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processes(with the truncated normal as the base measure)
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Abstract

Nonlinear regression models are extensively applied across various scientific disciplines. It
is vital to accurately fit the optimal nonlinear model while considering the biases of the
Bayesian optimal design. We present a Bayesian optimal design by utilising the Dirichlet
process as a prior. The Dirichlet process serves as a fundamental tool in the exploration of
Nonparametric Bayesian inference, offering multiple representations that are well-suited for
application. This research paper introduces a novel one-parameter model, referred to as the
’Unit-Exponential distribution’, specifically designed for the unit interval. Additionally, we
employ a stick-breaking representation to approximate the D-optimality criterion consider-
ing the Dirichlet process as a functional tool. Through this approach, we aim to identify a
Nonparametric Bayesian optimal design.

Key words: D-optimal design, Bayesian optimal design, Unit Exponential model (UE),
Dirichlet process, stick-breaking prior, nonparametric Bayesian.

1. Introduction

Within the realm of experimental design, the concept of optimal design refers to a spe-
cific category of designs that are classified based on certain statistical criteria. It is widely
acknowledged that a well-designed experiment can significantly enhance the accuracy of
statistical analyses. Consequently, numerous researchers have dedicated their efforts to ad-
dress the challenge of constructing optimal designs for nonlinear regression models. Exper-
imental design plays a pivotal role in scientific research domains, including but not limited
to biomedicine and pharmacokinetics. Its application in these fields enables researchers to
conduct rigorous investigations and yield valuable insights.

Optimal designs are sought using optimality criteria, typically based on the informa-
tion matrix. Until 1959, research primarily focused on linear models, where the models
were linear with respect to the parameters. However, in nonlinear models, the presence of
unknown parameters introduced complexities in the design problem, as the optimality cri-
teria depended on these unknown parameters [3, 5]. To address this challenge, researchers
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proposed various solutions, including local optimal designs [2, 7, 11, 19, 30], sequential op-
timal designs, minimax optimal designs, Bayesian optimal designs [28, 21-24], and pseudo-
Bayesian designs [26]. Chernoff (1953) introduced the concept of local optimality, which
involves specifying fixed values for the unknown parameters and optimizing a function of
the information matrix to determine the design for these specified parameter values. This
approach aimed to overcome the difficulties associated with the dependence of the design
problem on unknown parameters in nonlinear models.

The selection of unknown parameters in local designs is typically obtained from pre-
vious studies or experiments specifically conducted for this purpose. The effectiveness of
local designs heavily relies on the appropriate selection of these parameters. However, a
significant challenge arises when the investigated problem lacks robustness in relation to
weak parameter estimation. To address this, an alternative approach for local optimal de-
signs involves utilizing a prior distribution for the unknown parameters instead of relying
solely on initial guess. In the Bayesian method, the first step is to represent the available
information in the form of a probability distribution for the model parameter, known as
the prior distribution. A Bayesian optimal design aims to maximize the relevant optimal-
ity criterion over this prior distribution. Nevertheless, it is crucial to acknowledge that the
selection of the prior distribution within the Bayesian framework can be problematic and
may potentially lead to erroneous results. The choice of the prior distribution is subjective,
relying on the researcher’s beliefs, and it significantly influences the final outcome. Unfor-
tunately, the Bayesian approach lacks a definitive method for selecting the prior distribution.
Numerous researchers have investigated the effect of the prior distribution on determining
design points in various types of optimal designs. For instance, Chaloner and Lorentz [10],
Chaloner and Duncan [8], Burghaus and Dette [4], Chaloner and Vardinelli [9], Pronzato
and Walter [29], Mukhopadhyay and Haines [26], Dette and Ngobauer [12, 13], Fedorov
[14, 15], and Firth and Hinde [17] have contributed extensively to this field. Chapter 18
of Atkinson et al.’s book [3] provides further reading on this topic. Moreover, in situations
where there is insufficient evidence from previous studies on the topic of interest, specifying
an appropriate prior distribution becomes challenging. In such cases, subjective or nonin-
formative prior distributions are used, incorporating all available information regarding the
uncertainty of the parameter values.For more information, refer to Burghaus and Dette [4].
This research paper presents the introduction of a novel one-parameter model, referred to
as the UE distribution, specifically designed for the unit interval in Section 2. As we know,
in applied statistic, a common issue is to deal with the uncertainty phenomena observed in
the interval (0, 1). For example, in real life we often encounter measures like proportion or
fraction of a certain characteristic, scores of some ability tests, different index, rates, etc.,
which lie in the interval (0, 1). In such cases continuous distributions with domain (0, 1) are
indispensable to probabilistic modeling of the phenomena. So, in regression models where
the response variable is in the form of ratio, rate or percentage, we use the unit exponential
regression model to model the data that are concentrated in a certain sub-interval of the
range of their domains. In Section 3, the optimal design for nonlinear models is derived.
Finally, Section 4 concludes the paper with some closing remarks.
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2. The Unit-Exponential distribution

The exponential distribution is continuous distribution in statistics and probability the-

ory. If Y ∼ Exp(θ), then using the transformation X=
Y

1+Y
we have a new distribution

with support on the unit interval such that the CDF and the PDF of the resulting distribution
are respectively [1]:

F(x | θ) = 1− exp(
−θx
1− x

); 0 ≤ x < 1, θ > 0, (1)

f (x | θ) =
θ

(1− x)2 exp(
−θx
1− x

); 0 ≤ x < 1, θ > 0. (2)

The Hazard Rate Function (HRF) of this distribution is as follows:

h(x | θ) =
f (x | θ)

1−F(x | θ)
=

θ

(1− x)2 ; 0 ≤ x < 1, θ > 0. (3)

In the following figure, the PDF and the HRF of this distribution are plotted for different
values of the parameter θ . According to this figures, it can be seen that the HRF is increasing
in 0 ≤ x < 1.

Figure 1: Plot of density function (left) and hrf (right)

3. Optimal Design for Nonlinear Models

In the context of nonlinear experimental design, a common issue arises where the re-
lationship between the response variable y and the independent variable x is given by the
equation y = η(x,θ)+ ε where x ∈ χ ⊆ R and y is a response variable and θ ∈ Θ is the
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unknown parameter vector and ε is a normally distributed residual value with mean 0 and
known variance σ2 > 0. For simplicity, we assume σ2 = 1 in this problem. If η(x,θ)
is differentiable with respect to θ , then the information matrix at a given point x can be
represented as follows:

I(ξ ,θ) =
∂

∂θ
η(x,θ)

∂

∂θ
T η(x,θ). (4)

There exist several optimality criteria used to obtain the optimal design, including D-
optimality and A-optimality. These criteria are functions of the information matrix and can
be expressed as follows:

ΨD(ξ ,θ) =− log(det(M(ξ ,θ))) , ΨA(ξ ,θ) = tr(M−1(ξ ;θ)),

where ξ denotes a design with two components; the first component represents specific val-
ues from the design space χ and the second component corresponds to the weights assigned
to these values, so that design ξ can be defined as follows:

ξ =

{
x1 x2 . . . xl

w1 w2 . . . wl

}
∈ Ξ, (5)

where Ξ={ξ | 0 ≤ w j ≤ 1 ;
l

∑
j=1

w j = 1 , x ∈ χ}, [25].

When considering a discrete probability measure ξ with finite support, the information
function of ξ can be expressed as follows [3]:

M(ξ ,θ) =
l

∑
j=1

w jI(x j,θ). (6)

Because of the dependence of the information matrix M(ξ ,θ) to the unknown parameter
θ , one approach to address this issue is to employ the Bayesian method and incorporate a
prior distribution for the parameter vector. The Bayesian D-optimality criterion can be
formulated as follows:

ΨΠ(ξ ) = E(ψ(ξ ;θ)) =
∫

Θ

ψ(ξ ;θ)dΠ(θ) =
∫

Θ

−log(det(M(ξ ,θ))dΠ(θ), (7)

where Π represents the prior distribution for θ and the Bayesian D-optimal design is attained
by minimizing (7). According to Dette and Neugebauer [11], in the general case of optimal
designs which can include designs with two and more points, if the support of the prior
distribution has n points, then the maximum number of Bayesian optimal design points is

given by n
p(p+1)

2 . Hence, in the specific scenario of nonlinear models with one parameter
(p = 1), this implies that the support of the Bayesian optimal design does not contain more
points than the support of the prior distribution.

In certain situations, specifying a prior distribution on the parameter space Θ can be
challenging for the experimenter. In such cases, an alternative approach is to consider an



STATISTICS IN TRANSITION new series, September 2024 145

unknown prior distribution Π for the parameter θ . In this condition, Π is treated as a pa-
rameter itself. Consequently, equation (7) becomes a random functional, and it becomes
necessary to determine its distribution or approximation. From a Bayesian perspective, we
construct a prior distribution on the space of all distribution functions to address this issue.
Ferguson (1973) introduced the concept of the Dirichlet process in this context, an overview
of which will be provided in Section 3.1.1.

3.1. Nonparametric Bayesian D-optimal design

In this section, we introduce the nonparametric Bayesian optimal designl. In the non-
parametric Bayesian framework, it is assumed that θ | P ∼ P, where P is a random prob-
ability distribution and P ∼ Π. A general method of construction of a random measure is
to start with the stochastic processes. Ferguson (1973) formulated the requirements which
must be imposed on a prior distribution and proposed a class of prior distributions, named
the Dirichlet processes. One of the main argument in using the Dirichlet distribution in
practical applications is based on the fact that this distribution is a good approximation of
many parametric probability distributions. Below we give the definition of the Dirichlet
process.

3.1.1 Dirichlet Process (DP)

To have a random distribution G distributed according to a Dirichlet process (DP), its
marginal distributions must follow a Dirichlet distribution. Specifically, let H be a distribu-
tion over Θ and α be a positive real number. For any finite measurable partition A1,A2, ...,Ar

of Θ the vector (G(A1),G(A2), ...,G(Ar)) is random since G is random. We say G is the
Dirichlet process distributed with base distribution H and concentration parameter α , writ-
ten G ∼ DP(α ,H), if the following conditions hold:

(G(A1),G(A2), ...,G(Ar))∼ Dir(αH(A1), ...,αH(Ar)), (8)

for every finite measurable partition A1,A2, ...,Ar of Θ.
The parameters of H and α play intuitive roles in the definition of the DP. The base

distribution H represents the mean of the Dirichlet process, such that for any measurable
set A⊂ Θ we have E[G(A)] = H(A). On the other hand, the concentration parameter α

can be viewed as an inverse variance: V [G(A)]=H(A)(1−H(A))/(α +1). The larger α is,
the smaller the variance, and the DP will concentrate more of its mass around the mean.
The concentration parameter is also referred to as the strength parameter, referring to the
strength of the prior when using the DP as a nonparametric prior in Bayesian nonparametric
modelsl, It can be interpreted as the amount of mass or sample size associated with the
observations. It is worth noting that α and H only appear as their product in the definition
of the Dirichlet process (equation 8). Consequently, some authors treat H̃=α H, as the
single (positive measure) parameter of the DP, writing DP( H̃ ) instead of DP(α ,H). This
parametrization can be notationally convenient, but loses the distinct roles α and H play in
describing the DP.
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As the concentration parameter α increases, the mass of the DP becomes more con-
centrated around its mean. Consequently, when α approaches infinity (α → ∞ ), G(A)
approaches H(A) for any measurable set A, indicating weak or pointwise convergence of G
to H. However, it is important to note that this does not imply a direct convergence of G to
H as a whole. In fact, as we will explore later, samples drawn from the DP will typically be
discrete distributions with probability one, even if the base distribution H is smooth. There-
fore, G and H may not be absolutely continuous with respect to each other. Despite this,
some authors still utilize the DP as a nonparametric extension of a parametric model repre-
sented by H. However, if the desire is to maintain smoothness, it is possible to extend the
DP by convolving G with kernels, resulting in a random distribution with a density function.

An alternative definition of the Dirichlet process is proposed by Ferguson [16], who,
defined a random probability measure, which is a Dirichlet process on (Θ, B(Θ)), as:

P(.) =
∞

∑
i=1

piδθi(.), (9)

where θi (i > 1) is a sequence of i.i.d. random variables with common distribution Q, δθi

represents a probability measure that is degenerate at θ where δθi=1 if θi ∈ A and 0 other-

wise, and pi
,s are the random weights satisfying pi>0 and

∞

∑
i=1

pi=1. The random distribution

P is discrete with probability one. Several authors have proposed alternative series repre-
sentations of the Dirichlet process. Sethuraman [31], and Zarepour and Al Labadi [32] are
among those who have contributed to this area. In the upcoming section, we will discuss
the nonparametric Bayesian D-optimal design for the UE model.

3.1.2 Nonparametric Bayesian D-optimal design for UE model

Now, let us consider the following regression model:

E(y|x) = η(x,θ) =
θ

(1− x)2 exp(
−θx
1− x

),θ > 0. (10)

Therefore, the Bayesian D-optimality criterion, denoted as ΨΠ(ξ ), can be expressed as
follows:

ΨΠ(ξ ) = E(ψ(ξ ;θ)) =
∫

Θ

ψ(ξ ;θ)dΠ(lθ) (11)

=
∫

Θ

−log(
l

∑
j=1

w j[exp(
−θx j

1− x j
)(

1
(1− x j)2 −

θx j

(1− x j)3 )]
2)dΠ(θ) (12)
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where Π is the prior distribution for θ . The Bayesian D-optimal design is attained by mini-
mizing equation (11). In the nonparametric Bayesian framework, we consider P∼ DP(α ,P0)

and its collective representation as P(.) =
∞

∑
i=1

pi δθi(.). In this context, the optimality crite-

rion can be expressed as follows:

ΨΠ(ξ ) =
∞

∑
i=1

pi(−log(
l

∑
j=1

w j[exp(
−θix j

1− x j
)(

1
(1− x j)2 −

θix j

(1− x j)3 )]
2)). (13)

Chernoff [7] demonstrated that when searching for a local optimal design, there exists
an optimal design where all the mass is concentrated at a single point within the design’s
support. Caratheodory’s theorem also confirms the existence of a one-point optimal de-
sign. However, when employing the Bayesian optimality criterion, a more complex situa-
tion arises. Braess and Dette showed that with a uniform prior distribution, as the support of
the prior distribution increases, the number of optimal design points for the single-parameter
model also increases. Challoner suggested that if the researcher aims to obtain a one-point
optimal design, it is advisable to consider a small support for the uniform prior distribution.
The same principle applies to nonparametric Bayesian designs. In this case, assuming a
uniform distribution over the interval [1, B] as the basic distribution, the one-point optimal
design can be achieved.

Equation (11) represents a stochastic function of the Dirichlet process. According to
Ferguson’s definition of the Dirichlet process, the direct calculation of (12) is not straight-
forward. To address this challenge and obtain an approximation of the optimal nonpara-
metric Bayesian criterion, methods such as the stick-breaking process is employed [31].
Saturaman (1994) introduced this method as a significant approach for generating realiza-
tions of the Dirichlet process, which we will explain below. Additionally, we will highlight
the discreteness of the Dirichlet process within the framework of the stick-breaking process.
To generate a realization of the Dirichlet process P with a concentration parameter α and
base distribution H we can follow the stick-breaking process.

First, we generate a sequence of random samples θ1,θ2, ... from the base distribution
H. Additionally, we generate a sequence of random samples V1,V2, ... from the Beta(1,α)

distribution. We define a sequence of probabilities p1, p2, ..., pk, ... as follows. We start
by choosing a point called V1 on a unit-length piece of wood and set p1 equal to V1. In
other words, p1 = V1. Then, we divide the remaining part of the wood into two parts,
V2(1−V1) and (1−V1)(1−V2). We consider the first part as p2. To calculate p3, we
divide the remaining part of the wood into two parts in the same manner as in step 2. We
continue this process, dividing each remaining part into two parts and assigning the first
part as the next weight in the sequence. By following these steps, we obtain a sequence
of weights p1, p2, ..., pk, ... that represents the probabilities associated with the generated
samples θ1,θ2, .... This sequence of weights reflects the stick-breaking process used to
approximate the Dirichlet process. So:

p1 =V1,

pi =Vi
i−1
∏
j=1

(1−Vj), i ≥ 2
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According to the structure described, it can be proven that
∞

∑
i=1

pi=1. For this purpose we

have:

1−
∞

∑
i=1

pi = 1−V1 −V2(1−V1)−V3(1−V2)(1−V1)− ...

= (1−V1)(1−V2 −V3(1−V2)− ...)

...

=
∞

∏
i=1

(1−Vi) (14)

By problem 32 in Chapter 1 of Folland (1999), we have [18]:

∞

∏
i=1

(1−Vi) = 0 ⇔
∞

∑
i=1

Vi = ∞

So, for every ε ∈ (0,1) we can write the following relation:

∞

∑
i=1

Pr(Vi > ε) = ∞

And using Borel-Cantelli’s Lemma, we will have:

Pr(Vi > ε, i.o) = 1 ⇒
∞

∑
i=1

Vi = ∞ a.s (15)

Therefore, by setting the relation (3.10) equal to zero, we will have
∞

∑
i=1

pi=1.

In this section, we focus on the use of a truncated normal distribution as the base measure
in the DP. To obtain the results, we employ nonlinear optimization programming using the R
package Rsolnp. The nonparametric Bayesian optimal designs are examined using the stick-
breaking method, and tables presenting the results are provided. To better understand the
influence of the α parameter, we present the results for four different values of α=1, 5, 10,
50. It is important to note that we consider a bounded design space χ=[0,1] without any loss
of generality. Tables 4-7 display the results obtained when the concentration parameter (α)

and uncertainty in the base measure increase. Based on these results, we can observe in the
class of two-point design, that largest weight corresponds to the smallest point. This pattern
is consistent across the investigated range of α values. According to the results, when the
value of α increases, the support points in two-point design do not significantly change. The
smallest point will have the most weight that this weight almost increases or remains fixed
by increasing the concentration parameter. Also, for three-point design, minimum support
point has the greatest weight. In addition, in the range under investigation, the results show
that we do not have a three-point design for µ = 5,σ = 2, and in fact, it converts to the
design by less points. This observation is more clear for larger concentration parameter.
But, by increasing the parameter space, optimal two and three-point design are obtained.
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Table 1: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=1. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3419671 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0245942 0.2728781 0.0341488 0.2776520 0.5086153

w 0.9696928 0.0303072 0.9789477 0.0210526 0.0000007
µ = 150, σ = 90 x 0.0065494 0.2995342 0.01578005 0.2997138 0.5013164

w 0.9999903 0.0000097 0.9999994 0.0000003 0.0000003

Table 2: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=5. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3233669 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0204877 0.2772758 0.03387816 0.2638516 0.5001318

w 0.9799968 0.0200032 0.9494947 0.0505048 0.0000005
µ = 150, σ = 90 x 0.0009694 0.2993877 0.01462319 0.3000076 0.4991483

w 0.9999854 0.0000146 0.9999999 0.0000004 0.0000004

Table 3: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=10. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3021963 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0156330 0.2706337 0.0257019 0.2071970 0.5050722

w 0.9898957 0.0101043 0.9265122 0.0734868 0.0000010
µ = 150, σ = 90 x 0.0006769 0.2990424 0.0126487 0.2992510 0.5007835

w 0.9863551 0.0136449 0.9999868 0.0000135 0.0000007
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Table 4: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=50. First row: support points; second row:
weights.

Parameters Design Two− point T hree− point
µ = 5, σ = 2 x 0.0000000 0.3030561 − − −

w 0.9999995 0.0000005 − − −
µ = 50, σ = 30 x 0.0132530 0.2859840 0.0236265 0.2357064 0.5016003

w 0.9999973 0.0000027 0.9361683 0.06383056 0.0000001
µ = 150, σ = 90 x 0.0000608 0.2990344 0.0107339 0.2991683 0.5012125

w 0.9999865 0.0000135 0.9999959 0.0000020 0.0000021

Table 5 presents the results when assuming a constant mean of the base distribution and
increasing the variance. Specifically, in the two-point designs, it can be observed that the
smallest point has the highest weight. This table provides insights into the distribution of
weights in this scenario.

Table 5: Nonparametric Bayesian D-optimal designs with truncated normal base distri-
bution and concentration parameter when α=1. First row: support points; second row:
weights.

Parameters Design Two points T hree− point
µ = 50, σ = 2 x 0.0000000 0.3000000 − − −

w 0.9999942 0.0000059 − − −
µ = 50, σ = 30 x 0.0237781 0.2842176 0.0384189 0.2794133 0.5005586

w 0.9795880 0.0204120 0.9587626 0.04123712 0.0000002
µ = 50, σ = 90 x 0.0108601 0.2875706 0.0257537 0.2810997 0.4938304

w 0.9899937 0.0100063 0.9791666 0.02083332 0.0000002

4. Concluding Remarks and Future Works

Nonlinear regression models are widely used in various scientific fields, and the Bayesian
method is commonly employed to obtain optimal designs in such models. However, one of
the challenges in the Bayesian framework is the subjective selection of the prior distribution,
which can potentially lead to incorrect results. The choice of the prior distribution is often
based on the researcher’s beliefs, and it strongly influences the final outcome. Unfortu-
nately, the Bayesian approach lacks a systematic method for selecting the prior distribution.
To overcome these limitations and reduce reliance on restrictive parametric assumptions,
nonparametric Bayesian methods are pursued. In this study, we consider the prior distri-
bution as an unknown parameter and utilize the Dirichlet process to derive nonparametric
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Bayesian D-optimal designs. Specifically, we focus on a nonlinear model with one param-
eter, namely the Unit-Exponential distribution. We investigate the Bayesian D-optimal de-
sign for the unit exponential regression model (equation 10) using a truncated normal prior
distribution, examining various parameter values. By adopting a nonparametric Bayesian
approach and utilizing the Dirichlet process, we aim to address the challenges associated
with selecting the prior distribution in Bayesian optimal design construction. This allows
us to account for uncertainty and mitigate the impact of restrictive parametric assumptions,
providing more flexible and robust designs for nonlinear regression models.

In this study, we focus on utilizing the Polya Urn Scheme as the base distribution in
the Dirichlet process. To better understand the influence of the concentration parameter α ,
we present the results in tables for four different values of α=1, 5, 10, 50. These tables
provide valuable insights into the nonparametric Bayesian optimal designs, showcasing the
distribution of weights and support points. By analyzing the results for different values of
α , we can better understand the impact of this parameter on the design outcomes. This
approach allows us to explore and evaluate the performance of the nonparametric Bayesian
optimal designs under varying levels of concentration parameter α .

In the investigated range, the results reveal interesting findings. For small parameter
values, there are no two-point designs observed. However, by increasing uncertainty in the
base measure, another optimal point is obtained with a very small weight, resulting in a
design where the smallest point has the highest weight. These designs can be considered as
one-point designs, as the weight of the additional point becomes negligible.

In three-point designs, similar observations can be made. In some cases, two of the ob-
tained optimal points are very similar, leading to a design with fewer points. This indicates
that the additional point does not significantly contribute to the design in such cases.

Moreover, as the uncertainty in the base measure and the concentration parameter in
the Dirichlet process increase, the support points in the two-point designs do not undergo
significant changes. The weight of the smallest point increases rapidly, and it becomes the
point with the highest weight. This weight tends to either increase or remain relatively
stable with an increase in the concentration parameter.

It is important to note that this approach can be applied to other optimality criteria and
various models with two or more parameters. For example, nonparametric Bayesian opti-
mal designs using the A- or E-optimality criterion for the nonlinear model discussed in this
paper, along with a Dirichlet process prior, hold potential for further research. We hope to
report new results in this area in the near future.

Acknowledgements

Thanks to anyone for support, funding and such may be included in the non-numbered
Acknowledgements section.



152 A. A. Nanvapisheh, S. Khazaei, H. Jafari: Nonparametric Bayesian optimal designs...

References

Abdollahi, A., H. Jafari and S.Khazaei, (2024). Locally, Bayesian and Nonparametric
Bayesian optimal designs for Unit Exponential regression model. Journal of Communi-
cations in Statistics – Theory and Methods, doi.org/10.1080/03610926.2024.2328182.

Aminnejad, M., Jafari H., (2017). Bayesian A and D-optimal designs for gamma regression
model with inverse link function. Communications in Statistics-Simulation and Com-
putation, 46 (10), pp. 8166–89, doi:10.1080/03610918.2016.1271888.

Atkinson, A. C., A. N. Donev and R. D. Tobias, (2007). Optimum experimental design,
with SAS. Oxford, UK: Oxford University Press.

Burghaus, I., Dette H., (2014). Optimal designs for nonlinear regression models with re-
spect to non-informative priors. Journal of Statistical Planning and Inference, 154,
pp. 12–25, doi:10.1016/ j.jspi.2014.05.009.

Burkner P. C., Schwabe R., Holling H., (2019). Optimal designs for the generalized partial
credit model. British Journal of Mathematical and Statistical Psychology, doi:10.1111/
bmsp. 12148.

Braess, D., Dette, H., (2007). On the number of support points of maximin and Bayesian
optimal designs. The Annals of Statistics, 35(2), pp. 772–792.

Chernoff, H., (1953). Locally optimal designs for estimating parameters. The Annals of
Mathematical Statistics, 24 (4), pp. 586–602, doi:10.1214/aoms/1177728915.

Chaloner, K. M., Duncan, G. T., (1983). Assessment of a beta prior distribution:PM elici-
tation. The Statistician, pp. 174–180.

Chaloner, K., Verdinelli, I., (1995). Bayesian experimental design: a review. Statistical
Science, 10, pp. 273–304.

Chaloner, K., Larntz, K., (1989). Optimal Bayesian design applied to logistic regression
experiments. Journal of Statistical Planning and Inference, 21, pp. 191–208.

Dette, H., Melas, V. B. and Wong, W. K., (2006). Locally D-optimal designs for exponen-
tial regression Statistica Sinica, 16, pp. 789–803.

Dette, H., Neugebauer, H. M., (1996). Bayesian optimal one point designs for one param-
eter nonlinear models. Journal of Statistical Planning and Inference, 52(1), pp. 17–31.

Dette, H., Neugebauer, H. M., (1997). Bayesian D-optimal designs for exponential regres-
sion models. Journal of Statistical Planning and Inference, 60(2), pp. 331–349.



STATISTICS IN TRANSITION new series, September 2024 153

Fedorov V, Hackl P., (2012). Model-Oriented Design of Experiments. Springer Science
and Business Media, Vol. 125, doi:10.1007/978-1-4612-0703-0.

Fedorov V. V., Leonov S. L., (2013). Optimal design for nonlinear response models. CRC
Press. bability Letters, 82 (5), pp. 916–24, doi:10.1016/j.spl.2012.01.020.

Ferguson, T. S., (1973). A bayesian analysis of some nonparametric problems. The Annals
of Statistics, 1 (2), pp. 209–30, doi:10.1214/aos/1176342360.

Firth D, Hinde J., (1997). On Bayesian D-optimum Design Criteria and the Equivalence
Theorem in Non-linear Models. Journal of the Royal Statistical Society B, 59(4), pp.
793–797, doi:10.1111/1467-9868.00096.

Folland, G. B., (1999). Real analysis: modern techniques and their applications. John Wi-
ley and Sons.

Ford, I., Torsney, B. and Wu, C. F. J., (1992). The use of a canonical form in theconstruc-
tion of locally optimal designs for non-linear problems. J. Roy. Statist. Soc. (Ser.) B,
54, pp. 569–583.

Ghitany M. E. , Atieh B., Nadarajah S., (2008). Lindley distribution and its application.
Mathematics and Computers in Simulation, 78, pp. 493–506.

Goudarzi, M., H. Jafari and Khazaei S., (2019). Nonparametric Bayesian optimal designs
for exponential regression model. Communications in Statistics-Simulation and Com-
putation, doi:10.1080/03610918.2019.1593454.

Grashoff U., Holling H., Schwabe R., (2012). Optimal designs for the Rasch model. Psy-
chometrika, 77(4), pp. 710–723, doi:10.1007/s11336-012-9276-2.

Kiefer, J., (1959). Optimum experimental designs. J. R. Statist. Soc. B., 21, pp. 272–319.

Kiefer, J., Wolfowitz, J., (1959). Optimum designs in regression problems. The Annals of
Mathematical Statistics, 30(2), pp. 271–294.

Kiefer, J., (1974). General equivalence theory for optimum designs (approximate theory).
The Annals of Statistics, 2 (5), pp. 849–79, doi:10.1214/aos/1176342810.

Mukhopadhyay, S., Haines, L. M., (1995). Bayesian D-optimal designs for the exponential
growth model. Journal of Statistical Planning and Inference, 44(3), 385–397.

Nadar M., Papadopoulos A., Kızılaslan F., (2013). Statistical analysis for Kumaraswamy’s
distribution based on record data. Stat Pap, 54, pp. 355–369.



154 A. A. Nanvapisheh, S. Khazaei, H. Jafari: Nonparametric Bayesian optimal designs...

Parsamaram, P., Jafari H., (2016). Bayesian D-optimal Design for the logistic regression
model with exponential distribution for random intercept. textitJournal of Statistical
Computation and Simulation, 86, pp. 1856–68, doi:10.1080/00949655.2015.1087525.

Pronzato, L, E. walter, (1985). Robust experiment design via stochastic approximation.
Mathematical BIOSCIENCES, doi.org/10.1016/0025-5564(85)90068-9.

Rodriguez-Torreblanca C., Rodríguez-Díaz J. M., (2007). Locally D- and c-optimal designs
for Poisson and negative binomial regression models. Metrika, Vol. 66, pp 161–172.

Sethuraman, J., (1994). A Constructive De nition of Dirichlet Priors. Statistica Sinica 4,
p. 639, p. 650.

Zarepour, Mahmoud and Al Labadi, Luai, (2012). On a rapid simulation of the Dirichlet
process. Statistics and Probability Letters 82.5, p. 916, p. 924.


