.

3.2. Method of moments

The moment estimators are identified by equating the sample moments (mn) with corre-
sponding population moments of the process, which are given by,

mn =
1
n

n

∑
i=1

xi =
1

(1−a)
θ +2

θ(θ +1)
(17)

sn =
1

n−1

n−1

∑
i=1

(xi −mn)
2 =

1
(1−a2)

θ 2 +4θ +2
θ 2(θ +1)2 (18)

After certain algebraic calculations, we obtain,

θ̂ =
−((1−a)mn −1)+

√
((1−a)mn −1)2 +8(1−a)mn

2(1−a)mn
.
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Table 1: Estimated values of a, θ , and corresponding MSE.
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Obtaining explicit answers for the parameters is complicated once again by the non-
linear character of the aforementioned problem. As a result, we fixed the values of a in the
simulation study, to assess the precision of the moment estimators of θ .
Now, we propose an alternative method of estimation based on a non-parametric approach.

3.3. Estimation through non-parametric approach

Here, we use the method discussed by Bell and Smith (1986) to identify the non-parametric
estimate of a. Using (5) we have the ratios,

X2

X1
= a+

ε2

X1

X3

X2
= a+

ε3

X2
... ...

Xn

Xn−1
= a+

εn

Xn−1

Since each εn
Xn−1

is positive, it is clear that a < Xt
Xt−1

, t = 2,3, ....,n. So, a non-parametric
point estimate of a is obtained as,

ã = min
(

1,
X2

X1
,

X3

X2
, ...,

Xn

Xn−1

)
.

Correspondingly, θ̃ is obtained as

θ̃ =
−((1− ã)µ̃ −1)+

√
((1− ã)µ̃ −1)2 +8(1− ã)µ̃

2(1− ã)µ̃
.

3.4. Conditional least square method

In this section of the paper, we use the conditional least square (CLS) method of estima-
tion. The sum of squared deviations from conditional expectations (En(θ)) is minimized to
get the conditional least square estimators, where

En(θ) =
n

∑
t=2

[xt −E(xt |xt−1)]
2 (19)

=
n

∑
t=2

[
xt −axt−1 −

θ +2
θ(θ +1)

]2

. (20)

In other words, the partial derivatives of these deviations with respect to the parameters a
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and θ are equated to zero and the estimates are obtained by solving these two equations.

True value θ = 0.1
Sample size θ̂ MSE(θ̂)

30 0.0964 0.1241
50 0.0942 0.0187

100 0.0993 0.0171
a = 0.4 250 0.0998 0.0108

500 0.1002 0.0072
1000 0.1000 0.0051

True value θ = 3
a Sample size θ̂ MSE(θ̂)

30 2.8812 0.8009
50 2.7423 0.5012

100 2.9215 0.4766
a = 0.5 250 2.9381 0.2844

500 2.9845 0.1988
1000 2.9947 0.1623

True value θ = 1
a Sample size θ̂ MSE(θ̂)

30 0.8732 0.2076
50 0.8977 0.2042

100 0.9420 0.1663
a = 0.6 250 0.9714 0.1081

500 0.9785 0.0765
1000 0.9983 0.0457

Table 2: Moment estimate of θ and its MSE.

3.5. Gaussian estimation method

Finally, this study also employs the Gaussian estimation methodology, a frequently uti-
lized estimation method in time series research. Bakouch and Popovic (2016) used this
method for the estimation of the parameters of the first order autoregressive model of the
Lindley distribution. The conditional maximum likelihood function is given by,

L(a,µ,σ ,λ ) = f (x1)
n

∏
t=2

f (xt |xt−1).

Here, f (xt |xt−1) and f (x1) are the conditional and marginal probability function of Xt |Xt−1

and X1 respectively.
Now,

log(L(a,µ,σ ,λ )) = nlog
1√
2π

− 1
2

n

∑
t=2

(
logσ

2
xt−1

+
(xt −µxt−1)

2

σ2
xt−1

)
(21)
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where

µxt−1 = E(Xt |Xt−1) = axt−1 +
θ +2

θ(θ +1)

and

σ
2
xt−1

=Var(Xt |Xt−1) =
1

n−1

n

∑
t=2

(xt −µxt−1)
2 =

1
(1−a2)

θ 2 +4θ +2
θ 2(θ +1)2

are the conditional mean and conditional variance respectively. The estimated values are
the points at which the likelihood function is maximum. We use the optimization package
nlminb() in R to estimate the parameters.
We conducted simulation studies to examine the efficacy of the estimating methods outlined
above. To estimate the values of θ and the autoregressive parameter a, we simulated samples
from the proposed process with sizes of 30, 50, 100, 250, 500, and 1000. The various values
of the parameter a considered are 0.4, 0.5, and 0.6, and that of θ are 0.1, 1 and 3. In each
instance, the experiment is run 100 times, and the mean of the estimates is taken as the
estimated parameter values. The estimated values and corresponding mean square errors
(MSE) for the maximum likelihood and non-parametric approach are displayed in Table 1.
The estimates for the method of moments are shown in Table 2, and the estimates for the
Gaussian approach and the CLS method are shown in Table 3. It is important to note that
the MSE reduces with sample size and that there are little disparities between the estimated
parameter values and true values. While looking at the MSE values, it is seen that both the
non-parametric and maximum likelihood methods perform equally good for the estimation
of the parameter a, although for the estimation of θ the maximum likelihood method is the
best.

4. Unit root testing in LER(1)

We conduct a testing procedure for the unit root of the process defined in (5), under the
null hypothesis H0 : a = 1 against the alternative hypothesis H1 : 0 < a < 1. The test is used
for checking whether the time series is stationary. Under H0 the likelihood function is given
by

L0 =

(
θ 2

θ +1

)n n

∏
t=2

(1+ xt − xt−1)e−θ ∑
n
t=2(xt−xt−1)

and the likelihood function corresponding to the alternative hypothesis is,

L1 =

(
θ 2

θ +1

)n n

∏
t=2

(1+ xt −axt−1)e−θ ∑
n
t=2(xt−axt−1).

The corresponding likelihood ratio L0
L1

is,

L0

L1
=

∏
n
t=2(1+ xt − xt−1)

∏
n
t=2(1+ xt −axt−1)

eθ ∑
n
t=2(xt−1−axt−1).
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â
θ̂

M
SE

(â
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Table 3: Estimated values of a, θ , and corresponding MSE.
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The log-likelihood ratio test statistic used by Wilks (1938) is of the form,

−2log(L0/L1) =−2

[
n

∑
t=2

log
(

1+ xt − xt−1

1+ xt −axt−1

)
+θ

n

∑
t=2

(xt−1 −axt−1)

]
(22)

that follows χ2 distribution with n degrees of freedom. As an illustration, we simulated
{xt} values for different sample sizes from the proposed process for different choices of
values of a and θ . Then we calculated the likelihood ratio statistic for various values of
significance level (α), and the corresponding probability of rejecting the null hypothesis
under the alternative. The numerical computations carried out for estimation and testing
purposes illustrated above are shown in Table 4. The probabilities of rejection under the
alternative hypothesis increase as the sample size increases, but when the parameter a is
large and the sample size is small, we get small values for the probabilities of rejection.
So, the test confirms the non-stationarity behavior of the model when a is unity. In the
simulation study, we can see that all the five methods that have been considered perform
equally well.

5. Real life applications

In this section, we apply the LER(1) process developed in the foregoing sections to two
specific real data sets to enhance the credence in this non-normal time series modeling
strategy.

Data set 1: We take 100 data points which are measurements of the annual flow of
the river Nile at Aswan for a period from 1871 to 1970. These data are taken from the
library of the base R package. As the first step is to check the stationarity of the data,
we have plotted the sample path, but it appears the data are non-stationary. The Augmented
Dickey-Fuller (ADF) test for stationarity has been done and the p-value is 0.0642, indicating
stationarity at a 90 percent confidence level. Log transformation is used to stabilize the
variance, and the current p-value of the ADF test is 0.0472, confirming that the data are
stationary. The autocorrelation function (acf) and partial autocorrelation function (pacf) are
plotted in Figure 1(a) and Figure 2(a) respectively. But acf decreases to zero and pacf is
significant only at lag 1, indicating that the data can be modeled by an AR(1) process. We
use LER(1) process for modeling these data and the estimated values of θ̂ and â obtained
using the maximum likelihood method employing numerical optimization are given in Table
5. Then, the p-value for the Kolmogorov-Smirnov (K-S) test was obtained as 0.4415 (see
Table 5) which substantiates that the LER(1) model is fit to the data. Figure 3(a) is the
histogram of the residual series along with the estimated Lindley density function. For the
diagnostic checking, acf and pacf sketching of residuals are shown in Figure 4(a). Table
5 includes the results of the Box-Pierce and Ljung-Box tests, and the p-values support our
conclusion that the residuals are independent.

Data set 2: The second data set contains the Canada unemployment rate from 1955 to
2021 (https://data.oecd.org/unemp/unemployment-rate.htm). As in the case of Data set 1, all
the plots, tests, etc. are done in this case also. The time series plot and the p-value of 0.023
of the ADF test indicate that the Canadian unemployment data are stationary. The AR(1)
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process can be used to represent these data, as shown by the acf and pacf depicted in Figure
1(b) and Figure 2(b), respectively. Table 5 provides the values of θ̂ and â. The p-value of
the K-S test, which is 0.4537 in Table 5 authenticates the validity of the LER(1) model as
a good fit. Figure 3(b) shows the histogram of the residual series and fitted Lindley density
is appended to it, clearly indicating that the innovation sequence is Lindley distributed. The
acf and pacf of the residuals are delineated in Figure 4(b). Box-Pierce and Ljung-Box tests
of the residuals are also performed and yielded the p-values in Table 5, confirming the in-
dependence of the residuals.

True values are a = 0.8 θ = 6
Sample size α = 0.01 α = 0.025 α = 0.05 α = 0.1

30 0.418 0.510 0.521 0.703
50 0.459 0.632 0.703 0.862

100 0.516 0.720 0.815 0.912
150 0.610 0.76 0.86 0.952
300 0.952 0.99 0.996 0.998
500 0.998 1 1 1
1000 1 1 1 1

True values are a = 0.4, θ = 2
Sample size α = 0.01 α = 0.025 α = 0.05 α = 0.1

30 0.612 0.798 0.847 0.863
50 0.820 0.938 0.968 0.974

100 1 1 1 1
250 1 1 1 1
500 1 1 1 1
1000 1 1 1 1

Table 4: Probability of rejection of the null hypothesis under
different sample sizes and α values.

p-values of
Data Set Parameter K-S test Box-Pierce Ljung-Box

estimates test test

Nile data â=0.99 0.4415 0.1071 0.1070
θ̂=7.49

Canada unemploy- â=0.96 0.4537 0.2820 0.2711
ment data θ̂=1.86

Table 5: Results of the analysis of real data.



STATISTICS IN TRANSITION new series, September 2024 43

0 5 10 15 20

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  x

0 5 10 15

−
0

.2
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  x

Figure 1: (a) acf of log transformed Nile data. (b) acf of Canada unemployment data.
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Figure 2: (a) pacf of log-transformed Nile data. (b) pacf of Canada unemployment data.
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Figure 3: (a) Histogram and fitted Lindley distribution of LER(1) residuals of the Nile data.
(b) Histogram and fitted Lindley distribution of LER(1) residuals of the Canada unemploy-
ment data.
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Figure 4: (a) acf and pacf plots of the residuals of fitted LER(1) to the Nile data. (b) acf and
pacf plots of the residuals of fitted LER(1) to the Canada unemployment data.
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6. Conclusion

The stationary series of additive autoregressive models could feature non-Gaussian errors
and marginal. It would be worthwhile to look into using the Lindley distribution in time se-
ries modeling as it is a very versatile mixture distribution. In this study, we explored a first-
order autoregressive model with the Lindley error distribution and its properties. Parametric
and non-parametric estimating techniques are effectively employed. Additionally conducted
are simulation studies and application to real-world instances. The proposed model is help-
ful in situations where the data are predictable in nature and the error is non-Gaussian,
especially Lindley distributed. The structural or mathematical form that is produced has
numerous practical uses. The model, estimating techniques, and real world examples used
in this work may be extended to include non-linear modeling.
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explainability approach

Jane Wangui Wanjohi1, Berthine Nyunga Mpinda2,
Olushina Olawale Awe3

Abstract

Over the past years, machine learning emerged as a powerful tool for credit scoring, pro-
ducing high-quality results compared to traditional statistical methods. However, literature 
shows that statistical methods are still being used because they still perform and can be in-
terpretable compared to neural network models, considered to be black boxes. This study 
compares the predictive power of logistic regression and multilayer perceptron algorithms 
on two credit-risk datasets by applying the Local Interpretable Model-Agnostic Explanations 
(LIME) explainability technique. Our results show that multilayer perceptron outperforms 
logistic regression in terms of balanced accuracy, Matthews Correlation Coefficient, and F1 
score. Based on our findings from LIME, building models on imbalanced datasets results in 
biased predictions towards the majority class. Model developers in the field of finance could 
consider explanation methods such as LIME to extend the use of deep learning models to 
help them make well-informed decisions.

Key words: credit score, logistic regression, multilayer perceptron, explainability, LIME.

1. Introduction

The credit section is a critical function for financial institutions and banks as it con-
tributes significantly to their revenue share. One of the ways they maximize their profits
is by offering more credit. With increased competition and pressure to generate more rev-
enue, financial institutions are searching for more effective ways to attract new creditworthy
customers while minimizing losses. Credit approval puts the bank at risk of losing money
while disapproval may lead to loss of customers, hence competition among lenders. Most
financial institutions have suffered losses due to wrong decision-making in the past led by
many of their customers defaulting on payments as discussed by Taghavi et al. (2015).
This has created the need for mechanisms to identify and distinguish between eligible and
non-eligible loan applicants (Bolton C. 2009). In the early years, lenders used personal re-
lationships and subjective judgments to decide whether the applicant deserved a loan offer
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or not. The method was reliable and less time-consuming because of the smaller number of
applicants. Prior information about the applicant is important in determining credit scores
(Lahsasna et al. 2010).

A comparison study between Radial Basis Function (RBF) neural networks and LR
was carried out by Taghavi et al. (2015) in Tose-Taavon Bank, Guilan. The study in-
volved 376 cases of loan instalments with 7652 total credits within approximately five
years. The cases were categorized into two groups based on credit risk: good customers
were those with lower credit risk and bad customers with higher credit risk. Out of the total
376 cases, 302 were classified as good customers, while the remaining 74 cases belonged
to bad customers. To evaluate the efficiency of the designed LR model, the study utilized
Pearson correlation analysis to identify any significant relationship between the variables.
The results indicated a significant negative correlation between the loan amount and the
credit decision of bank customers, and a significant positive correlation between the num-
ber of installments and the credit decisions of bank customers, both at 99% confidence
level. RBFs were trained with 320 samples and 50 samples were used for testing. RBFs
showed a higher prediction accuracy of 88% than 82.7% of logistic regression. The study
recommended efficient databases to store customers’ information for easy access.

Dumitrescu et al. (2022), proposed a new credit scoring method called penalized logistic
tree regression (PLTR), which combined decision trees and logistic regression to improve
the accuracy of credit risk prediction. The paper also discussed the need for interpretabil-
ity in the credit scoring industry, which showed why simpler models like logistic regression
were still widely used despite their limitations compared to more complex machine learning
methods. Several studies have shown that neural networks are more accurate, and logistic
regression has performed better than neural networks on different datasets. This means
there is a need for further investigation of the performance of neural networks and logistic
regression in predicting credit scores. The application of deep learning methods in credit
scoring has shown promising results as shown in Imtiaz and Brimicombe (2017) and Zhao
et al. (2015) compared to traditional methods. Traditional methods like logistic regression
have been widely used due to their simplicity and interpretability. Despite the effective-
ness of neural networks, it is often difficult for stakeholders to understand and trust their
decisions due to lack of transparency. This study aims to solve this problem by comparing
the effectiveness of logistic regression and neural networks in predicting credit scores, us-
ing the LIME (Local Interpretable Model-agnostic Explanations) technique on binary and
multiclass datasets to enhance the explainability of the neural network models. The goal
is to determine which model provides a better balance between predictive accuracy and
interpretability in the context of credit scoring.

This present study comparing Logistic Regression and Neural Networks for predicting
credit scores using a LIME-based explainability approach offers several key contributions
to predictive analytics and model interpretability. Firstly, it enhances understanding of how
different models operate, especially in the context of finance where stakeholders require
trust and clarity in automated decision-making processes. It carefully analyses the trade-offs
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between the simplicity and transparency of logistic regression versus the accuracy and com-
plexity of neural networks, aiding stakeholders in selecting the appropriate model based on
their specific needs for accuracy and transparency. Furthermore, the study demonstrates the
practical application of LIME, showcasing how local interpretable model-agnostic explana-
tions can be effectively generated for complex models. This not only serves as a valuable
guideline for other researchers and practitioners but also advances the field of explainable
AI (XAI) by providing empirical insights into the effectiveness of explainability techniques
across different models. The emphasis on explainability also promotes ethical AI practices,
highlighting the importance of transparency in sensitive areas like credit scoring, which
could influence policy and regulatory approaches.

Additionally, by making model decisions accessible to both technical and non-technical
stakeholders, this study bridges a crucial gap, fostering communication and trust among
model developers, policymakers, loan officers, and customers. Overall, these contributions
are instrumental in advancing machine learning applications in finance, encouraging the
responsible use of complex models while upholding high standards of accountability and
transparency. Adding to this introduction, the rest of the work is organized as follows.
In Section 2, we present a description of the mathematics behind the methods used in this
study. Section 3 presents the analyses and results of our study, Section 4 gives the explain-
ability with LIME and Section 5 gives the conclusion.

2. Methodology

The goal of this section is to present the mathematical description of the methods and
models used for the validity of our results. The flowchart in Figure 1 illustrates the various
processes performed in this study.

Figure 1: Credit Scoring Flowchart.
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2.1. Data Preparation

2.1.1 Missing Value Imputation using MICE

Multiple Imputation by Chained Equations (MICE) is used as a data imputation tech-
nique to handle missing values in this study. The method assumes that values are missing
at random implying that other columns can be used to determine a missing observation
(Little and Rubin 2019). This is achieved by investigating acceptable estimates that best
approximate the missing value using methods such as regression as discussed by Wulff
and Jeppesen (2017). MICE creates multiple imputed datasets, where each fills in missing
observations with valid data.

Given X = (X1,X2, . . . ,Xk), a set of k features and each feature X j = (Xobserv
j ,Xmis

j ) where
Xobserv

j and Xmis
j are present and missing values respectively. The data imputation challenge

is to get the conditional multivariate density P(X) of X . Let t denote the number of itera-
tions. With the assumption that data are missing at random, we repeat the Gibbs sampler
iteration in Scheuren(2005);

X1 ∼ P(X1|X t
2,X

t
3, . . . ,X

t
k)

X2 ∼ P(X2|X t
1,X

t
3, . . . ,X

t
k)

...

Xk ∼ P(X1|X t
2,X

t
3, . . . ,X

t
k−1)

A study done by Van and Oudshoorn (2000) demonstrated that when dealing with
missing data in a multivariate normal distribution, iterating linear regression models like
X1 = X t

2θ12 + . . .+X t
kθ1k + ε1 with epsilon ∼ N(0,σ) and estimates θ , can be a powerful

tool for imputation as adopted in this present study.

2.1.2 Feature Selection with RFECV

The Recursive Feature Elimination with Cross-Validation (RFECV) method is applied
for feature selection in this work. The method involves deleting features based on the im-
portance it has on the model (Mustaqim et al. 2021). The final subset of selected features
is chosen based on the performance of the model trained on the selected features using an
independent validation set or through a nested cross-validation procedure. Suppose X is the
input data matrix and y is the target vector. The algorithm is as follows:

1. Initialize a model M using all available features in X and evaluate its performance
using cross-validation.

2. Rank the features based on their importance according to M.

3. Remove the least important feature from X , and evaluate the performance of M using
cross-validation. If the performance metric improves, keep the feature removed. If
not, add the feature back to X .
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4. Repeat steps 3-4 until the desired number of features is reached or the model perfor-
mance can no longer be improved. RFECV helps reduce the dimension of the dataset
and that improves the performance of the model (Misra and Yadav, 2020).

2.1.3 Data Standardization

Machine learning offers distinct advantages in addressing some stringent assumptions
associated with traditional statistical methods like Maximum Likelihood Estimation (MLE).
Many machine learning models like the ones adopted in this study do not require assump-
tions about the data’s distribution and can handle complex, nonlinear relationships automat-
ically. This flexibility allows them to adapt more naturally to the actual structure of the
data. Machine learning techniques such as logistic regression (borrowed from statistical
methods) and neural networks are particularly adept at managing non-linearities and inter-
actions without explicit modeling. Moreover, these methods often demonstrate robustness
against outliers and noisy data, a common challenge in real-world datasets. In this study, we
standardized the data before analysis to mitigate the possible effect of outliers. The mean
is subtracted from each feature to standardize the data and then divided by the standard
deviation. Standardization was used in our study to ensure all the inputs were on the same
scale to avoid creating biased models. Given a dataset with n observations and p features,
X j , j = 1,2, . . . p, the mean and standard deviation of feature j is shown in Equations 1 and
2 respectively.

µ j =
1
n

n

∑
i=1

xi (1)

σ j =
1
n

n

∑
i=1

(xi −µ j)
2 (2)

where µ j and σ j are the mean and standard deviation of feature j respectively, xi is the i-th
observation in feature j, and n is the total observations. Standardization of an observation i
of feature j using z-score normalization is expressed as:

Xstandardized =
xi −µ j

σ j
(3)

Standardization is an important technique in machine learning that helps improve the
robustness and generalizability of models.

2.1.4 Data Balancing with SMOTE

Synthetic Minority Oversampling (SMOTE) was applied to address class imbalance.
The method was first introduced by Chawla et al. (2002). It creates synthetic samples
in the minority class for fair distribution between the classes. This method works closely
as K-Nearest Neighbours (KNN). Let X be the input matrix with minority class instances,
k be the number of nearest neighbours in consideration and m be the synthetic samples to
generate. Let xi be a minority data point xi j an ith observation of jth feature and k random
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selected neighbours. The new feature vector Xi,new is given as:

X j,new = X j +(X j −Xr)×α, (4)

where X j is the original feature vector, Xr is the feature vector selected at random and α

is a random number between 0 and 1. SMOTE oversampling helps overcome overfitting
observed in random sampling. Applying this technique enhances the accuracy of classifiers.

2.2. Classification Algorithms

Credit score prediction is a classification task in classification algorithms that classifies
a customer as a defaulter or a non-defaulter. In supervised learning, the machine learns
from labelled data automatically and improves its prediction capability with experience.
The target label depends on the input features in the data and these inputs are meant to give
accurate predictions of unseen data. Given a set of features xi ∈ X the model seeks to find
a function f that maps the features to the output yi ∈ Y , f : X → Y . This function is used
to make predictions of new data after it has learned from a set of labelled data. The model
seeks also to get a function that gives a minimal difference between Y and the models’
prediction f (X), for x ∈ X . This study focuses on two supervised learning classification
algorithms; logistic regression and multilayer perceptron.

2.2.1 Logistic Regression

Logistic Regression is a supervised classification algorithm applied when predicting
a dependent categorical variable. The algorithm captures the probability of an outcome
(e.g., 0 or 1) as a function of one or more input variables. The output of the logistic re-
gression model is a probability value between 0 and 1. The algorithm is an extension of
linear regression where the sigmoid function transforms the linearity (Imtiaz and Brimi-
combe 2017). There are various types of logistic regression. This study utilizes binary and
multinomial logistic regression. The approximated value of y as a linear function of x is
given as:

gβ (x) = β0x0 +β1x1 +β2x2 + · · ·+βpxp = β0 +
p

∑
j=0

β jx = β
′
x, (5)

where gβ (x) is a linear combination of the input variables x1,x2, . . . ,xp and their associated
weights β0,β1,β2, . . . ,βp and x0 = 1. As we saw earlier in supervised learning the main
goal is to find a function that captures the relation between the input and output data. The
sigmoid function transforms gβ (x) in such a way that it takes values between 0 and 1 in the
form:

h(β
′
x) =

1

1+ e−β
′ x
, (6)

h(z) =
1

1+ e−z , (7)

where z = β
′
x and h(z) is the sigmoid or logistic function. From the notion of statistics,

the regression coefficients (i.e. the parameters) provide information about each indepen-
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dent variable’s influence on the variations in the response variable (Hossain 2022). The
conditional probabilities of the labels (0 & 1) for a given observation i are defined by:

p(yi|x;β ) = (gβ (x))
yi(1−gβ (x))

1−yi . (8)

The likelihood function is used to find the values of parameters that maximize the like-
lihood of the observed data to train logistic regression (Hand and Henley 1997, Sewpaul et
al. 2023), Mahmood 2024). The observations are taken to be independent. This function is
given by:

L(β0,β1,β2, . . . ,βp) =
p

∏
i=1

((gβ (x))
yi(1−gβ (x))

1−yi). (9)

where p is the number of observations in the training data, yi is the binary outcome
for the i-th observation (0 or 1), and gβ (x) is the linear combination of input variables
with their associated weights for the i-th observation (Taghavi et al. 2015). An optimization
algorithm such as gradient descent is then used to estimate the values of β

′
. Gradient descent

iteratively updates the parameters and finds the values that minimize the loss function (Zhao
et al. 2015). The gradient of the log-likelihood function with respect to the parameters is
given by:

∇L(β0,β1,β2, . . . ,βp) =
n

∑
i=1

(gβ (x)− y)xi. (10)

The loss function is given by:

L (β0,β1,β2, . . . ,βp) =−1
n

n

∑
i=1

[
yi log(gβ (x))+(1− yi) log(1−gβ (x))

]
. (11)

For prediction, a trained logistic regression model takes in a new instance and gives
a probability output. A threshold such as 0.5 is set to make a binary prediction. The proba-
bility of the classes present adds up to one.

2.2.2 Multilayer Perceptron

Multilayer Perceptron (MLP) is commonly used in credit scoring. Unlike a percepton,
MLP contains more than one hidden node or layer. MLP comprises three types of layers; the
input, hidden and the output layer. Each layer contains interconnected nodes that transmit
signals. The behaviour of hidden neurons is influenced by the input units and the weights
connecting them, while the output neurons’ behaviour is determined by the activities of the
hidden neurons and the weights connecting them to the output neurons (Rodrigues et al.
2020). The main intention in neural networks is to get the ultimate parameters that best
predict an output. The first step is forward propagation where each attribute is fit in the
input layer. These inputs are assigned to random parameters called weights and passed to
the first hidden layer. The hidden layer does some processes, like applying an activation
function to each neuron to determine the output, passing this output to the next hidden layer
for the same process, and then passing it to the output layer. The output layer gives the
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predicted outcome, as shown in Equation 12:

ŷi = h(
n

∑
i=1

wixi +b), (12)

where ŷi, h, wi, xi and b are the output, activation function, weights, inputs and the bias
term respectively. The loss function is then used to compare the predicted output with the
actual output. The cross-entropy loss function is used for classification purposes as shown
in Zhang et al. (2023):

crossentropy =−1
n

n

∑
i=1

p

∑
j=1

yi, j log(ŷi, j), (13)

where n is the number of inputs, p represents the number of different classes present
in Y , yi j is the actual value and ŷi j is the predicted value. An optimizer is then introduced
to the network. Optimizers are computational techniques used to adjust certain parame-
ters of a neural network, such as the weights and bias term, to minimise the loss function
and achieve precise outcomes. The learning rate, a hyperparameter, determines the magni-
tude of the step taken at each iteration as the algorithm moves towards a minimum of the
loss function. Gradient descent is the most commonly used optimizer in neural networks
(Agarwal et al., 2021). Equation 14 shows how the value of a parameter wi j is updated, by
subtracting the product of the learning rate η ,10−6 < η < 1 and the partial derivative of
the loss function L with respect to wi j from its current value. This process is repeated for
each parameter during training to minimize the loss function and improve the neural net-
work’s performance. The learning rate controls how much the parameters of a multilayer
perceptron are updated during training.

wi j+1 = wi j −η
∂L

∂wi j
, (14)

bi j+1 = bi j −η
∂L

∂bi j
, (15)

where, wi j+1, wi j, η , and L are the new weights of observation i feature j, initial weight
of observation i feature j, the learning rate and the loss function respectively. bi j+1 in
Equation 15 is the updated bias term. The collective process of adjusting the parameters
using an optimizer, computing the gradient of the loss function, and propagating the error
backwards through the network is known as backpropagation as discussed in Zhang et al.
(2023). After a multilayer perceptron is trained, it can be used for the prediction of unseen
data and the output is determined by the learned parameters.

2.3. Performance Evaluation Metrics

Evaluation metrics are intended to estimate the model’s ability to generalize unseen
data in this study. Below are the metrics used to evaluate binary classification tasks in
this work. A confusion matrix calculates evaluation metrics such as accuracy, balanced
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accuracy, precision, and F1 score.
Table 1: Representation of a Confusion Matrix.

Class Positive Prediction Negative Prediction
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

The accuracy(AC) performance metric gives the proportion of the correct predictions
out of all the predictions made. The accuracy of a classification model is given as:

AC =
T P+T N

T P+T N +FP+FN
. (16)

The accuracy metric lies between, 0 and 1, where values close to 1 show a good model
performance. The accuracy metric is a commonly used evaluation metric. However, the
metric is sensitive to imbalanced data. In cases of imbalanced data, balanced accuracy is
a more efficient evaluation metric.

Balanced Accuracy (Bal AC) metric gives the average of the true positive rate (sensitiv-
ity) and the true negative rate (specificity). It ranges from 0 to 1. The metric is expressed
as:

BalAC =
Sensitivity+Speci f icity

2
. (17)

With
Sensitivity =

T P
T P+FN

and
Speci f icity =

T N
T N +FP

.

Additionally, this metric guarantees that all classes present are considered which gives
a better view of the model’s performance.

Matthews Correlation Coefficient (MCC) is the association between the actual and the
predicted classes. This metric is commonly used when dealing with imbalanced datasets
because it considers true positives, false positives, and false negatives of the model’s pre-
dictions. MCC is expressed as follows:

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
. (18)

The value of MCC ranges from -1 to 1, with values close to 1 showing a good model
performance. Additionally, an MCC score of 1 indicates a perfect prediction, 0 shows
a random prediction, and -1 indicates a wrong prediction.
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2.4. Machine Learning Explainability

The success stories in solving diverse problems have led to a rapid expansion of the
field, often referred to as a "golden age" because its end cannot be seen (Tran et al. 2022).
However, there are several challenges that need to be addressed for further improvement in
the performance and applicability of machine learning. Interpretability is one of the major
challenges that researchers are working hard to solve so that the models are easy to un-
derstand and explain how they function. Some of the main reasons for machine learning
explainability are: to validate the previous studies made on these algorithms, to increase
the trust of end users of these models, and also the explanation methods may bring in the
validation techniques (Molnar 2020). In this study, a Local Interpretable Model-agnostic
Explanations (LIME) model explainability technique is applied. The aim of this method is
to reduce the difference between artificial intelligence and humans by providing an expla-
nation of how each feature is influencing a classifier. The method’s main focus is to create
a local approximation of our complex model (the trained model) for a particular discussed
by Ribeiro et al. (2016).

Given a set of predictors x ∈ X , our trained model is denoted as f , and g ∈ G where g is
a simple model that comes from G, a family of interpretable models such as linear regres-
sion. An explainer ξ (x) is defined as shown below:

ξ (x) = argming∈GL ( f ,g,πx)+Ω(g), (19)

where πx denotes the local neighbours of an instance x and Ω(g) represents a measure of the
complexity that g ∈ G does not explain. Equation 19 is an optimization task whose aim is to
get a good approximation L and a minimum complexity Ω(g). Basically, the main idea is
to look for a simple model g that approximates the trained model f in the local function L
and keep its simple nature. To accomplish this, a new dataset is generated randomly with
similar features as the original set. Predictions are made using the new data and the complex
model f . The first loss term L is minimized by getting the highest accuracy on the new
dataset using a simple linear model. Ribeiro et al. (2016), get the loss term by getting the
difference in the sum of squared distances between the labels predicted by model f and the
predictions of model g. πx is also included to weigh the loss according to how close the data
point is.

L ( f ,g,πx) = ∑
y,y′

πx(y)( f (y)−g(y
′
))2. (20)

The loss term Ω(g), ensures that the model keeps its simplicity nature. Ribeiro et al.
(2016) state that in LIME, a sparse linear model is used to maintain simplicity. This model
takes care of the second loss function since the model aims at producing as many zero
weights as it can. This can also be achieved by using regularization techniques that help get
a simple model with relevant features (Molnar 2020).

3. Data Analyses and Results

This section aims to provide a description of our datasets, an evaluation of the model’s
performance, and an explanation of the model’s prediction. We used Python 3 software to
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implement the various methods applied. Python libraries used include Pandas, Matplotlib,
Seaborn, Scikit-learn as indicated by Pedregosa et al. (2011) and TensorFlow.

3.1. Data Description and Preprocessing

We used two types of datasets, a binary and multiclass case dependent variable. Both
datasets contained categorical and numerical variables. The binary case dataset contained
32580 observations with a total of 12 columns while the multiclass case had 100,000 obser-
vations and 28 columns. In the binary case data, the dependent variable, ’loan status’, takes
a value of 0 or 1, where 0 indicates that the customer is a non-defaulter, while 1 is a de-
faulter. Conversely, in the multiclass case, the dependent variable, ’credit score’, consists of
three categories: good, standard, and poor credit scores. The simulated dataset was obtained
using the make classification inbuilt function in scikit-learn library in Python. The binary
case dataset contained 4011 missing values, but no missing values in the multiclass case.
Various methods were employed, such as imputation of missing values, feature selection,
standardization, data splitting, and balancing of classes in the training set to ensure that the
data were consistent, complete, and appropriate. Good quality data and relevant features
improve the accuracy and generalization of the model (Laborda and Ryoo 2021).

(a) Before Balancing (b) After Balancing (c) Before Balancing

(d) After Balancing

Figure 2: Distribution of Classes.

Figure 2a shows the distribution of customers’ loan status, with approximately 78%
non-defaulter customers and 22% defaulters. After preprocessing, the dataset was reduced
to 32414 rows and 8 features for the binary case and 100000 rows and 16 variables for the
multiclass case, using recursive feature elimination with cross-validation method. Figure 2c
shows the proportion of customers’ credit scores, with approximately 53% of the customers
having a standard credit score, 29% having a poor one and 18% having a good score.
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3.2. Model Assessment and Discussion

The performance evaluation metrics such as accuracy, balanced accuracy, Matthews
Correlation Coefficient (MCC), precision and AUC-ROC score were used to examine the
performance of the models used in the study. To assess the model’s performance, we divided
our data where 80% of the data trained the models and 20% for evaluation. The parameters
used to train the MLP are shown in Table 2.

Table 2: Multilayer Perceptron Hyperparameters.

Parameters Levels in Binary
Classification

Levels in Multiclass
Classification

Hidden Layers
2(8, 6 nodes in each

layer)
2(10, 8 nodes in each

layer)
Output Layer 2 nodes 3 nodes

Activation Functions relu, relu, sigmoid relu, relu, softmax
Dropout 0.1 0.1

Loss Function binary cross entropy categorical cross entropy
Optimizer Adam Adam
Iterations 50 50

3.2.1 Binary Case

Table 3 gives a view of how the models performed based on different evaluation metrics.
Table 3: Performance of LR and MLP for Binary Classification.

Evaluation
Metrics

Empirical
Data

Simulated
Data

Imbalanced Data Balanced Data Imbalanced Data Balanced Data
LR MLP LR MLP LR MLP LR MLP

Accuracy 0.832 0.888 0.755 0.878 0.910 0.939 0.870 0.928
Balanced
Accuracy

0.673 0.759 0.754 0.812 0.820 0.871 0.860 0.902

Precision 0.820 0.861 0.820 0.880 0.890 0.900 0.890 0.940
F1 Score 0.810 0.870 0.770 0.880 0.900 0.940 0.880 0.940

MCC 0.436 0.624 0.437 0.648 0.701 0.813 0.657 0.856
AUC-ROC

score 0.827 0.759 0.828 0.812 0.924 0.871 0.925 0.902

From Table 3, we observe that the accuracy of all created models decreases after balanc-
ing the data. Given the sensitivity of accuracy on imbalanced data, we consider balanced
accuracy metric. MLP exhibits a higher performance for both imbalanced and balanced data
than logistic regression for both accuracy and balanced accuracy metrics. This highlights
MLP’s ability to predict the credit payment ability of customers accurately. The models
demonstrate higher MCC scores after data balancing. MLP has higher MCC scores com-
pared to LR. This shows MLP’s ability to predict both non-default and default customers
more accurately than LR.



STATISTICS IN TRANSITION new series, September 2024 61

The precision scores of all the models are found to be high on both balanced and im-
balanced data. Upon comparing the performance of LR and MLP, we observe that MLP
exhibited higher precision scores than LR. This indicates that MLP is more capable of ac-
curately classifying true positive instances out of the total positives compared to LR, which
means it is better at capturing fewer false non-default customers. The F1 scores of LR and
MLP are reasonably high, indicating that both models are able to capture the underlying
patterns in the dataset. Based on F1 score MLP performs best. Both models demonstrated
a good performance based on the AUC-ROC score, as all models achieved scores higher
than 0.5. This suggests that the models were able to effectively distinguish between non-
default and default loan applicants. Notably, LR outperforms MLP by achieving a higher
AUC-ROC score. This means that LR has a higher ability to distinguish loan applicants
than MLP. We observe that the results of all the metrics appear similar in both the empirical
and simulated data.

The confusion matrices in Figure 3 provide a summary of the number of correct and
incorrect predictions made by the two models we have created on imbalanced and balanced
data in our binary classification. The non-default class, which is the majority class, shows
a higher count of instances that are correctly predicted on imbalanced data. However, after
balancing the data, a more balanced distribution is achieved across all classes. This indi-
cates that for imbalanced data, the models are more likely to predict the non-default class,
but after balancing the data, the models become better at predicting the minority class as
well. In addition, MLP demonstrates a greater ability to accurately predict the true classes
and a lower number of misclassifications shown in the off-diagonal elements of the confu-
sion matrices in comparison to LR.

(a) LR before Balancing (b) LR after Balancing

(c) MLP before Balancing (d) MLP after Balancing

Figure 3: Binary Confusion Matrix.
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3.2.2 Multiclass Case

This section focuses on the model performance of our second dataset which has a de-
pendent variable with three classes. The models created are meant to predict whether
a customer has a good, standard or poor credit score. A good credit score means that
a customer is likely to pay a given loan on time; a standard credit score, the customer
pays the loan on time on average; and a poor credit score means that the customer is likely
to default on a loan. A visual of the model’s performance is shown in Table 4 for both
imbalanced and balanced data. The simulated data showed similar performance scores for
both imbalanced and balanced data.

Table 4: Performance Metrics of LR and MLP for Multiclass Classification.

Evaluation
Metrics

Empirical
Data

Simulated
Data

Imbalanced Data Balanced Data
LR MLP LR MLP LR MLP

Accuracy 0.645 0.680 0.65 0.678 0.629 0.687
Balanced
Accuracy

0.600 0.709 0.685 0.718 0.525 0.621

Precision 0.660 0.710 0.690 0.720 0.620 0.700
F1 Score 0.650 0.670 0.650 0.680 0.610 0.680

MCC 0.422 0.485 0.469 0.515 0.345 0.473
AUC-ROC score 0.806 0.855 0.803 0.849 0.770 0.840

An analysis of the performance of our models with respect to the scores presented in
Table 4 revealed that MLP exhibited a higher accuracy and balanced accuracy on both bal-
anced and imbalanced data compared to LR. This is also observed in the simulated data.
This means that MLP model was better at predicting the probability of a good, standard
or poor credit score than LR. MLP has a higher precision score, 71% for imbalanced and
72% for balanced data compared to LR. MLP model also showed higher MCC scores of
0.485 and 0.515 for imbalanced and balanced data, respectively, in comparison to logistic
regression, which showed MCC scores of 0.422 and 0.469 for imbalanced and balanced
data, respectively. This indicates that MLP has a higher capacity to accurately predict the
three classes of customers compared to LR. This means that MLP can capture fewer false
positives. The MCC values can vary depending on factors such as class distribution, the sep-
aration of classes, interclass correlations, and the complexity of the model. It is important to
consider these factors and evaluate MCC values on a case-by-case basis, as the interpretation
of MCC values depends on the specific problem, dataset, and model performance in both
binary and multiclass classification scenarios (Chicco et al. 2020). All the models perform
well on AUC-ROC scores because they have scores greater than 0.5. This indicates that
both models can distinguish between loan applicants with good, standard and poor credit
scores. Considerably, MLP has higher AUC-ROC scores than LR. This shows that MLP
has a higher ability to distinguish loan applicants than LR. Moreover, on the simulated data,
MLP performs better than LR for all the performance metrics.

Figure 4 presents the confusion matrices of the multiclass classification models. Before
balancing, as shown in Figures 4a and 4c, the standard credit score class had the highest
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count owing to its majority class status, whereas the good credit score class had the lowest
count as a result of being the minority class. Following the balancing of our data, in Fig-
ures 4b and 4d, the count of majority classes reduced therefore achieving a fair distribution
across all classes. Our analysis of the confusion matrices presented in Figures 4b and 4d
shows that the MLP model outperformed logistic regression in terms of correctly predicting
class elements for the balanced data. This observation is consistent with the higher balanced
accuracy of the MLP model, as reported in Table 4.

(a) LR before Balancing (b) LR after Balancing

(c) MLP before Balancing (d) MLP after Balancing

Figure 4: Multiclass Confusion Matrix.

4. Explainability with LIME

In order to obtain explanations of a model’s prediction we use the LIME package in
Python. We compile a list of the attributes used to train the model. We then define class
labels (i.e. non-defaulter and defaulter for binary classification, and good, standard and poor
for the multiclass classification), and then we create a function that provides the probabilities
of each feature, fed it as an array. Passing all these components to the LIME explainer
object, we input an observation into the explainer, which yields a prediction and offers
insights into how each feature contributes to the classes present. Figures 5, 6, 7, and 8
display a visual representation of the prediction explanations for two instances provided
by LIME. The results of a binary class prediction instance for imbalanced and balanced
datasets are illustrated in Figures 5 and 6, respectively.
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Figure 5: LIME explanations for a given observation on Binary Imbalanced data.

Figure 6: LIME explanations for a given observation on Binary Balanced data.

Figure 5 displays the prediction of a non-default customer, where all features were rel-
evant in contributing to the non-default class prediction. In the scenario of balanced data
in Figure 6, we observe a similar prediction of a non-default class on the same instance.
However, in this case only three features significantly contribute to the non-default class:
the applicants’ income, loan grade, and loan amount. In both cases, the models give 100%
assurance that the given loan applicant is a non-defaulter meaning that the given customer
was likely to pay the loan on time. Figures 7 and 8 present the LIME explanation for a given
instance on both imbalanced and balanced multiclass data, respectively.

Figure 7: LIME generated explanations for a given observation on Multiclass Imbalanced
data.
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Figure 8: LIME generated explanations for a given observation on Multiclass Balanced
data.

In Figure 7, we observe that the model predicts a standard credit score for the given loan
applicant, where most features contribute to the decision. Additionally, the model shows
100% confidence in its prediction, suggesting a high likelihood that the customer will not
pay the loan on time entirely. However, the prediction for the same loan applicant differs
when it comes to balanced data, as shown in Figure 8. In this scenario, the model predicted
with 46% assurance that the given applicant had a good credit score, indicating a likelihood
of timely loan repayment. This information proves to be valuable to financial regulators in
their decision-making process regarding loan offers.

5. Conclusion

In this study, we have compared the predictive ability of Logistic Regression (LR) and
a Multilayer Perceptron (MLP) using two types of datasets, with an advanced model ex-
plainability technique - Local Interpretable Model-Agnostic Explanations (LIME). The find-
ings show that all models performed better after the data were balanced. MLP had higher
scores than LR in terms of balanced accuracy, Matthews correlation coefficient, and F1
score. From our findings, this study recommends that lending companies with small amounts
of data use a logistic regression model but for companies with vast amounts of data a mul-
tilayer perceptron will ease their credit offer processes. The study also highlights the im-
portance of using explainable artificial intelligence. With the LIME explanation approach,
we were able to see how each feature influences the predicted class of a model for a given
instance. We also found out that, models developed on imbalanced data are likely to show
biased results, which may cost the lenders in the future. From what we were able to inter-
pret, the LIME framework will enable developers to clarify to end-users the rationale behind
a specific decision.
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The Measurement of the Gross Domestic Product affected by 
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Abstract
The article presents a method for balancing Gross Domestic Product (GDP) when the mea-
surements of its components are distorted by the existence of the shadow economy. Our
proposal to measure GDP is based on a multiple ultrastructural model (MUM), where the
explanatory variables are subject to error. We show that the expected value of GDP can be
divided into two parts: the first part concerns data related to registered activities and the
second part concerns unobserved data which may be partly related to the shadow economy.
The empirical analysis is based on the annual data for individual voivodeships in Poland for
the years 2000–2019. The data are obtained from the Local Data Bank of Statistics Poland.
Two approaches to measuring GDP are considered: from the expenditure side and from the
production side. The results show that the unobservable part of the variables necessary to
balance GDP on the production side does not exceed 1% of GDP, and on the expenditure
side, it mostly reaches about 3% of GDP.

Key words: measurement error, ultrastructural model, Gross Domestic Product, shadow
economy.

1. Introduction

According to Regulation (EU) No 549/2013 of the European Parliament and of the
Council of 21 May 2013 on the European system of national and regional accounts in the
European Union, one of the main aggregates in the ESA is gross domestic product (GDP).
It is a measure of the total economic activity taking place on a given economic territory. In
1995, ESA documents introduced the concept of including shadow economy data in GDP.
According to the definition formulated by the European Commission, the shadow economy
is an economic sector comprising a group of economic activities that are productive, in line
with the SNA/ESA definition of production, legal in terms of compliance with legal norms
and regulations, but hidden from public authorities. Methods for measuring the shadow
economy can be divided into two groups: direct methods and indirect methods. The first
group includes all survey research, while the second is limited to the analysis of "traces"
in macroeconomic data.

In Poland, the size of the shadow economy is determined by national statistical offices
on the basis of survey data. However, due to the problems of survey research, other methods
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of estimating the shadow economy are discussed in the literature. Methods for estimating
the shadow economy are described by Adair (2017, 2021), Błasiak (2018), Medina and
Schneider (2019), Malczewska (2019), among others.

In the literature, special attention is paid to econometric models used to describe the
relationships between some macroeconomic data. Such methods can be useful for estimat-
ing the shadow economy. One of the most used econometric models for this purpose is the
Multiple Indicators Multiple Causes (MIMIC). The properties of the MIMIC model in the
context of shadow economy estimation are discussed, for example, in Schneider et al. (2000,
2005a, 2005b, 2018), Trebicka (2014), Breusch (2005), Buszko (2017), Dybka et al. (2017,
2019). However, MIMIC is a confirmatory rather than an exploratory statistical technique.
As Kirchgassner (2016) points out, the conclusion that the variable is considered a statisti-
cally significant determinant of the shadow economy may not be fully justified. The model,
like many other hidden variable models used to measure an unobservable phenomenon, is
based on the assumption that some relationship exists (Dybka et al., 2019).

This article presents a model that includes unobservable variables that is similar to the
MIMIC model but has a slightly different structure. The proposed model determines a
linear relationship between random variables where the dependent variable and some of
the explanatory variables are subject to measurement error. The problems of linear mod-
els with errors in the variables have been discussed by Kendall and Stuart (1973), Dolby
(1976), Chan and Mak (1984), Gillard (2006), and others. Dolby (1976) considers an ul-
trastructural relationship with only a single explanatory variable. The model discussed in
this paper extends the reasoning of Dolby (1976) for a multivariate case, hereafter called
the Multiple Ultrastructural Model (MUM). A maximum likelihood estimation algorithm is
also presented, which allows us to effectively estimate the unknown model parameters and
data relationships. The structure of the MUM allows to determine the relationships between
GDP and its components, among other things. Gross domestic product is measured using
three different approaches - output (production), income and expenditure - which are then
compiled (properly balanced) to give a final estimate of GDP. Possible differences between
these methods may result from the existence of shadow economy. Therefore, the possibility
of defining SE as the difference between GDP in terms of production and expenditure has
been considered, for example, by Madzarevic-Sujster (2001), Mikulic (2002), Czapkiewicz
and Brzozowska-Rup (2021).

The empirical study of this paper examines the relationships between published data
on GDP and its components. The data are taken from the Local Data Bank of Statistics
Poland and cover the years 2000-2019. These data already include the informal economy.
Therefore, the MUM model used to describe these relationships checks the correctness of
the balance between different approaches to calculating GDP, taking into account SE.

The purpose of this article is twofold. First, to test whether the MUM model provides
a good forecast of GDP, and second, to examine the balance of GDP resulting from the
production and expenditure approach. In addition, this methodology allows us to estimate
the percentage of GDP accounted for by unobservable data that may not have been included
in the GDP calculations.

The paper is organized as follows. Section two defines the model and discusses its
methodological features. Section three presents the data and results of the empirical study.
A brief summary and conclusions are presented in the last section.
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2. Model

Let (X1
t , . . . ,X

W
t ,Yt) (t = 1, . . . ,T ) refer to observations that are subject to measurement

error. True but unknown values of the explanatory variables are denoted as sw
t and

Xw
t = sw

t + ε
w
t w = 1, . . . ,W.

Let assume that
Yt = γ1s1

t + . . .+ γW sW
t +ηt

where εw
t and ηt are normally distributed measurement errors. However, under these as-

sumptions the model is unidentifiable. Therefore, the dependent and explanatory variables
are replicated N times to avoid the unidentifiability problem. They are further represented
by the vector (X1

i,t , . . . ,X
W
i,t ,Yi,t), where i = 1, . . . ,N. The true values of the explanatory

variables (s1
i,t , . . . ,s

W
i,t ) satisfy a linear relation

Yi,t = γ1s1
i,t + . . .+ γW sW

i,t +ηi,t . (1)

Furthermore, we assume that

sw
i,t ∼ N(sw

i ,σs,w), Xw
i,t ∼ N(sw

i ,σε,w),

ε
w
i,t ∼ N(0,σε,w), ηi,t ∼ N(0,ση).

Assuming that sw
i,t ,εi,t ,ηi,t are independent, the vector (X1

i,t , . . . ,X
W
i,t ,Yi,t) is normally dis-

tributed with a mean of (s1
t , . . . ,s

W
t ,∑W

w=1 γwsw
t ) and a covariance matrix

Σ =

[
V11 V12
V T

21 V22

]
where V11 = [V1, . . . ,VW ]× IW and Vw = σ2

s,w +σ2
ε,w,

V22 = ∑
W
w=1 γ2

wσ2
s,w +σ2

η , V12 = [U1, . . . ,UW ]T and Uw = γwσ2
s,w.

The unknown parameters of the model are estimated by the maximum likelihood method.
To avoid technical problems in determining the estimators of the unknown parameters,
σ2

s,w = 0 is assumed, then the vector of unknown parameters is

Φ = (γ1, . . . ,γW ,ση ,σε,1, . . . ,σε,W ,s1, . . . ,sW ).

Consider the vector

Zi = (X1
i,1, . . . ,X

1
i,T , . . . ,X

W
i,T , . . . ,X

W
i,T ,Yi,1, . . . ,Yi,T ).
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Its expectations (µ) and covariance matrix (V ) take the form of

µ = (s1
1, . . . ,s

1
T , . . . ,s

W
1 , . . . ,sW

T ,γ1s1
1 + . . .+ γW sW

1 , . . . ,γ1s1
T + . . .+ γW sW

T )

and
V = Σ⊗ I,

where ⊗ is the Kronecker matrix multiplication. The log-likelihood function corresponding
to N replications has a form

L =C− N
2

ln |V |− 1
2

N

∑
i=1

diV−1di where di = Zi −µ. (2)

Let Vφ be the matrix of derivatives computed with respect to φ (φ ∈ Φ), we get

∂ lnL(Φ)

∂φ
= N

(
1
2

tr(PVφ )−di
φV−1d

)
(3)

where d = ∑
N
i=1 di, P =V−1 (D−V )V−1 and D = 1

N ∑
N
i=1 didT

i .

By performing the appropriate calculations, we obtain estimators for the unknown pa-
rameters of the model. Let

(
Xw
.,t
)

and (Y.,t) denote averages of N replications at each time t
and let

Rw
t =

(
Xw
.,t − sw

t
)
=

−ztγwσ2
ε,w

σ2
η + γ2

1 σ2
ε,1 + . . .+ γ2

W σ2
ε,W

, w = 1, . . . ,W, (4)

where
zt = Y.,t − γ1X1

.,t − . . .− γW XW
.,t . (5)

The unknown parameters γ1, . . . ,γW , σ2
η and σ2

ε,w satisfy the following non-linear equa-
tions

T

∑
t=1

(Xw
.,t −Rw

t )(γ1R1
t + . . .+ γW RW

t + zt) = 0

σ
2
η =

1
T N

N

∑
i=1

T

∑
t=1

(Yi,t −Y.,t)2 +
1
T

T

∑
t=1

(γ1R1
t + . . .+ γW RW

t + zt)
2

σ
2
ε,w =

1
T N

N

∑
i=1

T

∑
t=1

(Xw
i,t −Xw

.,t)
2 +

1
T

N

∑
i=1

(Rw
t )

2.

The next step is to estimate the unobservable parts of the explanatory variables. We
found that the expected value E(Yi,t) can be represented by two components E(Xi,t) and SE

E(Yi,t) = γ1s1
t + . . .+ γW sW

t = γ1(X1
.,t −R1

t )+ . . .+ γW (XW
.,t −RW

t ) =

γ1X1
.,t + . . .+ γW XW

.,t − (γ1R1
t + . . .+ γW RW

t ) = E(Xi,t)−SE.
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The first component refers to the observed data. The second component refers to the
unobservable part of the explanatory variables, which can be estimated using the formula

| E(Yi,t)−E(Xi,t) |=| γ̂1R̂1
t + . . .+ γ̂W R̂W

t |=| SE | . (6)

3. Empirical study

Gross Domestic Product is the primary indicator of economic activity, which can be esti-
mated in three independent and theoretically equivalent ways. The results of these methods
may differ, so a balancing process is carried out to obtain the final GDP (SNA93, ESA95).
The article discusses two approaches: from the production side and from the expenditure
side.

In the production approach, GDP is the gross value added of institutional sectors or
industries (GP) minus the value of intermediate consumption (IC). In the expenditure ap-
proach, GDP is equal to the sum of the final uses of goods and services (all uses except
intermediate consumption) plus exports and minus imports of goods and services. It cor-
responds to the expenditure of all purchasers of final goods produced during the year, in-
cluding consumption (Cn), investment (In), government expenditure (Gov) and net exports
(Exports (Ex)-Imports (Im)). In empirical study the MUM model is used to check the cor-
rectness of the balance between two approaches to calculating GDP when its components
include unknown values related to the shadow economy.

3.1. Data

The analysis considers voivodeship data (there are 16 voivodeships in Poland) from
2000-2019. The voivodeship observations for each year are assumed to be replications in
the MUM model. These data are transformed to ensure the desired statistical properties.
Taking into account the differences in the logarithms of the observations, it is possible to
compare values while avoiding large differences between voivodships.

The dependent variable is defined as Yi,t = log
(

GDPi,t
GDPi,t−1

)
. In the first model (the pro-

duction approach) the explanatory variables are Pi,t = log
(

GPi,t
GPi,t−1

)
and Zi,t = log

(
ICi,t

ICi,t−1

)
,

whereas in the second model (the expenditure approach) the explanatory variables are:
Ci,t = log

(
Cnt

Cnt−1

)
, Ii,t = log

(
Int

Int−1

)
, Gi,t = log

(
Govi,t

Govi,t−1

)
, Ei,t = log

(
Exi,t

Exi,t−1

)
− log

(
Imi,t

Imi,t−1

)
and i = 1 . . . ,16. The consumption and investment are noted by voivodeship, whereas gov-
ernment expenditures and net export are aggregated data for Poland. Hence, the model
includes also data related to voivodeship budget expenditures, Bi,t .
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Figure 1 shows the data considered in the empirical study.

Figure 1: The average values (calculated by voivodeship) of transformed data related to
GDP, intermediate consumption and gross value of output (Yi,t , Pi,t , Zi,t ) (first panel); and
the average values of transformed data related to consumption, investment, governed expen-
diture and net export ( Ci,t , Ii,t , Bi,t , Ei,t ) (second panel).

In order to illustrate the lack of meaningful differences in the replication by voivode-
ships taken into account in the MUM model, Figure 2 is presented. It shows four voivode-
ships with the lowest GDP growth (first panel) and four voivodeships with the highest GDP
growth (second panel). The highest growth in the period under review was observed in the
Małopolskie voivodeship and the lowest in the Zachodniopomorskie voivodeship. It should
be noted, however, that the increases in GDP within each voivodeship are relatively small,
so the data from the voivodeships can be used as replications in the MUM model.
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Figure 2: GDP growth in percent for voivodeships: voivodeships with the lowest GDP (first
panel), voivodeships with the highest GDP (second panel).

3.2. Results

3.2.1 GDP - production approach

In this subsection GDP is calculated using global production and intermediate consump-
tion. In this case, the MUM model has a form

Pi,t = sP
t + ε

P
i,t

Zi,t = sZ
t + ε

Z
i,t

Yi,t = γ1sP
t + γ2sZ

t +ηi,t (7)

where

ε
P
i,t ∼ N(0,σε,p), ε

Z
i,t ∼ N(0,σε,z), ηi,t ∼ N(0,ση), i = 1, . . . ,N, t = 1, . . . ,T.

and sP
t , sZ

t denote true but unknown (unobserved) values of explanatory variables.
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Table 1 shows the ML estimates of the parameters γ1 and γ2. For comparison, these
parameters are also estimated from the Ordinary Least Square (OLS) regression model. To
evaluate the goodness of fit of two models, the mean squared error (MSE) is calculated:

MSE =

√
1
T

T

∑
i=1

(Yt − Ŷt)2,

where Yt denotes annual GDP published by Statistics Poland and Ŷt are estimates derived
from the given model. The last column of Table 1 shows the MSE results for both models.

Table 1: Estimates of the model parameters of the relationship between GDP and its
components: global production and intermediate consumption, obtained from the OLS and

MUM model.
Method γ1 γ2 MSE

OLS 1.948∗∗∗ −0.962∗∗∗ 0.449
MUM 2.036∗∗∗ −1.041∗∗∗ 0.053

Note that the MUM model’s mean square error is much smaller than the OLS model’s (0.053
and 0.449, respectively).

Figure 3: The expected value E(Yi,t) and E(Xt) - part of expected values, which is explained
by observed data (first panel) and | SE | (second panel).
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From the formula (6) it is possible to determine the unobservable part of the explanatory
variables:

| SE |=| γ1sP
t + γ2sZ

t − (γ1P.t + γ2Z.t) |=| γ1R1
t + γ2R2

t | .

The analysis indicates that the absolute value of the difference (denoted as | SE |) between
the expected value E(Yi,t) (obtained from the MUM model) and its part explained by the
observed components E(Xi,t) reaches about 0.5% of GDP. The largest difference (1% of
GDP) is observed only in the first half of the period. Thus, it can be concluded that in
the production approach the data are correctly balanced with respect to the existence of the
shadow economy.

The first panel of Figure 3 shows the expected GDP growth as the average of the growth
of the voivodeships (denoted as E(Y )) and its part explained by the known and observed
production components, denoted as E(X). The second panel of Figure 3 shows the abso-
lute value of their difference, | SE |, which may correspond to the existence of a shadow
economy.

3.2.2 GDP - expenditure approach

The second approach to calculating GDP is based on expenditures. It takes into account
household consumption, investment, government expenditures, and net exports. In addition,
the model also takes into account the expenditure of the voivodeship budget. Hence, the
MUM takes the form of

Ci,t = sC
t + ε

C
it

Ii,t = sI
t + ε

I
it

Bi,t = sB
i,t + ε

B
it

and
Yi,t = γ1sC

i,t + γ2sI
i,t + γ3sB

i,t + γ4Gt + γ5Et +ηi,t . (8)

For comparison purposes, the ML estimates of the MUM are also compared with the OLS
estimates. The results are shown in Table 2.

Table 2: Estimates of the model parameters of the relationship between GDP and its
expenditure components, obtained from the OLS and MUM model
Method γ1 γ2 γ3 γ4 γ5 MSE

OLS 0.164 0.223∗∗ −0.050 0.635∗∗∗ 0.208∗ 1.738
MUM 0.126∗ 0.605∗∗∗ −0.150 0.406∗∗∗ 0.739∗∗ 0.126

The MSE comparison of the two models shows that the MUM model is much more ef-
fective in the explanation of GDP than the model that does not take into account observation
errors (OLS model). For the MUM the mean square error is 0.126, while for the OLS model
it is as much as 1.738. Following a similar line of reasoning as in the previous section, the
expected value of Yi,t is divided into two parts

E(Yi,t) = γ1sC
t + γ2sI

t + γ3sB
t + γ4G.,t + γ5E.,t =(

γ1C.,t + γ2II
.,t + γ3BB

.,t + γ4G.,t + γ5E.,t
)
−
(
γ1R1

t + γ2R2
t + γ3R3

t
)
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In this case the level of the shadow economy | SE | related to consumption, investment
and expenditures of voivodeships, is estimated as:

| SE |=| γ1R1
t + γ2R2

t + γ3R3
t | .

It should be noted that the SE related to export and import is still unknown (no data to
replicate). The first panel of Figure 4 shows the expected GDP growth as the average of the
growth of the voivodeships (denoted as E(Y )) and its part explained by the expected value
(denoted as E(Xt)) of the observed and known expenditure components. The second panel
of Figure 4 shows the absolute value of their difference, denoted as | SE |, and it may also
correspond to the existence of the shadow economy.

Figure 4: The expected value E(Yt) and E(Xt) - part of expected values, which is explained
by observed data (first panel) and | SE | (second panel).

Analyzing Figure 4, we notice that the difference between the estimated expected value
E(Yi,t) and its part which is related to the observed data is relatively large. The average
| SE | estimate is about 3% of GDP. The highest | SE | value (6% of GDP) is observed in
2016.
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4. Conclusion

In the article, we presented an ultrastructural linear model (MUM) in which both the
dependent and independent variables are subject to measurement error. We also developed
an algorithm to estimate the parameters of this model based on the maximum likelihood
method.

The MUM was used to estimate the relationship between GDP and its components,
taking into account the existence of the shadow economy. In order to obtain consistent
estimates of the model parameters, we adopted the voivodeship data as replications required
in the MUM. However, the macroeconomic data used in the study are from Statistics Poland,
which already takes into account the shadow economy. Therefore, the proposed method
was considered as a way to validate or support the method of GDP adjustment in case of
underestimation of the SE.

The results show that the MUM model is much more effective in explaining GDP than
a model that does not take observation errors into account (OLS model). In addition, MUM
provides estimates of the difference between published GDP and its components on the
production side (about 0.5% of GDP) and on the expenditure side (about 3% of GDP ).

The proposed methodology has several limitations. The main limitation of this method
is the proper selection of variables and the method of creating their replication. In addition,
the use of already aggregated data in the study leads to the loss of some information. Origi-
nal survey data will be more appropriate not only to confirm the balance of GDP calculation
methods, but also to estimate the size of the shadow economy. Therefore, the use of survey
data in the MUM model to estimate the shadow economy (assuming that production and
expenditure are balanced) will be the subject of further research.
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Extropy and entropy estimation based on progressive
Type-I interval censoring

Huda H. Qubbaj1, Husam A. Bayoud2, Hisham M. Hilow3

Abstract

This paper proposes nonparametric estimates for the two information measures extropy and 
entropy when a progressively Type-I interval censored data is available. Different nonpara-
metric approaches are used for deriving the estimates, including: moments of the empirical 
cumulative distribution function and linear regression. The performance of the proposed 
estimates is studied under various censoring schemes via simulation studies. Furthermore, 
different real data sets are analyzed for illustrative purposes.The estimates based on linear 
approximation Ĵ2 and Ĥ2 outperform the other estimate in the majority of studied cases.
Key words: entropy; extropy; mean square error; nonparametric statistics; Monte Carlo 
simulation; Type-I interval censoring.

1. Introduction

[Shannon,1948] defined entropy of a random variable (r.v.) X whose probability density
function (pdf) f (x) and cumulative distribution function (cdf) F(x) as:

H(X) =−
∫

RX

f (x)log( f (x))dx, (1)

where RX denotes the support of the r.v. X .

For more details on entropy the reader can see [Renyi,1961], [Awad,1987], [Tsallis,1988],
[Rao et al.,2004] and [Kittaneh et al.,2016].

The differential extropy of X is defined by [Lad et al.,2015] as:

J(X) =−1
2

∫
f 2(x)dx. (2)

Important properties of the extropy measure have been discussed in the literature since
2015. See [Qiu,2017] and [Qiu and Jia,2018a], who studied properties of the residual ex-
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tropy and the extropy of ordered statistics as well as the extropy of record values; that is for
random variable X its residual extropy is defined as:

Jt(X) =−1
2

∫
∞

0
f 2
t (x)dx =− 1

2F̄2(T )

∫
∞

t
f 2(x)dx, t ≥ 0 (3)

where,

ft(X) =
f (x+ t)
F̄(T )

,x ≥ 0, t ≥ 0 (4)

and F̄ is the survival function of X.

[Raqab and Qiu,2019] studied properties of the extropy measure under ranked set sam-
pling. The problem of estimating the extropy based on complete sample data has recently
been considered by some authors, including: [Qiu and Jia,2018b] and [Noughabi and Jar-
rahiferiz, 2019]. [Hazeb et al.,2021a] and [Hazeb et al.,2021b] introduced nonparametric
estimates for extropy and entropy based on progressively Type-II censored data. However,
estimation of the extropy and entropy measures under progressively Type-I interval cen-
sored data have not been considered so far in the literature. Accordingly, our main objective
in this paper is to develop different methods for estimating the extropy and entropy measures
under the progressive Type-I censoring set-up.

Censoring schemes of statistical experiments arise naturally in survival, reliability and
medical studies. [Cohen,1963] introduced progressive Type-I censoring as an extension of
Type-I censoring, where in a progressively Type-I censored life test on n items, progressive
censoring is carried out at the prefixed censoring times t1 < t2 < ... < tk. That is, at the
ith censoring time ti, Ri items are randomly removed from the experiment, 1 ≤ i ≤ k− 1,
with the restriction R1 + ...+ Rk−1 ≤ n − l, l ∈ {0,1, ...,n}. Then, at the kth censoring
time tk, all remaining items are removed from the life test if there are any left. In many
practical situations lifetimes of units placed on a test are observed within intervals, where
this censoring scheme is called interval censoring.

[Aggarwala,2001] introduced progressive Type-I Interval censoring combining the two
concepts: progressive Type-I censoring and Interval censoring, then developed statistical
inference for the exponential distribution based on progressively type-I interval censored
data. Under progressive type-I interval censoring, observations are only known within two
consecutively pre-scheduled times, where items would be allowed to be withdrawn at pre-
scheduled time points. [Ng and Wang,2009] introduced the concept of progressive type-I
interval censoring using the Weibull distribution and compared many different estimation
methods for two parameters of the Weibull distribution via simulation. [Lio et al.,2011] pro-
posed parameter estimation for the generalized Rayleigh distribution under progressively
Type-I interval censored data. Parameters of the inverse Weibull distribution under pro-
gressive type-I Interval censoring were estimated by [Singh and Tripathi,2016]. Also [Du
et al.,2018] proposed Statistical Inference for the Entropy of the Log-Logistic Distribution
under Progressive Type-I Interval Censoring Schemes. Recently, [Al otaibi et al.,2021] in-
troduced Bayesian estimation for Dagum distribution based on progressive type -I Interval
censoring.
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The rest of the paper is organized as follows. Progressive Type-I interval censoring
scheme with its properties are discussed in Section 2. Nonparametric estimates for extropy
and entropy measures based on progressive Type-I interval censoring are developed in Sec-
tion 3. Simulation experiments as well as analyses of real life data are performed in Section
4. Finally, we end the the paper in Section 5 with a conclusion.

2. Progressive Type-I Interval Censoring

Several censoring schemes have been proposed in the literature for saving time and cost
of reliability experiments. Type I and type II censoring are probably the most commonly
used methods in this regard. In type I censoring, failure times are recorded up to a speci-
fied time point where failures occurring afterward this fixed time are not recorded. On the
other hand, in type II censoring a life test continues until a pre-specified number of failures
have been recorded. These two censoring methods share one common feature that live units
can be withdrawn only at the termination point of the test. In progressive censoring, items
put on a test can be withdrawn during life experimentation, hence this censoring scheme
is more flexible compared to the other two basic schemes. Progressive censoring has been
widely studied in lifetime analysis by various researchers. One may refer to [Balakrishnan
and Cramer ,2014] for an exhaustive list of references on this topic and also for a detailed
discussion on applications of progressive censoring in life testing experiments. Sometimes
it is difficult to record exact failure times of items under life testing due to lack of con-
tinuous monitoring of subjects or items under study. In such situations, observations are
often recorded in intervals and the corresponding censoring is referred to as the interval
censoring. [Aggarwala,2001] initially discussed progressive type I interval censoring in
the literature and studied an exponential distribution using this censoring. Since then this
censoring scheme has attracted attention among researchers. Progressive Type-I interval
censoring can be briefly described as follows: Suppose n identical items are placed simul-
taneously on life testing at time t0 = 0, where inspection is at m pre-fixed censoring times
t1 < t2 <.....< tm, and where tm is the scheduled time to terminate the experiment and m
is pre-fixed number of stops. For i = 1,2, ...,m, let ki be the number of failures in the in-
terval (ti−1,ti]. Let Si be the number of the surviving items at ti and Ri be the number of
removed items at ti. In this censoring scheme, ki and Si are random numbers while Ri is the
number of remaining items, which is also a random number. At the 1st inspection time t1,
we observe k1 failures, then R1 surviving items are randomly withdrawn from the remaining
items n−k1. One can see that after this step, the number of remaining items is (n−k1−R1).
Now, after time t1 and at the 2nd inspection time t2, we observe k2 failures where R2 items
are randomly removed from (n−k1 −k2 −R1) items. Lastly, at the mth inspection time (the
last inspection time), we observe km failures and all remaining (n−∑

m
i=1 ki−∑

m−1
i=1 Ri) items

are immediately removed from the experiment. The observed progressive Type-I interval
censored data can be represented as: {(ki,Ri, ti) , i = 1,2, ...,m}. The associated likelihood
function under the progressive type-I interval censoring is given by:

L(θ) ∝

m

∏
i=1

[F(ti;θ)−F(ti−1;θ)]ki [1−F(ti;θ)]Ri . (5)
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Note that Ri should not be greater than Si,where the values of Ri for i = 1,2, ...,m are
determined based on pre-specified removal proportions q1,q2, .....,qk−1 and qm = 1, such
that Ri = [Siqi], for i = 1,2, ...,k− 1, where symbol [b] is the greatest integer less than or
equal to b. It can be easily seen that n = ∑

m
i=1(Ri +ki). If Ri = 0, for i = 1,2, ...,m−1, then

Progressive type-I interval censoring reduces to the conventional type-I censoring.

Theorem 2.1. Let Ui:m:n = F(ti), i = 1,2, ...,m denote a progressively Type-I interval cen-
soring sample obtained from the uniform (0,1) distribution, assuming the sample size is n
with progressive Type-I interval censored data {(ki,Ri, ti) , i = 1,2, ...,m}. Let

Ui:m:n = 1−
m

∏
j=m−i+1

Vj,

where,

V1 =
1−Um:m:n

1−Um−1:m:n
,V2 =

1−Um−1:m:n

1−Um−2:m:n
, ...,Vm = 1−U1:m:n, (6)

are all independent identically distributed (iid) r.v.’s. Then

Vi
d
= Beta

(
i+

m

∑
j=m−i+2

k j +
m

∑
j=m−i+1

R j,km−i+1 +1

)
, i = 1,2, ...,m. (7)

Proof. For simplicity, we denote Ui:m:n by Ui.

Since Ui follows U (0,1), then the pdf and cdf of Ui are fUi(u) = 1 and FUi(u) = u, for
0 ≤ u ≤ 1, respectively. So, using Eq.(5), the joint pdf of U1 ≤U2 ≤ ...≤Um is obtained as
follows:

fUl:m:n,U2:m:n,...,Um:m:n(u1,u2, ..,um) ∝

m

∏
i=1

(ui −ui−1)
ki (1−ui)

Ri . (8)

Since Ui = 1−∏
m
j=m−i+1 Vj, one can see that:

U1 = 1−Vm (9)

U2 = 1−Vm−1Vm

U3 = 1−Vm−2Vm−1Vm

.

.

.

Um = 1−V1V2V3...Vm
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The Jacobian matrix of this transformation is given by the following lower triangular
matrix:

J =
∂

∂V
U =


0 0 · · · 0 −1
0 0 · · · −Vm −Vm−1
...

...
. . .

...
−V2V3...Vm −V1V3...Vm · · · −V1V2...Vm−2Vm −V1V2...Vm−1


Therefore,

|J|=
∣∣∣∣ ∂

∂V
U
∣∣∣∣= m

∏
j=2

V j−1
j . (10)

Now, assuming U0 = 0, we have:

U1 −U0 = 1−Vm (11)

U2 −U1 = Vm (1−Vm−1)

U3 −U2 = Vm−1Vm (1−Vm−2)

.

.

.

Um −Um−1 = V2V3...Vm (1−V1)

Now, in order to derive the joint pdf of V1,V2, ...,Vm, we simplify the terms of Eq.(8)
separately.

Using Eq.(10), the first term in Eq.(8) is simplified to:

m

∏
i=1

(Ui −Ui−1)
ki =

m

∏
i=1

(1−Vm−i+1)
ki

m

∏
i=1

V
∑

m
j=i+1 k j

m−i+1 . (12)

Using Eq.(9), the second term in Eq.(8) is simplified to:

m

∏
i=1

(1−Ui)
Ri =

m

∏
i=1

V
∑

m
j=i R j

m−i+1 . (13)

Accordingly, the joint pdf of V1, ...,Vm is obtained as follows:

fVl ,V2,...,Vm(v1,v2, ..,vm) ∝

m

∏
i=1

(1−Vi)
km+i−1

m

∏
i=2

V
∑

m
j=m−i+2 k j

i

m

∏
i=1

V
∑

m
j=m−i+1 R j

i

m

∏
i=2

V i−1
i . (14)

Since ∏
m
j=2 V j−1

j = ∏
m
j=1 V j−1

j and ∏
m
i=2 V

∑
m
j=m−i+2 k j

i = ∏
m
i=1 V

∑
m
j=m−i+2 k j

i .
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Then, Eq.(14), can be simplified to:

fVl ,V2,...,Vm(v1,v2, ..,vm) ∝

m

∏
i=1

(1−Vi)
km+i−1 V

∑
m
j=m−i+2 k j+∑

m
j=m−i+1 R j+i−1

i (15)

where 0 <Vi < 1.
By factorization theorem, we see that V1,V2, ...,Vm are independent and

Vi
d
= Beta

(
i+

m

∑
j=m−i+2

k j +
m

∑
j=m−i+1

R j,km−i+1 +1

)
, i = 1,2, ...,m.

Corollary 2.2. As a result of Theorem (2.1), we find

E(Ui:m:n) = 1−
m

∏
j=m−i+1

γ j, (16)

where,

γi =
i+∑

m
j=m−i+2 k j +∑

m
j=m−i+1 R j

1+ i+∑
m
j=m−i+1 k j +R j

,

such that γ j = γ1 if j ≤ 1 and γ j = γm if j ≥ m provided that
m

∑
j=m+1

k j = 0.

3. Nonparametric Extropy and Entropy Estimates

This section develops non-parametric estimates for the extropy and entropy measures
based on progressively Type-I interval censored samples. It is of importance here to men-
tion that for a random variable (r.v.) T , extropy and entropy measures J(T ) and H(T ) are
expressed as:

J(T ) =−1
2

∫ 1

0

(
d

d p
F−1(p)

)−1

d p (17)

and

H(T ) =
∫ 1

0
log
(

d
d p

F−1(p)
)

d p (18)

3.1. Moments Approximation Method

The first entropy and extropy estimate will be obtained by using the difference operator
that was proposed by Vasicek (1976) for estimating the entropy. This method is based on
the following fact:

d
d p

F−1(p)≈ Ti+w:m:n −Ti−w:m:n

F(Ti+w:m:n)−F(Ti−w:m:n)
, (19)
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where the window size w ≤ m/2, also Ti:m:n = T0 = 0 if i < 1, while Ti:m:n = Tm:m:n if i > m.
Then T0 = 0 ≤ T1:m:n ≤ T2:m:n ≤ ... ≤ Tm:m:n are progressively Type-I interval censoring
times of size m, which are pre-fixed. In the interval [Ti−1,Ti), we observe a random number
of failures, say ki, then Ri surviving units are immediately removed from the remaining
(n−∑

i
j=1 ki −∑

i−1
j=1 Ri) items.

Next, it can be seen that (17) is approximately equal to:

J(T )≈− 1
2m

m

∑
i=1

F(Ti+w:m:n)−F(Ti−w:m:n)

Ti+w:m:n −Ti−w:m:n
. (20)

Notice that Ui+w:m:n = F(Ti+w:m:n) and Ui−w:m:n = F(Ti−w:m:n), the moments-based es-
timate is proposed by replacing Ui+w:m:n and Ui−w:m:n by their moments, i.e. their expected
values E(Ui+w:m:n) and E(Ui−w:m:n), respectively, which are given in (16). Consequently, an
estimate of J(T ) is

Ĵ1 =− 1
2m

m

∑
i=1

∏
m
j=m−(i−w)+1 γ j −∏

m
j=m−(i+w)+1 γ j

Ti+w:m:n −Ti−w:m:n
. (21)

On the lines of Vasicek (1976), an estimate of the entropy is

Ĥ1 =
1
m

m

∑
i=1

log

(
Ti+w:m:n −Ti−w:m:n

∏
m
j=m−(i−w)+1 γ j −∏

m
j=m−(i+w)+1 γ j

)
. (22)

Proposition 3.1.1. Let Y = aT +b, a > 0. Then Ĵ1
Y
= 1

a Ĵ1
T and Ĥ1

Y
= log(a)+ Ĥ1

T .

Proof. The result follows since for all i, γY
i = γT

i .

Proposition 3.1.2. Estimates Ĵ1 and Ĥ1 are consistent estimates for J and H respectively,
i.e.

Ĵ1
p−→ J,

and
Ĥ1

p−→ H.

as n → ∞, m → ∞, and m/n → 0.

Proof. Since when m → n, the progressively Type-I interval censored sample becomes the
complete sample. Then the estimates, Ĵ1 and Ĥ1 converge to the estimates proposed by [Qiu
and Jia,2018b] and [Vasicek,1976], which are consistent estimates of J and H.

3.2. Linear Approximation Method

The second estimate for extropy J(T ) in (2) is proposed following the steps of Correa
(1995) by noticing that the quantity:

F(Ti+w:m:n)−F(Ti−w:m:n)

Ti+w:m:n −Ti−w:m:n
, (23)
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represents the slope of a straight line joining the following two points

(Ti−w:m:n,F(Ti−w:m:n)) and (Ti+w:m:n,F(Ti+w:m:n)) .

This estimation approach is based on estimating the function F(Tj) by a local linear
model on (Ti−w:m:n,Ti+w:m:n) by using 2w+1 ordered pairs:

F(Tj) =U j = a+bTj + ε, j = i−w, ..., i+w. (24)

On the other hand, slope in (23) can be approximated by b in (22), which can be esti-
mated by the least squares method using (2w+1) ordered pairs as follows:

b =
STU

S2
T

=
∑

i+w
j=i−w(Tj:m:n − T̄(i))(U j:m:n −Ū(i))

∑
i+w
j=i−w(Tj:m:n − T̄(i))2

, (25)

where

T̄(i) =
1

2w+1

i+w

∑
j=i−w

Tj:m:n, and Ū(i) =
1

2w+1

i+w

∑
j=i−w

U j:m:n.

Now, by replacing U j:m:n by its expected value, we get

ˆ̄U(i) =
1

2w+1

i+w

∑
j=i−w

(
1−

m

∏
k=m− j+1

γk

)
.

Consequently, a second estimate of J(T ) using the slope b in Eq.(25) and replacing
F(Tj:m:n) =U j:m:n by its respective expected value in terms of γ j in Eq.(21) is as follows:

Ĵ2 =− 1
2m

m

∑
i=1

∑
i+w
j=i−w(Tj:m:n − T̄(i))(

∑
i+w
j=i−w ∏

m
k=m− j+1 γk

2w+1 −∏
m
k=m− j+1 γk)

∑
i+w
j=i−w(Tj:m:n − T̄(i))2

. (26)

Following the same argument proposed for Ĵ2 in Eq.(26), we consider the slope of the
linear regression of T on F as follows:

bh =
STU

S2
U

=
∑

i+w
j=i−w(Tj:m:n − T̄(i))(U j:m:n −Ū(i))

∑
i+w
j=i−w(U j:m:n −Ū(i))2

, (27)

Using Eq(18), Eq(19) and Eq(27), a second estimate for H(T ) in (1) can be introduced
as

Ĥ2 =
1
m

m

∑
i=1

log

∑
i+w
j=i−w(Tj:m:n − T̄(i))(

∑
i+w
j=i−w ∏

m
k=m− j+1 γk

2w+1 −∏
m
k=m− j+1 γk)

∑
i+w
j=i−w(

∑
i+w
j=i−w ∏

m
k=m− j+1 γk

2w+1 −∏
m
k=m− j+1 γk)2

 . (28)

Proposition 3.2.1. Let Y = aT +b, a > 0. Then Ĵ2
Y
= 1

a Ĵ2
T and Ĥ2

Y
= log(a)+ Ĥ2

T .

Proof. The result follows since for all i, γY
i = γT

i .
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Proposition 3.2.2. Estimates Ĵ2 and Ĥ2 are consistent estimates for J and H respectively,
i.e.

Ĵ2
p−→ J,

and
Ĥ2

p−→ H.

as n → ∞, m → ∞ and m/n → 0.

Proof. Proof is obvious by [Correa,1995] and [Qiu and Jia,2018b] and so it is omitted.

4. Simulation study and data analysis

Here, we perform an extensive simulation study to compare the act of the proposed ex-
tropy and entropy estimates. Moreover, a real data set is discussed for illustrative purposes.

4.1. Simulation study

In this subsection, we carry out a Monte Carlo simulation to analyze the behavior of our
proposed estimators of entropy and extropy. In order to perform the simulation process, we
consider different sample sizes, i.e. n = 10,20,30,50,100 with different inspection times,
i.e. m = 3,4,5. Next, we generate 1000 progressive type-I interval censoring data sets in
each experimentation case. Also, we work with different withdrawal (removal) schemes as
detailed in Table 1. We consider the uniform distribution U(0,θ) with θ = 1, the exponential
distribution Exp(β ) with β = 1 and normal distribution N(µ,σ) with µ = 0,σ = 1, which
are commonly used.

Table 1: Progressive interval censoring schemes used in the Monte Carlo simulation study

Scheme No. m (t1, ..., tm) (q1, ...,qm)

1 3 0.1,0.5,0.9 0.25,0.1,1
2 3 0.1,0.5,0.9 0.5,0.1,1
3 3 0.1,0.5,0.9 0,0.25,1
4 3 0.1,0.5,0.9 0.1,0.1,1
5 4 0.1,0.5,0.7,0.9 0,0,0.25,1
6 4 0.1,0.5,0.7,0.9 0,0.25,0.25,1
7 4 0.1,0.5,0.7,0.9 0.25,0,0,1
8 4 0.1,0.5,0.7,0.9 0.2,0.2,0.2,1
9 5 0.1,0.3,0.5,0.7,0.9 0.25,0,0,0,1
10 5 0.1,0.3,0.5,0.7,0.9 0,0,0,0,1
11 5 0.1,0.3,0.5,0.7,0.9 0.25,0.25,0,0,1
12 5 0.1,0.3,0.5,0.7,0.9 0.1,0.1,0.2,0.2,1
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For each generated data set, we compute the average estimator and the corresponding
mean squared error (MSE) of the proposed entropy and extropy estimators over 1000 sim-
ulations. Simulation results are shown in Tables (2-10), where the bold type in these tables
indicates the estimator achieving the minimal MSE. Comments on simulation results are
provided after these tables. Here, we will detail the withdrawal schemes used through Ta-
bles 2 to 10.

For schemes 1, 2, 3 and 4, we specify three inspection (stopping) times at which surviv-
ing units are progressively removed at different proportions as detailed in Tables 2, 5 and 8.
In scheme 1, censoring by removal is heavier at the end of the first interval and lighter at the
end of the second interval. In scheme 2, the same censoring approach is applied but with
different proportions. In scheme 3, the reverse situation is applied, i.e. the censoring by
removal is lighter at the end of the first interval and heavier at the end of the second interval.
In scheme 4, equal (uniform) proportions are used.

Similarly, for schemes 5, 6, 7 and 8, we specify the proportions of the surviving units
to be removed at four inspection times as presented in Tables 3, 6 and 9. In scheme 5,
censoring by removal is lighter at the end of the first and second intervals and heavier at the
end of the third interval. In scheme 6, censoring by removal is lighter at the end of the first
interval and heavier at the end of the second and third intervals. In scheme 7, only left-most
and right-most removal is applied. In scheme 8, equal proportions (uniform) are used.

At last, for schemes 9, 10, 11 and 12, we specify the proportions of the surviving units
to be removed at five inspection times as shown in Tables 4, 7 and 10. In scheme 9, only
left-most and right-most removal is applied. In scheme 10, a conventional interval censor-
ing scheme is employed, i.e. all removal is carried out following the final time interval,
immediately prior to experiment termination. In scheme 11, censoring by removal is heav-
ier at the end of the first and second intervals and lighter at the end of the third and fourth
intervals. In scheme 12, censoring by removal is lighter at the end of the first and second
intervals and heavier at the end of the third and fourth intervals.
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Table 2: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for uniform (0,1) assum-
ing m = 3

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

1 10 0.0015 0.0098 0.0098 0.0160
20 0.0003 0.0066 0.0018 0.0050
30 0.0003 0.0054 0.0013 0.0040
50 0.0002 0.0046 0.0005 0.0025
100 0.0001 0.0038 0.0003 0.0015

2 10 0.0021 0.0087 0.0125 0.0214
20 0.0009 0.0050 0.0044 0.0088
30 0.0007 0.0036 0.0028 0.0051
50 0.0006 0.0025 0.0023 0.0033
100 0.0006 0.0015 0.0021 0.0013

3 10 0.0012 0.0100 0.0077 0.0144
20 0.0006 0.0074 0.0033 0.0084
30 0.0003 0.0062 0.0015 0.0055
50 0.0001 0.0053 0.0006 0.0039
100 0.0001 0.0047 0.0003 0.0031

4 10 0.0009 0.0115 0.0068 0.0099
20 0.0005 0.0088 0.0031 0.0066
30 0.0002 0.0074 0.0014 0.0039
50 0.0001 0.0066 0.0008 0.0031
100 0.0000 0.0057 0.0003 0.0020

Table 3: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for uniform (0,1) distri-
bution assuming m = 4

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

5 10 0.0037 0.0076 0.0246 0.0281
20 0.0030 0.0065 0.0206 0.0235
30 0.0019 0.0048 0.0120 0.0143
50 0.0013 0.0038 0.0081 0.0098
100 0.0006 0.0027 0.0035 0.0048

6 10 0.0041 0.0077 0.0278 0.0311
20 0.0038 0.0068 0.0277 0.0302
30 0.0028 0.0054 0.0207 0.0226
50 0.0020 0.0042 0.0141 0.0154
100 0.0010 0.0028 0.0064 0.0075

7 10 0.0036 0.0070 0.0233 0.0271
20 0.0027 0.0051 0.0186 0.0210
30 0.0020 0.0038 0.0132 0.0151
50 0.0011 0.0023 0.0060 0.0071
100 0.0006 0.0012 0.0024 0.0027

8 10 0.0039 0.0072 0.0257 0.0295
20 0.0031 0.0057 0.0206 0.0234
30 0.0030 0.0052 0.0200 0.0221
50 0.0019 0.0034 0.0110 0.0120
100 0.0009 0.0020 0.0053 0.0059
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Table 4: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for uniform (0,1) distri-
bution assuming m = 5

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

9 10 0.0039 0.0038 0.0145 0.0158
20 0.0038 0.0031 0.0136 0.0142
30 0.0037 0.0025 0.0123 0.0123
50 0.0030 0.0014 0.0063 0.0056

100 0.0026 0.0007 0.0042 0.0026
10 10 0.0038 0.0038 0.0155 0.0163

20 0.0030 0.0025 0.0101 0.0104
30 0.0028 0.0018 0.0075 0.0075
50 0.0023 0.0009 0.0035 0.0030

100 0.0021 0.0003 0.0023 0.0014
11 10 0.0045 0.0048 0.0178 0.0201

20 0.0042 0.0035 0.0155 0.0162
30 0.0040 0.0030 0.0145 0.0143
50 0.0036 0.0021 0.0107 0.0096

100 0.0030 0.0011 0.0075 0.0049
12 10 0.0043 0.0045 0.0183 0.0199

20 0.0036 0.0039 0.0175 0.0184
30 0.0029 0.0031 0.0134 0.0138
50 0.0024 0.0025 0.0118 0.0117
100 0.0015 0.0013 0.0057 0.0050

Table 5: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for exponential distribu-
tion with θ = 1 assuming m = 3

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

1 10 0.0247 0.0095 0.5494 0.4789
20 0.0220 0.0082 0.5288 0.4469
30 0.0204 0.0073 0.5154 0.4305
50 0.0181 0.0059 0.4977 0.4079

100 0.0163 0.0047 0.4853 0.3922
2 10 0.0262 0.0113 0.5742 0.4888

20 0.0241 0.0107 0.5411 0.4580
30 0.0221 0.0096 0.5206 0.4328
50 0.0195 0.0080 0.4973 0.4076

100 0.0178 0.0066 0.4892 0.3949
3 10 0.0209 0.0080 0.4945 0.4214

20 0.0187 0.0067 0.4817 0.4020
30 0.0176 0.0057 0.4805 0.3958
50 0.0166 0.0050 0.4744 0.3866

100 0.0146 0.0037 0.4614 0.3708
4 10 0.0228 0.0078 0.5300 0.4692

20 0.0193 0.0063 0.4963 0.4214
30 0.0189 0.0060 0.4995 0.4205
50 0.0176 0.0051 0.4928 0.4094

100 0.0160 0.0041 0.4841 0.3967
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Table 6: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for exponential distribu-
tion with θ = 1 assuming m = 4

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

5 10 0.0169 0.0101 0.4120 0.3790
20 0.0122 0.0076 0.3306 0.3036
30 0.0096 0.0065 0.2832 0.2602
50 0.0071 0.0048 0.2488 0.2273
100 0.0040 0.0031 0.1767 0.1592

6 10 0.0211 0.0127 0.4892 0.4473
20 0.0139 0.0090 0.3453 0.3147
30 0.0120 0.0083 0.3106 0.2842
50 0.0083 0.0057 0.2547 0.2321
100 0.0049 0.0040 0.1823 0.1653

7 10 0.0194 0.0119 0.4544 0.4148
20 0.0144 0.0092 0.3654 0.3298
30 0.0122 0.0080 0.3303 0.2973
50 0.0093 0.0059 0.3006 0.2681
100 0.0064 0.0037 0.2589 0.2262

8 10 0.0191 0.0115 0.4568 0.4149
20 0.0147 0.0095 0.3602 0.3261
30 0.0125 0.0081 0.3317 0.2999
50 0.0096 0.0065 0.2888 0.2612
100 0.0059 0.0041 0.2182 0.1953

Table 7: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for exponential distribu-
tion with θ = 1 assuming m = 5

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

9 10 0.0283 0.0180 0.5597 0.5208
20 0.0259 0.0170 0.5053 0.4699
30 0.0215 0.0139 0.4658 0.4303
50 0.0164 0.0101 0.4143 0.3791

100 0.0127 0.0073 0.3744 0.3391
10 10 0.0300 0.0189 0.5563 0.5235

20 0.0232 0.0144 0.4737 0.4436
30 0.0194 0.0117 0.4436 0.4132
50 0.0154 0.0090 0.3993 0.3695

100 0.0114 0.0058 0.3599 0.3289
11 10 0.0359 0.0238 0.6342 0.5922

20 0.0254 0.0171 0.4983 0.4576
30 0.0236 0.0158 0.4919 0.4500
50 0.0191 0.0126 0.4443 0.4039

100 0.0131 0.0081 0.3733 0.3347
12 10 0.0251 0.0159 0.4953 0.4621

20 0.0212 0.0137 0.4481 0.4146
30 0.0186 0.0121 0.4180 0.3857
50 0.0133 0.0088 0.3463 0.3189

100 0.0079 0.0048 0.2723 0.2477
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Table 8: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for normal distribution
with µ = 0,σ = 1 assuming m = 3

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

1 10 0.0845 0.0520 1.5360 1.4058
20 0.0821 0.0515 1.5007 1.3609
30 0.0796 0.0499 1.4879 1.3401
50 0.0771 0.0487 1.4700 1.3076

100 0.0754 0.0472 1.4700 1.3060
2 10 0.0867 0.0551 1.5636 1.4262

20 0.0832 0.0541 1.5046 1.3688
30 0.0815 0.0535 1.4869 1.3474
50 0.0801 0.0526 1.4803 1.3360

100 0.0762 0.0498 1.4576 1.3037
3 10 0.0800 0.0486 1.4779 1.3399

20 0.0768 0.0478 1.4434 1.2884
30 0.0755 0.0471 1.4392 1.2781
50 0.0735 0.0457 1.4330 1.2654

100 0.0717 0.0443 1.4324 1.2590
4 10 0.0825 0.0508 1.5122 1.3729

20 0.0804 0.0491 1.4912 1.3513
30 0.0786 0.0481 1.4801 1.3315
50 0.0763 0.0467 1.4733 1.3145

100 0.0742 0.0454 1.4634 1.2965

Table 9: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for normal distribution
with µ = 0,σ = 1 assuming m = 4

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

5 10 0.0735 0.0555 1.4046 1.3288
20 0.0638 0.0482 1.2529 1.1836
30 0.0553 0.0411 1.1298 1.0654
50 0.0484 0.0352 1.0534 0.9925
100 0.0406 0.0284 0.9559 0.9005

6 10 0.0768 0.0586 1.4402 1.3612
20 0.0665 0.0507 1.2799 1.2066
30 0.0590 0.0445 1.1722 1.1058
50 0.0486 0.0358 1.0230 0.9669
100 0.0427 0.0304 0.9581 0.9077

7 10 0.0799 0.0615 1.4823 1.4038
20 0.0677 0.0521 1.3037 1.2296
30 0.0622 0.0477 1.2309 1.1578
50 0.0568 0.0431 1.1638 1.0907
100 0.0511 0.0380 1.1216 1.0472

8 10 0.0770 0.0589 1.4454 1.3674
20 0.0682 0.0525 1.3116 1.2354
30 0.0629 0.0484 1.2217 1.1512
50 0.0533 0.0402 1.0890 1.0263
100 0.0462 0.0337 1.0106 0.9537
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Table 10: MSEs of the estimates of extropy J(Y ) and entropy H(Y ) for normal distribution
with µ = 0,σ = 1 assuming m = 5

Scheme Number n Ĵ1 Ĵ2 Ĥ1 Ĥ2

9 10 0.1021 0.0810 1.6604 1.5913
20 0.0925 0.0740 1.5344 1.4681
30 0.0848 0.0678 1.4609 1.3933
50 0.0787 0.0627 1.4157 1.3462

100 0.0716 0.0565 1.3670 1.2956
10 10 0.1002 0.0788 1.6234 1.5584

20 0.0863 0.0678 1.4751 1.4082
30 0.0806 0.0632 1.4172 1.3496
50 0.0743 0.0578 1.3672 1.2976

100 0.0686 0.0528 1.3462 1.2732
11 10 0.1047 0.0836 1.6928 1.6201

20 0.0944 0.0761 1.5693 1.4960
30 0.0871 0.0704 1.4807 1.4087
50 0.0791 0.0637 1.3985 1.3251

100 0.0690 0.0549 1.3175 1.2431
12 10 0.0990 0.0779 1.6263 1.5586

20 0.0833 0.0659 1.4533 1.3839
30 0.0773 0.0611 1.3866 1.3168
50 0.0656 0.0512 1.2499 1.1834

100 0.0554 0.0424 1.1382 1.0757

It can be seen from Tables 2-10 that the performance of the proposed estimates is af-
fected by the distribution of the sample under study. For uniform distribution, the obtained
simulation results are given in Tables 2-4. We observe that extropy estimates Ĵ1 and Ĵ2

perform satisfactorily, as shown in Tables 2 and 3. Moreover, Ĵ1 dominates Ĵ2 under all
censoring schemes for all sample sizes. It is also obvious from Tables 2 and 3 that both
entropy estimates Ĥ1 and Ĥ2 perform well. Moreover, Ĥ1 dominates Ĥ2 under all censoring
schemes for all sample sizes. Table 4 shows that for scheme 9, Ĵ1 and Ĵ2 perform well and
Ĵ2 dominates Ĵ1 for all sample sizes; while for scheme 10 we see that the MSEs of Ĵ2 are
always smaller than those of Ĵ1 except when n = 10, where Ĵ1 and Ĵ2 are equal. As for
scheme 11, we see that MSEs of Ĵ2 are always smaller than those of Ĵ1 except when n = 10.
On the other hand, in scheme 12, we see that MSEs ofĴ1 are always smaller than those of
Ĵ2 except when n = 100. Furthermore, from Table 4, we observe that for schemes 9 and 10,
estimates of Ĥ1 and Ĥ2 perform satisfactorily and we also see that MSEs of Ĥ1 are always
smaller than those of Ĥ2 except when n = 50 and n = 100 and they are equal when n = 30.
As for scheme 11, we see that MSEs of Ĥ2 are always smaller than those of Ĥ1 except when
n = 10 and n = 20. On the other hand, in scheme 12 we see that MSEs of Ĥ1 are always
smaller than those of Ĥ2 except when n = 50 and n = 100.

For exponential distribution, results obtained are displayed in Tables 5-7. It is clear from
Tables 5, 6 and 7 that extropy estimates Ĵ1 and Ĵ2 perform satisfactorily where Ĵ2 dominates
Ĵ1 under all censoring schemes for all sample sizes. Moreover, it is clear from Tables 9,
11 and 13, entropy estimates Ĥ1 and Ĥ2 perform well where Ĥ2 dominates Ĥ1 under all
censoring schemes for all sample sizes.
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For normal distribution, the obtained results are arranged in Tables 8-10. We observe
that Ĵ1 and Ĵ2 perform satisfactorily, as shown in Tables 8, 9 and 10, where Ĵ2 dominates Ĵ1

under all censoring schemes for all sample sizes. It is also obvious from Tables 8, 9 and 10
that both Ĥ1 and Ĥ2 estimators perform well, where Ĥ2 dominates Ĥ1 under all censoring
schemes for all sample sizes.

As expected, MSE decreases as the sample size n increases. It is worthwhile to point
that the extropy and entropy estimates are affected by the sample size, censoring schemes
and the type of distribution of data. For example, we notice that the MSEs generated from
uniform distribution seems to outperform their parallel MSEs generated from Exponential
distribution under all censoring schemes and for all sample sizes.

4.2. Real data analysis

In this subsection, we present an example to show the behavior of the proposed entropy
and extropy estimates in real case. Here we consider the insulating fluid example from
[Nelson, 1982, P.105].
Example : The following data, represents failure times (in minutes) for an insulating fluid
between two electrodes, subject to a voltage of 34 kV.:

0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,
7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89.

It is well known that the exponential distribution, Exp(θ) with pdf f (x) = θ exp(−θx)is
appropriate fitting model for this dataset. The MLE of θ based on the complete sample
is equal to 1/X̄ which equals 0.0696. Therefore, assuming θ = 0.0696, the extropy and
entropy of X in this case are obtained to be

J(X) =−θ

4
=−0.0174, and H(X) = 1− log θ = 3.6644,

respectively.
Next, we study the behavior of the proposed estimators based on the following progres-

sive Type-I Interval censoring schemes that are presented in Table 11. In this study, we
consider m = 4 and w = 2.

Table 11: Progressive censoring schemes used in this real data example

Censoring
scheme No.

(T1,T2,T3,T4) (q1,q2,q3,q4)

1 1,5,15,25 0.25,0,0.25,1
2 2.5,5,10,35 0.1,0.2,0.3,1
3 1,6,18,30 0.05,0.05,0.05,1
4 0.5,4,10,30 0,0,0,1
5 0.9,4,12,40 0.3,0.2,0.1,1
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Continuing with the exploration of progressive Type-I Interval censoring under this life-
time model, the following censored data are observed according to the applied censoring
scheme on the insulation data. The generated censored data are summarized in Table 12.

Table 12: The observed censored data from this real data example

Scheme No. {k1,k2,k3,k4} {R1,R2,R3,R4}
Scheme 1 {3,4,4,0} {4,0,1,3}
Scheme 2 {4,4,3,2} {2,2,1,1}
Scheme 3 {3,6,4,0} {1,0,0,5}
Scheme 4 {1,5,7,1} {0,0,0,5}
Scheme 5 {2,3,5,1} {5,2,0,1}

Results of estimation for the extropy and entropy measures using the proposed estimates
under the above censoring schemes are shown in Table 13.

Table 13: Extropy and entropy estimates for this real data example

Scheme Number Ĵ1 Ĵ2 Ĥ1 Ĥ2
1 -0.0158 -0.0141 3.5088 3.5066
2 -0.0192 -0.0155 3.4825 3.5296
3 -0.0125 -0.0112 3.7624 3.7314
4 -0.0175 -0.0155 3.4866 3.4543
5 -0.0157 -0.0137 3.6187 3.6018

From Table 13, we can clearly see, for the real data set, that all estimates Ĵ1, Ĵ2, Ĥ1 and
Ĥ2 provide close results to those obtained using the complete sample with slight differences.
The proposed extropy estimates Ĵ1 and Ĵ2 perform satisfactorily when comparing their val-
ues to J(X) =−0.0174. On the other hand, the estimates Ĥ1 and Ĥ2 perform well under all
suggested censoring schemes when comparing their values to H(X) = 3.6644. This con-
firms that these results are in agreement with what have been concluded from the simulation
studies.

5. Conclusions

In this paper, we have considered the estimation problem of the extropy and entropy
measures based on progressive Type-I interval censoring samples. Nonparametric-based
methods involving moments approximation and linear approximation have been proposed
for estimating the extropy and entropy measures. The performance of the proposed esti-
mates have been studied via simulation studies and real data sets considering various cen-
soring schemes and three probability distributions, namely uniform, exponential and normal
distributions. It has been observed that the proposed estimates of the extropy and entropy
measures are affected by the sample size, censoring schemes and the type of distribution
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of data. The Monte Carlo simulations show that both estimates perform well in terms of
the MSE. Yet, the estimates based on linear approximation Ĵ2 and Ĥ2 outperform the other
estimate in the majority of studied cases.
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Improved estimation of the mean through regressed exponential 
estimators based on sub-sampling non-respondents 

R. R. Sinha1, Bharti2 

Abstract 

The present study concerns the issue of estimating the population mean and presents novel 
and improved regressed exponential estimators using different parameters of an auxiliary 
character based on sub-sampling non-respondents. The bias and mean square error (MSE) 
of the proposed estimators for the most pragmatic simple random sampling without 
replacement (SRSWOR) scheme have been derived up to the first order of approximation 
(i.e. the expression containing errors up to the power of two so that the expectation comes 
only in terms of the mean, variance and covariance). The optimum value of the MSE of the 
estimators is found, along with the necessary conditions for optimising the MSE. The 
effectiveness of the suggested estimators, outperforming the existing ones in terms of their 
MSE, has been studied theoretically, while the empirical as well as the simulation studies 
have confirmed these findings.  
Key words: population mean, bias, mean square error, auxiliary character. 

1. Introduction

The history of optimal use of auxiliary information to increase the efficiency of the
estimators has been established by a variety of research articles in surveys sampling [see 
Cochran (1940), Tripathi et al. (1994), Khare (2003)]. But practically in a factual 
scenario, auxiliary information is not only available in the form of a variable but also in 
the form of an attribute, such as less or more fertility of soil, high or low breed of 
animals, gender (male or female), tall or short height of person, etc. So, when the 
auxiliary information is available in the form of attributes, several authors have taken 
the advantage of point bi-serial correlation coefficient between the study character ′𝑦𝑦′ 
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and the auxiliary attribute ′𝜑𝜑′ and improvised conventional estimators for estimating 
the parameters which have been reviewed by Singh et al. (2019).  

Recently, using information from auxiliary attributes, Zaman and Kadilar (2019) 
and Zaman (2020) proposed novel classes of exponential estimators, while Zaman and 
Kadilar (2021a, b) proposed two phase exponential ratio and product type estimators 
and class of exponential estimators for estimating population mean. The effectiveness 
of ratio-type estimators for estimating population has been further improved by Yadav 
and Zaman (2021) using some conventional and non-conventional parameters. 

These days, researchers of various fields are facing problems to reduce non-random 
bias in the estimation of parameters due to incomplete information on units selected in 
the sample. One of the main reasons is that nowadays most of the surveys related to 
different issues of human beings are based on an internet-oriented online program in 
which respondents are reluctant to reply specially on critical or sensitive matters. In this 
way, non-response is a massive challenge which creates bias and reduces the exactitude 
of estimates of parameters. Hansen and Hurwitz (1946) were first to suggest an 
unbiased estimator by initiating a method of sub-sampling from non-respondents to 
estimate the population mean.  

Following Hansen and Hurwitz's (1946) sub-sampling methodology of non-
respondents with known and unknown population means of auxiliary character(s), Rao 
(1986, 1990), Khare and Srivastava (1993, 1995, 1997, 2000), Khare and Sinha (2009), 
Singh and Kumar (2009), and Sinha and Kumar (2011, 2014) have made contributions 
to the estimation of the population by suggesting conventional and alternative ratio, 
product, regression estimators, generalized and classes of estimators. Furthermore, 
Khare and Sinha (2002) attempted to estimate the ratio of two population means using 
an auxiliary character with an unknown population mean. Meanwhile, Sinha and 
Kumar (2013) and Sinha and Bharti (2021, 2022) suggested some improved estimators 
using an auxiliary attribute and non-conventional auxiliary parameters to estimate the 
population mean in the presence of non-response. 

Now, we propose a new family of estimators of population mean when the non-
response problem occurs – not only in the case of target variable but also in the case of 
auxiliary attributes expressed usually by relevant categorical variables. It is assumed that 
an additional feature expressed by a binary variable is investigated and that some part 
of respondents has not provided some or all data (i.e. that item non-response or unit 
non-response occur) concerning target or auxiliary variables. The suggested estimators 
combine a regression estimator with an exponential function of auxiliary information 
that has two optimizing constants for two distinct non-response scenarios. Their 
efficiency is verified using empirical data from 1981 Census in India and a simulation 
study based on some population data in the same country.  
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2. Preliminary Sample Selection and Literature Review

Consider a finite population of size 𝑁𝑁 from which a simple random sample of size
𝑛𝑛 is taken without replacement. In surveys of human populations, it happens frequently 
that 𝑛𝑛1 of the units respond on the first try to the questions being asked, while the 
remaining 𝑛𝑛2 (= 𝑛𝑛 − 𝑛𝑛1) units do not respond at all. Hansen and Hurwitz (1946) 
considered a double sampling strategy for estimating population mean consisting of the 
steps outlined when non-response occurs in the initial attempt. A simple random 
sample of size 𝑛𝑛 is chosen, and the survey is mailed to the sample units. A subsample of 
size 𝑛𝑛𝜔𝜔(= 𝑛𝑛2𝜔𝜔−1;  𝜔𝜔 > 1) from the 𝑛𝑛2 units that did not respond in the initial attempt 
is then contacted and information is obtained through personal interviews. For the 
purposes of this procedure, consider a population of size 𝑁𝑁 that is split into two non-
overlapping responding (𝑁𝑁1 units) and non-responding (𝑁𝑁2 units) groups with 
population means of 𝑌𝑌�(1) and 𝑌𝑌�(2) respectively. Although the proportional weights of 
the response 𝑊𝑊1 = 𝑁𝑁1𝑁𝑁−1  and the non-response 𝑊𝑊2 = 𝑁𝑁2𝑁𝑁−1  are not known, they 
can be estimated by 𝑤𝑤1 = 𝑛𝑛1𝑛𝑛−1 and 𝑤𝑤2 = 𝑛𝑛2𝑛𝑛−1, respectively. On the basis of readily 
available data for (𝑛𝑛1 + 𝑛𝑛𝜔𝜔) units, Hansen and Hurwitz (1946) proposed an unbiased 
estimator for estimating the population mean (𝑌𝑌� = 𝑊𝑊1𝑌𝑌�1 +𝑊𝑊2𝑌𝑌�2) that is given by 

 𝑇𝑇𝐻𝐻𝐻𝐻 = 𝑦𝑦�# = 𝑤𝑤1𝑦𝑦�1 + 𝑤𝑤2𝑦𝑦�(𝑛𝑛𝜔𝜔)           (1) 

Its variance up to the first order of approximation [𝑂𝑂(𝑛𝑛−1)] is given by 

 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) = 𝑌𝑌�2�𝜋𝜋𝐶𝐶𝑦𝑦2 + 𝜋𝜋#𝐶𝐶𝑦𝑦(2)
2 �,     (2) 

where 𝜋𝜋 = (𝑛𝑛−1 − 𝑁𝑁−1), 𝜋𝜋# = 𝑁𝑁2(𝜔𝜔 − 1)(𝑁𝑁𝑁𝑁)−1, 𝐶𝐶𝑦𝑦2 �= 𝑆𝑆𝑦𝑦2

𝑌𝑌�2
� and 𝐶𝐶𝑦𝑦(2)

2 �=
𝑆𝑆𝑦𝑦(2)
2

𝑌𝑌�(2)
2 � are 

the coefficients of variation while 𝑆𝑆𝑦𝑦2 and 𝑆𝑆𝑦𝑦(2)
2  are the population mean squares of 𝑦𝑦 

for entire and non-responding parts of the population. 𝑦𝑦�1 and 𝑦𝑦�(𝑛𝑛𝜔𝜔) are sample means 
of the study variate depending upon 𝑛𝑛1 and 𝑛𝑛𝜔𝜔 units respectively. 
Suppose the population is dichotomous with respect to presence and absence of an 
attribute ′𝜑𝜑′ which assumes only two values ′1′ for possessing attribute and ′0′ 
otherwise. Let the observations of study character and auxiliary attribute for 
𝑖𝑖𝑡𝑡ℎ(𝑖𝑖 = 1,2,3, … ,𝑁𝑁) population unit be denoted by 𝑦𝑦𝑖𝑖 and 𝜑𝜑𝑖𝑖. 

Let the total number of units possessing the attribute ′𝜑𝜑′ in the population and 
sample be 𝑇𝑇𝑁𝑁 = ∑ 𝜑𝜑𝑖𝑖𝑁𝑁

𝑖𝑖=1  and 𝑇𝑇𝑛𝑛 = ∑ 𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖  respectively. Let 𝑃𝑃 �= 𝑇𝑇𝑁𝑁

𝑁𝑁
� and 𝑝𝑝 �= 𝑇𝑇𝑛𝑛

𝑛𝑛
� be the 

proportion of units in the population and sample while 𝑌𝑌� = 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1  and 𝑦𝑦� = 1

𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖  

be the population mean and sample mean of study variable. 
In this manuscript, the unit non-response case is considered, which is the phenomenon 
described by Bethlehem et al. (2011), in which the questionnaire remains empty for 
some elements in the sample. Therefore, under the assumption of population division 



106                  R. R. Sinha, Bharti: Improved estimation of the mean through…  

between responding and non-responding groups, let 𝑃𝑃�(1) and 𝑃𝑃�(2) be the population 
proportions of the units possessing the attribute for the responding and non-
responding groups of the population respectively, even though they are unknown. If 
the 𝑝̅𝑝1 and 𝑝̅𝑝(𝑛𝑛𝜔𝜔) are the sample proportions of the units possessing 𝜑𝜑 for the 𝑛𝑛1 and 𝑛𝑛𝜔𝜔 
units respectively, then an unbiased estimator for estimating 𝑃𝑃 is given by 

 𝑝̅𝑝# = 𝑤𝑤1𝑝̅𝑝1 +𝑤𝑤2𝑝̅𝑝(𝑛𝑛𝜔𝜔)    (3) 

The variance of  𝑝̅𝑝# up to [𝑂𝑂(𝑛𝑛−1)] is given by 

𝑉𝑉(𝑝̅𝑝#) = 𝑃𝑃2�𝜋𝜋𝐶𝐶𝑝𝑝2 + 𝜋𝜋#𝐶𝐶𝑝𝑝(2)
2 �,    (4) 

where 𝐶𝐶𝑝𝑝2 �= 𝑆𝑆𝜑𝜑2

𝑃𝑃2
� and 𝐶𝐶𝑝𝑝(2)

2 �=
𝑆𝑆𝜑𝜑(2)
2

𝑃𝑃(2)
2 � are the coefficients of variation while 𝑆𝑆𝜑𝜑2  and 𝑆𝑆𝜑𝜑(2)

2  

are the population mean squares of units possessing the attribute 𝜑𝜑 for entire and non-
responding groups of the population. 

Under the supposition of unit non-response, Rao (1986) and Khare and Srivastava 
(1995, 1997, 2000) envisaged ratio, product, and generalized estimators to estimate the 
mean of the study variable 𝑦𝑦 using the auxiliary variable 𝑥𝑥. Adopting them, the ratio, 
product, and generalized estimators are suggested for estimating the population mean 
𝑌𝑌�  using the known population proportion (𝑃𝑃) if non-response only pertains to the 
study character as follows:  

𝑇𝑇𝑟𝑟1# = 𝑦𝑦�# 𝑃𝑃
𝑝𝑝

, [Ratio estimator]     (5) 

𝑇𝑇𝑝𝑝1# = 𝑦𝑦�# 𝑝𝑝
𝑃𝑃

, [Product estimator]      (6) 

and 𝑇𝑇𝑔𝑔1# = 𝑦𝑦�# �𝑝𝑝
𝑃𝑃
�
𝛾𝛾1

,  [Generalized estimator],     (7) 
where γ1 is an optimizing constant for mean square error. 

Furthermore, Riaz and Darda (2016) adopted a regression estimator to estimate the 
population mean using an auxiliary attribute under the non-response on study 
character with a known population proportion 𝑃𝑃, which is given as 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# = 𝑦𝑦�# + 𝛽𝛽1(𝑃𝑃 − 𝑝𝑝)  [Regression estimator].       (8) 
Under large sample approximation, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of all the above estimators up to the 

order of 𝑛𝑛−1 are given by 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟1# ) = 𝑌𝑌�2{𝜋𝜋𝐶𝐶𝑝𝑝2 + �𝜋𝜋𝐶𝐶𝑦𝑦2 + 𝜋𝜋#𝐶𝐶𝑦𝑦(2)

2 � − 2𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝},    (9) 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑝𝑝1# ) = 𝑌𝑌�2{ 𝜋𝜋𝐶𝐶𝑝𝑝2 + �𝜋𝜋𝐶𝐶𝑦𝑦2 + 𝜋𝜋#𝐶𝐶𝑦𝑦(2)

2 �+ 2𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝},   (10) 

�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑉𝑉(𝑦𝑦�#)− 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦2 𝑆𝑆𝑦𝑦2 at 𝛾𝛾1𝑜𝑜𝑜𝑜𝑜𝑜 = −𝜌𝜌𝑦𝑦𝑦𝑦
𝐶𝐶𝑦𝑦
𝐶𝐶𝑝𝑝

 (11) 

and  �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑉𝑉(𝑦𝑦�#)− 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦2 𝑆𝑆𝑦𝑦2  (12) 
 where 𝜌𝜌𝑦𝑦𝑦𝑦 is the point bi-serial correlation coefficient between 𝑦𝑦 and 𝑝𝑝. 

Advocating the prior discussed notable contributions, the conventional ratio, 
product, generalized and regression estimators for estimating the population mean 
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with known proportion of auxiliary variable under unit non-response on study as well 
as auxiliary variates may respectively be adopted and define as  

𝑇𝑇𝑟𝑟2# = 𝑦𝑦�# 𝑃𝑃
𝑝𝑝#,   (13) 

𝑇𝑇𝑝𝑝2# = 𝑦𝑦�# 𝑝𝑝#

𝑃𝑃
,  (14) 

𝑇𝑇𝑔𝑔2# = 𝑦𝑦�# �𝑝𝑝
#

𝑃𝑃
�
𝛾𝛾2

, where 𝛾𝛾2 is an arbitrary constant, (15) 
and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# = 𝑦𝑦�# + 𝛽𝛽2(𝑃𝑃 − 𝑝𝑝#).   (16) 

The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of the estimators 𝑇𝑇𝑟𝑟2# , 𝑇𝑇𝑝𝑝2#  , 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2#  and 𝑇𝑇𝑔𝑔2#  up to the order of 𝑛𝑛−1 are given 
as 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟2# ) = 𝑌𝑌�2�𝜋𝜋�𝐶𝐶𝑦𝑦2 + 𝐶𝐶𝑝𝑝2 − 2𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝� + 𝜋𝜋#�𝐶𝐶𝑦𝑦(2)
2 + 𝐶𝐶𝑝𝑝(2)

2 −   2𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2)��,   
(17) 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑝𝑝2# � = 𝑌𝑌�2�𝜋𝜋�𝐶𝐶𝑦𝑦2 + 𝐶𝐶𝑝𝑝2 + 2𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝� + 𝜋𝜋#�𝐶𝐶𝑦𝑦(2)
2 + 𝐶𝐶𝑝𝑝(2)

2 +  2𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2)��, 
(18) 

�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑉𝑉(𝑦𝑦�#) −
�𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝑆𝑆𝑦𝑦𝑆𝑆𝑝𝑝+𝜋𝜋#𝜌𝜌𝑦𝑦𝑦𝑦(2)𝑆𝑆𝑦𝑦(2)𝑆𝑆𝑝𝑝(2)�

2

�𝜋𝜋𝑆𝑆𝑝𝑝2+𝜋𝜋#𝑆𝑆𝑝𝑝(2)
2 �

 (19) 

at (𝛾𝛾2)𝑜𝑜𝑜𝑜𝑜𝑜 = −
�𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝+𝜋𝜋#𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2)�

�𝜋𝜋𝐶𝐶𝑝𝑝2+𝜋𝜋#𝐶𝐶𝑝𝑝(2)
2 �

and �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑉𝑉(𝑦𝑦�#) −
�𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝑆𝑆𝑦𝑦𝑆𝑆𝑝𝑝+𝜋𝜋#𝜌𝜌𝑦𝑦𝑦𝑦(2)𝑆𝑆𝑦𝑦(2)𝑆𝑆𝑝𝑝(2)�

2

�𝜋𝜋𝑆𝑆𝑝𝑝2+𝜋𝜋#𝑆𝑆𝑝𝑝(2)
2 �

.  (20) 

Here, 𝜌𝜌𝑦𝑦𝑦𝑦(2) is the point bi-serial correlation coefficient between 𝑦𝑦 and 𝑝𝑝 for the 
non-responding part of the population. 
In this sequence, exponential estimators for estimation of population mean using 
auxiliary attribute have been proposed by Kumar and Kumar (2019) in both the cases 
of non-response discussed earlier. Exponential ratio, exponential product and 
generalized estimators for the case when non-response occurs only on study variable 
are defined as follows: 

𝑇𝑇𝐾𝐾𝐾𝐾1(𝑟𝑟)
# = 𝑦𝑦�#exp �𝑃𝑃−𝑝𝑝

𝑃𝑃+𝑝𝑝
�,  (21) 

𝑇𝑇𝐾𝐾𝐾𝐾1(𝑝𝑝)
# = 𝑦𝑦�#exp �𝑝𝑝−𝑃𝑃

𝑝𝑝+𝑃𝑃
�  (22) 

and 𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
# = 𝑦𝑦�#exp �𝛼𝛼1

𝑃𝑃−𝑝𝑝
𝑃𝑃+𝑝𝑝

�.  (23) 

The mean square errors of these exponential estimators up to [𝑂𝑂(𝑛𝑛−1)] are derived 
as 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾1(𝑟𝑟)
# � = 𝑉𝑉(𝑦𝑦�#) + 𝑌𝑌�2𝜋𝜋 �𝐶𝐶𝑝𝑝

2

4
− 𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝�  (24) 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾1(𝑝𝑝)
# � = 𝑉𝑉(𝑦𝑦�#) + 𝑌𝑌�2𝜋𝜋 �𝐶𝐶𝑝𝑝

2

4
+ 𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝�  (25) 

and �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑉𝑉(𝑦𝑦�#)− 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦2 𝑆𝑆𝑦𝑦2 . (26)
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Moreover, Kumar and Kumar (2019) suggested the ratio, product, and generalized 
exponential estimators, which are provided below along with their mean square errors 
up to [𝑂𝑂(𝑛𝑛−1)] in the case of non-response on both the study variable and the auxiliary 
attribute:  

𝑇𝑇𝐾𝐾𝐾𝐾2(𝑟𝑟)
# = 𝑦𝑦�#exp �𝑃𝑃−𝑝𝑝

#

𝑃𝑃+𝑝𝑝#�,  (27) 

𝑇𝑇𝐾𝐾𝐾𝐾2(𝑝𝑝)
# = 𝑦𝑦�#exp �𝑝𝑝

#−𝑃𝑃
𝑝𝑝#+𝑃𝑃

�  (28) 

𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)
# = 𝑦𝑦�#exp �𝛼𝛼1

𝑃𝑃−𝑝𝑝#

𝑃𝑃+𝑝𝑝#� ,  (29) 

 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾2(𝑟𝑟)
# � = 𝑉𝑉(𝑦𝑦�#) + 𝑌𝑌�2 �𝜋𝜋 �𝐶𝐶𝑝𝑝

2

4
− 𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝� + 𝜋𝜋# �

𝐶𝐶𝑝𝑝(2)
2

4
− 𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2)��,

(30) 

 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾2(𝑝𝑝)
# � = 𝑉𝑉(𝑦𝑦�#) + 𝑌𝑌�2 �𝜋𝜋 �𝐶𝐶𝑝𝑝

2

4
+ 𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝� + 𝜋𝜋# �

𝐶𝐶𝑝𝑝(2)
2

4
+ 𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2)��

(31) 

and �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)
# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑉𝑉(𝑦𝑦�#)−

�𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝑆𝑆𝑦𝑦𝑆𝑆𝑝𝑝+𝜋𝜋#𝜌𝜌𝑦𝑦𝑦𝑦(2)𝑆𝑆𝑦𝑦(2)𝑆𝑆𝑝𝑝(2)�
2

�𝜋𝜋𝑆𝑆𝑝𝑝2+𝜋𝜋#𝑆𝑆𝑝𝑝(2)
2 �

 . 

 (32) 
The following conclusions have been drawn when comparing the efficacy of the 

aforementioned distinct estimators in terms of their 𝑀𝑀𝑀𝑀𝑀𝑀s: 
(i) from (11), (12) and (26)

�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
 (33) 

and    (ii) from (19), (20) and (32) 
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

 (34) 

3. Proposed Estimators

Influenced by the methodology of Koyuncu (2012) regression-cum-ratio class
estimator and Singh and Solanki (2012) generalized class of estimator, novel ratio and 
product type improved regressed exponential estimators to estimate the population 
mean using known proportion of the auxiliary variable for two different cases are 
proposed as follows: 
Case I: Unit non-response observed only on study variable - the proposed estimators 
for this circumstance are as follows: 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp �(κP−ℒ)−(κ𝑝𝑝−ℒ)

(κP−ℒ)+(κ𝑝𝑝−ℒ)�     [Ratio type]   (35) 

and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp �(κ𝑝𝑝−ℒ)−(κP−ℒ)

(κ𝑝𝑝−ℒ)+(κP−ℒ)�     [Product type]      (36) 

where κ and ℒ are known constants and 𝒜𝒜1, 𝒜𝒜2, ℬ1, ℬ2 are the arbitrary constants. 



STATISTICS IN TRANSITION new series, September 2024 109 

Furthermore, in accordance with Singh and Taylor (2003), Kadilar and Cingi 
(2004), Singh et al. (2019), certain members of 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝  are suggested by 

giving specific values to κ and ℒ, as shown below. 
𝛋𝛋, 𝓛𝓛 Ratio Type Estimators Product Type Estimators 

κ = 1 
ℒ = 𝜌𝜌 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(1) = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp�
(𝑃𝑃 − 𝑝𝑝)

𝑃𝑃 + 𝑝𝑝 − 2𝜌𝜌
� 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(1) = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp�
(𝑝𝑝 − 𝑃𝑃)

𝑝𝑝 + 𝑃𝑃 − 2𝜌𝜌
� 

κ = 𝐶𝐶𝑝𝑝 
ℒ = 𝜌𝜌 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(2) = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp�
𝐶𝐶𝑝𝑝(𝑃𝑃 − 𝑝𝑝)
𝑃𝑃 + 𝑝𝑝 − 2𝜌𝜌

� 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2) = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp�

𝐶𝐶𝑝𝑝(𝑝𝑝 − 𝑃𝑃)
𝑝𝑝 + 𝑃𝑃 − 2𝜌𝜌

� 

κ = 𝛽𝛽1 
ℒ = 𝜌𝜌 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(3) = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp�
𝛽𝛽1(𝑃𝑃 − 𝑝𝑝)
𝑃𝑃 + 𝑝𝑝 − 2𝜌𝜌

� 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3) = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp�

𝛽𝛽1(𝑝𝑝 − 𝑃𝑃)
𝑝𝑝 + 𝑃𝑃 − 2𝜌𝜌

� 

κ = 𝛽𝛽2 
ℒ = 𝐶𝐶𝑝𝑝 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(4) = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp�
𝛽𝛽2(𝑃𝑃 − 𝑝𝑝)
𝑃𝑃 + 𝑝𝑝 − 2𝐶𝐶𝑝𝑝

� 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4) = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp�

𝛽𝛽2(𝑝𝑝 − 𝑃𝑃)
𝑝𝑝 + 𝑃𝑃 − 2𝐶𝐶𝑝𝑝

� 

κ = 𝛽𝛽2 
ℒ = 𝜌𝜌 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(5) = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp�
𝛽𝛽2(𝑃𝑃 − 𝑝𝑝)
𝑃𝑃 + 𝑝𝑝 − 2𝜌𝜌

� 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5) = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp�

𝛽𝛽2(𝑝𝑝 − 𝑃𝑃)
𝑝𝑝 + 𝑃𝑃 − 2𝜌𝜌

� 

κ = 𝛽𝛽2 
ℒ = 𝛽𝛽1 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(6) = 𝒜𝒜1𝑦𝑦�# + ℬ1(𝑃𝑃 − 𝑝𝑝)exp�
𝛽𝛽2(𝑃𝑃 − 𝑝𝑝)
𝑃𝑃 + 𝑝𝑝 − 2𝛽𝛽1

� 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6) = 𝒜𝒜2𝑦𝑦�# + ℬ2(𝑝𝑝 − 𝑃𝑃)exp�

𝛽𝛽2(𝑝𝑝 − 𝑃𝑃)
𝑝𝑝 + 𝑃𝑃 − 2𝛽𝛽1

� 

The following approximations under large sample have been assumed to calculate 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑀𝑀𝑀𝑀𝑀𝑀 of the proposed estimators: 

𝑦𝑦�#−𝑌𝑌�

𝑌𝑌�
= 𝜀𝜀0, 𝑝𝑝−𝑃𝑃

𝑃𝑃
= 𝜀𝜀2,  such that 𝐸𝐸(𝜀𝜀0) = 𝐸𝐸(𝜀𝜀2) = 0 

 and 𝐸𝐸(𝜀𝜀02) = 𝜋𝜋𝐶𝐶𝑦𝑦2 + 𝜋𝜋#𝐶𝐶𝑦𝑦(2)
2 , 𝐸𝐸(𝜀𝜀22) = 𝜋𝜋𝐶𝐶𝑝𝑝2, 𝐸𝐸(𝜀𝜀0𝜀𝜀2) = 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝. 

Using these approximations, the estimators given in (35) and (36) are reduced to 
𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟 = 𝒜𝒜1𝑌𝑌�(1 + 𝜀𝜀0) − ℬ1𝑃𝑃(𝜀𝜀2 − 𝜃𝜃𝜀𝜀22)  (37) 
and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝 = 𝒜𝒜2𝑌𝑌�(1 + 𝜀𝜀0) + ℬ2𝑃𝑃(𝜀𝜀2 + 𝜃𝜃𝜀𝜀22) ,  (38) 

where  𝜃𝜃 = κ𝑃𝑃
2(κ𝑃𝑃−ℒ)

 . 

Taking expectation on both sides of (37) and (38) and subtracting 𝑌𝑌�  from them, the 
expressions of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 of 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟 and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝  up to the first order of approximation are as

follows: 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟 � = (𝒜𝒜1 − 1)𝑌𝑌� + ℬ1𝑃𝑃𝑃𝑃𝑣𝑣𝑝𝑝   (39) 

and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 � = (𝒜𝒜2 − 1)𝑌𝑌� + ℬ2𝑃𝑃𝑃𝑃𝑣𝑣𝑝𝑝 ,  (40) 

 where 𝑣𝑣𝑝𝑝 = 𝜋𝜋𝐶𝐶𝑝𝑝2. 

The 𝑀𝑀𝑀𝑀𝑀𝑀 of 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝  are calculated up to the [𝑂𝑂(𝑛𝑛−1)] as 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 � = 𝐸𝐸[{𝒜𝒜1𝑌𝑌�(1 + 𝜀𝜀0) − ℬ1𝑃𝑃(𝜀𝜀2 − 𝜃𝜃𝜀𝜀22)}− 𝑌𝑌�]2 

and 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 � = 𝐸𝐸[{𝒜𝒜2𝑌𝑌�(1 + 𝜀𝜀0) + ℬ2𝑃𝑃(𝜀𝜀2 + 𝜃𝜃𝜀𝜀22)}− 𝑌𝑌�]2. 
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After simplifying up to the first order of approximation, the expressions of 𝑀𝑀𝑀𝑀𝑀𝑀 of 
𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝  are as follows:

𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 � = (𝒜𝒜1 − 1)2𝑌𝑌�2 +𝒜𝒜1

2𝑌𝑌�2𝑉𝑉𝑦𝑦 + ℬ12𝑃𝑃2𝑣𝑣𝑝𝑝 
+2(𝒜𝒜1 − 1)ℬ1𝑃𝑃𝑌𝑌�𝜃𝜃𝑣𝑣𝑝𝑝 − 2𝒜𝒜1ℬ1𝑃𝑃𝑌𝑌�𝑐𝑐𝑦𝑦𝑦𝑦,   (41) 

and         𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 � = (𝒜𝒜2 − 1)2𝑌𝑌�2 + 𝒜𝒜2

2𝑌𝑌�2𝑉𝑉𝑦𝑦 + ℬ22𝑃𝑃2𝑣𝑣𝑝𝑝 

+2(𝒜𝒜2 − 1)ℬ2𝑃𝑃𝑌𝑌�𝜃𝜃𝑣𝑣𝑝𝑝 + 2𝒜𝒜2ℬ2𝑃𝑃𝑌𝑌�𝑐𝑐𝑦𝑦𝑦𝑦,       (42) 

where  𝑉𝑉𝑦𝑦 = 𝜋𝜋𝐶𝐶𝑦𝑦2 + 𝜋𝜋#𝐶𝐶𝑦𝑦(2)
2 , 𝑐𝑐𝑦𝑦𝑦𝑦 = 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝. 

To obtain the optimum 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝 , partially differentiating (41)
with respect to (𝒜𝒜1,ℬ1) and (42) with respect to (𝒜𝒜2,ℬ2) and equating them to zero, 
the optimum values of 𝒜𝒜𝑖𝑖 , ℬ𝑖𝑖; 𝑖𝑖 = 1, 2 are  

𝒜𝒜1(𝑜𝑜) = 𝑣𝑣𝑝𝑝−𝜃𝜃2𝑣𝑣𝑝𝑝2+𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦
𝑣𝑣𝑝𝑝+𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑣𝑣𝑝𝑝2+2𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2

, 

ℬ1(𝑜𝑜) = 𝑌𝑌�(𝑐𝑐𝑦𝑦𝑦𝑦+𝜃𝜃𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦)
𝑃𝑃(𝑣𝑣𝑝𝑝+𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑣𝑣𝑝𝑝2+2𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2 )

, 

𝒜𝒜2(𝑜𝑜) = 𝑣𝑣𝑝𝑝−𝜃𝜃2𝑣𝑣𝑝𝑝2−𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦
𝑣𝑣𝑝𝑝+𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑣𝑣𝑝𝑝2−2𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2

 

and ℬ2(𝑜𝑜) = 𝑌𝑌�(−𝑐𝑐𝑦𝑦𝑦𝑦+𝜃𝜃𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦)
𝑃𝑃(𝑣𝑣𝑝𝑝+𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑣𝑣𝑝𝑝2−2𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2 )

. 

Substituting the values of 𝒜𝒜1(𝑜𝑜) and ℬ1(0) in (41) and 𝒜𝒜2(𝑜𝑜) and ℬ2(𝑜𝑜) in (42), we 
get the optimum value of 𝑀𝑀𝑀𝑀𝑀𝑀 of the proposed estimators as 

�𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 ��

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑌𝑌�2{𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2 −𝜃𝜃2𝑣𝑣𝑝𝑝2𝑉𝑉𝑦𝑦}

𝑣𝑣𝑝𝑝+𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑣𝑣𝑝𝑝2+2𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2
,  (43) 

and �𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 ��

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑌𝑌�2{𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2 −𝜃𝜃2𝑣𝑣𝑝𝑝2𝑉𝑉𝑦𝑦}

𝑣𝑣𝑝𝑝+𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑣𝑣𝑝𝑝2−2𝜃𝜃𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2
.  (44) 

Case II: Unit non-response observed on both study and auxiliary variables - the 
proposed estimators for this occurrence are as follows: 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 − 𝑝𝑝#)exp �(κP−ℒ)−�κ𝑝𝑝#−ℒ�

(κP−ℒ)+(κ𝑝𝑝#−ℒ)�    [Ratio type]  (45) 

and 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp ��κ𝑝𝑝

#−ℒ�−(κP−ℒ)
(κ𝑝𝑝#−ℒ)+(κP−ℒ)�    [Product type] (46) 

  where κ and ℒ are known constants and 𝒜𝒜3, 𝒜𝒜4, ℬ3, ℬ4 are the arbitrary constants. 
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Proceeding in the same manner as for case I, different members of 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟  and 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝  have been suggested by assigning different values to κ and ℒ as 
𝛋𝛋, 𝓛𝓛 Ratio type Estimators Product type Estimators 

κ = 1 
ℒ = 𝜌𝜌 

 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(1) = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 − 𝑝𝑝#)exp � �𝑃𝑃−𝑝𝑝#�

𝑃𝑃+𝑝𝑝#−2𝜌𝜌
�  𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(1) = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp � �𝑝𝑝#−𝑃𝑃�
𝑝𝑝#+𝑃𝑃−2𝜌𝜌

� 

κ = 𝐶𝐶𝑝𝑝 
ℒ = 𝜌𝜌 

 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(2) = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 − 𝑝𝑝#)exp � 𝐶𝐶𝑝𝑝�𝑃𝑃−𝑝𝑝#�

𝐶𝐶𝑝𝑝(𝑃𝑃+𝑝𝑝#)−2𝜌𝜌
�  𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(2) = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp � 𝐶𝐶𝑝𝑝�𝑝𝑝#−𝑃𝑃�

𝐶𝐶𝑝𝑝(𝑝𝑝#+𝑃𝑃)−2𝜌𝜌
� 

κ = 𝛽𝛽1 
ℒ = 𝜌𝜌 

 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3) = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 − 𝑝𝑝#)exp � 𝛽𝛽1�𝑃𝑃−𝑝𝑝#�

𝛽𝛽1(𝑃𝑃+𝑝𝑝#)−2𝜌𝜌
�  𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(3) = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp � 𝛽𝛽1�𝑝𝑝#−𝑃𝑃�
𝛽𝛽1(𝑝𝑝#+𝑃𝑃)−2𝜌𝜌

� 

κ = 𝛽𝛽2 
ℒ = 𝐶𝐶𝑝𝑝 

 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4) = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 −

𝑝𝑝#)exp � 𝛽𝛽2�𝑃𝑃−𝑝𝑝#�
𝛽𝛽2(𝑃𝑃+𝑝𝑝#)−2𝐶𝐶𝑝𝑝

� 
 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(4) = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp � 𝛽𝛽2�𝑝𝑝#−𝑃𝑃�
𝛽𝛽2(𝑝𝑝#+𝑃𝑃)−2𝐶𝐶𝑝𝑝

� 

κ = 𝛽𝛽2 
ℒ = 𝜌𝜌 

 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5) = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 − 𝑝𝑝#)exp � 𝛽𝛽2�𝑃𝑃−𝑝𝑝#�

𝛽𝛽2(𝑃𝑃+𝑝𝑝#)−2𝜌𝜌
�  𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(5) = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp � 𝛽𝛽2�𝑝𝑝#−𝑃𝑃�
𝛽𝛽2(𝑝𝑝#+𝑃𝑃)−2𝜌𝜌

� 

κ = 𝛽𝛽2 
ℒ = 𝛽𝛽1 

 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6) = 𝒜𝒜3𝑦𝑦�# + ℬ3(𝑃𝑃 −

𝑝𝑝#)exp � 𝛽𝛽2�𝑃𝑃−𝑝𝑝#�
𝛽𝛽2(𝑃𝑃+𝑝𝑝#)−2𝛽𝛽1

� 
 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(6) = 𝒜𝒜4𝑦𝑦�# + ℬ4(𝑝𝑝# − 𝑃𝑃)exp � 𝛽𝛽2�𝑝𝑝#−𝑃𝑃�
𝛽𝛽2(𝑝𝑝#+𝑃𝑃)−2𝛽𝛽1

� 

In continuation to the approximations assumed in Case I, another large sample 
approximation for proportion of auxiliary variable is considered as 

𝑝𝑝#−𝑃𝑃
𝑃𝑃

= 𝜀𝜀1 such that 𝐸𝐸(𝜀𝜀1) = 0, 
𝐸𝐸(𝜀𝜀12) = 𝜋𝜋𝐶𝐶𝑝𝑝2 + 𝜋𝜋#𝐶𝐶𝑝𝑝(2)

2  and 𝐸𝐸(𝜀𝜀0𝜀𝜀1) = 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝 + 𝜋𝜋#𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2). 

Now, the estimators given in (45) and (46) can be reduced in terms of 𝜀𝜀0 and 𝜀𝜀1 as 
𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟 = 𝒜𝒜3𝑌𝑌�(1 + 𝜀𝜀0) − ℬ3𝑃𝑃(𝜀𝜀1 − 𝜃𝜃𝜀𝜀12)  (47) 
and 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝 = 𝒜𝒜4𝑌𝑌�(1 + 𝜀𝜀0) + ℬ4𝑃𝑃(𝜀𝜀1 + 𝜃𝜃𝜀𝜀12)  (48) 

The 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑀𝑀𝑀𝑀𝑀𝑀 of the estimators 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟  and 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝  up to 𝑂𝑂(𝑛𝑛−1) can be given 
as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 � = (𝒜𝒜3 − 1)𝑌𝑌� + ℬ3𝑃𝑃𝑃𝑃𝑉𝑉𝑝𝑝,  (49) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 � = (𝒜𝒜4 − 1)𝑌𝑌� + ℬ4𝑃𝑃𝑃𝑃𝑉𝑉𝑝𝑝 ,  (50) 

𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 � = (𝒜𝒜3 − 1)2𝑌𝑌�2 + 𝒜𝒜3

2𝑌𝑌�2𝑉𝑉𝑦𝑦 + ℬ32𝑃𝑃2𝑉𝑉𝑝𝑝
+2(𝒜𝒜3 − 1)ℬ3𝑃𝑃𝑌𝑌�𝜃𝜃𝑉𝑉𝑝𝑝 − 2𝒜𝒜3ℬ3𝑃𝑃𝑌𝑌�𝐶𝐶𝑦𝑦𝑦𝑦   (51) 

and 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 � = (𝒜𝒜4 − 1)2𝑌𝑌�2 + 𝒜𝒜4

2𝑌𝑌�2𝑉𝑉𝑦𝑦 + ℬ42𝑃𝑃2𝑉𝑉𝑝𝑝
+2(𝒜𝒜4 − 1)ℬ4𝑃𝑃𝑌𝑌�𝜃𝜃𝑉𝑉𝑝𝑝 + 2𝒜𝒜4ℬ4𝑃𝑃𝑌𝑌�𝐶𝐶𝑦𝑦𝑦𝑦.  (52) 

where  𝑉𝑉𝑝𝑝 = 𝜋𝜋𝐶𝐶𝑝𝑝2 + 𝜋𝜋#𝐶𝐶𝑝𝑝(2)
2  , 𝑉𝑉𝑦𝑦 = 𝜋𝜋𝐶𝐶𝑦𝑦2 + 𝜋𝜋#𝐶𝐶𝑦𝑦(2)

2 , 
𝐶𝐶𝑦𝑦𝑦𝑦 = 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝 + 𝜋𝜋#𝜌𝜌𝑦𝑦𝑦𝑦(2)𝐶𝐶𝑦𝑦(2)𝐶𝐶𝑝𝑝(2). 
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The optimum values of 𝒜𝒜𝑖𝑖,  ℬ𝑖𝑖 ; 𝑖𝑖 = 3, 4 to optimize the 𝑀𝑀𝑀𝑀𝑀𝑀 of 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟  and 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝 , 
can be obtained by partially differentiating (51) with respect to (𝒜𝒜3,ℬ3) and (52) with 
respect to (𝒜𝒜4,ℬ4), and equating them to zero we get 

𝒜𝒜3(𝑜𝑜) = 𝑉𝑉𝑝𝑝−𝜃𝜃2𝑉𝑉𝑝𝑝2+𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦
𝑉𝑉𝑝𝑝+𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑉𝑉𝑝𝑝2+2𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2

, 

ℬ3(𝑜𝑜) = 𝑌𝑌�(𝐶𝐶𝑦𝑦𝑦𝑦+𝜃𝜃𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦)
𝑃𝑃(𝑉𝑉𝑝𝑝+𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑉𝑉𝑝𝑝2+2𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2 )

, 

𝒜𝒜4(𝑜𝑜) = 𝑉𝑉𝑝𝑝−𝜃𝜃2𝑉𝑉𝑝𝑝2−𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦
𝑉𝑉𝑝𝑝+𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑉𝑉𝑝𝑝2−2𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2

 

and ℬ4(𝑜𝑜) = 𝑌𝑌�(−𝐶𝐶𝑦𝑦𝑦𝑦+𝜃𝜃𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦)
𝑃𝑃(𝑉𝑉𝑝𝑝+𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑉𝑉𝑝𝑝2−2𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2 )

. 

Putting the values of 𝒜𝒜3(𝑜𝑜) and ℬ3(𝑜𝑜) in (51) and 𝒜𝒜4(𝑜𝑜) and ℬ4(𝑜𝑜) in (52), we get 
the optimum value of 𝑀𝑀𝑀𝑀𝑀𝑀s of the proposed estimators as 

�𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟 ��

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑌𝑌�2{𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2 −𝜃𝜃2𝑉𝑉𝑝𝑝2𝑉𝑉𝑦𝑦}

𝑉𝑉𝑝𝑝+𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑉𝑉𝑝𝑝2+2𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2
  (53) 

and �𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝 ��

𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑌𝑌�2{𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2 −𝜃𝜃2𝑉𝑉𝑝𝑝2𝑉𝑉𝑦𝑦}

𝑉𝑉𝑝𝑝+𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝜃𝜃2𝑉𝑉𝑝𝑝2−2𝜃𝜃𝑉𝑉𝑝𝑝𝐶𝐶𝑦𝑦𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2
 .  (54) 

It would be remarkable to mention here that the optimum values of the constants 
𝒜𝒜𝑖𝑖(𝑜𝑜),  ℬ𝑖𝑖(𝑜𝑜); 𝑖𝑖 = 1,2, 3 & 4 involved in optimizing the 𝑀𝑀𝑀𝑀𝑀𝑀 of the suggested 
estimators depend upon unknown population parameters like 𝑣𝑣𝑝𝑝,  𝑐𝑐𝑦𝑦𝑝𝑝,  𝑉𝑉𝑦𝑦,  𝑉𝑉𝑝𝑝 and 𝐶𝐶𝑦𝑦𝑦𝑦, 
which may be practically obtained from the supposition value based on prior 
information accessible from past data/pilot survey or replaced with their estimated 
values [for instance see Reddy (1978) and Srivastava and Jhajj (1983)]. 

4. Efficiency Comparisons

To show the efficiency of the proposed estimators with respect to the relevant
estimators, mathematical conditions are derived by comparing their mean square 
errors, which are as follows: 

(i) From (9), (10), (11), (12) and (2)
𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟1# ) ≤ 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) if  𝑣𝑣𝑝𝑝 ≤ 2𝑐𝑐𝑦𝑦𝑦𝑦, where 𝑣𝑣𝑝𝑝 = 𝜋𝜋𝐶𝐶𝑝𝑝2 and 𝑐𝑐𝑦𝑦𝑦𝑦 = 𝜋𝜋𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑝𝑝
𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑝𝑝1# ) ≤ 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) if  𝑣𝑣𝑝𝑝 ≥ −2𝑐𝑐𝑦𝑦𝑦𝑦 
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
≤ 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) if 𝑐𝑐𝑦𝑦𝑦𝑦2 ≥ 0,    always true.

(ii) From (9), (10) and (12)

  𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟1# � − �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑣𝑣𝑝𝑝 − 𝑐𝑐𝑦𝑦𝑦𝑦�
2 ≥ 0,      always true.

  𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑝𝑝1# � − �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑣𝑣𝑝𝑝 + 𝑐𝑐𝑦𝑦𝑦𝑦�
2 ≥ 0,      always true.
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  Accordingly, using the aforementioned findings with (33), we have 
    �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)

# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟1# ) 

     �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
≤ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑝𝑝1# ). 

(iii) Proceeding as in (ii), we have the next two comparisons
From (24) and (33)

  �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑆𝑆𝐸𝐸(𝑇𝑇𝑔𝑔1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
≤

𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾1(𝑟𝑟)
# � 

  as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾1(𝑟𝑟)
# � − �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# ��

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑣𝑣𝑝𝑝 − 2𝑐𝑐𝑦𝑦𝑦𝑦�

2 ≥ 0,    always true.
  And from (25) and (33) 

    �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�

𝑚𝑚𝑚𝑚𝑚𝑚
≤ 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾1(𝑝𝑝)

# � 

     as  𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾1(𝑝𝑝)
# � − �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# ��

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑣𝑣𝑝𝑝 + 2𝑐𝑐𝑦𝑦𝑦𝑦�

2 ≥ 0,    always true.

(iv) From (17), (18), (19), (20) and (2)
𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟2# ) ≤ 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) if 𝑉𝑉𝑝𝑝 ≤ 2𝐶𝐶𝑦𝑦𝑦𝑦. 
𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑝𝑝2# ) ≤ 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) if 𝑉𝑉𝑝𝑝 ≥ −2𝐶𝐶𝑦𝑦𝑦𝑦. 
�𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑔𝑔2# ��𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# ��

𝑚𝑚𝑚𝑚𝑚𝑚
≤ 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻) if 𝐶𝐶𝑦𝑦𝑦𝑦2 ≥ 0,    always true.

Following a similar path as the comparison in (iii) and (iv), we arrive at the
results in (v) and (vi).

(v) From (17) and (34)
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟2# )

as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟2# � − �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# ��
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑉𝑉𝑝𝑝 − 𝐶𝐶𝑦𝑦𝑦𝑦2 �
2 ≥ 0,    always true.

And, from (18) and (34) 
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑝𝑝2# )

as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑝𝑝2# � − �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# ��
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑉𝑉𝑝𝑝 + 𝐶𝐶𝑦𝑦𝑦𝑦2 �
2 ≥ 0,    always true.

(vi) From (30) and (34)
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾2(𝑟𝑟)
# � 

as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾2(𝑟𝑟)
# �−�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2#)�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑉𝑉𝑝𝑝 − 2𝐶𝐶𝑦𝑦𝑦𝑦2 �

2
≥ 0,    always true.

From (31) and (34) 
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾2(𝑝𝑝)
# � 

as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝐾𝐾𝐾𝐾2(𝑝𝑝)
# �−�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# )�

𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑉𝑉𝑝𝑝 + 2𝐶𝐶𝑦𝑦𝑦𝑦2 �

2 ≥ 0,     always true.



114                  R. R. Sinha, Bharti: Improved estimation of the mean through…  

(vii) From (11), (12) and (43)
�𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟 ��
𝑚𝑚𝑚𝑚𝑚𝑚

≤ �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

   if 𝜃𝜃 ≥
−𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦+𝑐𝑐𝑦𝑦𝑦𝑦2

𝑣𝑣𝑝𝑝𝑐𝑐𝑦𝑦𝑦𝑦
. 

(viii) From (11), (12) and (44)
�𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝 ��
𝑚𝑚𝑚𝑚𝑚𝑚

≤ �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑔𝑔1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

= �𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1# )�
𝑚𝑚𝑚𝑚𝑚𝑚

   if 𝜃𝜃 ≥
𝑣𝑣𝑝𝑝𝑉𝑉𝑦𝑦−𝑐𝑐𝑦𝑦𝑦𝑦2

𝑣𝑣𝑝𝑝 𝑐𝑐𝑦𝑦𝑦𝑦
. 

Following the same steps as in (vii) and (viii), we have: 

(ix) From (19), (20) and (53)
�𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟 ��
𝑚𝑚𝑚𝑚𝑚𝑚

≤ �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑔𝑔2# ��𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# ��

𝑚𝑚𝑚𝑚𝑚𝑚
   if 𝜃𝜃 ≥

−𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦+𝐶𝐶𝑦𝑦𝑦𝑦2

𝑉𝑉𝑝𝑝 𝐶𝐶𝑦𝑦𝑦𝑦
. 

(x) From (19), (20) and (54)
�𝑀𝑀𝑀𝑀𝑀𝑀 �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝 ��
𝑚𝑚𝑚𝑚𝑚𝑚

≤ �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑔𝑔2# ��𝑚𝑚𝑚𝑚𝑚𝑚
= �𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# ��

𝑚𝑚𝑚𝑚𝑚𝑚
   if 𝜃𝜃 ≥

𝑉𝑉𝑝𝑝𝑉𝑉𝑦𝑦−𝐶𝐶𝑦𝑦𝑦𝑦2

𝑉𝑉𝑝𝑝 𝐶𝐶𝑦𝑦𝑦𝑦
. 

From these theoretical comparisons, it has been observed that the proposed 
estimators would be more efficient than the mean unbiased estimator, ratio, product, 
regression, generalized and classes of estimators under the specified conditions. 

A momentous remark in the overall comparison is that all the members of 
suggested ratio estimators will be more efficient than corresponding product estimators 
in respective cases if either 𝜃𝜃 ≥ 0 and 𝐶𝐶𝑦𝑦𝑦𝑦 ≥ 0 or 𝜃𝜃 ≤ 0 and 𝐶𝐶𝑦𝑦𝑦𝑦 ≤ 0 otherwise results 
will be reverse.  

5. Empirical Study

An empirical study using the real data set has been conducted to show evidence of
theoretical comparison and result derivation. The purpose of the study's data set is 
merely to provide illustrations; analysis is not intended for these data.  
Data Description-   

We have taken into consideration the Census Data -1981, released by the 
Government of India of Orissa, Police Station - Baria, Tahsil - Champua. This data set 
includes the number of agricultural laborers and occupied houses in 109 villages under 
the jurisdiction of the Baria police station. Data representing upper 25% of all villages 
(i.e. 27 villages) are taken into account for the population's unit non-respondents.  
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The study variable (𝑦𝑦) is the number of agricultural laborers employed in a village; 
the auxiliary variable (𝑥𝑥) is the number of houses that are occupied in that village. 
Because the number of occupied homes varies from village to village, villages have been 
classified as either big or small based on the number of occupied houses. In this 
instance, a village receives the attribute (𝜑𝜑) of a big village if it has more than 
70 occupied houses; if not, it is categorized as a small village. 

The parameters for this data are: 
𝑁𝑁 = 109 𝑛𝑛 = 30 𝑌𝑌� = 41.2385 𝑃𝑃 = 0.5229 

𝜆𝜆𝑛𝑛 = 0.02416 𝑊𝑊2 = 0.2477 𝑌𝑌�2 = 51.7037 𝑃𝑃(2)=0.7037 
𝑆𝑆𝑦𝑦 = 46.64779 𝑆𝑆𝑝𝑝 = 0.50178 𝜌𝜌𝑦𝑦𝑦𝑦 = 0.426 𝑆𝑆𝑦𝑦(2) = 38.42857 
𝑆𝑆𝑝𝑝(2) = 0.46532 𝜌𝜌𝑦𝑦𝑦𝑦(2) = 0.227 𝛽𝛽1 = 2.4103 𝛽𝛽2 = 6.912 

𝐶𝐶𝑦𝑦 = 1.1312 𝐶𝐶𝑝𝑝 = 0.9596 

To show the efficiency of the proposed estimators, minimum mean square errors are 
calculated along with the relevant existing estimators. The percentage relative efficiency 
(𝑃𝑃𝑃𝑃𝑃𝑃) of the proposed (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and relevant existing (𝑒𝑒𝑒𝑒) estimators with respect to 
conventional mean per unit unbiased estimator (𝑇𝑇𝐻𝐻𝐻𝐻) is calculated by the formula: 

𝑃𝑃𝑃𝑃𝑃𝑃�𝑇𝑇𝑒𝑒𝑒𝑒/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 𝑉𝑉(𝑇𝑇𝐻𝐻𝐻𝐻)
�𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑒𝑒𝑒𝑒/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�𝑚𝑚𝑚𝑚𝑚𝑚

× 100. 

For cases I and II under the considered data set, the minimum 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑃𝑃𝑃𝑃𝑃𝑃 of 
the proposed and existing estimators are obtained and provided in Tables 1 and 2.  

Table 1:  𝑴𝑴𝑴𝑴𝑴𝑴 and 𝑷𝑷𝑷𝑷𝑷𝑷 of estimators for different values of 𝟏𝟏 𝝎𝝎�  (for Case I) 

Estimator 
𝑴𝑴𝑴𝑴𝑴𝑴(𝑷𝑷𝑷𝑷𝑷𝑷) and constants 

𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟓𝟓�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟒𝟒�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟑𝟑�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟐𝟐�  
𝑇𝑇𝐻𝐻𝐻𝐻 101.345(100%) 89.152(100%) 76.959(100%) 64.7656(100%) 
𝑇𝑇𝑟𝑟1#  101.181(100.2%) 88.988(100.2%) 76.795(100.2%) 64.602(100.2%) 
𝑇𝑇𝑝𝑝1#  177.178(57.2%) 164.985(54%) 152.792(50.4%) 140.599(46.1%) 
𝑇𝑇𝑔𝑔1#  91.804(110.4%) 79.611(112%) 67.418(114.2%) 55.225(117.3%) 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1#  91.804(110.4%) 79.611(112%) 67.418(114.2%) 55.225(117.3%) 
𝑇𝑇𝐾𝐾𝐾𝐾1(𝑟𝑟)

#  91.804(110.4%) 79.611(112%) 67.418(114.2%) 55.225(117.3%) 
𝑇𝑇𝐾𝐾𝐾𝐾1(𝑝𝑝)

#  129.803(78.1%) 117.611(75.8%) 105.417(73%) 93.224(69.5%) 
𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)

#  91.804(110.4%) 79.611(112%) 67.418(114.2%) 55.225(117.3%) 
𝑻𝑻𝟏𝟏𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝒓𝒓(𝟏𝟏)  𝟔𝟔𝟔𝟔.𝟐𝟐𝟐𝟐𝟐𝟐(𝟏𝟏𝟏𝟏𝟏𝟏.𝟕𝟕%) 𝟓𝟓𝟓𝟓.𝟔𝟔𝟔𝟔𝟔𝟔(𝟏𝟏𝟏𝟏𝟏𝟏.𝟗𝟗%) 𝟓𝟓𝟓𝟓.𝟗𝟗𝟗𝟗𝟗𝟗(𝟏𝟏𝟏𝟏𝟏𝟏.𝟏𝟏%) 𝟒𝟒𝟒𝟒.𝟏𝟏𝟏𝟏𝟏𝟏(𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔%) 

𝑻𝑻𝟏𝟏𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒓𝒓(𝟐𝟐)  𝟔𝟔𝟔𝟔.𝟒𝟒𝟒𝟒𝟒𝟒(𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎%) 𝟓𝟓𝟓𝟓.𝟎𝟎𝟎𝟎𝟎𝟎(𝟏𝟏𝟏𝟏𝟏𝟏.𝟏𝟏%) 𝟒𝟒𝟒𝟒.𝟓𝟓𝟓𝟓𝟓𝟓(𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔%) 𝟒𝟒𝟒𝟒.𝟗𝟗𝟗𝟗𝟗𝟗(𝟏𝟏𝟏𝟏𝟏𝟏.𝟒𝟒%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3)  69.672(145.5%) 62.635(142.3%) 55.537(138.6%) 48.376(133.9%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4)  69.748(145.3%) 62.705(142.2%) 55.600(138.4%) 48.432(133.7%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5)  70.006(144.8%) 62.941(141.6%) 55.813(137.9%) 48.623(133.2%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6)  66.501(152.4%) 59.716(149.3%) 52.867(145.6%) 45.955(140.9%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(1)  73.686(137.5%) 66.139(134.8%) 58.507(131.5%) 50.788(127.5%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2)  73.958(137.0%) 66.292(134.5%) 58.530(131.5%) 50.667(127.8%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3)  71.991(140.8%) 64.730(137.7%) 57.402(134.1%) 50.008(129.5%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  71.943(140.9%) 64.687(137.8%) 57.366(134.2%) 49.977(129.6%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  71.771(141.2%) 64.534(138.1%) 57.233(134.5%) 49.865(129.9%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6)  73.261(138.3%) 65.816(135.4%) 58.295(132.0%) 50.698(127.7%) 

Source: Own work. 
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Table 2:  𝑴𝑴𝑴𝑴𝑴𝑴 and 𝑷𝑷𝑷𝑷𝑷𝑷 of estimators for different values of 𝟏𝟏 𝝎𝝎�  (for Case II) 

Estimator 
𝑴𝑴𝑴𝑴𝑴𝑴(𝑷𝑷𝑷𝑷𝑷𝑷) and constants 

𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟓𝟓�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟒𝟒�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟑𝟑�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟐𝟐�  
𝑇𝑇𝐻𝐻𝐻𝐻 101.345(100%) 89.1518(100%) 76.959(100%) 64.7656(100%) 
𝑇𝑇𝑟𝑟2#  124.513(81.4%) 106.487(83.7%) 88.461(87.0%) 70.4351(92.0%) 
𝑇𝑇𝑝𝑝2#  242.800(41.7%) 214.202(41.6%) 185.603(41.5%) 157.004(43.2%) 
𝑇𝑇𝑔𝑔2#  90.721(111.7%) 78.966(112.9%) 67.141(114.6%) 55.198(117.3%) 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2#  90.721(111.7%) 78.966(112.9%) 67.141(114.6%) 55.198(117.3%) 
𝑇𝑇𝐾𝐾𝐾𝐾2(𝑟𝑟)

#  92.351(109.7%) 80.021(111.4%) 67.692(113.7%) 55.362(117.0%) 
𝑇𝑇𝐾𝐾𝐾𝐾2(𝑝𝑝)

#  151.495(66.9%) 133.879(66.6%) 116.26(66.2%) 98.646(65.6%) 
𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

#  90.721(111.7%) 78.966(112.9%) 67.141(114.6%) 55.198(117.3%) 
𝑻𝑻𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝒓𝒓(𝟏𝟏)  𝟓𝟓𝟓𝟓.𝟔𝟔𝟔𝟔𝟔𝟔(𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎%) 𝟓𝟓𝟓𝟓.𝟓𝟓𝟓𝟓𝟓𝟓(𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓%) 𝟒𝟒𝟒𝟒.𝟏𝟏𝟏𝟏𝟏𝟏(𝟏𝟏𝟏𝟏𝟏𝟏.𝟕𝟕%) 𝟒𝟒𝟒𝟒.𝟑𝟑𝟑𝟑𝟑𝟑(𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐%) 

𝑻𝑻𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒓𝒓(𝟐𝟐)  𝟓𝟓𝟓𝟓.𝟕𝟕𝟕𝟕𝟕𝟕(𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓%) 𝟒𝟒𝟒𝟒.𝟗𝟗𝟗𝟗𝟗𝟗(𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔%) 𝟒𝟒𝟒𝟒.𝟓𝟓𝟓𝟓𝟓𝟓(𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎%) 𝟒𝟒𝟒𝟒.𝟔𝟔𝟔𝟔𝟔𝟔(𝟏𝟏𝟏𝟏𝟏𝟏.𝟑𝟑%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3)  68.557(147.8%) 61.8956(144%) 55.120(139.6%) 48.214(134.3%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4)  68.666(147.6%) 61.9872(143.6%) 55.196(139.4%) 48.276(134.2%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5)  69.028(146.8%) 62.2948(143.1%) 55.453(138.8%) 48.486(133.6%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6)  63.643(159.2%) 57.7873(154.3%) 51.734(148.8%) 45.472(142.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(1)  73.346(138.2%) 65.8557(135.8%) 58.310(132.0%) 50.694(127.8%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2)  73.254(138.3%) 65.6986(135.7%) 58.101(132.4%) 50.444(128.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3)  71.635(141.5%) 64.5046(138.2%) 58.213(132.2%) 49.981(129.6%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  71.576(141.6%) 64.455(138.3%) 57.251(134.4%) 49.949(129.7%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  71.364(142.0%) 64.276(138.7%) 57.104(134.8%) 49.840(130.0%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6)  73.042(138.7%) 65.653(135.8%) 58.199(132.2%) 50.663(127.8%) 

Source: Own work. 

The bias of estimators has been calculated and is displayed in Table 3 in order to 
better support the comparison regarding the efficiency of the suggested estimators. 

Table 3:  𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 of estimators for different values of 𝟏𝟏 𝝎𝝎�  (for Case I) 

Estimator 
Bias 

𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟓𝟓�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟒𝟒�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟑𝟑�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟐𝟐�  
𝑻𝑻𝟏𝟏𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝒓𝒓(𝟏𝟏)  −𝟏𝟏.𝟓𝟓𝟓𝟓𝟓𝟓 −𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑 −𝟏𝟏.𝟐𝟐𝟐𝟐𝟐𝟐 −𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎 

𝑻𝑻𝟏𝟏𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒓𝒓(𝟐𝟐)  −𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒 −𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑 −𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏 −𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3)  −1.689 −1.519 −1.347 −1.173 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4)  −1.691 −1.520 −1.348 −1.174 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5)  −1.698 −1.526 −1.353 −1.179 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6)  −1.613 −1.448 −1.282 −1.114 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(1)  −1.787 −1.604 −1.419 −1.232 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2)  −1.793 −1.608 −1.419 −1.229 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3)  −1.746 −1.570 −1.392 −1.213 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  −1.744 −1.569 −1.391 −1.212 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  −1.740 −1.565 −1.388 −1.209 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6)  −1.776 −1.596 −1.414 −1.299 

Source: Own work. 
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Table 4:  𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 of estimators for different values of 𝟏𝟏 𝝎𝝎�  (for Case II) 

Estimator 
Bias 

𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟓𝟓�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟒𝟒�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟑𝟑�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟐𝟐�  

𝑻𝑻𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒓𝒓(𝟏𝟏)  −𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒 −𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑 −𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏 −𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎 

𝑻𝑻𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒓𝒓(𝟐𝟐)  −𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑 −𝟏𝟏.𝟐𝟐𝟐𝟐𝟐𝟐 −𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏 −𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3)  −1.662 −1.501 −1.337 −1.169 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4)  −1.665 −1.503 −1.338 −1.171 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5)  −1.674 −1.511 −1.345 −1.176 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6)  −1.543 −1.401 −1.254 −1.103 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(1)  −1.778 −1.597 −1.414 −1.229 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2)  −1.776 −1.593 −1.409 −1.223 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3)  −1.737 −1.564 −1.389 −1.212 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  −1.736 −1.563 −1.388 −1.211 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  −1.730 −1.559 −1.385 −1.208 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6)  −1.771 −1.592 −1.411 −1.228 

Source: Own work. 

Tables 1 and 2 show that in the two distinct cases of non-response, the estimators 
for regression (𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1#  and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2# ), generalized (𝑇𝑇𝑔𝑔1#  and 𝑇𝑇𝑔𝑔2# ), and Kumar and Kumar 
(𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)

#  and 𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)
# ) exhibited equal efficiency among all the predominating existing 

estimators. Tables 1 and 2 also show that in both non-response scenarios, every 
member of the suggested estimators is more efficient than every member of the pre-
defined estimators currently in use at every level of sub-sampling fraction (𝜔𝜔−1). 
Furthermore, the bias of each member of suggested estimators under the two distinct 
non-response cases is presented in Tables 3 and 4, where it is evident that the estimators 
(𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(1)  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(2) ) and (𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(1)  and  𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(2) ) achieve the lowest bias value among all

suggested members of the proposed estimators for all values of 𝜔𝜔−1. 

6. Simulation Study

A simulation study has been carried out to provide the reliability of the comparison 
of the efficacy of the suggested estimators by real data. According to the District Census 
Handbook from 1981, 96 villages in the rural area under Police Station Singur in the 
District of Hooghly, West Bengal, have been taken into consideration for the simulation 
study [Source: Khare and Sinha (2011)]. The first 25% of the villages, or 24 villages, 
have been deemed the population's non-respondent group.  

Here, the village's population is used as the study character (𝑦𝑦), and its area is used 
as an auxiliary character (𝑥𝑥1). In this case, if a village has an area larger than 80 hectares, 
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it is given the attribute (𝜑𝜑) of a big area village; otherwise, it is classified as a small area 
village. The parameters of this study are: 

𝑁𝑁 = 96 𝑛𝑛 = 40 𝑌𝑌� = 1993.3 𝑃𝑃 = 0.7292 
𝜆𝜆𝑛𝑛 = 0.5833 𝑊𝑊2 = 0.3958 𝑌𝑌�2 = 2394.8 𝑃𝑃(2) = 0.8158 

𝑆𝑆𝑦𝑦 = 2308.3484 𝑆𝑆𝑝𝑝 = 0.4467 𝜌𝜌𝑦𝑦𝑦𝑦 = 0.341 𝑆𝑆𝑦𝑦(2) = 2971.6196 
𝑆𝑆𝑝𝑝(2) = 0.3929 𝜌𝜌𝑦𝑦𝑦𝑦(2) = 0.251 𝛽𝛽1 = 1.0642 𝛽𝛽2 = 2.0640 

𝐶𝐶𝑦𝑦 = 1.1581 𝐶𝐶𝑝𝑝 = 0.6126 

Through the use of R software, a random sample of size 40 is drawn from this 
population. The estimators' values �𝑇𝑇𝑒𝑒𝑒𝑒/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� have been calculated using 3000 
replications, and their 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 have been calculated using the following formula: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑒𝑒𝑒𝑒/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 1
3000

∑ �𝑇𝑇𝑒𝑒𝑒𝑒/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑌𝑌��23000
𝑖𝑖 . 

The minimum 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑃𝑃𝑃𝑃𝑃𝑃 in conjunction with the constants involved in 
proposed and existing estimators for case I and II are given in Tables 5 and 6 
respectively.  

Table 5:  𝑴𝑴𝑴𝑴𝑴𝑴 and 𝑷𝑷𝑷𝑷𝑷𝑷 of estimators for different values of 𝟏𝟏 𝝎𝝎�  (for Case I) 

Estimator 
𝑴𝑴𝑴𝑴𝑴𝑴(𝑷𝑷𝑷𝑷𝑷𝑷) and constants 

𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟓𝟓�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟒𝟒�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟑𝟑�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟐𝟐�  
𝑇𝑇𝐻𝐻𝐻𝐻 341376.2(100%) 288854.3(100%) 180370.2(100%) 142235.2(100%) 
𝑇𝑇𝑟𝑟1#  332198.3(102.8%) 276059.6(104.6%) 173184.9(104.2%) 136618.4(100.2%) 
𝑇𝑇𝑝𝑝1#  404432.0(84.4%) 338662.3(85.3%) 229098.1(78.7%) 186186.0(76.4%) 

𝑇𝑇𝑔𝑔1#  330045.3(103.4%) 276379.4(104.5%) 170828.3(105.6%) 134345.2(105.9%) 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1#  331010.3(103.1%) 276112.0(104.6%) 171045.0(105.4%) 133980.4(106.2%) 

𝑇𝑇𝐾𝐾𝐾𝐾1(𝑟𝑟)
#  338842.9(100.7%) 276908.7(104.3%) 172245.4(104.7%) 140798.5(101.0%) 

𝑇𝑇𝐾𝐾𝐾𝐾1(𝑝𝑝)
#  437661.8(78.0%) 361235.8(80.0%) 23507.3(76.7%) 182300.0(78.0%) 

𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)
#  331235.2(103.1%) 275929.2(104.7%) 170223.0(106.0%) 134031.2(106.1%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(1)  324032.0(105.4%) 265591.3(108.8%) 169100.8(106.7%) 132441.1(107.4%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(2)  320142.5(106.6%) 262760.4(109.9%) 169776.6(106.2%) 133163.0(106.8%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3)  317643.7(107.5%) 256724.2(108.7%) 169147.1(106.6%) 132469.8(107.4%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4)  326438.5(104.6%) 265860.8(108.6%) 169196.6(106.6%) 132500.6(107.4%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5)  329327.6(103.6%) 266404.8(108.4%) 169409.5(106.5%) 132636.4(107.2%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6)  334343.7(102.1%) 263559.4(109.6%) 168842.9(106.8%) 132364.3(107.5%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(1)  330475.0(103.3%) 270408.2(106.8%) 171445.0(105.2%) 133951.5(106.2%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2)  334892.5(101.9%) 273329.1(105.7%) 173222.7(104.1%) 135141.1(105.2%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3)  330489.3(103.3%) 270290.4(106.9%) 171378.9(105.2%) 133908.1(106.2%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  328424.3(103.9%) 270169.0(106.9%) 171310.9(105.3%) 133862.6(106.2%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  329475.3(103.6%) 269680.2(107.1%) 171039.5(105.5%) 133682.9(106.4%) 

𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6)  334325.6(102.1%) 272319.7(106.1%) 172579.0(104.5%) 134709.5(105.6%) 

Source: Own work. 
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Table 6:  𝑴𝑴𝑴𝑴𝑴𝑴 and 𝑷𝑷𝑷𝑷𝑷𝑷 of estimators for different values of 𝟏𝟏 𝝎𝝎�  (for Case II) 

Estimator 
𝑴𝑴𝑴𝑴𝑴𝑴(𝑷𝑷𝑷𝑷𝑷𝑷) and constants 

𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟓𝟓�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟒𝟒�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏
𝟑𝟑�  𝟏𝟏 𝝎𝝎� = 𝟏𝟏

𝟐𝟐�  

𝑇𝑇𝐻𝐻𝐻𝐻 341376.2(100%) 288854.3(100%) 180370.2(100%) 142235.2(100%) 
𝑇𝑇𝑟𝑟2#  322053.0(106%) 257895.6(112.0%) 167848.1(107.5%) 135439.3(105.0%) 
𝑇𝑇𝑝𝑝2#  474133.6(72.0%) 409292.1(70.6%) 264000.0(68.4%) 205304.1(69.3%) 

𝑇𝑇𝑔𝑔2#  318754.2(107.1%) 258343.2(111.8%) 164000.0(110.0%) 131069.2(108.5%) 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2#  318754.2(107.1%) 258343.2(111.8%) 164000.0(110.0%) 131069.2(108.5%) 

𝑇𝑇𝐾𝐾𝐾𝐾2(𝑟𝑟)
#  297043.2(114.9%) 259437.3(111.3%) 165035.0(109.3%) 131980.4(107.8%) 

𝑇𝑇𝐾𝐾𝐾𝐾2(𝑝𝑝)
#  502623.8(67.9%) 431075.2(67.0%) 265045.3(68.0%) 206043.5(69.0%) 

𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)
#  313147.8(109.0%) 258354.7(111.8%) 164864.3(109.4%) 131145.0(108.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(1)  305618.8(111.7%) 249933.3(115.6%) 163543.6(110.3%) 128772.2(110.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(2)  304876.2(112.0𝑠𝑠%) 277232.5(104.2%) 175000.0(103.0%) 132906.2(107.0%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(3)  289765.2(117.8%) 250023.1(115.5%) 163588.8(110.3%) 128799.6(110.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(4)  288475.3(118.3%) 250163.1(115.5%) 164000.0(110.0%) 128833.3(110.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(5)  289043.6(118.1%) 251007.9(115.1%) 163871.8(110.1%) 129008.9(110.2%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(6)  292345.2(116.8%) 259563.5(111.3%) 167000.0(108.0%) 129823.9(109.6%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(1)  326445.0(104.5%) 260355.6(111.0%) 167000.0(108.0%) 131215.4(108.4%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(2)  301732.3(112.1%) 269485.9(107.2%) 171469.2(105.2%) 133572.9(106.5%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(3)  307049.2(111.2%) 260028.0(111.1%) 167000.0(108.0%) 131134.5(108.5%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  298321.3(114.4%) 259694.5(111.2%) 167188.7(107.9%) 131052.5(108.5%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  295464.8(115.5%) 258392.9(111.8%) 167000.0(108.0%) 130734.1(108.8%) 

𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(6)  303234.7(112.6%) 266000.0(109.0%) 169968.7(106.1%) 132701.8(107.2%) 

Source: Own work. 

The simulation study results shown in Tables 5 and 6 validate the theoretical 
findings about the 𝑀𝑀𝑀𝑀𝑀𝑀 and estimator efficiency calculated using real data and 
displayed in Tables 1 and 2. Replications have, however, resulted in nominal changes 
in the 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑃𝑃𝑃𝑃𝑃𝑃 of the estimators (𝑇𝑇𝑔𝑔1# , 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟1#  and 𝑇𝑇𝐾𝐾𝐾𝐾1(𝑔𝑔)

# ) and (𝑇𝑇𝑔𝑔2# , 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟2#  and 
𝑇𝑇𝐾𝐾𝐾𝐾2(𝑔𝑔)

# ). 

7. Conclusions

From the analytical study of empirical data, it is clear for both the cases I and II that 
the proposed estimators are more efficient than all the existing estimators. For case I, 
when non-response occurs only on study variable, 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(2)  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(1)  are more efficient

than all other relevant proposed ratio type estimators while in the category of product 
type estimators, 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(5)  and 𝑇𝑇1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(4)  are found to be more efficient. For case II, when

non-response occurs on both study variable as well as auxiliary attribute, the proposed 
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estimators � 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟(2) , 𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟(1) � and �𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝(5)  ,  𝑇𝑇2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝(4) � are more efficient among all the 
members of the proposed ratio and product type estimators respectively. Further, it has 
also been observed that 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑃𝑃𝑃𝑃𝑃𝑃 both decrease when the values of sub-sampling 
fraction (𝜔𝜔−1) increase. The reason of the decreasing 𝑃𝑃𝑃𝑃𝑃𝑃 of the proposed estimators 
is the faster rate of decrease of the variance of 𝑇𝑇𝐻𝐻𝐻𝐻 compared to the proposed estimators. 

A simulation study confirms and reveals that the efficiency of the proposed 
estimators is significantly higher than all the relevant estimators at every level of sub-
sampling fractions (𝜔𝜔−1), however some estimators have average efficiency as the value 
of the coefficient of skewness is very small.  

Therefore, on the basis of theoretical, empirical and simulation studies, the 
proposed estimators may be recommended for the improved estimation of mean 
subject to the condition of availability of the suggested constants of auxiliary variable 
to increase the precision. It means that one can use any available known parameter of 
the auxiliary variable among the suggested ones to obtain the efficient estimate, since 
all members of the proposed estimators are efficient with less 𝑴𝑴𝑴𝑴𝑴𝑴 compared to all 
conventional adopted as well as predominating existing estimators. 
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Forecasts of the mortality risk of COVID-19 using the Markov-
switching autoregressive model: a case study  

of Nigeria (2020–2022) 

Idowu Oluwasayo Ayodeji1 

Abstract 

The global pandemic due to SARS-Cov-2 ravaged the world and killed more than 6 million 
people globally within two years. Studies predicting future occurrences are essential to 
effectively combat the virus. This study modeled daily fatality rate in Nigeria from March 
23, 2020 to March 19, 2022 and forecast future occurrences using Markov switching model 
(MSM). MSM estimates segmented fatality rates into three states of low-, medium- and high-
risks. Further, estimates revealed that as at 19th March, 2022, Nigeria remained at the low-
risk regime in which 1 (95%CI: 0, 1) person, on the average, died of coronavirus daily; 
however, the most probable scenario in the nearest future was the medium-risk state 
in which an average of 4 (95%CI: 2, 5) persons  would die daily with 48.7% probability. The 
study concluded that Nigerian COVID mortality risks followed a switching pattern which 
fluctuated within low-, medium- and high-risks; however, the medium-risk state was most 
likely in the future. Our results indicated that the quarantine measures adopted by the 
governments yielded positive results. It also underscored the need for governments and 
individuals to intensify efforts to ensure that the country remained at the low-risk zone till 
the virus would be eventually eradicated. 

Key words: Nigeria, hidden Markov, autoregressive, coronavirus death rate. 

1. Introduction

The novel coronavirus pandemic began in Wuhan, China on 8th December, 2019
(Ihekweazu, 2020) and sent shock waves around the world. Owing to its severity and 
rate of spread, the World Health Organization (WHO) declared it a public health 
emergency of international concern on the 30th January, 2020 (Ogundokun et al., 
2020). None of the health institutions around the world was well prepared for its 
invasion as they were overwhelmed within few weeks of its arrival. Going by the way 
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it affected the developed countries which were better placed in terms of health 
infrastructure, the pundits had speculated that Africa would not be able to withstand 
the effect of the pandemic (Ibrahim et al., 2021). Nigeria, being the most populous 
nation in Africa was expected to be the worst hit given the mode of transmission of the 
virus and the fact that several settlements within the country had no decent access to 
health facilities (Marbot, 2020). Worse still, the poor level of infrastructure in the 
country posed serious challenges to effective testing and treatment of coronavirus 
patients (Adekunle et al., 2020).  Accordingly, the country was categorized by WHO as 
one of the 13 high-risk priority countries in Africa (Ihekweazu, 2020). 

In order to effectively combat the virus, an accurate description and prediction of 
the associated risk would be essential. It could provide individuals and health 
practitioners with understanding of the fatality level and assist in anticipating its 
progression in the future. It could also offer useful insights to policy makers to make 
evidence-based decisions and strengthen their efforts in combating the spread. 
In addition, it could be used to assess the level of success of health’ interventions made 
by governments and health organizations so far and assist in future projections. 

The major objective of this study was to formulate a suitable model for COVID 
mortality rates in Nigeria which would be used to forecast future occurrences. Various 
methods had been used in previous studies to model coronavirus fatalities; the most 
commonly-used included the compartmental models (See Adekunle et al. (2020), Bagal 
et al. (2020) and Carcione et al. (2020), among others), and the time series processes 
(See Anne (2020), Khan and Lounis (2021), Pourghasemi et al. (2020), Singh et al. 
(2020), among others). 

The time series specification was also predominant in existing prediction studies 
(Didi et al., 2021; Ibrahim and Oladipo, 2020; Ibrahim et al., 2021; Khan and Lounis, 
2021; Li et al., 2022; Odekina et al., 2022). In addition to being able to describe the 
dynamics of epidemics, time series models could reveal the underlying data-generating 
process which could be used to forecast future patterns associated with the epidemics. 
However, relative to modeling studies, existing prediction studies on coronavirus were 
few and were mostly limited to short-term forecasts due to the type of time series 
models adopted. 

A new variant of the time series model, namely the Markov-switching specification, 
had emerged in the late nineties which could be used to make accurate forecasts for 
long-term horizons because its forecasts were based on probabilities rather than some 
average values. Markov-switching model (MSM) was most appropriate to model and 
forecast series of time-varying nature such as the coronavirus fatalities owing to its 
switching features. What do we mean by time-varying nature? Consider Figure 1 which 
referred to coronavirus mortality rates in Nigeria from 23rd March, 2020-19th March, 
2022. One obvious fact to be observed from the Figure was that the mortality risk was 



STATISTICS IN TRANSITION new series, September 2024 125 

not constant over time but appeared to switch infrequently between the different states 
of low, medium and high risks. For instance, cases of medium and high mortality risk 
could be found under labels 1, 2, 4 and 5. Label 3, especially, corresponded to high 
mortality risk period, while the unlabeled sections appeared to be the low risk periods 
in Nigeria. 
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Figure 1:  Coronavirus mortality rates in Nigeria (23rd March, 2020 – 19th March, 2022). 

Owing to the peaks and troughs in Figure 1 therefore, the appropriate model for 
measuring and forecasting coronavirus mortality risk in Nigeria was the Markov-
switching model (MSM) proposed by Hamilton (1989). In this context, MSM may be 
used to characterize mortality risks into different states that agreed with the realities 
in Figure 1. By design, MSM incorporates the Markov process into an autoregressive 
model such that the average mortality rate may vary across three (low, medium and 
high risks) unobserved states that evolved according to a first order Markov transition 
process.  

In simple terms, MSM provided that the varying mortality rates seen in Figure 1 be 
modeled with a mixture of time series specifications whose transition was governed by 
a Markov process. This was in contrast with previous studies which employed a single 
model in forecasting. Ahlburg (1995) earlier noted that a combination of forecast 
models improve accuracy than a single model. Ibrahim et al. (2021) also provided 
empirical evidence in favour of multiple models. 

MSM is especially applicable in the treatment of epidemics as it generates 
probabilities which can be used to measure the risks associated with the outbreak, 
as opposed to other time series variants which provide forecasts in form of some mean 
values. The probabilities obtained from MSM can be used to segment Nigerian 
coronavirus data into low-, medium- or high-risk state in line with the categorizations 
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of WHO (Ihekweazu, 2020). It is noteworthy that few application studies had applied 
MSM to model COVID cases in United States (Oliveira et al., 2021) and South Africa 
(Mthethwa et al., 2022). They found that MSM outperformed other time series and 
growth models. 

Overview of the paper was as follows: Section 2 contained literature review; 
in Section 3 we presented data and statistical techniques; Section 4 concerned results 
and discussions; and lastly, Section 5 contained conclusions and recommendations. 

2. Literature Review

2.1.  Evolution of Coronavirus in Nigeria and Governments’ Interventions 

The novel coronavirus was first discovered in Wuhan China on 8th December, 
2019 (Ihekweazu, 2020). It was declared a public health emergency of international 
concern by WHO on 30th January, 2020 after 118,000 people had been infected globally 
(Ogundokun et al., 2020). The Nigeria Centre for Disease Control (NCDC) not being 
unaware of the enormous challenges involved immediately constituted rapid response 
teams across the 36 states and concluded their trainings in December 2019. NCDC also 
subscribed to plans to work with 22 state governors to establish emergency operation 
centers whose activities will be coordinated at the national centre (Ihekweazu, 2020). 
In addition, Nigeria also intensified surveillance at the international airports to prevent 
importation of the virus. However, despite all these efforts, its first index case from Italy 
was reported on the 27th February, 2020, and its first death on 23rd March, 2020 
(Ileyemi, 2021). As at 24th March, 2022, there were 255,244 confirmed cases out of 
which 249,486 recovered and 3,142 died (Worldometer, 2022). 

On 29th March, 2020, the Federal government imposed lockdown in Lagos state, 
being the epicenter of the virus. Ogun state was also included in the curfew arrangement 
because it shared border with Lagos. The lockdown also extended to the Federal capital 
territory (FCT), Abuja, being the region with second highest number of confirmed 
cases. Movement restrictions were also enforced by state governments of some other 
states which were not included in the federal-government-imposed lockdown (Odekina 
et al., 2022). By 23rd April, 2020, movement restrictions had been enforced in all thirty-
six states of the federation and the FCT (Jacobs and Okeke, 2022). 

In addition to the lockdown order, the Federal government also imposed 
restrictions on influx of people from thirteen countries which included China, Italy, 
United States, Iran, South Korea, United Kingdom, Spain, Netherlands, Japan, France, 
Norway, Switzerland and Germany on 8th March, 2020 (Ibrahim and Oladipo, 2020). 
13 days later, the Abuja and Lagos international airports were totally shut down. As 
part of the safety measures, transport by rail was also suspended on 23rd March, 2020 
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(Ibrahim and Oladipo, 2020). Due to economic considerations, the Federal government 
began to ease lockdown and travel restrictions gradually on 4th May, 2020. However, 
other measures such as social distancing, contact tracing, source control, quarantine, 
administration of COVID vaccines and self-isolation were sustained (Jacobs and 
Okeke, 2022). 

The quarantine measures and safety protocols notwithstanding, Nigeria continued 
to record casualties on daily basis. On Saturday, 28th August 2021, NCDC reported 
a record death of 53 Nigerians, the highest ever since the first confirmed case in 
February; and barely 24 hours later, 93 more people died of the same cause (Ileyemi, 
2021). Though NCDC noted that the high number recorded was due to backlog of 
fatalities from Lagos state, however, most people were of the opinion that it was the sign 
of the third wave, and this had sparked fears afresh in the minds of the citizens (Ileyemi, 
2021). 

2.2.  Review of Related Studies 

The theory behind coronavirus infection and prognosis was multi-faceted. The 
occurrence of the virus had been linked with the black swan theory in the literature 
because it reflected the three characteristics of the theory; (i) it was an unexpected event; 
(ii) it had extreme impact; and (iii) it could not be predicted in advance, but its
occurrence could be explained after it has occurred (Taleb, 2007). Accordingly,
researchers had made several attempts to explain its occurrence since it was made
public.

Sharifi et al. (2022) presented coronavirus as a syndemic which affected various 
aspects of human lives. The effect of COVID on people living with non-communicable 
diseases may differ from others who were not due to different precautionary regimens 
that were imposed during the pandemic. For instance, movement restrictions reduced 
physical activities and exercises which were crucial in the management of diabetes, 
obesity, and so on. Further, isolation of aged people may also increase loneliness and 
mental health issues such as depression. 

Sociological theory and implications of COVID pandemic were presented in Bello 
and Amzat (2021). The study leaned heavily on the assumptions of George Simmel, 
Auguste Comte and Herbert Spencer to explain the effect of the pandemic on people’s 
way of life. Based on Comte’s theory, the study considered COVID-19 a cause of social 
instability and disruption to social and economic well-being. Quarantine measures 
such as social distancing and lockdown would cause a breakdown in social order and 
interactions; however, they would eventually make life better in the long run. 

On the other hand, the decision to ease lockdown protocols at some point despite 
the pandemic followed Spencer’s theory of “survival of the fittest”. It is of economic and 
social advantage to accept that individuals would adapt and learn to live with the virus 
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than to “lock them down” indefinitely. The consequences of long-term social and 
economic disorder outweighed that of coronavirus (Bello and Amzat, 2021). 

Simmel’s theory was applicable to interpersonal relationship among individuals. 
Personal relationships among individuals had been restricted to virtual interactions 
through social media. Telemedicine replaced routine hospital visits in advanced 
countries (Sharifi et al., 2022) and people spent more time online than with one 
another. A different perspective to coronavirus incidence is contained in Simmel’s 
theories of secrecy and conflict, and how they affected social relationships during 
COVID (Bello and Amzat, 2021). 

From the empirical viewpoint, most studies measuring the rate of coronavirus 
fatalities employed compartmental models (Adekunle et al., 2020;  Bagal et al., 2020; 
Carcione et al., 2020) and time series processes (Anne, 2020; Khan and Lounis, 2021; 
Pourghasemi et al., 2020; Singh et al., 2020). Studies which employed the Markov 
switching variants in particular included Oliveira et al. (2021) and Mthethwa et al. 
(2022). Time series investigations conducted with Nigerian data were presented 
in Abdulmajeed et al. (2020), Chigbu et al. (2021), Li et al. (2022) and Odekina et al. 
(2022). 

The most commonly-used method of forecasting was time series. Predictions on 
coronavirus status varied by outcome and dates: Chigbu et al. (2021) predicted values 
for Nigerian fatality and recovery rates from 25th August, 2020 to 31st January, 2021. 
The study predicted a gradual decrease in infection and fatality rates and an increase 
in recovery rate over the period of forecast. Li et al. (2022), in contrast to Chigbu et al. 
(2021), predicted an increase in infection and fatality rates in all the countries 
considered, including Nigeria, within 1st and 27th March, 2021; and Nigeria was 
expected to have the lowest prevalence rate among selected countries. Lastly, Mthethwa 
et al. (2022) predicted in South Africa 322 fatalities for 27th August, 2021 and expected 
the number to decrease over the next 10 days to 41. 

3. Data collection and analysis

3.1.  Data and study area 

Daily counts of coronavirus deaths were reported on daily basis at the official 
website of the National Centre for Disease Control (https://covid19.ncdc.gov.ng/ 
report/). They covered 23rd March, 2020, which corresponded to the death of the first 
index case, Suleiman Achimugu, to 19th March, 2022. The sample size was 727 
observations. Details on the data collection process and other descriptions can be found 
at the website. 

https://covid19.ncdc.gov.ng/
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3.1.  The Markov Switching Model 

Denote dt the daily death rate of coronavirus in Nigeria. The Markov switching 
model can be written as (Hamilton, 1989): 

dt = μSt + ∑ βi,Stdi,t−1
p
i=1 + εt, St = 1,2,⋯ ,𝑚𝑚;  𝑡𝑡 = 1,2,⋯ ,𝑇𝑇. (1) 

For mathematical tractability, it was assumed that dt was normally distributed with 
means μ and variances 𝜎𝜎2 in the different possible states. A similar assumption was 
made in Engel and Hamilton (1990). The variance 𝜎𝜎2 varied alongside the mean so that 
the hidden Markov model could capture the peaks and troughs in Figure 1. At each 
different states St of the coronavirus fatality rate, a variance was computed. The 
autoregressive term dt−1 was included to capture serial correlation that may exist in 
the data. Following WHO categorization (Ihekweazu, 2020), the study adopted  m = 3 
in the 3 different states, which, in this context, may be denoted St = 1 for low-risk 
fatality rate, St = 2 for medium-risk fatality rate, and St = 3 for high-risk fatality rate. 
The Markov process employed was such that the state at any time t was determined 
randomly and only depended on the state at time t − 1. 

Transition from one state to the other was determined by the transition 
probabilities Pij.  The closer the value of Pij to 1 the longer it took for the system to 
transit to the next state. The probability of being in state i tomorrow given that death 
rate was in state i today was Pii = Pr(St = i|St−1 = i), i = 1,2,⋯ , m. In general, 
Pij = Pr(St = j|St−1 = i) and 

∑ Pijm
j=1 = 1; 𝑗𝑗 = 1,2,⋯ , m and for all 𝑖𝑖. (2) 

The loglikelihood equation corresponding to System (1) - (2) can be written as 
(Engel and Hamilton, 1990): 

log L =∑ log f(dt|St)T
t=1  (3) 

where 

f(dt|St) = 1
σSt√2π

exp � 1
2σSt

2 �dt − μSt�
2� (4) 

St was not directly observable hence following Engel and Hamilton’s (1990) we re-
wrote f(dt|St) as 

f(dt, St|υt−1) = f(dt|St,υt−1)P(St|υt−1) (5) 

and 

f(dt|υt−1) = ∑ f(dt|St,υt−1)P(St|υt−1)m
St=1  (6) 

where υt−1 was the information available up to time t−1. 
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The loglikelihood equation (3) was then updated as follows: 

log L =∑ log∑ f(dt|St,υt−1)P(St|υt−1)m
St

T
t=1  (7) 

Following Hamilton (1989), model parameters were estimated from Equation (7) 
using the maximum likelihood approach. We also drew probabilistic inference in form 
of a nonlinear iterative filter and smoother, popularly referred to as filtering and 
smoothing probabilities, respectively in econometrics literature. Expected length or 
duration of state 𝑖𝑖 was computed as (Engel and Hamilton, 1990): 

E(D) = 1
1−Pii

(8) 

For more comprehensive details about the method, interested reader may refer to 
Hamilton (1989). 

4. Results

4.1.  Model fitting 

Following our observations in Figure 1, we estimated System (1)–(2) using 3 states2. 
Subsequently we categorized Nigeria as low-, medium- or high-risk country. The 
simplest Markov-switching autoregressive specification AR(1) has been shown to 
perform well in forecasting (Engel and Hamilton, 1990) hence it was adopted here. 
Table 1 referred to maximum likelihood estimates of the parameters in System (1)–(2). 

Table 1: Maximum likelihood estimates of MSM 

Parameter 
States 

1 2 3 

𝜇𝜇 
8.160* 

(-4.308, 12.011) 
0.163* 

(0.104, 0.221) 
3.329* 

(2.611, 4.046) 
𝜎𝜎 9.137* 0.376* 3.187* 
Pii 0.125 0.834 0.694 

95% confidence interval in parentheses *significant at the 5% level. 

From our result, State 1 was identified as the high risk state where an average of 9 
(p<.05) deaths were recorded on daily basis; State 2 as the low risk state where an 
average of 1 (p<.05) death was recorded on daily basis; and State 3 as the medium risk 
state where an average of 4 (p<.05) deaths were recorded on daily basis. 

2 We also experimented with 1 and 2 states, however, result, not displayed here for lack of space, showed that 
the 3 states model described the realities in Figure 1 better than the two other alternatives. Note that for only 1 state, 
MSM reduced to the conventional autoregressive (AR) model. 
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The estimated standard deviations 𝜎𝜎 showed that the number of deaths recorded 
in the high risk state varied more than in the other states. This implied that the deaths 
in high risk state were more difficult to predict compared to the remaining states. 

Lastly, from the Pii row we observed that the probability of remaining in low-risk 
state once the system was in it was the highest followed by the medium-risk and lastly 
the high-risk. Consequently, the expected durations for the three states were computed 
as 2, 4, and 7 days for high-, medium- and low-risk states, respectively. This implied 
that the high risk state was estimated to last for only 2 days at a stretch while the low-
risk period was expected to last for 7 days whenever the system transited into the state. 

The remaining transition probabilities were shown in the matrix, 

P� = �
0.125 0.088 0.787
0.024 0.834 0.142
0.192 0.114 0.694

� 

Since these probabilities were within (0,1), we can infer that the system was 
transitive however the likelihood of transiting from one state to the other varied. Out 
of the three states, the highest likelihood of transition (78.7%) was from the high-risk 
state directly to the medium-risk state; whereas there was only an 2.4% chance of 
moving to a high-risk regime at the expiration of a low-risk mortality period. 

Again, following Engel and Hamilton (1990) we tested the null hypothesis that the 
three states did not differ from one another. Wald’s test statistics and corresponding p-
values were presented in Table 2. The results showed that the three states were different 
both in the means and variances. This confirmed our observations in Figure 1 that the 
mortality risks varied over time. 

Table 2: Test of hypotheses 

Null hypothesis Wald’s statistic 

𝜇𝜇1 = 𝜇𝜇2 = 𝜇𝜇3 
110.9974 

(0.0000) 

𝜎𝜎12 = 𝜎𝜎22 = 𝜎𝜎32 
1150.423 

(0.0000) 

p-values in parentheses 

Figure 2 displayed the filtered probability plots of the three states (regimes)
superimposed with the daily death rates. We followed the conventional assumption 
in econometrics literature (Engel and Hamilton, 1990) that the system had switched 
from one state to the other when the probability exceeds 0.5. It was evident from the 
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plot that Markov switching model efficiently captured all the high-, medium- and low-
risk mortality periods between 23rd March 2020 and 19th March, 2022 in Nigeria. The 
fatality rate switched infrequently among the three risk states; it switched severally 
between low- and medium-risk zones in the periods between the third and fourth 
quarters in 2020 whereas the high-risk regime dominated the third quarter of 2021. We 
recalled that Nigeria recorded 53 and 93 deaths in 2 consecutive days within August 
2021 in the third quarter of 2021. 
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Figure 2:  Filtered probability plots by states superimposed with death rates. 

4.2.  Forecast 

We compared three specifications of MSM, namely the 1-state case, 2-state case and 
3-state case using various metrics and graphics. The details were available in the
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Appendix. The highlight of the result was that the 3-state model outperformed the other 
two in all the measures employed; hence, it was used for forecast. 

Given 

P� = �
0.125 0.088 0.787
0.024 0.834 0.142
0.192 0.114 0.694

� 

the probability P12 that if the system was in the high-risk zone today, it would transit to 
low-risk zone the following day was approximately 0.09. In other words, given the 
current realities, if 9 deaths, on the average, were recorded today, the probability that 
the fatality rate would reduce to 1, on the average, tomorrow was just 9%. In 2 days’ 
time, the probability increased to 17.4%: 

P�2 = �
0.169 0.174 0.657
0.050 0.714 0.236
0.160 0.191 0.649

� 

In 3 days’ time, it increased to 23.5%: 

P�3 = �
0.152 0.235 0.614
0.069 0.627 0.305
0.149 0.247 0.604

� 

The value continued to improve until it gradually converged to 39.6%, and this 
convergence only occurred after 30 days: 

lim
n→∞

P�n = �
0.118 0.396 0.487
0.118 0.396 0.487
0.118 0.396 0.487

� 

Thus, given the state of health facilities and all forms of government’s interventions, 
if the system was in the high-risk zone today, it was expected that the fatality rate would 
decrease to the barest minimum within 30 days with probability 0.396. In the same vein, 
the probability that the fatality rate would remain high could be computed in like 
manner. 

Figure 3 below displayed the forecast probabilities that the system would remain 
in the high-, medium- and low-risk zones; and that it would transit from high-risk state 
to low-risk. We inferred from the Figure that in the nearest future, the most probable 
scenario in Nigeria was the medium-risk zone in which 4 persons, on the average, died 
of coronavirus on daily basis with 48.7% probability, followed by the low-risk zone in 
which 1 Nigerian, on the average, died of coronavirus on daily basis with 39.6%, 
probability and lastly the high-risk regime in which 9 persons, on the average, died of 
coronavirus on daily basis with 11.8% probability. 
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Figure 3:  Forecast probabilities. 

4.3.  Discussion 

We developed a Markov switching model for the coronavirus fatality rates 
in Nigeria. Our results showed that Nigerian death rates switched infrequently among 
three states of low-, medium- and high-risk within 2020 and 2022. In particular, the 
system remained in the medium-risk state in which an average of 4 (CI=2, 5) deaths/day 
were recorded most of the time in the fourth quarter of 2020 though pockets of low- 
and high-risk transitions were also recorded within the time. This finding agreed with 
Chigbu et al. (2021) who predicted an average of 3 deaths per day from August 25, 2020 
to January 31, 2021.  

Further, our results showed that the medium-risk regime was dominant from 
March 1, 2021 to March 27, 2021. This was in contrast with Li et al. (2022) who 
predicted an average of 14 (CI= 12, 16) deaths per day. Our results indicated that the 
system was in the medium-risk state in which an average daily mortality risk of 4 (CI=2, 
5) was expected. It is noteworthy that the actual observations of new deaths reported
by the NCDC within the stipulated period averaged 5 deaths per day, which supported
our findings. .

We also observed that the high-risk regime dominated the third quarter of 2021 
in which an estimated 9 persons were expected to die daily of coronavirus in Nigeria. 
Though Nigeria recorded its highest number of coronavirus casualties within the third 
quarter of 2021, these were significantly less than the number of fatalities predicted in 
South Africa within the same time frame; (see Mthethwa et al. (2022)). Thus South 
Africa was the indeed the epicenter of the virus in Africa. 

As at 19th March, 2022, Nigeria no longer belonged to the high-risk group; our 
result showed that the country had transited to and settled in the low-risk regime in 
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which an average of 1 person was expected to die of coronavirus daily. This was an 
indication that individuals indeed adapted and learnt to live with the virus over time. 
We recall that Bello and Amzat (2021) had earlier observed that the government’s 
decision to ease lockdown while the pandemic was still on followed Spencer’s theory of 
“survival of the fittest”. In addition, the fact that the mortality rate has significantly 
reduced was also an indication that the various government policies and interventions 
yielded the desired results. In addition, it also bore testament to the fact that quarantine 
measures could effectively flatten the curve as it did in developed countries such as 
Germany and South Korea (Jacobs and Okeke, 2022). 

We noted earlier in section 2.2 that the virus caused huge disruptions to the social, 
economic and health aspects of human lives. It led to social order breakdown, limited 
human interpersonal relationships to virtual mode and also prevented people living 
with various non-communicable diseases to access treatments at their convenience. 
Ensuring that normalcy returned as soon as possible should be a priority, not for the 
government alone, but for everyone. 

3. Conclusions

The Markov switching model was employed to model and forecast the fatality rate
scenarios of coronavirus in Nigeria. The highlight of the results was that Nigeria, as at 
19th March, 2022, which was earlier categorized by WHO as a high-risk country had 
transited from that state to a low-risk one in which 1 person was expected to die of 
coronavirus daily. This indicated that the various health intervention programs and 
policies instituted by the government to combat the virus yielded positive results; 
however, all things given, the most probable scenario in Nigeria was the medium-risk 
level in which an average of 4 persons would die daily; hence the need to sustain the 
fight against the virus. 

The study concluded that Nigerian COVID mortality risks followed a switching 
pattern which fluctuated within low-, medium- and high-risks; however, the medium-
risk state was most likely in the future. The findings from this study gave an accurate 
description of the fatality level which could assist in anticipating its progression in the 
future. It offered useful insights to aid policy makers in making evidence-based 
decisions and strengthen their efforts in reducing and eventually eradicating 
coronavirus deaths. In addition, it also assessed the level of success of health’ 
interventions the government and health organizations have made so far and 
concluded that the efforts had yielded positive results. Our findings also underscored 
the need to sustain and intensify efforts with the quarantine measures that have been 
adopted and also embark on awareness programs for individuals to be more responsible 
for their safety so as to completely eradicate the virus. 
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Appendices 

We compared three specifications of MSM, namely the 1-state case (which 
corresponded to the conventional autoregressive model), 2-state case and 3-state case 
using various statistical techniques including (i) information criteria; (ii) error 
measurements (the maximum absolute error and the mean square error); and (iii) 
visual aid. 

Table A1 comparing the models by information criteria showed that the 3-state 
case performed better than the other two specifications as it had the lowest Akaike and 
Bayesian information criteria values. 

Table A1: Model comparison by information criteria 

Model AIC BIC 

1-state 6.445 6.458 
2-states 5.025 5.075 
3-states 4.663 4.757 

Further we compared the three models by prediction errors from in-sample we 
assumed that the system is in the high-risk state whenever P11 exceeded 0.5, at such 
times, coronavirus death rates in Nigeria were best described by the equation d�t =
8.16 + 1.07dt−1; at other times when P33 exceeded 0.5, we assumed that the system 
was in the medium-risk state and was best modeled as d�t = 3.33 + 0.26dt−1. Finally 
when P22 exceeded 0.5, the corresponding state space was the low-risk state and in such 
cases, d�t = 0.16 + 0.01dt−1  provided the best fit for the system. Table A2 showed 
prediction error analysis by model. We observed that the 3-state case again provided 
the best fit for the death rates. 

Table A2: Model comparison by prediction errors 

Model Max. abs. error Mean square error 

1-state 66.738 36.662 
2-states 61.436 28.240 
3-states 18.544 11.780 

In addition, we plotted the observed against the predictions from the 3 candidate 
models in Figure A1 below. In agreement with the results presented in Tables A1 and 
A2, we observed that the 3-state model provided the best fit to the observed data. In all 
the daily predictions, the 1-state model could not reproduce the minimum death rate 
as its minimum estimated value was 2.38. 
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Figure A1: Predicted versus observed by models
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Nonparametric Bayesian optimal designs for Unit Exponential 
regression model with respect to prior processes(with the 

truncated normal as the base measure)

Anita Abdollahi Nanvapisheh1, Soleiman Khazaei2, Habib Jafari3

Abstract

Nonlinear regression models are extensively applied across various scientific disciplines. It
is vital to accurately fit the optimal nonlinear model while considering the biases of the
Bayesian optimal design. We present a Bayesian optimal design by utilising the Dirichlet
process as a prior. The Dirichlet process serves as a fundamental tool in the exploration of
Nonparametric Bayesian inference, offering multiple representations that are well-suited for
application. This research paper introduces a novel one-parameter model, referred to as the
’Unit-Exponential distribution’, specifically designed for the unit interval. Additionally, we
employ a stick-breaking representation to approximate the D-optimality criterion consider-
ing the Dirichlet process as a functional tool. Through this approach, we aim to identify a
Nonparametric Bayesian optimal design.

Key words: D-optimal design, Bayesian optimal design, Unit Exponential model (UE),
Dirichlet process, stick-breaking prior, nonparametric Bayesian.

1. Introduction

Within the realm of experimental design, the concept of optimal design refers to a spe-
cific category of designs that are classified based on certain statistical criteria. It is widely
acknowledged that a well-designed experiment can significantly enhance the accuracy of
statistical analyses. Consequently, numerous researchers have dedicated their efforts to ad-
dress the challenge of constructing optimal designs for nonlinear regression models. Exper-
imental design plays a pivotal role in scientific research domains, including but not limited
to biomedicine and pharmacokinetics. Its application in these fields enables researchers to
conduct rigorous investigations and yield valuable insights.

Optimal designs are sought using optimality criteria, typically based on the informa-
tion matrix. Until 1959, research primarily focused on linear models, where the models
were linear with respect to the parameters. However, in nonlinear models, the presence of
unknown parameters introduced complexities in the design problem, as the optimality cri-
teria depended on these unknown parameters [3, 5]. To address this challenge, researchers
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proposed various solutions, including local optimal designs [2, 7, 11, 19, 30], sequential op-
timal designs, minimax optimal designs, Bayesian optimal designs [28, 21-24], and pseudo-
Bayesian designs [26]. Chernoff (1953) introduced the concept of local optimality, which
involves specifying fixed values for the unknown parameters and optimizing a function of
the information matrix to determine the design for these specified parameter values. This
approach aimed to overcome the difficulties associated with the dependence of the design
problem on unknown parameters in nonlinear models.

The selection of unknown parameters in local designs is typically obtained from pre-
vious studies or experiments specifically conducted for this purpose. The effectiveness of
local designs heavily relies on the appropriate selection of these parameters. However, a
significant challenge arises when the investigated problem lacks robustness in relation to
weak parameter estimation. To address this, an alternative approach for local optimal de-
signs involves utilizing a prior distribution for the unknown parameters instead of relying
solely on initial guess. In the Bayesian method, the first step is to represent the available
information in the form of a probability distribution for the model parameter, known as
the prior distribution. A Bayesian optimal design aims to maximize the relevant optimal-
ity criterion over this prior distribution. Nevertheless, it is crucial to acknowledge that the
selection of the prior distribution within the Bayesian framework can be problematic and
may potentially lead to erroneous results. The choice of the prior distribution is subjective,
relying on the researcher’s beliefs, and it significantly influences the final outcome. Unfor-
tunately, the Bayesian approach lacks a definitive method for selecting the prior distribution.
Numerous researchers have investigated the effect of the prior distribution on determining
design points in various types of optimal designs. For instance, Chaloner and Lorentz [10],
Chaloner and Duncan [8], Burghaus and Dette [4], Chaloner and Vardinelli [9], Pronzato
and Walter [29], Mukhopadhyay and Haines [26], Dette and Ngobauer [12, 13], Fedorov
[14, 15], and Firth and Hinde [17] have contributed extensively to this field. Chapter 18
of Atkinson et al.’s book [3] provides further reading on this topic. Moreover, in situations
where there is insufficient evidence from previous studies on the topic of interest, specifying
an appropriate prior distribution becomes challenging. In such cases, subjective or nonin-
formative prior distributions are used, incorporating all available information regarding the
uncertainty of the parameter values.For more information, refer to Burghaus and Dette [4].
This research paper presents the introduction of a novel one-parameter model, referred to
as the UE distribution, specifically designed for the unit interval in Section 2. As we know,
in applied statistic, a common issue is to deal with the uncertainty phenomena observed in
the interval (0, 1). For example, in real life we often encounter measures like proportion or
fraction of a certain characteristic, scores of some ability tests, different index, rates, etc.,
which lie in the interval (0, 1). In such cases continuous distributions with domain (0, 1) are
indispensable to probabilistic modeling of the phenomena. So, in regression models where
the response variable is in the form of ratio, rate or percentage, we use the unit exponential
regression model to model the data that are concentrated in a certain sub-interval of the
range of their domains. In Section 3, the optimal design for nonlinear models is derived.
Finally, Section 4 concludes the paper with some closing remarks.



STATISTICS IN TRANSITION new series, September 2024 143

2. The Unit-Exponential distribution

The exponential distribution is continuous distribution in statistics and probability the-

ory. If Y ∼ Exp(θ), then using the transformation X=
Y

1+Y
we have a new distribution

with support on the unit interval such that the CDF and the PDF of the resulting distribution
are respectively [1]:

F(x | θ) = 1− exp(
−θx
1− x

); 0 ≤ x < 1, θ > 0, (1)

f (x | θ) =
θ

(1− x)2 exp(
−θx
1− x

); 0 ≤ x < 1, θ > 0. (2)

The Hazard Rate Function (HRF) of this distribution is as follows:

h(x | θ) =
f (x | θ)

1−F(x | θ)
=

θ

(1− x)2 ; 0 ≤ x < 1, θ > 0. (3)

In the following figure, the PDF and the HRF of this distribution are plotted for different
values of the parameter θ . According to this figures, it can be seen that the HRF is increasing
in 0 ≤ x < 1.

Figure 1: Plot of density function (left) and hrf (right)

3. Optimal Design for Nonlinear Models

In the context of nonlinear experimental design, a common issue arises where the re-
lationship between the response variable y and the independent variable x is given by the
equation y = η(x,θ)+ ε where x ∈ χ ⊆ R and y is a response variable and θ ∈ Θ is the
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unknown parameter vector and ε is a normally distributed residual value with mean 0 and
known variance σ2 > 0. For simplicity, we assume σ2 = 1 in this problem. If η(x,θ)
is differentiable with respect to θ , then the information matrix at a given point x can be
represented as follows:

I(ξ ,θ) =
∂

∂θ
η(x,θ)

∂

∂θ
T η(x,θ). (4)

There exist several optimality criteria used to obtain the optimal design, including D-
optimality and A-optimality. These criteria are functions of the information matrix and can
be expressed as follows:

ΨD(ξ ,θ) =− log(det(M(ξ ,θ))) , ΨA(ξ ,θ) = tr(M−1(ξ ;θ)),

where ξ denotes a design with two components; the first component represents specific val-
ues from the design space χ and the second component corresponds to the weights assigned
to these values, so that design ξ can be defined as follows:

ξ =

{
x1 x2 . . . xl

w1 w2 . . . wl

}
∈ Ξ, (5)

where Ξ={ξ | 0 ≤ w j ≤ 1 ;
l

∑
j=1

w j = 1 , x ∈ χ}, [25].

When considering a discrete probability measure ξ with finite support, the information
function of ξ can be expressed as follows [3]:

M(ξ ,θ) =
l

∑
j=1

w jI(x j,θ). (6)

Because of the dependence of the information matrix M(ξ ,θ) to the unknown parameter
θ , one approach to address this issue is to employ the Bayesian method and incorporate a
prior distribution for the parameter vector. The Bayesian D-optimality criterion can be
formulated as follows:

ΨΠ(ξ ) = E(ψ(ξ ;θ)) =
∫

Θ

ψ(ξ ;θ)dΠ(θ) =
∫

Θ

−log(det(M(ξ ,θ))dΠ(θ), (7)

where Π represents the prior distribution for θ and the Bayesian D-optimal design is attained
by minimizing (7). According to Dette and Neugebauer [11], in the general case of optimal
designs which can include designs with two and more points, if the support of the prior
distribution has n points, then the maximum number of Bayesian optimal design points is

given by n
p(p+1)

2 . Hence, in the specific scenario of nonlinear models with one parameter
(p = 1), this implies that the support of the Bayesian optimal design does not contain more
points than the support of the prior distribution.

In certain situations, specifying a prior distribution on the parameter space Θ can be
challenging for the experimenter. In such cases, an alternative approach is to consider an
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unknown prior distribution Π for the parameter θ . In this condition, Π is treated as a pa-
rameter itself. Consequently, equation (7) becomes a random functional, and it becomes
necessary to determine its distribution or approximation. From a Bayesian perspective, we
construct a prior distribution on the space of all distribution functions to address this issue.
Ferguson (1973) introduced the concept of the Dirichlet process in this context, an overview
of which will be provided in Section 3.1.1.

3.1. Nonparametric Bayesian D-optimal design

In this section, we introduce the nonparametric Bayesian optimal designl. In the non-
parametric Bayesian framework, it is assumed that θ | P ∼ P, where P is a random prob-
ability distribution and P ∼ Π. A general method of construction of a random measure is
to start with the stochastic processes. Ferguson (1973) formulated the requirements which
must be imposed on a prior distribution and proposed a class of prior distributions, named
the Dirichlet processes. One of the main argument in using the Dirichlet distribution in
practical applications is based on the fact that this distribution is a good approximation of
many parametric probability distributions. Below we give the definition of the Dirichlet
process.

3.1.1 Dirichlet Process (DP)

To have a random distribution G distributed according to a Dirichlet process (DP), its
marginal distributions must follow a Dirichlet distribution. Specifically, let H be a distribu-
tion over Θ and α be a positive real number. For any finite measurable partition A1,A2, ...,Ar

of Θ the vector (G(A1),G(A2), ...,G(Ar)) is random since G is random. We say G is the
Dirichlet process distributed with base distribution H and concentration parameter α , writ-
ten G ∼ DP(α ,H), if the following conditions hold:

(G(A1),G(A2), ...,G(Ar))∼ Dir(αH(A1), ...,αH(Ar)), (8)

for every finite measurable partition A1,A2, ...,Ar of Θ.
The parameters of H and α play intuitive roles in the definition of the DP. The base

distribution H represents the mean of the Dirichlet process, such that for any measurable
set A⊂ Θ we have E[G(A)] = H(A). On the other hand, the concentration parameter α

can be viewed as an inverse variance: V [G(A)]=H(A)(1−H(A))/(α +1). The larger α is,
the smaller the variance, and the DP will concentrate more of its mass around the mean.
The concentration parameter is also referred to as the strength parameter, referring to the
strength of the prior when using the DP as a nonparametric prior in Bayesian nonparametric
modelsl, It can be interpreted as the amount of mass or sample size associated with the
observations. It is worth noting that α and H only appear as their product in the definition
of the Dirichlet process (equation 8). Consequently, some authors treat H̃=α H, as the
single (positive measure) parameter of the DP, writing DP( H̃ ) instead of DP(α ,H). This
parametrization can be notationally convenient, but loses the distinct roles α and H play in
describing the DP.
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As the concentration parameter α increases, the mass of the DP becomes more con-
centrated around its mean. Consequently, when α approaches infinity (α → ∞ ), G(A)
approaches H(A) for any measurable set A, indicating weak or pointwise convergence of G
to H. However, it is important to note that this does not imply a direct convergence of G to
H as a whole. In fact, as we will explore later, samples drawn from the DP will typically be
discrete distributions with probability one, even if the base distribution H is smooth. There-
fore, G and H may not be absolutely continuous with respect to each other. Despite this,
some authors still utilize the DP as a nonparametric extension of a parametric model repre-
sented by H. However, if the desire is to maintain smoothness, it is possible to extend the
DP by convolving G with kernels, resulting in a random distribution with a density function.

An alternative definition of the Dirichlet process is proposed by Ferguson [16], who,
defined a random probability measure, which is a Dirichlet process on (Θ, B(Θ)), as:

P(.) =
∞

∑
i=1

piδθi(.), (9)

where θi (i > 1) is a sequence of i.i.d. random variables with common distribution Q, δθi

represents a probability measure that is degenerate at θ where δθi=1 if θi ∈ A and 0 other-

wise, and pi
,s are the random weights satisfying pi>0 and

∞

∑
i=1

pi=1. The random distribution

P is discrete with probability one. Several authors have proposed alternative series repre-
sentations of the Dirichlet process. Sethuraman [31], and Zarepour and Al Labadi [32] are
among those who have contributed to this area. In the upcoming section, we will discuss
the nonparametric Bayesian D-optimal design for the UE model.

3.1.2 Nonparametric Bayesian D-optimal design for UE model

Now, let us consider the following regression model:

E(y|x) = η(x,θ) =
θ

(1− x)2 exp(
−θx
1− x

),θ > 0. (10)

Therefore, the Bayesian D-optimality criterion, denoted as ΨΠ(ξ ), can be expressed as
follows:

ΨΠ(ξ ) = E(ψ(ξ ;θ)) =
∫

Θ

ψ(ξ ;θ)dΠ(lθ) (11)

=
∫

Θ

−log(
l

∑
j=1

w j[exp(
−θx j

1− x j
)(

1
(1− x j)2 −

θx j

(1− x j)3 )]
2)dΠ(θ) (12)
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where Π is the prior distribution for θ . The Bayesian D-optimal design is attained by mini-
mizing equation (11). In the nonparametric Bayesian framework, we consider P∼ DP(α ,P0)

and its collective representation as P(.) =
∞

∑
i=1

pi δθi(.). In this context, the optimality crite-

rion can be expressed as follows:

ΨΠ(ξ ) =
∞

∑
i=1

pi(−log(
l

∑
j=1

w j[exp(
−θix j

1− x j
)(

1
(1− x j)2 −

θix j

(1− x j)3 )]
2)). (13)

Chernoff [7] demonstrated that when searching for a local optimal design, there exists
an optimal design where all the mass is concentrated at a single point within the design’s
support. Caratheodory’s theorem also confirms the existence of a one-point optimal de-
sign. However, when employing the Bayesian optimality criterion, a more complex situa-
tion arises. Braess and Dette showed that with a uniform prior distribution, as the support of
the prior distribution increases, the number of optimal design points for the single-parameter
model also increases. Challoner suggested that if the researcher aims to obtain a one-point
optimal design, it is advisable to consider a small support for the uniform prior distribution.
The same principle applies to nonparametric Bayesian designs. In this case, assuming a
uniform distribution over the interval [1, B] as the basic distribution, the one-point optimal
design can be achieved.

Equation (11) represents a stochastic function of the Dirichlet process. According to
Ferguson’s definition of the Dirichlet process, the direct calculation of (12) is not straight-
forward. To address this challenge and obtain an approximation of the optimal nonpara-
metric Bayesian criterion, methods such as the stick-breaking process is employed [31].
Saturaman (1994) introduced this method as a significant approach for generating realiza-
tions of the Dirichlet process, which we will explain below. Additionally, we will highlight
the discreteness of the Dirichlet process within the framework of the stick-breaking process.
To generate a realization of the Dirichlet process P with a concentration parameter α and
base distribution H we can follow the stick-breaking process.

First, we generate a sequence of random samples θ1,θ2, ... from the base distribution
H. Additionally, we generate a sequence of random samples V1,V2, ... from the Beta(1,α)

distribution. We define a sequence of probabilities p1, p2, ..., pk, ... as follows. We start
by choosing a point called V1 on a unit-length piece of wood and set p1 equal to V1. In
other words, p1 = V1. Then, we divide the remaining part of the wood into two parts,
V2(1−V1) and (1−V1)(1−V2). We consider the first part as p2. To calculate p3, we
divide the remaining part of the wood into two parts in the same manner as in step 2. We
continue this process, dividing each remaining part into two parts and assigning the first
part as the next weight in the sequence. By following these steps, we obtain a sequence
of weights p1, p2, ..., pk, ... that represents the probabilities associated with the generated
samples θ1,θ2, .... This sequence of weights reflects the stick-breaking process used to
approximate the Dirichlet process. So:

p1 =V1,

pi =Vi
i−1
∏
j=1

(1−Vj), i ≥ 2
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According to the structure described, it can be proven that
∞

∑
i=1

pi=1. For this purpose we

have:

1−
∞

∑
i=1

pi = 1−V1 −V2(1−V1)−V3(1−V2)(1−V1)− ...

= (1−V1)(1−V2 −V3(1−V2)− ...)

...

=
∞

∏
i=1

(1−Vi) (14)

By problem 32 in Chapter 1 of Folland (1999), we have [18]:

∞

∏
i=1

(1−Vi) = 0 ⇔
∞

∑
i=1

Vi = ∞

So, for every ε ∈ (0,1) we can write the following relation:

∞

∑
i=1

Pr(Vi > ε) = ∞

And using Borel-Cantelli’s Lemma, we will have:

Pr(Vi > ε, i.o) = 1 ⇒
∞

∑
i=1

Vi = ∞ a.s (15)

Therefore, by setting the relation (3.10) equal to zero, we will have
∞

∑
i=1

pi=1.

In this section, we focus on the use of a truncated normal distribution as the base measure
in the DP. To obtain the results, we employ nonlinear optimization programming using the R
package Rsolnp. The nonparametric Bayesian optimal designs are examined using the stick-
breaking method, and tables presenting the results are provided. To better understand the
influence of the α parameter, we present the results for four different values of α=1, 5, 10,
50. It is important to note that we consider a bounded design space χ=[0,1] without any loss
of generality. Tables 4-7 display the results obtained when the concentration parameter (α)

and uncertainty in the base measure increase. Based on these results, we can observe in the
class of two-point design, that largest weight corresponds to the smallest point. This pattern
is consistent across the investigated range of α values. According to the results, when the
value of α increases, the support points in two-point design do not significantly change. The
smallest point will have the most weight that this weight almost increases or remains fixed
by increasing the concentration parameter. Also, for three-point design, minimum support
point has the greatest weight. In addition, in the range under investigation, the results show
that we do not have a three-point design for µ = 5,σ = 2, and in fact, it converts to the
design by less points. This observation is more clear for larger concentration parameter.
But, by increasing the parameter space, optimal two and three-point design are obtained.
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Table 1: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=1. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3419671 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0245942 0.2728781 0.0341488 0.2776520 0.5086153

w 0.9696928 0.0303072 0.9789477 0.0210526 0.0000007
µ = 150, σ = 90 x 0.0065494 0.2995342 0.01578005 0.2997138 0.5013164

w 0.9999903 0.0000097 0.9999994 0.0000003 0.0000003

Table 2: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=5. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3233669 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0204877 0.2772758 0.03387816 0.2638516 0.5001318

w 0.9799968 0.0200032 0.9494947 0.0505048 0.0000005
µ = 150, σ = 90 x 0.0009694 0.2993877 0.01462319 0.3000076 0.4991483

w 0.9999854 0.0000146 0.9999999 0.0000004 0.0000004

Table 3: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=10. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3021963 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0156330 0.2706337 0.0257019 0.2071970 0.5050722

w 0.9898957 0.0101043 0.9265122 0.0734868 0.0000010
µ = 150, σ = 90 x 0.0006769 0.2990424 0.0126487 0.2992510 0.5007835

w 0.9863551 0.0136449 0.9999868 0.0000135 0.0000007



150 A. A. Nanvapisheh, S. Khazaei, H. Jafari: Nonparametric Bayesian optimal designs...

Table 4: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=50. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3030561 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0132530 0.2859840 0.0236265 0.2357064 0.5016003

w 0.9999973 0.0000027 0.9361683 0.06383056 0.0000001
µ = 150, σ = 90 x 0.0000608 0.2990344 0.0107339 0.2991683 0.5012125

w 0.9999865 0.0000135 0.9999959 0.0000020 0.0000021

Table 5 presents the results when assuming a constant mean of the base distribution and
increasing the variance. Specifically, in the two-point designs, it can be observed that the
smallest point has the highest weight. This table provides insights into the distribution of
weights in this scenario.

Table 5: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=1. First row: support points; second row:
weights.

Parameters Design Two points T hree− point
µ = 50, σ = 2 x 0.0000000 0.3000000 − − −

w 0.9999942 0.0000059 − − −
µ = 50, σ = 30 x 0.0237781 0.2842176 0.0384189 0.2794133 0.5005586

w 0.9795880 0.0204120 0.9587626 0.04123712 0.0000002
µ = 50, σ = 90 x 0.0108601 0.2875706 0.0257537 0.2810997 0.4938304

w 0.9899937 0.0100063 0.9791666 0.02083332 0.0000002

4. Concluding Remarks and Future Works

Nonlinear regression models are widely used in various scientific fields, and the Bayesian
method is commonly employed to obtain optimal designs in such models. However, one of
the challenges in the Bayesian framework is the subjective selection of the prior distribution,
which can potentially lead to incorrect results. The choice of the prior distribution is often
based on the researcher’s beliefs, and it strongly influences the final outcome. Unfortu-
nately, the Bayesian approach lacks a systematic method for selecting the prior distribution.
To overcome these limitations and reduce reliance on restrictive parametric assumptions,
nonparametric Bayesian methods are pursued. In this study, we consider the prior distri-
bution as an unknown parameter and utilize the Dirichlet process to derive nonparametric
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Bayesian D-optimal designs. Specifically, we focus on a nonlinear model with one param-
eter, namely the Unit-Exponential distribution. We investigate the Bayesian D-optimal de-
sign for the unit exponential regression model (equation 10) using a truncated normal prior
distribution, examining various parameter values. By adopting a nonparametric Bayesian
approach and utilizing the Dirichlet process, we aim to address the challenges associated
with selecting the prior distribution in Bayesian optimal design construction. This allows
us to account for uncertainty and mitigate the impact of restrictive parametric assumptions,
providing more flexible and robust designs for nonlinear regression models.

In this study, we focus on utilizing the Polya Urn Scheme as the base distribution in
the Dirichlet process. To better understand the influence of the concentration parameter α ,
we present the results in tables for four different values of α=1, 5, 10, 50. These tables
provide valuable insights into the nonparametric Bayesian optimal designs, showcasing the
distribution of weights and support points. By analyzing the results for different values of
α , we can better understand the impact of this parameter on the design outcomes. This
approach allows us to explore and evaluate the performance of the nonparametric Bayesian
optimal designs under varying levels of concentration parameter α .

In the investigated range, the results reveal interesting findings. For small parameter
values, there are no two-point designs observed. However, by increasing uncertainty in the
base measure, another optimal point is obtained with a very small weight, resulting in a
design where the smallest point has the highest weight. These designs can be considered as
one-point designs, as the weight of the additional point becomes negligible.

In three-point designs, similar observations can be made. In some cases, two of the ob-
tained optimal points are very similar, leading to a design with fewer points. This indicates
that the additional point does not significantly contribute to the design in such cases.

Moreover, as the uncertainty in the base measure and the concentration parameter in
the Dirichlet process increase, the support points in the two-point designs do not undergo
significant changes. The weight of the smallest point increases rapidly, and it becomes the
point with the highest weight. This weight tends to either increase or remain relatively
stable with an increase in the concentration parameter.

It is important to note that this approach can be applied to other optimality criteria and
various models with two or more parameters. For example, nonparametric Bayesian opti-
mal designs using the A- or E-optimality criterion for the nonlinear model discussed in this
paper, along with a Dirichlet process prior, hold potential for further research. We hope to
report new results in this area in the near future.
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The use of the Bennet indicators and their transitive
versions for scanner data analysis

Jacek Białek1

Abstract

Although modern price index theory is based on comparisons of ratios of prices, quanti-
ties and expenditures, we may be more interested in the magnitude of differences in these 
characteristics in many business applications. The benefit of using these differences is that 
there is no problem associated with the occurrence of zero prices and quantities, a problem 
that arises when we work with ratios. In practice, we most often care about decomposing 
value difference into indicators of contributions from price and quantity differences. The 
best-known price and quantity indicators are the Bennet indicators, which are not transitive. 
Although there have been papers in the literature that propose a transitive version of the Ben-
net indicators, they deal with comparisons across firms in cross-section or panel contexts.

This paper revises the price and quantity Bennet indicators and their multilateral versions 
for the analysis of scanner data. Specifically, i nstead o f c onsidering c omparisons across 
firms, countries or r egions, t he t ransitive versions of t he Bennet i ndicators a re adapted to 
work on scanner data sets observed over a fixed time w indow. Since the scanner data sets 
have a high turnover of products, which can make it difficult to interpret the difference in 
sales values over the compared time periods, the paper also considers a matched sample 
approach. One of the objectives of the study is to compare bilateral and multilateral Bennet 
indicator results across all available products or strictly matched products over time. It also 
examines the impact of data filters used and the level of data aggregation on the price and 
quantity Bennet indicators. According to the best author’s knowledge, this study is a pioneer 
in the field of implementing the multilateral Bennet indicators in scanner data analysis.

Key words: scanner data, the Bennet indicator, transitivity, multilateral indicators.

1. Introduction

Modern price index theory is based on comparisons of ratios of prices, quantities and ex-
penditures (von der Lippe, 2007; International Labour Office, 2004; International Monetary
Fund, 2020). These index numbers are used to construct various economic measures, such
as the Gross Domestic Product (GDP) or the Consumer Price Index (CPI). Nevertheless,
in many business applications we may be more interested in the magnitude of differences in
prices, quantities and sale values. The approach based on differences in prices may concern
many economic areas, e.g.: revenue change decompositions, profit and cost change decom-
positions, or the analysis of changes in consumer surplus (Diewert, 2005). An important
benefit of using such differences is that there is no problem associated with the occurrence

1Department of Statistical Methods, University of Lodz, Lodz, Poland, jacek.bialek@uni.lodz.pl & Department
of Trade and Services, Statistics Poland, Poland. E-mail: J.Bialek@stat.gov.pl. ORCID: https://orcid.org/0000-
0002-0952-5327.
© Jacek Białek. Article available under the CC BY-SA 4.0 licence
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of zero prices and quantities, a problem that arises when we work with ratios. It may be es-
pecially useful in many business contexts where not all goods are produced and purchased
in every period.

Zero prices and quantities are also common in scanner data sets due to the high turnover
of products in supermarkets (known as product churn). Scanner data, which support CPI
calculations in many countries, mean transaction data that specify turnover and numbers of
items sold by barcodes, e.g.: Global Trade Article Number (GTIN), formerly known as the
European Article Number (EAN), or Stock Keeping Unit (SKU) codes. Scanner data have
numerous advantages compared to traditional survey data collection because such data sets
are much bigger than traditional ones and they contain complete transaction information,
i.e. information about prices and quantities at the barcode level. Nevertheless, at the bar-
code level, in some product groups, significant shares of new and disappearing products are
observed (e.g. in the case of seasonal goods, or goods that are highly sensitive to trends and
fashion, such as cosmetics). Consequently, the occurrence of zero-scanner prices is even
common, which causes analytical problems for statistical offices that use this kind of data
(imputation of missing data) as well as for supermarket owners wishing to compare the sales
performance of different product segments in two time periods. Thus, an approach based on
differences in price values, quantities and expenditures can also be very useful in analyzing
scanner data.

A differential pricing approach that decomposes at the overall level and at the individual
product level the change in sales value into price and volume effects can also be valuable
for any NSI (National Statistical Institute) that implements scanner data in inflation mea-
surement. Of course, the approach presented in the paper is not an alternative to the CPI or
HICP, but in the case of the aforementioned decomposition, it would enable the selection of
the most significant scanner products in terms of sales value and thus reduce large scanner
data sets to the minimum necessary. It does not make sense to take niche sales into account
when determining price indices and that is why the inflation basket should include the most
popular products. The discussed approach could therefore be useful when filtering products
(sales) in order to limit them to the most important ones.

The difference approach to index numbers is well established in the economic literature,
where it was introduced in the early 20th century (Bennet, 1920). Please note that index
numbers, expressed in terms of differences, are referred to as indicators (Diewert, 2005).
Recently, one can see a return of interest in this approach on the part of statisticians and
economists (Balk et al., 2004; Diewert, 2005; Fox, 2006; Cross and Färe, 2009; de Boer
and Rodrigues, 2020). However, according to the best of the author’s knowledge, there is a
lack of papers in the literature that apply the Bennet indicator to the analysis of scanner data,
which is the main objective of this paper. The contribution of this article to the indicator
considerations is as follows: (1) the Bennet indicators and their transitive versions defined
for comparisons across firms (or regions) in cross-section or panel context are adopted to
work on scanner data sets observed over a fixed time window; (2) the axiomatic properties
of the Bennet multilateral indicator are verified; (3) variants of the Bennet indicators based
on matched samples are considered, which may be more accurate due to a high turnover of
scanner products. In particular, a comparison of bilateral and multilateral Bennet indicator
results across all available products or strictly matched products is made; (4) the impact of
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data filters used and the level of data aggregation on the price and quantity Bennet indicators
is also examined.

The structure of the paper is as follows: Section 2 presents the bilateral Bennet indicator
in the terminology of scanner data, Section 3 adopts the transitive Bennet indicator from
the field of inter-firm comparisons and presents its axiomatic properties, Section 4 presents
the results of an empirical study in which the bilateral and multilateral Bennet indicators
are applied to the analysis of scanner data and are compared, and Section 5 lists the most
important conclusions of the research carried out.

2. The Bennet indicators

Fisher (1922) provided an axiomatic approach to the index theory (the so called test ap-
proach) and Konüs (1939) provided an economic framework for index numbers. Although
back in the late 20th century Bennet’s indicators (or any other indicators) did not yet have
the kind of fundamental basis that indexes do, recent theoretical results are fundamentally
changing that. Many recent papers provide a promising background for the construction of
the Bennet indicators. For instance, Chambers (2001) proposed a new economic framework
for indicators by using Diewert’s (1976) quadratic lemma. Balk et al. (2004) developed
the theory of economic price and quantity indicators by deriving an exact relationship be-
tween indicators and directional distance functions. In the cited paper, observable bounds
for the indicators are also derived. Finally, in the paper by Diewert (2005), an additive test
approach is developed.

As a rule, the Bennet indicators are calculated using firm-level price and quantity data.
Authors of most theoretical papers on the Bennet indicators use the context of production
theory and/or concentrate on the input side of firms or regions (Balk et al., 2004; Cross
and Färe, 2009; Fox, 2006). According to the best of the author’s knowledge, this study is
pioneering on the ground of implementing the multilateral Bennet indicators in scanner data
analysis. In this section, the Bennet indicator formula will be expressed with the additional
distinction between available and matched products that is made in the analysis of scanner
data.

Let us denote sets of homogeneous products belonging to the same product group in the
months 0 and t by G0 and Gt respectively, and let G0,t denote a set of matched products in
both moments 0 and t. Let Gt

0 denote the set of available products in the months 0 and t, i.e.
Gt

0 =G0∪Gt . Let pτ
i and qτ

i denote the price (more precisely: unit value) and quantity of the
i-th product at the time τ ∈ {0, t}, where we assume that pτ

i = qτ
i = 0 if the i-th product is

not available at the time τ . Under the above significations, the Laspeyres and Paasche price
and quantity indicators, which are additive counterparts of the Laspeyres and Paasche price
and quantity indices (International Labour Office, 2004), can be written as follows:

IPL
0,t = ∑

i∈Gt
0

q0
i (pt

i − p0
i ), IQL

0,t = ∑
i∈Gt

0

p0
i (q

t
i −q0

i ), (1)

IPP
0,t = ∑

i∈Gt
0

qt
i(pt

i − p0
i ), IQP

0,t = ∑
i∈Gt

0

pt
i(q

t
i −q0

i ). (2)
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The additive counterpart of the Fisher (1922) indices are the indicators of Bennet (1920)
defined as the arithmetic mean of the Laspeyres and Paasche price indicators:

IPB
0,t =

1
2
(IPL

0,t + IPP
0,t) = ∑

i∈Gt
0

q0
i +qt

i
2

(pt
i − p0

i ), (3)

IQB
0,t =

1
2
(IQL

0,t + IQP
0,t) = ∑

i∈Gt
0

p0
i + pt

i
2

(qt
i −q0

i ). (4)

Let V 0
G0

and V t
Gt

denote total expenditures on all available products in the periods 0 and
t respectively, i.e. V 0

G0
= ∑

i∈G0

p0
i q0

i and V t
Gt

= ∑
i∈Gt

pt
iq

t
i . The Bennet indicators allow us to

decompose the absolute change in the total value additively into a price effect and a quantity
effect (Bennet, 1920; Diewert, 2005):

V t
Gt
−V 0

G0
= IPB

0,t + IQB
0,t . (5)

Equation 5 means that the Bennet indicators satisfy the sum test known from the ax-
iomatic approach. A list of basic axiomatic properties of the Bennet indicators is quite long,
i.e. it is easy to show that these indicators fulfill the following tests for indicators: identity,
monotonicity in prices (quantities), homogeneity of degree 1 in prices (quantities), time re-
versibility, as well as dimensional invariance (for more mathematical details see Diewert
(2005); Balk (2008) or Balk (2016)).

For companies or regions, the set of commodities is relatively constant over time and
zero prices or quantities are relatively rare. In the case of scanner data, due to the high
turnover of products, deficiencies on the price and quantity side are rampant, especially
over longer time periods. For the statistical office or the owner of a retail chain, information
about the difference in total sales of scanner products in the compared periods may not be
meaningful if the set of products simultaneously available in these periods is small. It seems
that complementary, if not superior, information would be the knowledge of the difference
in total sales in the compared periods but limited only to matched products. Following
this thought, let us consider a price and quantity Bennet indicator defined only for matched
products:

mIPB
0,t = ∑

i∈G0,t

q0
i +qt

i
2

(pt
i − p0

i ), (6)

mIQB
0,t = ∑

i∈G0,t

p0
i + pt

i
2

(qt
i −q0

i ). (7)

Now, let V 0
G0,t

and V t
G0,t

denote total expenditures on all matched products in the periods

0 and t respectively, i.e. V 0
G0,t

= ∑
i∈G0,t

p0
i q0

i and V t
G0,t

= ∑
i∈G0,t

pt
iq

t
i . By analogy with the

original approach (Bennet, 1920), it could be shown that the the Bennet indicators based on
matched samples allow for the following decomposition:

V t
G0,t

−V 0
G0,t

= mIPB
0,t +mIQB

0,t . (8)
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3. The multilateral Bennet indicators

A lack of index transitivity is a well-known problem in the literature on international
comparisons or scanner data (Gini, 1931; Eltetö and Köves, 1964; Szulc, 1964; Ivancic et
al., 2011; Chessa, 2016). For international or inter-regional comparisons, transitivity means
that estimates of price dynamics and quantities of selected attributes do not depend on the
choice of underlying country or region. Similarly, for comparisons across firms, computing
transitive price and quantity indices (indicators) do not depend on the choice of the firm-
benchmark.

For some time, multilateral price indices, which were originally used for cross-country
or cross-regional comparisons, have been adopted for calculating inflation based on scan-
ner (also web-scraped) data. Commonly known methods include the GEKS method Gini,
1931; Eltetö and Köves, 1964), the Geary-Khamis method (Geary, 1958; Khamis, 1972),
the CCDI method (Caves et al., 1982), or the Time Product Dummy Methods (de Haan
and Krsinich, 2018). A multilateral index is compiled over a given time window composed
of T + 1 successive months (typically T = 12), i.e. the time window consists of periods:
0,1,2, ...,T . Multilateral price indices take as input all prices and quantities of the previ-
ously defined individual products, which are available in a given time window. Multilateral
price indices are transitive, which here means that the calculation of the price dynamics for
any two moments in the time window does not depend on the choice of the base period. By
definition, transitivity eliminates the chain drift problem. The chain drift can be formalized
in terms of the violation of the multi period identity test. According to this test, one can
expect that when all prices and quantities in a current period revert back to their values from
the base period, then the index should indicate no price change and it equals one.

In the case of any price indicator IP and quantity indicator IQ, transitivity, in mathe-
matical notation, means that the following relationships occur for any 0 < s < t:

IP0,s + IPs,t = IP0,t , (9)

IQ0,s + IQs,t = IQ0,t . (10)

It can be shown that the bilateral Bennet indicators are not transitive (Fox, 2006). Cham-
bers (1998) showed a method by which any price or quantity indicator can be made tran-
sitive. His method is applied to the Bennet indicator to explicitly derive for the first time
a transitive Bennet indicator. In this paper, however, we adopt a transformation method by
Fox (2008) to derive transitive Bennet price and quantity indicators (see Section 3.1).

3.1. Bennet’s transitive indicators design

The design of the Bennet multilateral indicators is an adaptation of Fox’s (2006) ideas
for the scanner data case, so let us first introduce the significations for the considered time
interval [0,T ]. Let G[0,T ] denote the set of available products in the whole interval [0,T ],
i.e. G[0,T ] = ∪T

τ=0Gτ , and let Gm
[0,T ] denote the set of matched products in the whole interval
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[0,T ], i.e. Gm
[0,T ] = ∩T

τ=0Gτ . Let us introduce the additional notations:

T IPB
τ,t = ∑

i∈G[0,T ]

qτ
i +qt

i
2

(pt
i − pτ

i ), (11)

mT IPB
τ,t = ∑

i∈Gm
[0,T ]

qτ
i +qt

i
2

(pt
i − pτ

i ), (12)

T IQB
τ,t = ∑

i∈G[0,T ]

pτ
i + pt

i
2

(qt
i −qτ

i ), (13)

mT IQB
τ,t = ∑

i∈Gm
[0,T ]

pτ
i + pt

i
2

(qt
i −qτ

i ). (14)

Following and adopting Fox’s (2006) transformation of the bilateral Bennet indicators,
let us first construct the multilateral Bennet indicators for all available products in a fixed
time interval. To do this, we need to average the bilateral Bennet indicators over a given
time interval as follows:

IPB
t0 =

1
T +1

T

∑
τ=0

T IPB
τ,t0 , (15)

IQB
t0 =

1
T +1

T

∑
τ=0

T IQB
τ,t0 . (16)

Now, the price and quantity multilateral Bennet indicator can be defined respectively:

MIPB
0,t = IPB

t − IPB
0 , (17)

MIQB
0,t = IQB

t − IQB
0 . (18)

Note that the multilateral indicators (17) and (18) are transitive. In fact, we have

MIPB
0,s +MIPB

s,t = IPB
s − IPB

0 + IPB
t − IPB

s = IPB
t − IPB

0 = MIPB
0,t , (19)

and
MIQB

0,s +MIQB
s,t = IQB

s − IQB
0 + IQB

t − IQB
s = IQB

t − IQB
0 = MIQB

0,t . (20)

It is easy to show that multilateral indicators (17) and (18) fulfill the following tests
for indicators: homogeneity of degree 1 in prices (quantities), time reversibility, as well as
dimensional invariance (the proof is straightforward and thus it is omitted). Note that the
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sum test actually holds:

MIPB
0,t +MIQB

0,t =
1

T +1

T

∑
τ=0

(T IPB
τ,t − T IPB

τ,0 + T IQB
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0.5
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i −qτ
i pτ

i +qt
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i +

+ pτ
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i q0
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i qτ
i ) =
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τ=0

∑
i∈G[0,T ]

(2pt
iq

t
i −2p0

i q0
i ) = ∑

i∈G[0,T ]

(pt
iq

t
i − p0

i q0
i ) =

= ∑
i∈G[0,T ]

pt
iq

t
i − ∑

i∈G[0,T ]

p0
i q0

i =V t
G[0,T ]

−V 0
G[0,T ]

.

(21)

Note that from (15) and (17) we obtain

MIPB
0,t =

1
T +1

( ∑
τ /∈{0,t}

(T IPB
τ,t − T IPB

τ,0)+ T IPB
0,t − T IPB

0,0 + T IPB
t,t − T IPB

t,0). (22)

Since T IPB
0,0 = T IPB

t,t = 0 and T IPB
0,t = −T IPB

t,0 (time reversability), from (22), we have
that

MIPB
0,t =

1
T +1

( ∑
τ /∈{0,t}

(T IPB
τ,t + T IPB

0,τ)+2T IPB
0,t). (23)

Since the bilateral Bennet price indicator satisfies the monotonicity in prices test, we
conclude from (23) that the multilateral Bennet indicator also satisfies this test. In fact, if
prices in the current period t rise, then the values of each of the indicators T IPB

τ,t and T IPB
0,t

rise too. On the other hand, if we increased prices in the base period, we would get smaller
values of each of the indexes T IPB

0,τ and T IPB
0,t . As a consequence, the multilateral Bennet

price indicator behaves identically, and thus it satisfies the monotonicity in prices test. In an
analogous way, it can be shown that the Bennet multilateral quantity indicator satisfies the
monotonicity in quantities test.

Now, let us assume that there is the following relationship between prices and quantities
of the current and base periods: p0

i = pt
i and q0

i = qt
i for each i∈G[0,T ]. Since the multilateral
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price Bennet indicator satisfies transitivity, we have

MIPB
0,1 +MIPB

1,2 +MIPB
2,3 + ...MIPB

t−1,t = MIPB
0,t =

=
0.5

T +1

T

∑
τ=0

∑
i∈G[0,T ]

((qτ
i +qt

i)(pt
i − pτ

i )− (qτ
i +q0

i )(p0
i − pτ

i )) =

=
0.5

T +1

T

∑
τ=0

∑
i∈G[0,T ]

((qτ
i +q0

i )(p0
i − pτ

i )− (qτ
i +q0

i )(p0
i − pτ

i )) = 0.

(24)

Since the equality of prices and quantities from the current and base periods entails
a relationship (24), we conclude that the Bennet price indicator satisfies the multi-period
identity test (in the additive version for indicators). In an analogous way, it can be shown
that the multilateral quantity Bennet indicator is transitive. According to the best of the
author’s knowledge, this is the first suggestion in the literature that the multi-period identity
test should be included in the construction of transitive indicators. In our opinion, however,
this is a very natural requirement, which in the construction of multilateral price indices
is a key property that eliminates the problem of chain drift observed in the calculation of
inflation based on scanner data (Chessa, 2015; Diewert, 2020).

In the case of well-known and widely recognized multilateral indices (e.g. GEKS,
CCDI, TPD, or Geary-Khamis), we observe a certain regularity: these indices satisfy the
multi-period identity test (they are free of chain drift) but do not satisfy the identity test (Bi-
ałek, 2022). An analogous regularity applies to the Bennet multilateral price (and quantity)
indicator. Breaking the identity test will be demonstrated with a simple example with regard
to the multilateral price Bennet indicator.

Example. Let us consider a data set included in the publication by Eurostat (2022), i.e.
a data set concerning four individual products observed in four periods {0,1,2,3}. Let us
make a change in prices in the last period, assuming p3

i = p0
i for each i−th product (Tab. 1).

Table 1: Example data set with four individual products

Individual product p0 q0 p1 q1 p2 q2 p3 q3

1 2.97 15 2.96 25 2.93 32 2.97 33
2 3.64 44 3.50 79 3.36 65 3.64 90
3 6.75 49 6.71 41 6.67 35 6.75 53
4 3.37 35 3.29 59 3.37 30 3.37 31

After calculations (*), we obtain the difference in total sales value in the last and first
period, which equals 234.42. In the case of the bilateral Bennet indicators we obtain: IPB

0,3 =

0 and IQB
0,3 = 234.42, which confirms that the bilateral Bennet indicators meet the identity

test. However, let us note that at the same time we obtain: MIPB
0,3 = 2.55 ̸= 0 and MIQB

0,3 =

231.87, which means that the multilateral price Bennet indicator does not satisfy the identity
test.

(*) the corresponding R script is available at:
https://github.com/JacekBialek/important_documents/blob/main/IdentityBennet.R
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Remark. Let us conclude this session by pointing out that all the axiomatic properties
valid for the multilateral Bennet indicators estimated on the set of all available products
G[0,T ] also carry over to the analogous multilateral Bennet indicators estimated on the set of
matched products Gm

[0,T ]. The transitive Bennet indicators based on matched products can
be written as

mMIPB
0,t =

1
T +1

T

∑
τ=0

(mT IPB
τ,t −mT IPB

τ,0), (25)

mMIQB
0,t =

1
T +1

T

∑
τ=0

(mT IQB
τ,t −mT IQB

τ,0). (26)

In an analogous way to (21), it can be shown that holds:

mMIPB
0,t +mMIQB

0,t =V t
Gm
[0,T ]

−V 0
Gm
[0,T ]

. (27)

3.2. Multilateral Laspeyres and Paasche indicators vs multilateral Bennet indicators

Let us introduce additional notations for the Laspeyres (superscript "L") and Paasche
(superscript "P") indicators defined on the basis of the whole set of available products:

T IPL
τ,t = ∑

i∈G[0,T ]

qτ
i (pt

i − pτ
i ), (28)

T IQL
τ,t = ∑

i∈G[0,T ]

pτ
i (q

t
i −qτ

i ), (29)

T IPP
τ,t = ∑

i∈G[0,T ]

qt
i(pt

i − pτ
i ), (30)

T IQP
τ,t = ∑

i∈G[0,T ]

pt
i(q

t
i −qτ

i ). (31)

Let us define, analogously to (17) and (18), the average bilateral Laspeyres and Paasche
indicators over a given time interval as follows:

IPL
t0 =

1
T +1

T

∑
τ=0

T IPL
τ,t0 , (32)

IQL
t0 =

1
T +1

T

∑
τ=0

T IQL
τ,t0 , (33)

IPP
t0 =

1
T +1

T

∑
τ=0

T IPP
τ,t0 , (34)

IQP
t0 =

1
T +1

T

∑
τ=0

T IQP
τ,t0 . (35)
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Now, the price and quantity multilateral Laspeyres and Paasche indicators can be defined
respectively:

MIPL
0,t = IPL

t − IPL
0 , (36)

MIQL
0,t = IQL

t − IQL
0 , (37)

MIPP
0,t = IPP

t − IPP
0 , (38)

MIQP
0,t = IQP

t − IQP
0 . (39)

It is easy to verify that the multilateral Laspeyres and Paasche indicators are transitive.
Please note that the Laspeyres indicators satisfy identity. In fact, if prices in the current
period are the same as prices in the base period, i.e. p0

i = pt
i for each i, then we obtain

MIPL
0,t =

0.5
T +1

T

∑
τ=0

∑
i∈G[0,T ]

(qτ
i (pt

i − pτ
i )−qτ

i (p0
i − pτ

i )) =

=
0.5

T +1

T

∑
τ=0

∑
i∈G[0,T ]

(qτ
i (p0

i − pτ
i )−qτ

i (p0
i − pτ

i )) = 0.

(40)

It can be shown in a similar way that if quantities in the current period are the same as
quantities in the base period, i.e. q0

i = qt
i for each i, then we obtain MIQL

0,t = 0. Note that this
conclusion is analogous to results from the paper of Białek (2022). The cited paper shows
that although the multilateral GEKS index, which is transitive, does not satisfy the identity
test for indices, its version based on the Laspeyres index (GEKS-L) does. Unfortunately, in
general, we observe that V t

G[0,T ]
−V 0

G[0,T ]
̸= MIPL

0,t +MIQL
0,t and V t

G[0,T ]
−V 0

G[0,T ]
̸= MIPP

0,t +

MIQP
0,t . Nevertheless, as can easily be shown (the proof is omitted), there is a relationship

analogous to the one we observe for the Laspeyres and Paasche bilateral indicators:

V t
G[0,T ]

−V 0
G[0,T ]

= MIPL
0,t +MIQP

0,t , (41)

V t
G[0,T ]

−V 0
G[0,T ]

= MIPP
0,t +MIQL

0,t . (42)

Since, from (41) and (42), we conclude that the Laspeyres and Paasche multilateral
indicators are equally good, we may use their arithmetic mean to define a proper multilateral
indicator. Nevertheless, as expected, we then get the following:

MIPL
0,t +MIPP

0,t

2
=

=
0.5

T +1

T

∑
τ=0

∑
i∈G[0,T ]

(qτ
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i )+qt
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i )−q0

i (p0
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=
0.5

T +1

T

∑
τ=0

∑
i∈G[0,T ]

((qτ
i +qt

i)(pt
i − pτ

i )− (qτ
i +q0

i )(p0
i − pτ

i )) = IPB
t − IPB

0 = MIPB
0,t .

(43)
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In an analogous way, it can be shown that

MIQL
0,t +MIQP

0,t

2
= MIQB

0,t . (44)

4. Empirical illustration

In the following empirical study, we use scanner data from one retail chain in Poland,
i.e. monthly data on stationery and hygiene products (COICOP 5: 121322) sold in over 500
outlets during the period from December 2021 to December 2022 (334268 records, which
means 62 MB of data in csv format). The COICOP 5 product group consists of the following
local COICOP 6 product subgroups: tissues (60 products: IDs), wet wipes (88 IDs), toilet
paper (117 IDs), baby diapers (193 IDs), sanitary pads (20 IDs), sanitary napkins (67 IDs),
and tampons (22 IDs).

Before calculating the price indices, the data sets were carefully prepared. Product clas-
sification was performed using the data_selecting() and data_classification()
functions from the PriceIndices R package (Białek, 2021). The first function required
manual preparation of dictionaries of keywords and phrases that identified individual prod-
uct groups. The second function was used for problematic, previously unclassified products
and required manual preparation of learning samples based on historical data. The classifi-
cation itself was based on machine learning using random trees and the XGBoost algorithm
(Tianqi and Carlo, 2016). Next, the product matching was carried out based on the available
GTIN (Global Trade Item Number) bar codes, internal retail chain codes and product la-
bels. To match products, we used the data_matching() function from the PriceIndices
package. To be more precise: products with two identical codes or one of the codes iden-
tical and an identical description were automatically matched. Products were also matched
if they had identical one of the codes and the Jaro-Winkler distance (Jaro, 1989) of their
descriptions was smaller than the fixed precision value: 0.02.

The sales value difference, the Bennet price indicator ("price effect" in the figure) and
the Bennet quantity indicator ("quantity effect") were compared, with calculations made for
different variants. First, the bilateral versions of the Bennet indicators (Fig. 1 and 2) was
compared separately with the multilateral versions (Fig. 3 and 4). The bilateral indicators,
like the multilateral ones, were also considered in two cases: without filtering the original
data (Fig. 1 and 3) and with the application of a low sales filter with its parameter λ = 1.25
(van Loon and Roels, 2018) (Fig. 2 and 4). The low sales filter was used to eliminate
products with relatively low sales from the sample (almost 29% of products were removed).

Clarification is needed on how to interpret Fig. 1-4. Let us first emphasize that this part
of the analysis considers the most disaggregated level of data, i.e. the GTIN barcode level.
For the characteristics under study (value difference, price or quantity effect), their sorted
in ascending order values calculated for all months from the analyzed time window and
determined for all available products in this time window are marked on the OX axis. On
the OY axis, analogous values for the corresponding months are marked, with only matched
products included this time. In this way, easy-to-interpret figures are obtained. Namely: the
theoretical red line (the curve y = x, which is named "identity") would indicate a situation
in which the inclusion of product matching does not change the values of the indicators
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estimated on the set of all available products. If the empirical curve (the green one, which is
named "observed") is under the theoretical red line, it means that product matching caused
a decrease in the values of the characteristics under study. The more the empirical line
diverges from the theoretical one, the greater the above-mentioned effect becomes. On the
other hand, if the empirical curve is above the theoretical line, we conclude that considering
only matched products in determining the difference in the value of sales and the Bennet
indicators led to an increase in the value of these characteristics compared to estimates based
on all available products.

As can be observed in Fig. 1-2, for the bilateral approach, data filtering clearly increases
the product matching effect especially in the context of the price Bennet indicator. Here,
after applying data filtering, we observe a partial transition of the empirical curve above the
theoretical line, which was not observed before filtering. Interestingly, in the multilateral
approach, we observe an analogous effect but on the side of the Bennet quantity indicator
(see Fig. 3 and 4). Consequently, after filtering, here we observe greater differences in sales
values in the compared months for matched products than for all available products (the
empirical curve is generally above the theoretical line, see Fig. 4).
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Figure 1: Comparison of the difference in the value of sales and the bilateral Bennet in-
dicators calculated for all available products and for matched products (no data filters are
applied)
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Figure 2: Comparison of the difference in the value of sales and the bilateral Bennet indica-
tors calculated for all available products and for matched products (data filters are applied)
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Figure 3: Comparison of the difference in the value of sales and the multilateral Bennet
indicators calculated for all available products and for matched products (no data filters are
applied)
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Figure 4: Comparison of the difference in the value of sales and the multilateral Bennet
indicators calculated for all available products and for matched products (data filters are
applied)

Undoubtedly, in the case of defining a homogeneous product at the level of the GTIN
bar code, the differences between multilateral and bilateral indicators must simply result
from the fact that some of these products are withdrawn from sale during the time window.
Both in the case of bilateral and multilateral approaches, a significant impact of data filter-
ing on the relationship between indicators determined for matched products and indicators
determined based on all available products can be seen. In order to take a closer look not so
much at the relationship as at the values of the quantity and price Bennet indicators, it was
decided to additionally take into account the level of data aggregation. To be more precise,
the values of the Bennet indicators (in all versions) were determined both for the product
defined very narrowly (GTIN code level) and broadly (COICOP 6 level). In the case of the
COICOP 6 level, as a rule, we do not observe a loss of products (subgroups), and thus the
theoretical line will always coincide with the empirical line (matching the products will not
change the values of the indicators). However, it can be expected that not only data filter-
ing, but also a change in the level of data aggregation will substantially affect the price and
quantity values of the Bennet indicators. An interesting direction of research also seems to
be the verification of the hypothesis that the transition from bilateral to multilateral Bennet
indicators will substantially change the shares of individual subgroups of products after de-
composition of indicators even at a higher level of aggregation. Taking the above aspects
into account, a number of comparisons were made for the current period set at the end of
the time window (December, 2022).



STATISTICS IN TRANSITION new series, September 2024 169

Table 2: Comparison of the Bennet indicators across data aggregation level and data filtering
(all available products are considered, the normalized (∗) values are in brackets)

GTIN level: bilateral approach
characteristics no data filtering with data filtering
sales value difference 7769806.28 (100) 6624556.59 (100)
price Bennet indicator 10525438.59 (135.47) 7082331.13 (106.91)
quantity Bennet indicator -2755632.31 (-35.47) -457774.54 (-6.91)

GTIN level: multilateral approach
characteristics no data filtering with data filtering
sales value difference 7769806.28 (100) 6624556.59 (100)
price Bennet indicator 9228411.35 (118.77) 6452990.29 (97.41)
quantity Bennet indicator -1458605.07 (-18.77) 171566.3 (2.59)

COICOP 6 level: bilateral approach
characteristics no data filtering with data filtering
sales value difference 7769806.28 (100) 6624556.59 (100)
price Bennet indicator 9952719.32 (128.09) 8079099.68 (121.96)
quantity Bennet indicator -2182913.04 (-28.09) -1454543.09 (-21.96)

COICOP 6 level: multilateral approach
characteristics no data filtering with data filtering
sales value difference 7769806.28 (100) 6624556.59 (100)
price Bennet indicator 8456853.19 (108.84) 6875623.85 (103.79)
quantity Bennet indicator -687046.91 (-8.84) -251067.26 (-3.79)

∗ By normalized values we mean those obtained by taking the difference in sales value set
at 100 as a reference point.

Table 3: Price and quantity contributions across bilateral and multilateral approach (all
available products are considered, the normalized (∗) values are in brackets: total sales
value difference = 100)

product contributions: bilateral approach
COICOP 6 subgroup sales value difference price contributions quantity contributions
tissues 2423488.86 (36.58) 1738333.88 (26.24) 685154.98 (10.34)
toilet paper -149921.79 (-2.26) 92165.13 (1.39) -242086.92 (-3.65)
baby diapers 3200407.98 (48.31) 5963636.80 (90.02) -2763228.82 (-41.71)
sanitary pads 1142085.37 (17.24) 208307.56 (3.14) 933777.81 (14.10)
sanitary napkins -103572.86 (-1.56) 31282.13 (0.47) -134854.99 (-2.04)
tampons 112069.03 (1.69) 45374.18 (0.68) 66694.85 (1.01)

product contributions: multilateral approach
COICOP 6 subgroup sales value difference price contributions quantity contributions
tissues 2423488.86 (36.58) 1446161.01 (21.83) 977327.85 (14.75)
toilet paper -149921.79 (-2.26) 72092.56 (1.09) -222014.35 (-3.35)
baby diapers 3200407.98 (48.31) 5054000.86 (76.29) -1853592.88 (-27.98)
sanitary pads 1142085.37 (17.24) 226985.90 (3.43) 915099.47 (13.81)
sanitary napkins -103572.86 (-1.56) 25785.94 (0.39) -129358.80 (-1.95)
tampons 112069.03 (1.69) 50597.58 (0.76) 61471.45 (0.93)

∗ By normalized values we mean those obtained by taking the difference in sales value set
at 100 as a reference point.
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It can be noted that in our study, for unfiltered data, larger absolute values of the Bennet
indicators were obtained in the bilateral case than in the multilateral one (see Tab. 2). Thus,
the lack of data filtering generated greater separation of price and quantity effects. In the
case of filtered data, the opposite relation is true, i.e. greater separation of price and quantity
effects can be observed on the side of the multilateral Bennet indicators. In both approaches
(bilateral and multilateral), regardless of the level of data aggregation, the application of the
low sales filter led to a reduction in the absolute value of the Bennet indicators, and thus to
a flattening of the difference between the price and quantity effects.

When analyzing the shares of individual product subgroups in the total volume, price
and quantity effect, it can be seen that in the case of aggregation at the COICOP 6 level,
the change in approach from bilateral to multilateral does not cause such large changes
in the values of the indicators (Tab. 3). The only exception to this is the baby diapers
subgroup, for which the largest increase in sales value was recorded during the time interval
considered (3200408 PLN). For this subgroup of products, the normalized Bennet price
indicator changed from 90.02 to 76.29, and the normalized Bennet quantity indicator from
-41.71 to -27.98 when switching from a bilateral to a multilateral approach. However, we do
not make general conclusions here and the relationships presented require in-depth research
to be able to call them regularities.

5. Conclusions

The adaptation of the Bennet transitive indicators to multilateral versions, operating on
a fixed time window, appears to be a valuable addition to the analysis of scanner data due to
the product churn that occurs here. Such additional analysis, which separates volume, price
and quantity effects at different levels of aggregation, can be a valuable addition to analyses
conducted by statistical offices (e.g.: when determining the list of representatives of the CPI
basket) but can also be a valuable source of information for the owner of a retail chain when
determining product demand.

A valuable result from the work is the conclusion that the versions of the Bennet bi-
lateral and multilateral indicators differ not only in the set of tests (axioms) they fulfill but
also generate different values regardless of the level of data aggregation. The main theo-
retical conclusion is that multilateral Bennet indicators, while gaining transitivity, lose one
of the leading axioms (identity test). However, as it was shown, it is possible to construct
an indicator that satisfies both transitivity and identity (e.g.: the Laspeyres multilateral in-
dicator). The paper also proposes that the construction of multilateral indices should take
into account the appropriate version of the multi-period identity test. The main practical
conclusion, on the other hand, is that the relationship between bilateral price and quantity
indicators depends on the level of data aggregation, the choice between matched products
and all available products, and the possible use of data filters. In particular, the application
of a low sales filter led to a flattening of the difference between the price and quantity effects
in the study, regardless of the level of data aggregation.

According to the best of the author’s knowledge, this article is the first application of
the Bennet multilateral indicators (in "matched" and "available" versions) for the analysis of
scanner data. Nevertheless, it raises many questions for the future and opens up potentially
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new research directions. In particular, from a theoretical point of view, the problem out-
lined in the work seems interesting, namely an attempt to construct multilateral indicators
that satisfy both the sum test (volume test) and identity. By analogy with multilateral indices
and the so-called splicing methods, techniques of combining data from a new month (and
thus a new time window) with data from the previous window may also be important for
practice. Various forms of extensions for multilateral Bennet indicators can be considered
here, which would, for example, keep a fixed time window width and connect the new time
window with the old one. From a practical point of view, it seems important to deepen re-
search similar to the one presented in the Empirical illustration section. Taking into account
a wide range of products and also intermediate levels of data aggregation could then allow
for a certain generalization of practical conclusions.
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Language independent algorithm for clustering text documents 
with respect to their sentiment 

Jerzy Korzeniewski1, Adam Idczak2  

Abstract 

Determining the sentiment of a written text is an important task in text research. This task 
can be performed either in the supervised or unsupervised version. In this paper, we propose 
a novel unsupervised algorithm for documents written in any language using documents 
written in Polish as an example. The clustering of Polish language texts with respect to their 
sentiment is poorly developed in the literature on the subject. The novelty of the proposed 
algorithm involves the abandonment of stoplists and lemmatisation. Instead, we propose 
translating all documents into English and performing a two-stage document grouping. 
In the first step of the algorithm, selected documents are assigned to a class of positive or 
negative documents based on a set of lexical and grammatical rules as well as a set of key-
terms. Key-terms do not have to be entered by the user, the algorithm finds them. In the 
second step, the remaining documents are attached to one of the classes according to the 
rules based on the vocabulary found in the documents grouped in the first step. The 
algorithm was tested on three corpora of documents and achieved very good results. 
Key words: text mining, document sentiment, document clustering. 

1.  Introduction 

Text clustering is becoming more and more important every day with the rapid 
development of media massive output of news, posts, comments, articles, etc. Media 
and official government departments can effectively handle news and grasp the 
development trend of news popularity. Therefore, clustering of texts has become an 
important research topic in text clustering. Text clustering with respect to text 
sentiment is a very vital part of this research topic. By text sentiment we understand 
either positive or negative opinion expressed by the author about the subject of the 
document under study. Other variants of the meaning of the term ‘sentiment’ are 
possible like, e.g. ‘sentence sentiment’, but we refer it to the sentiment of the whole 
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document. This approach is probably most difficult as it creates problems when there 
are several objects being described in the document. We propose a novel algorithm 
tested on Polish language texts, but the algorithm is independent of the language 
because its intrinsic feature is text initial translation into English. Another important 
feature of our proposal is the abandonment of any stoplists and lemmatisations. The 
reasons are quite obvious, in the case of the Polish language none of implementation of 
lemmatisation is free of errors, for example a word that has multiple meanings is 
converted into the base form of a word with a different meaning. Moreover, some words 
are not recognized and are not lemmatized at all. Even if there was any such procedure 
it would often kill the meaning of the text through harsh simplification of grammatical 
and lexical structures. Eder and Górski (2023) showed that there is no substantial 
difference between using lemmatised words and its original forms in classification 
problem. 

The paper is organized as follows. In Part 2 we give a short summary of related work 
in this research topic. In Part 3 we describe the proposal of our algorithm. Part 4 
contains empirical evaluation of the algorithm in the example of three Polish language 
text corpora and conclusions are given in Part 5. 

2. Related work review 

Although the task of unsupervised text clustering is closely related to the supervised 
version it is significantly less researched. It can be even considered to be a relatively new 
topic as its beginnings go back to hardly 2002 (Pang et al., Turney). For example, 
Turney used a specific unsupervised learning technique based on the mutual 
information between document phrases and the words “excellent” and “poor”, where 
the mutual information is computed using numbers collected by a search engine. Li and 
Liu (2012) proposed an algorithm for document clustering whose idea was to cluster 
repeatedly the documents via the k-means with random choice of starting points with 
subsequent majority voting mechanism. The number of running times needed to be 
large enough to lessen the effect of outliers and instability. In the second stage the 
polarity of clusters was determined on the basis of external sources (WordNet).  Souza 
(Souza et al., 2017) proposed a Particle Swarm Optimization (PSO) algorithm to cluster 
documents with respect to their sentiment. The cosine distance and silhouette index 
were used in assessing the clustering quality. The results were not very impressive. For 
example, the accuracy of clustering ranged from 40% to 60% and was sometimes losing 
to  k-means. The algorithm mimicked the behavior of insects in their search for food 
and attracted much attention, particularly in biological sciences. Probably, the first to 
propose a probability-based model approach to sentiment analysis were Lin and He 
(Lin et al., 2009). Their model was based on the Latent Dirichlet Allocation (LDA) and 
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achieved accuracy equal to about 70%. Similar to this approach is the one based on 
SOM (Self Organizing Map) type of neural networks, e.g. Chifu et al. (2015). In their 
research the algorithm achieved accuracy of about 60%. 

As far as researching the Polish language text is concerned, the only methodological 
work known to the authors is Kocon et al. (2019), however, the methods developed 
in this work are dependent on external sources. 

3. Description of the proposed algorithm 

The main idea behind the construction of the algorithm is the lack of use any 
extensive usage of stoplists and lemmatizations. Instead, the algorithm uses the 
translation of documents written in Polish into English. Translated documents are 
grouped based on a two-stage algorithm. In the first stage, documents are grouped 
based on rules using lists of positive and negative terms and key-terms found. In the 
second stage, documents are grouped based on positive and negative bigrams. These 
positive and negative bigrams are found close to key-terms in positive and negative 
documents grouped in the first stage respectively. Below are the steps that make up the 
algorithm: 

 
Figure 1:  Algorithmic description of the experiment 

Source: own work. 

 
Translation of documents 
The document corpora are translated fully automatically using the R language and the 
translate 2 function from the deeplr package3. This function uses the online DeepL 
translator4. 
 

                                                           
3 R documentation is available at https://cran.r-project.org/web/packages/deeplr/deeplr.pdf 
4 https://www.deepl.com/translator 

1. Translate every document into English and text 
preprocessing

2. Find key-terms

3. Do the first stage grouping

4. Find bigrams close to key-terms

5. Do the second stage grouping
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Text preprocessing 
Text preprocessing is an integral part of every text mining application. We reduce this 
step only to (1) remove all unwanted punctuation marks except sentence-ending marks, 
i.e. “?”, “!”, “.”, (2) use our own shortened stoplist containing only stopwords such as: 
“a”, “an”, “the”, “and”, “or”. These words are very common in the English language and 
rather do not convey any meaning.  
In this step, lemmatization is usually carried out, which is to remove inflections and 
map a word to its root form. To perform lemmatization, dictionaries (e.g. wordnet) are 
needed to enable this type of conversion of an inflectional word to its basic form. We 
propose to skip of direct lemmatization Polish language at this stage by swapping highly 
inflected Polish for less inflected English. This action has a twofold effect on the text. 
First, implicitly, a 'soft' lammatization is performed. Hence, for example, Polish words 
samochód, samochodu, samochodowi, samochodem, samochodzie can be replaced by 
one English word car. Secondly, morphologically complex languages with relatively free 
word-order which is Polish are converted into more structured English, which is more 
suitable for creating grouping rules. 
 
Finding key-terms 
We define a key-term as any term which is directly preceded or followed by a word 
from both positive and negative lists at least once as shown in the diagram below: 
 
 
 
 
 

AND 

 
 
 

Figure 2:  Key-term searching idea 

Source: own work. 

 
Example for searching hotel key-term: 
Great hotel for business trips! 
I am disappointed because of my stay in this ugly hotel. 
 

Lists of positive and negative words were created in an approach based on data 
analysis with expert verification. The list of positive (negative) words was formed by 
terms next to (up to 3 words) to the most common nouns in the set of positive 

key-
term 

positive word beginning of sentence rest of the sentence 

key-
term negative word beginning of sentence rest of the sentence 
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(negative) documents. Expert verification consisted of removing words with no 
sentiment, in particular, these were nouns (acting as subjects) or verbs (most often the 
word to be in various forms). The positive (negative) list contains words that are 
commonly associated with a positive (negative) connotation. These are mainly 
adjectives, adverbs and nouns. The positive list is presented below: 

adequate, amazing, awesome, beautiful, beautifully, best, better, classic, classics, 
clean, cleanliness, comfortable, competent, convincing, convenient, cool, cozy, decent, 
delicious, delighted, durable, ecstatic, effectively, efficient, efficiently, elegant, 
enjoying, excellent, exceptional, extra, fantastic, favourite, favourites, fine, firecracker, 
flawless, fresh, friendly, fun, good, great, happy, high-end, ideal, interesting, like, likes, 
long-lasting, love, lovely, magnificent, mega, neat, nice, nicely, ok, okay, outstanding, 
peaceful, perfect, pleasant, positive, positively, pretty, professional, professionally, 
reliable, revelation, right, satisfied, sensational, successful, successfully, super, superb, 
tasteful, tasty, timeless, top, true, truly, unbeatable, valuable, value, well, wonderful, 
worth, worthy. 

 
The negative list is presented below: 

bad, blatantly, break, broken, counterfeit, damage, damaged, defeat, defective, 
destroy, destroyed, dirty, disappointed, disappointing, disappointment, disillusion, 
disrupt, disturbance, disturbed, downside, dull, embarrassing, failure, faint, fake, 
fatal, hate, horrible, inadequate, lack, lacks, letdown, lousy, miserable, missing, 
monotone, mundane, plain, poor, poorest, poorly, problem, problems, scandal, 
scandalous, scandalously, shit, shitty, sorry, spoil, spoiled, tacky, terrible, terribly, 
ugly, unclean, unfortunately, uninteresting, unprofessional, unrealistic, unreliable, 
unsatisfied, unsuccessful, unsuccessfully, until, untrue, unvaluable, unworthy, 
valueless, waste, weak, worse, worst. 

 
The first stage grouping 

In the first stage grouping documents are grouped into two clusters (negatives or 
positives) according to the following 3 rules. 
 
Rule 1: 

• positive label is assigned to the document in which there is RECOMMEND 
(or its variation) followed by a full stop.  

• negative label is assigned to the document in which there is RECOMMEND 
(or its variation) followed by a full stop and preceded with negation.  

Rule 2: 
• positive label is assigned to the short document (n<5) in which there is at least 

one term from the list of positive terms or at least one term from the list of 
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negative terms preceded with negation (and there are no negative terms in 
a document), 

• negative label is assigned to the short document (n<5) in which there is at least 
one term from the list of negative terms or at least one term from the list of 
positive terms preceded with negation (and there are no positive terms in 
a document). 

Rule 3: 
• positive label is assigned to the document in which there is a key-term directly 

followed or preceded by a term from the list of positive terms and there are no 
terms from the list of negative terms, 

• negative label is assigned to the document in which there is a key-term directly 
followed or preceded by a term from the list of negative terms and there are no 
terms from the list of positive terms.  

Finding bigrams 
Bigrams are created based on up to the nearest 4 words preceding or following the 

key-terms separately for positive and negative documents grouped in the first stage. 
The procedure searches among these 4 words for the first 2 “to the left” and the first 2 
“to the right” of the key-term, skipping keywords and taking into account punctuation 
marks ending the sentence. We will further call these two words positive or negative 
bigrams (depending on which cluster the document belongs to). These bigrams are an 
essential part of the second stage grouping. The main idea for searching such bigrams 
is presented in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Bigram searching idea 

Source: own work. 

key-term 

search up to the character 
ending the searched 
sentence skipping words 
from the stoplist (but no 
more than 4 words to the 
right of the key-term) 

search to the character 
ending the previous sentence 
skipping words from the 
stoplist (but no more than  
4 words to the left of the 
key-term) 
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Real example (black words from the stoplist are skipped) – positive document with 
reception key-term: 
For praise deserves the reception open 24 hours a day. 
Bigrams created: praise deserves, open 24. 

The second stage grouping 
After the first grouping step, there are still documents that have not been assigned 

to one of the clusters. In the second stage, the positive and negative bigrams described 
above will be used to group these documents, i.e. positive (negative) label is assigned 
to the document in which there are more positive (negative) bigrams. 

4.  Empirical evaluation of algorithm 

Data sets 
Proposed method is evaluated on three datasets. These datasets were obtained from 

a company that collects online reviews. The first dataset called Hotels consists of reviews 
of hotels in Poland from 2020–2021. It consists of 4 385 terms. There were 221 negative 
and 1 667 positive documents as a total of 1 888 documents in the first dataset. The 
second corpus named Perfumes consists of reviews of perfumes from online shop from 
2021. It consists of 2 675 terms. There were 271 negative and 2 333 positive documents 
as a total of 2 604 documents in the first dataset. The third collection of documents 
(Courier) contains reviews of courier companies from Poland written in 2021. This 
dataset includes 4 579 terms among 4 191 documents (541 negative, 3 650 positive). 
Each document in these three datasets is labelled with positive or negative sentiment 
(positive or negative class). These labels were assigned manually by an opinion holder 
(by rating 1–5 stars where 1–2 stars documents are labelled as negative sentiment and 
4–5 are marked as positive, 3 stars are excluded because of ambiguous connotation). 

Results 
To determine the optimal number of key-terms, we ran the algorithm many times 

setting a different number of most frequent terms in the range of 10–100, measuring 
the quality of classification and the percentage of unclassified documents5. Based on the 
results, we recommend and adopt in the study the use of 20 key-terms, which in the 
3 datasets considered provided the smallest percentage of unclassified documents with 
high value of accuracy and F1 measures.  
Hotels key-terms: 

apartment, atmosphere, bathroom, beds, breakfast, conditions, decor, everything, 
food, helpful, hotel, large, location, place, price, restaurant, room, service, staff, tidy. 

                                                           
5 Excessively many key-terms negatively affect clustering rules since the document (often short review) would 

mostly consist of keywords. Even some documents would remain unclassified because they would only consist of 
key-terms. 
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Perfumes key-terms: 
as, delicate, fragrance, intense, it, lasting, long, masculine, more, my, original, 
packaging, perfume, price, product, quality, quiet, scent, sensual, smells. 

Courier key-terms: 

all, always, company, condition, contact, courier, delivery, everything, fast, it, order, 
package, pay, possible, price, quality, quick, service, shipment, time. 

For each data set, positive and negative bigrams were determined according to the 
idea presented in Figure 3. The mechanical method of determining bigrams is not 
without drawbacks, as both lists repeat terms with no sentiment such as “have been”, 
“has been”, “can not”, etc. It seems reasonable to correct such inaccuracies manually, 
but we wanted an algorithm that does not require human intervention. Note that this 
list is not fixed and will be specific to each dataset. Nevertheless, our results show that 
this effect does not adversely affect the quality of text clustering. 

We evaluated the proposed algorithm on the abovementioned three datasets with 
20 key-terms set-up. The results prove that the proposed algorithm yields high quality 
classification (see Table 1). The most commonly used measure of classification quality 
is accuracy, i.e. the percentage of correctly classified documents. The quality of 
classification was assessed by means of accuracy: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

,                                                  (1) 

where: 
TP (true positives) is the number of documents with positive sentiment classified as 

positive, 
TN (true negatives) is the number of documents with negative sentiment classified 

as negative, 
FP (false positives) is the number of documents with negative sentiment classified as 

positive, 
FN (false negatives) is the number of documents with positive sentiment classified 

as negative. 
 

Because of the unbalanced clusters within the datasets used, the F1 measure was 
used, which is the harmonic mean of precision and recall: 

𝐹𝐹1 =  2∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

,                                                  (2) 
where: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

,                                                  (3) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

,                                                  (4) 
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Table 1:  Detailed clustering results on three datasets 

Corpus 
Number of 
documents 

Number 
of terms 

Cluster 
frequencies 

Percent of 
grouped 

documents 
Accuracy F1 

Computing 
time (in 
seconds) 

Hotels 1 888 4 385 

1 667 – 
positive 

221 - 
negative 

95.50 94.40 96.93 15.43 

Perfumes 2 604 2 675 

2 333 – 
positive 

271 - 
negative 

92.71 94.26 96.89 16.35 

Courier 4 191 4 579 

3 650 – 
positive 

541 - 
negative 

93.35 92.84 95.86 29.95 

Source: own calculation based on three datasets. 

 
According to Table 1 the proposed two-stage algorithm achieves very high accuracy 

and F1 for all investigated datasets (both measures are above 90% for all cases). The 
highest accuracy is obtained on Hotels (94.40%), the lowest accuracy is obtained on 
Courier (92.84%). Similarly, in the case of F1 measure the highest score is achieved on 
Hotels (96.93%) and the lowest F1 is reported on Courier (95.96%).  

Table 1 also presents the percent of grouped documents, i.e. documents that are 
grouped into one of two clusters (positive or negative). The highest percentage is 
obtained on Hotels dataset (95.50%) and the lowest is observed on Perfumes (92.71%). 
It means that the proposed algorithm does still leave from 4.5% up to 7.29% of 
ungrouped documents depending on the dataset. 

It is worth mentioning that all considered datasets are grouped in less than a 
minute. All calculations were performed in R using the tm6, word2vec7 and deeplr8 
packages. 

5. Conclusions 

In the article, a novel unsupervised algorithm for determining the sentiment of text 
documents written in any language was proposed. The proposal was tested using the 
example of three corpora of documents in the Polish language. The very important task 

                                                           
6 R documentation is available at https://cran.r-project.org/web/packages/tm/tm.pdf 
7 R documentation is available at https://cran.r-project.org/web/packages/word2vec/word2vec.pdf 
8 R documentation is available at https://cran.r-project.org/web/packages/deeplr/deeplr.pdf 
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of establishing the sentiment of Polish texts is very poorly developed in the literature 
on the subject, therefore the algorithm fills this gap. The novelty of the proposed 
algorithm includes the abandonment of any extensive usage of stoplists and 
lemmatizations. Instead we first translated all documents into English and then carried 
out a two-stage documents grouping. In the first step the algorithm establishes key-
terms characteristic for the subject and using these terms, as well as a set of lexical and 
grammatical rules, assigns some documents to a class of positive or negative 
documents. In the second step, the remaining documents are attached to one of the 
classes by means of the rules based on the vocabulary, especially bigrams, found in the 
documents grouped in the first step. The algorithm was tested on three corpora of 
documents and achieved very good results comparable with most popular supervised 
neural networks for English texts (see Chifu et al., 2015 or Sharma et al., 2013). The 
limitations of the algorithms include unique words appearing in one-time occasions.  
In such cases it is impossible to overcome this limitation without the use of external 
sources. Other kind of limitation comes from inadequate translations, usually 
concerning modern slang expressions not covered by online translators. In spite of all 
drawbacks we strongly believe that the algorithm proposed deserves attention and 
further research. For the first attempt we would suggest extending the list of special 
grammatical structures clearly defining the sentiment independently of the subject of 
the text. 
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A finite state Markovian queue to let in impatient customers  
only during K-vacations 

R. Sivasamy1 

Abstract 

We investigate a matrix analysis study for a single-server Markovian queue with finite 
capacity, i.e. an M/M/1/N queue, where the single server can go for a maximum, i.e. a K 
number of consecutive vacation periods. During these vacation periods of the server, every 
customer becomes impatient and leaves the queues. If the server detects that the system is 
idle during service startup, the server rests. If the vacation server finds a customer after the 
vacation ends, the server immediately returns to serve the customer. Otherwise, the server 
takes consecutive vacations until the server takes a maximum number of vacation periods, 
e.g. K, after which the server is idle and waits to serve the next arrival. During vacation, 
customers often lose patience and opt for scheduled deadlines independently. If the 
customer’s service is not terminated before the customer’s timer expires, the customer is 
removed from the queue and will not return. Matrix analysis provides a computational form 
for a balanced queue length distribution and several other performance metrics. We design 
a ‘no-loss; no-profit cost model’ to determine the appropriate value for the maximum value 
of K consecutive vacation periods and provide a solution with a numerical illustration. 

Key words: impatient customers, vacation period, queue length, stationary distribution. 

1.  Introduction 

The main objective of this research is to develop a matrix method to obtain the 
queue length distribution of a single-server service system M/M/1/N, where N 
represents the maximum capacity of customers waiting. This system allows the server 
to conditionally take up to K vacations during which the system remains inactive. 
However, if a server returning from vacation finds a queue of customers, the server 
starts service according to first-come first-served (FCFS) standards. In addition, we 
revisit the algorithmic approaches given by (Neuts, 1981) and (Latouche & 
Ramaswami, 1999) to find a solution for the class of finite two-dimensional continuous-
time queue-length processes Z(t) = {L(t) , J(t); t≥0} defined in the space E: 

E= N0 x K0, N0 =  {0, 1, . . . , N, (<  ∞), } and K0 =  {0, 1, . . . , K } (1) 
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E-mail: sivasamyr@ub.ac.bw. ORCID: https://orcid.org/0000-0002-3158-928X. 
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The basic assumption is that the process L(t)= n (≥0) represents the observed queue 
length at time ’t’ and J(t) = j (j = 0, 1, . . ., (K-1)) indicates the (j+1)th vacation at time ’t’, 
where J(t) = K indicates the state of the server, whether idle or busy. 

1.1. Finite state and finite capacity queue with impatient customers 

Let us talk about a single server Markovian (a.k.a. Poisson) queue with a maximum 
capacity of N, i.e. M/M/1/N. The system services customers and the service time follows 
an exponential distribution with the rate μ. The customer arrival process follows the 
Poisson process with an average rate λ. If the server finds the system empty at 
a departure epoch, the server goes on vacation. If the server finds the customer at the 
end of the vacation, the server immediately returns to serve the customer. Otherwise, 
the server will make consecutive vacations until the server takes the maximum number 
of vacations, say K, then the server will be idle and wait to serve the next arrival. 

Each vacation period is assumed to be distributed exponentially with the vacation 
rate ν. Suppose that during vacation periods of the server, each customer becomes 
impatient and activates an ‘Impatient timer length’ T which is exponentially distributed 
with parameter ψ. If the service period of the impatient client is not terminated before 
the client’s timer expires, the client leaves the queue and does not return. Let us denote 
the above model by M/M/1/N/(K-vacations) queue with impatient customers. 

Section 2 describes the process of limiting the length of the queue process, i.e. Z = 
{(L, J)} = lim

𝑡𝑡→∞
{(𝐿𝐿(𝑡𝑡), 𝐽𝐽(𝑡𝑡))} of M/M/1/N/(K-vacations) service system with impatient 

customers. After formulating it as a positive recurrent process, using numerical 
algorithms, we obtain probability vectors for each level of process Z along with the 
stationary queue length distribution. Section 3 discusses the calculation of various 
performance metrics and probability distributions of server’s vacation, busy and idle 
states. In addition, a “no loss; non-profit” cost function is designed to fix the maximum 
“K” of consecutive vacations, and a solution is also provided using numerical 
illustration. Section 4 provides a formal concluding report. 

2.  Performance of M/M/1/N/(K-vacations) queue with impatient customers in the 
long run 

2.1.  Citations 

As the best members of this class, we select the M/M/1 queue, whose stationary 
measures were studied by (Zhang, Yue, & Yue, 2005) and impatient behavior with 
multiple vacations analyzed by (Ammar, 2015), (Sivasamy, 2020) and (Sudhesh & 
Azhagappan, 2019). It is assured from the contributions of (Kharoufeh, 2011) and 
(Sivasamy, Thillaigovindan, Paulraj, & Parnjothi, 2019) that the quasi birth-death 
(QBD) process framework could be used, in a way that is suitable for modelling all types 
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of M/M/1 queues. (Kharoufeh, 2011) discussed both discrete-time and continuous-
time versions of the level-dependent quasi-birth-and-death (LDQBD) process that 
exhibits a block tri-diagonal structure. 

Using standard probability arguments, we can state that the bivariate process Z = 
{(L, J)} forms an aperiodic, regular, and irreducible LDQBD over the state space E. We 
divide a two-dimensional space into a union. (N+1) levels, say Li for i = 0, 1, …, N: 

𝑳𝑳𝒊𝒊 =  ((𝒊𝒊,𝟎𝟎), (𝒊𝒊,𝟏𝟏), . . . (𝒊𝒊,𝑲𝑲));  𝒊𝒊 ∈  𝐍𝐍𝟎𝟎,   𝐄𝐄 = � 𝑳𝑳𝒊𝒊
𝑵𝑵

𝒊𝒊=𝟎𝟎
 

(2) 

where Li ∈ (2) is called the ith level vector of size or order (K+1). 

Using the properties of the QBD under FCFS rule, we organize the elements of the 
transition generator matrix G = (g(Li, Lj ))  described in  (3): 

𝐆𝐆 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑩𝑩 𝑨𝑨𝟎𝟎 𝟎𝟎 𝟎𝟎    ⋯ 𝟎𝟎 𝟎𝟎
𝑨𝑨𝟐𝟐

(𝟏𝟏) 𝑨𝑨𝟏𝟏
(𝟏𝟏) 𝑨𝑨𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝑨𝑨𝟐𝟐
(𝟐𝟐) 𝑨𝑨𝟏𝟏

(𝟐𝟐) 𝑨𝑨𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑨𝑨𝟐𝟐

(𝟑𝟑) 𝑨𝑨𝟏𝟏
(𝟑𝟑) ⋱ 𝟎𝟎 𝟎𝟎

⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋱ 𝑨𝑨𝟏𝟏

(𝑵𝑵−𝟏𝟏) 𝑨𝑨𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝑨𝑨𝟐𝟐

(𝑵𝑵) (𝑨𝑨𝟐𝟐
(𝟏𝟏) + 𝑨𝑨𝟎𝟎)⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

(3) 

Each sub-matrix of G is a square matrix of order (K+ 1) indexed by j = 0, 1, . . . , K. 
The precise structures of B, A0, A1, and A2 are described in (4) to (7),  respectively: 

𝑩𝑩 =

⎝

⎜
⎜
⎜
⎛

 

−(𝝀𝝀+ 𝜸𝜸) 𝜸𝜸 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 −(𝝀𝝀+ 𝜸𝜸) 𝜸𝜸 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋱ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋱ ⋱ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋮ ⋱ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ ⋱ −(𝝀𝝀+ 𝜸𝜸) 𝜸𝜸
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 −𝝀𝝀⎠

⎟
⎟
⎟
⎞

 

(4) 

 

     𝑨𝑨𝟎𝟎 =

⎝

⎜⎜
⎛

 

𝝀𝝀 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝀𝝀 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋱ ⋮ 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝝀𝝀 ⎠

⎟⎟
⎞

 

(5) 
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For n = 1,2,…, N,  

𝑨𝑨𝟏𝟏
(𝒏𝒏)=

⎝

⎜
⎜
⎜
⎛

 

−(𝜸𝜸 + 𝝀𝝀 + 𝒏𝒏𝒏𝒏) 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝜸𝜸
𝟎𝟎 −(𝜸𝜸 + 𝝀𝝀 + 𝒏𝒏𝒏𝒏) ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 ⋯ ⋱ −(𝜸𝜸 + 𝝀𝝀 + 𝒏𝒏𝒏𝒏) 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 −(𝝀𝝀 + 𝝁𝝁)⎠

⎟
⎟
⎟
⎞

 

(6) 

𝑨𝑨𝟐𝟐
(𝟏𝟏)=

⎝

⎜
⎜
⎛

 

𝝍𝝍 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝍𝝍 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 ⋯ ⋱ 𝝍𝝍 𝟎𝟎
µ 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎 ⎠

⎟
⎟
⎞

, 𝑨𝑨𝟐𝟐
(𝒏𝒏)=

⎝

⎜
⎜
⎛

 

𝝍𝝍 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝍𝝍 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝝍𝝍 ⎠

⎟
⎟
⎞

, n=2, …, N  

(7) 

Distribution: Let Π = (π0, π1, π2, . . . πN) denote the steady-state distribution of Z 
process and πn the row vector πn = (π(n, 0), . . . , π(n, K)) associated to level Ln, n ∈ N0. 

2.2. Steady-state characteristics of the Z process 

The level jumps of the Z process from sate (n, j) ∈ E are restricted only to its 
adjacent neighbors (n−1, j) and (n+1, j) but not to states of the form (n ± i, j) where  
i ≥ 2. 

For each level, Ln, N ≥n≥0 in G, the diagonal elements of the matrix B and 𝐀𝐀𝟏𝟏
(𝐧𝐧) are 

completely negative and off diagonal elements are non-negative. Matrices 𝐀𝐀𝟐𝟐
(𝒏𝒏) and A0 

are not negative. In each row of G, the sum of the elements is zero (scalar). The structure 
of the generator matrix G reveals that the process possesses a limiting distribution of 
the system of equations Π G = 0, Π e =1 (scalar) where 0 denotes the zero vector. We 
now discuss a simple linear level reduction method in two phases for a positive 
recurrent case that leads to computation of the limiting distribution:  

Phase 1: Iteratively reduce the state space from the level ’N’ by removing one level at 
each step until we reach the level ’0’ and check if the generator of the level ’0’ 
corresponds to a positive recurrent Markov process. Compute the U(n) matrices and 
the rate matrices Rn in terms of the sub matrices of the generator G: 

𝐔𝐔(𝑵𝑵) = 𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀 𝟎𝟎 (8) 

𝐔𝐔 (𝐧𝐧)= 𝐀𝐀𝟏𝟏
(𝐧𝐧) − 𝐀𝐀𝟎𝟎[ 𝐔𝐔(𝐧𝐧+𝟏𝟏)

−𝟏𝟏 ] [ 𝐀𝐀𝟐𝟐
(𝐧𝐧+𝟏𝟏)] for n = (N − 1), (N − 2), . . ., 1 (9) 
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𝐔𝐔 (𝟎𝟎) =  𝐁𝐁 − 𝐀𝐀𝟎𝟎[ 𝐔𝐔(𝟏𝟏)
−𝟏𝟏] [ 𝐀𝐀𝟐𝟐

(𝟏𝟏)]     (10) 

Phase 2: Construct the rate matrix Rn of order (Q+1), for n= 1, 2, …N: 

 𝐑𝐑𝐧𝐧 =  −𝐀𝐀𝟎𝟎[ 𝐔𝐔(𝐧𝐧)
−𝟏𝟏]  (11) 

Lemma 1: The system of matrix equations which govern all transitions of the of the Z 
process in terms of its steady-state probability vectors 𝝅𝝅𝒏𝒏  and the known sub-matrices 
of its generator matrix G is derived by solving 𝚷𝚷 G = 0 and reported in (12): 

𝛑𝛑𝟎𝟎 𝐁𝐁 + 𝛑𝛑𝟏𝟏 𝐀𝐀𝟐𝟐
(𝟏𝟏) = 𝟎𝟎 

𝛑𝛑𝐧𝐧−𝟏𝟏  𝐀𝐀𝟎𝟎 +𝛑𝛑𝐧𝐧  𝐀𝐀𝟏𝟏
(𝐧𝐧) + 𝛑𝛑𝐧𝐧+𝟏𝟏 𝐀𝐀𝟐𝟐

(𝐧𝐧+𝟏𝟏) = 𝟎𝟎;  for n=1, 2, …, (N-1) 

𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟎𝟎 + 𝛑𝛑𝐍𝐍 �𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀𝟎𝟎� = 𝟎𝟎 (12) 

Theorem 1: The unique stationary joint distribution vector 𝚷𝚷 of the queue length plus 
the inventory level of the Z = (L, J) process is given by 𝛑𝛑𝒏𝒏 =  𝛑𝛑𝒏𝒏−𝟏𝟏 𝐑𝐑𝐧𝐧 for n = 1, 2, …, 
N and 𝚷𝚷e = 1. 

Proof: The proof of this theorem is organized as an algorithm consisting of four steps: 

Step 1: Re-organizing the last equation 𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟎𝟎 + 𝛑𝛑𝐍𝐍 �𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀𝟎𝟎� = of (12), and 

using the definition 𝐔𝐔(𝑵𝑵) =  𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀𝟎𝟎 of (8), we conclude that 𝛑𝛑𝐍𝐍  = 𝛑𝛑𝐍𝐍−𝟏𝟏  𝐑𝐑𝐍𝐍. 

Step 2: Putting n = N−1 in (12), we have 

𝛑𝛑𝐍𝐍−𝟐𝟐 𝐀𝐀𝟎𝟎 +𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟏𝟏
(𝐍𝐍−𝟏𝟏)  + 𝛑𝛑𝐍𝐍 𝐀𝐀𝟐𝟐

(𝐍𝐍) = 𝟎𝟎 (13) 

Re-organizing the equation (13) with the substitution of 𝛑𝛑𝐍𝐍  =  𝛑𝛑𝐍𝐍−𝟏𝟏  𝐑𝐑𝐍𝐍 , we 
obtain that 

𝛑𝛑𝐍𝐍−𝟐𝟐  𝐀𝐀𝟎𝟎+𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟏𝟏
(𝐍𝐍−𝟏𝟏) + 𝛑𝛑𝐍𝐍−𝟏𝟏  𝐑𝐑𝐍𝐍 𝐀𝐀𝟐𝟐

(𝐍𝐍) = 𝟎𝟎 

⇒ 𝛑𝛑𝐍𝐍−𝟏𝟏  [𝐀𝐀𝟏𝟏
(𝐍𝐍−𝟏𝟏) + {−𝐀𝐀𝟎𝟎�𝐔𝐔(𝐍𝐍)�

−𝟏𝟏
 } 𝐀𝐀𝟐𝟐

(𝐍𝐍)] = 𝛑𝛑𝐍𝐍−𝟏𝟏  [𝐔𝐔(𝐍𝐍−𝟏𝟏)]  = −𝛑𝛑𝐍𝐍−𝟐𝟐  𝐀𝐀𝟎𝟎 

⇒ 𝛑𝛑𝐍𝐍−𝟏𝟏  =  𝛑𝛑𝐍𝐍−𝟐𝟐  𝐑𝐑𝐍𝐍−𝟏𝟏 𝐨𝐨𝐨𝐨 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 𝐭𝐭𝐭𝐭𝐭𝐭 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟   𝐑𝐑𝐍𝐍−𝟏𝟏 = -A0   [𝐔𝐔(𝐍𝐍−𝟏𝟏)]−𝟏𝟏 (14) 

Step 3: Continuing the similar iterative process for n = (N-2), (N-1), … 1 and using the 
results of step preceding step, we can establish that 𝛑𝛑𝒏𝒏 =  𝛑𝛑𝒏𝒏−𝟏𝟏 𝐑𝐑𝐧𝐧 = 𝛑𝛑𝟎𝟎 ∑ 𝐑𝐑𝐤𝐤

𝒏𝒏
𝒌𝒌=𝟏𝟏  for 

n = 1, 2, …, N. 
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Step 4: To find the vector  𝛑𝛑𝟎𝟎, the normalizing condition is 𝚷𝚷e = 1, we use the 
following steps. 

i) Solve  𝛑𝛑𝟎𝟎 𝐔𝐔(𝟎𝟎) = 𝟎𝟎,  𝛑𝛑𝟎𝟎𝐞𝐞 =1.  

ii) Compute  𝛑𝛑𝒏𝒏 =  𝛑𝛑𝒏𝒏−𝟏𝟏 𝐑𝐑𝐧𝐧 for n = 1, 2, ..., N. 
iii) Calculate 𝚷𝚷e and renormalize 𝚷𝚷 using 𝚷𝚷 = (𝚷𝚷 / 𝚷𝚷e). 

Thus, now the steady-state probability vector 𝚷𝚷 of the Z process is completely 
determined. We can now discuss the steady-state probabilities of various events, such 
as the conditional probability that a server is on vacation, busy, or idle, etc., and 
measures of system performance. In addition, we can investigate the optimal number 
of vacations to minimize the average operating cost of the system. 

3. Performance Measures: M/M/1/N/(K-vacations) queue with impatient 
customers 

Let us compute the conditional mean system size 𝐐𝐐�𝐣𝐣 given J = j of the (j+1)th 
vacation for j = 0,1, . . . ,(K-1), K: 

𝐐𝐐�𝐣𝐣 = ∑ 𝐧𝐧 𝛑𝛑(𝐧𝐧, 𝐣𝐣),𝐍𝐍
𝐧𝐧=𝟏𝟏  j = 0, 1, 2, . . ., K (15) 

The conditional probability PV that the server is on vacation: 

𝐏𝐏𝐕𝐕  =  �� 𝛑𝛑(𝐧𝐧, 𝐣𝐣)
𝐊𝐊−𝟏𝟏

𝐣𝐣=𝟎𝟎
 

𝐍𝐍

𝐧𝐧=𝟎𝟎

 
(16) 

The conditional probability PB that the server is busy: 

𝐏𝐏𝐁𝐁  =  �  
𝐍𝐍

𝐧𝐧=𝟏𝟏

𝛑𝛑(𝐧𝐧,𝐊𝐊) 
(17) 

The conditional probability PI that the server is idle: 

𝐏𝐏𝐈𝐈  = 𝟏𝟏 −  𝐏𝐏𝐁𝐁 −   𝐏𝐏𝐕𝐕 = �  
𝐍𝐍

𝐧𝐧=𝟏𝟏

𝛑𝛑(𝟎𝟎,𝐊𝐊) 
(18) 

The expectation is that PV + PB + PI = 1. The conditional probability Plost of lost 
customers is given by: 

𝐏𝐏𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥  =  �  
𝑲𝑲

𝒋𝒋=𝟎𝟎

𝝅𝝅(𝑵𝑵, 𝒋𝒋) 
(19) 
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The effective arrival rate λeff is given by: 

𝛌𝛌𝐞𝐞𝐞𝐞𝐞𝐞  =
𝛌𝛌

𝟏𝟏 − 𝐏𝐏𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥
  (20) 

The unconditional mean system size 𝐐𝐐 �  is given by  

𝐐𝐐� = ∑  𝐐𝐐� 𝐣𝐣 𝐊𝐊
𝐣𝐣=𝟎𝟎 =∑  ∑ 𝐧𝐧 𝛑𝛑(𝐧𝐧, 𝐣𝐣)𝐍𝐍

𝐧𝐧=𝟏𝟏
𝐊𝐊
𝐣𝐣=𝟎𝟎  (21) 

The mean waiting time 𝐖𝐖�  can be calculated by Little’s law. Thus, 

𝐖𝐖�  = 𝐐𝐐
�

𝛌𝛌𝐞𝐞𝐞𝐞𝐞𝐞
 (22) 

3.1. Numerical illustrations 

We now discuss the numerical calculations of some of the measurements discussed 
so far in the previous discussions. The crux of the calculation lies in the calculation of 
the stationary probability vectors {πn; n = 0, 1, . . ., N} because there is no explicit 
expression for each probability function πn. Calculations are based on the algorithm 
given from the matrix equations reported in Theorem 1. 

Any external observer can find the server in one of the three mutually exclusive 
states i.e. “V: Vacation, B: Busy and I: Idle”. Let the probabilities of these three states V, 
B and I be PV, PB, and PI respectively. Then, PV, PB, and PI (PV + PB + PI = 1) values can 
be easily calculated and checked from the stationary probability vector Π satisfying the 
conditions ΠG = 0 and Π e = 1.  

Using server state distribution {PV, PB, and PI (PV + PB + PI = 1)}, we now notice an 
issue related to fee collection and loss of rental owner. Assume the server is a leased 
machine. Let us say the server rental is USD (245.25, 80.8, 125.5) per unit time. Let the 
vacation state of the server cost be 425.25 USD per unit time to manage loss due to 
impatient customers and non-availability of service which each customer spends on 
vacation. Suppose that the management collects profit USD 80.8 per unit time from 
customers when the server is busy and USD 125.45 when server is idle. The objective of 
the management is to fix the maximum number ’K’ of vacations for the server to take 
consecutively, which ensues ’no loss and no gain’ status. For this experiment, random 
values of input quantities are selected as λ = 2.2, ψ = 1.1, ν = 2.25 and µ = 2.5. For j = V, 
B, and I, let us calculate the vector of probabilities V(j)= (Pj

(K=1), Pj
(K=2) , …, Pj

(K=9), Pj
(K=10)),  

respectively for K = 1, 2,. . . , 10. 
Let us compute the following costs:   

• T1(K) = 425. 25 V(1), called vacation loss cost; 

• T2(K) = 80.6 V(2), called the busy server profit;  

• T3(K) = 125.45 V(3), called the idle server profit. 
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The objective is now finding a K∗ value such that the total cost T4(K∗) = 0: 

T4(K) = (T2(K) + T3(K)) − T1(K) > 0 for all K < 𝑲𝑲∗  

                T4(K) = (T2(K) + T3(K)) − T1(K) < 0 for all K >𝑲𝑲∗ (23) 

The general trend is that the function T1(K) increases as the values of K increase. 
On the other hand, both functions T2(K) and T3(K) decrease as the values of K increase. 
We call the total costs T4(K) = T2(K) T3(K) − T1(K). If any of the components of T4(K) 
>0, it gives a profit or a loss for that value of K.  

To demonstrate these facts and to get an optimum on K to meet the no-loss no-
profit condition, numerical values are computed for the given data set and the 
corresponding curve is plotted in Figure 1. 

 

Figure 1:  Relationships among Vacation, Busy and Idle states of the server’s cost for “no loss and No 
gain level as K = 4  

A simple look at Figure 1 tells us that an optimum of vacations is attained if K* = 4. 
This means that if management allows K = 1, 2 and 3 consecutive vacations, 
management earns a positive profit. There is no profit or loss from the maximum 
number of vacation periods K* = 4. But if K ≥ 5, the lead is only a negative profit or loss. 
This type of test can also be designed to monitor a typical K-value, which provides "no 
loss, no gain" efficiency while adding a larger number of cost effects. 
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4.  Conclusions 

A single-server M/M/1/N/(K-vacations) queue with impatient customers, which 
conditionally accepts impatient customers in every vacation period, is well studied by 
matrix analysis. The special thing is that if the customer's service does not end before 
the random deadline chosen by the customer, he can leave the queue. Additionally, the 
server can take multiple vacations in a row, but no more than K vacations. 

The steady-state results of this study are supported by numerical algorithms to 
obtain the necessary probability vectors and the optimal number of K* for consecutive 
vacations. We obtain the steady-state queue length distribution and the scalar value of 
the vector expression for multiple events and measurements. A "no Loss; no Profit" cost 
model is proposed to test the appropriate value for the maximum K-value of 
consecutive vacations and provide a solution using a numerical representation. 

The proposed methodology is implemented by showing an exponential 
distribution of arrival times, service times, impatient customer deadlines and vacation 
periods. Our opinion is thatthe proposed theoretical and computational aspects of 
single-server Poisson queue M/M/1/N are useful not only for academics but also for all 
practitioners dealing with queues that have many vacations. 

Future scope can be expanded by replacing exponential distribution with general 
distribution in single server or multi-server queues. 
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