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A finite state Markovian queue to let in impatient customers  
only during K-vacations 

R. Sivasamy1 

Abstract 

We investigate a matrix analysis study for a single-server Markovian queue with finite 
capacity, i.e. an M/M/1/N queue, where the single server can go for a maximum, i.e. a K 
number of consecutive vacation periods. During these vacation periods of the server, every 
customer becomes impatient and leaves the queues. If the server detects that the system is 
idle during service startup, the server rests. If the vacation server finds a customer after the 
vacation ends, the server immediately returns to serve the customer. Otherwise, the server 
takes consecutive vacations until the server takes a maximum number of vacation periods, 
e.g. K, after which the server is idle and waits to serve the next arrival. During vacation, 
customers often lose patience and opt for scheduled deadlines independently. If the 
customer’s service is not terminated before the customer’s timer expires, the customer is 
removed from the queue and will not return. Matrix analysis provides a computational form 
for a balanced queue length distribution and several other performance metrics. We design 
a ‘no-loss; no-profit cost model’ to determine the appropriate value for the maximum value 
of K consecutive vacation periods and provide a solution with a numerical illustration. 

Key words: impatient customers, vacation period, queue length, stationary distribution. 

1.  Introduction 

The main objective of this research is to develop a matrix method to obtain the 
queue length distribution of a single-server service system M/M/1/N, where N 
represents the maximum capacity of customers waiting. This system allows the server 
to conditionally take up to K vacations during which the system remains inactive. 
However, if a server returning from vacation finds a queue of customers, the server 
starts service according to first-come first-served (FCFS) standards. In addition, we 
revisit the algorithmic approaches given by (Neuts, 1981) and (Latouche & 
Ramaswami, 1999) to find a solution for the class of finite two-dimensional continuous-
time queue-length processes Z(t) = {L(t) , J(t); t≥0} defined in the space E: 

E= N0 x K0, N0 =  {0, 1, . . . , N, (<  ∞), } and K0 =  {0, 1, . . . , K } (1) 
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The basic assumption is that the process L(t)= n (≥0) represents the observed queue 
length at time ’t’ and J(t) = j (j = 0, 1, . . ., (K-1)) indicates the (j+1)th vacation at time ’t’, 
where J(t) = K indicates the state of the server, whether idle or busy. 

1.1. Finite state and finite capacity queue with impatient customers 

Let us talk about a single server Markovian (a.k.a. Poisson) queue with a maximum 
capacity of N, i.e. M/M/1/N. The system services customers and the service time follows 
an exponential distribution with the rate μ. The customer arrival process follows the 
Poisson process with an average rate λ. If the server finds the system empty at 
a departure epoch, the server goes on vacation. If the server finds the customer at the 
end of the vacation, the server immediately returns to serve the customer. Otherwise, 
the server will make consecutive vacations until the server takes the maximum number 
of vacations, say K, then the server will be idle and wait to serve the next arrival. 

Each vacation period is assumed to be distributed exponentially with the vacation 
rate ν. Suppose that during vacation periods of the server, each customer becomes 
impatient and activates an ‘Impatient timer length’ T which is exponentially distributed 
with parameter ψ. If the service period of the impatient client is not terminated before 
the client’s timer expires, the client leaves the queue and does not return. Let us denote 
the above model by M/M/1/N/(K-vacations) queue with impatient customers. 

Section 2 describes the process of limiting the length of the queue process, i.e. Z = 
{(L, J)} = lim

𝑡𝑡→∞
{(𝐿𝐿(𝑡𝑡), 𝐽𝐽(𝑡𝑡))} of M/M/1/N/(K-vacations) service system with impatient 

customers. After formulating it as a positive recurrent process, using numerical 
algorithms, we obtain probability vectors for each level of process Z along with the 
stationary queue length distribution. Section 3 discusses the calculation of various 
performance metrics and probability distributions of server’s vacation, busy and idle 
states. In addition, a “no loss; non-profit” cost function is designed to fix the maximum 
“K” of consecutive vacations, and a solution is also provided using numerical 
illustration. Section 4 provides a formal concluding report. 

2.  Performance of M/M/1/N/(K-vacations) queue with impatient customers in the 
long run 

2.1.  Citations 

As the best members of this class, we select the M/M/1 queue, whose stationary 
measures were studied by (Zhang, Yue, & Yue, 2005) and impatient behavior with 
multiple vacations analyzed by (Ammar, 2015), (Sivasamy, 2020) and (Sudhesh & 
Azhagappan, 2019). It is assured from the contributions of (Kharoufeh, 2011) and 
(Sivasamy, Thillaigovindan, Paulraj, & Parnjothi, 2019) that the quasi birth-death 
(QBD) process framework could be used, in a way that is suitable for modelling all types 
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of M/M/1 queues. (Kharoufeh, 2011) discussed both discrete-time and continuous-
time versions of the level-dependent quasi-birth-and-death (LDQBD) process that 
exhibits a block tri-diagonal structure. 

Using standard probability arguments, we can state that the bivariate process Z = 
{(L, J)} forms an aperiodic, regular, and irreducible LDQBD over the state space E. We 
divide a two-dimensional space into a union. (N+1) levels, say Li for i = 0, 1, …, N: 

𝑳𝑳𝒊𝒊 =  ((𝒊𝒊,𝟎𝟎), (𝒊𝒊,𝟏𝟏), . . . (𝒊𝒊,𝑲𝑲));  𝒊𝒊 ∈  𝐍𝐍𝟎𝟎,   𝐄𝐄 = � 𝑳𝑳𝒊𝒊
𝑵𝑵

𝒊𝒊=𝟎𝟎
 

(2) 

where Li ∈ (2) is called the ith level vector of size or order (K+1). 

Using the properties of the QBD under FCFS rule, we organize the elements of the 
transition generator matrix G = (g(Li, Lj ))  described in  (3): 

𝐆𝐆 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑩𝑩 𝑨𝑨𝟎𝟎 𝟎𝟎 𝟎𝟎    ⋯ 𝟎𝟎 𝟎𝟎
𝑨𝑨𝟐𝟐

(𝟏𝟏) 𝑨𝑨𝟏𝟏
(𝟏𝟏) 𝑨𝑨𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝑨𝑨𝟐𝟐
(𝟐𝟐) 𝑨𝑨𝟏𝟏

(𝟐𝟐) 𝑨𝑨𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑨𝑨𝟐𝟐

(𝟑𝟑) 𝑨𝑨𝟏𝟏
(𝟑𝟑) ⋱ 𝟎𝟎 𝟎𝟎

⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋱ 𝑨𝑨𝟏𝟏

(𝑵𝑵−𝟏𝟏) 𝑨𝑨𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ 𝑨𝑨𝟐𝟐

(𝑵𝑵) (𝑨𝑨𝟐𝟐
(𝟏𝟏) + 𝑨𝑨𝟎𝟎)⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

(3) 

Each sub-matrix of G is a square matrix of order (K+ 1) indexed by j = 0, 1, . . . , K. 
The precise structures of B, A0, A1, and A2 are described in (4) to (7),  respectively: 

𝑩𝑩 =

⎝

⎜
⎜
⎜
⎛

 

−(𝝀𝝀+ 𝜸𝜸) 𝜸𝜸 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 −(𝝀𝝀+ 𝜸𝜸) 𝜸𝜸 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋱ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋱ ⋱ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋮ ⋱ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ ⋱ −(𝝀𝝀+ 𝜸𝜸) 𝜸𝜸
𝟎𝟎 𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 −𝝀𝝀⎠

⎟
⎟
⎟
⎞

 

(4) 

 

     𝑨𝑨𝟎𝟎 =

⎝

⎜⎜
⎛

 

𝝀𝝀 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝀𝝀 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋱ ⋮ 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝝀𝝀 ⎠

⎟⎟
⎞

 

(5) 
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For n = 1,2,…, N,  

𝑨𝑨𝟏𝟏
(𝒏𝒏)=

⎝

⎜
⎜
⎜
⎛

 

−(𝜸𝜸 + 𝝀𝝀 + 𝒏𝒏𝒏𝒏) 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝜸𝜸
𝟎𝟎 −(𝜸𝜸 + 𝝀𝝀 + 𝒏𝒏𝒏𝒏) ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 ⋯ ⋱ −(𝜸𝜸 + 𝝀𝝀 + 𝒏𝒏𝒏𝒏) 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 −(𝝀𝝀 + 𝝁𝝁)⎠

⎟
⎟
⎟
⎞

 

(6) 

𝑨𝑨𝟐𝟐
(𝟏𝟏)=

⎝

⎜
⎜
⎛

 

𝒏𝒏 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝒏𝒏 ⋯ ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ ⋯ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 ⋯ ⋱ 𝒏𝒏 𝟎𝟎
µ 𝟎𝟎 ⋯ ⋯ 𝟎𝟎 𝟎𝟎 ⎠

⎟
⎟
⎞

, 𝑨𝑨𝟐𝟐
(𝒏𝒏)=

⎝

⎜
⎜
⎛

 

𝒏𝒏 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝒏𝒏 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 ⋱ 𝟎𝟎 𝟎𝟎
⋮ ⋯ ⋱ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ 𝟎𝟎 𝒏𝒏 ⎠

⎟
⎟
⎞

, n=2, …, N  

(7) 

Distribution: Let Π = (π0, π1, π2, . . . πN) denote the steady-state distribution of Z 
process and πn the row vector πn = (π(n, 0), . . . , π(n, K)) associated to level Ln, n ∈ N0. 

2.2. Steady-state characteristics of the Z process 

The level jumps of the Z process from sate (n, j) ∈ E are restricted only to its 
adjacent neighbors (n−1, j) and (n+1, j) but not to states of the form (n ± i, j) where  
i ≥ 2. 

For each level, Ln, N ≥n≥0 in G, the diagonal elements of the matrix B and 𝐀𝐀𝟏𝟏
(𝐧𝐧) are 

completely negative and off diagonal elements are non-negative. Matrices 𝐀𝐀𝟐𝟐
(𝒏𝒏) and A0 

are not negative. In each row of G, the sum of the elements is zero (scalar). The structure 
of the generator matrix G reveals that the process possesses a limiting distribution of 
the system of equations Π G = 0, Π e =1 (scalar) where 0 denotes the zero vector. We 
now discuss a simple linear level reduction method in two phases for a positive 
recurrent case that leads to computation of the limiting distribution:  

Phase 1: Iteratively reduce the state space from the level ’N’ by removing one level at 
each step until we reach the level ’0’ and check if the generator of the level ’0’ 
corresponds to a positive recurrent Markov process. Compute the U(n) matrices and 
the rate matrices Rn in terms of the sub matrices of the generator G: 

𝐔𝐔(𝑵𝑵) = 𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀 𝟎𝟎 (8) 

𝐔𝐔 (𝐧𝐧)= 𝐀𝐀𝟏𝟏
(𝐧𝐧) − 𝐀𝐀𝟎𝟎[ 𝐔𝐔(𝐧𝐧+𝟏𝟏)

−𝟏𝟏 ] [ 𝐀𝐀𝟐𝟐
(𝐧𝐧+𝟏𝟏)] for n = (N − 1), (N − 2), . . ., 1 (9) 
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𝐔𝐔 (𝟎𝟎) =  𝐁𝐁 − 𝐀𝐀𝟎𝟎[ 𝐔𝐔(𝟏𝟏)
−𝟏𝟏] [ 𝐀𝐀𝟐𝟐

(𝟏𝟏)]     (10) 

Phase 2: Construct the rate matrix Rn of order (Q+1), for n= 1, 2, …N: 

 𝐑𝐑𝐧𝐧 =  −𝐀𝐀𝟎𝟎[ 𝐔𝐔(𝐧𝐧)
−𝟏𝟏]  (11) 

Lemma 1: The system of matrix equations which govern all transitions of the of the Z 
process in terms of its steady-state probability vectors 𝝅𝝅𝒏𝒏  and the known sub-matrices 
of its generator matrix G is derived by solving 𝚷𝚷 G = 0 and reported in (12): 

𝛑𝛑𝟎𝟎 𝐁𝐁 + 𝛑𝛑𝟏𝟏 𝐀𝐀𝟐𝟐
(𝟏𝟏) = 𝟎𝟎 

𝛑𝛑𝐧𝐧−𝟏𝟏  𝐀𝐀𝟎𝟎 +𝛑𝛑𝐧𝐧  𝐀𝐀𝟏𝟏
(𝐧𝐧) + 𝛑𝛑𝐧𝐧+𝟏𝟏 𝐀𝐀𝟐𝟐

(𝐧𝐧+𝟏𝟏) = 𝟎𝟎;  for n=1, 2, …, (N-1) 

𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟎𝟎 + 𝛑𝛑𝐍𝐍 �𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀𝟎𝟎� = 𝟎𝟎 (12) 

Theorem 1: The unique stationary joint distribution vector 𝚷𝚷 of the queue length plus 
the inventory level of the Z = (L, J) process is given by 𝛑𝛑𝒏𝒏 =  𝛑𝛑𝒏𝒏−𝟏𝟏 𝐑𝐑𝐧𝐧 for n = 1, 2, …, 
N and 𝚷𝚷e = 1. 

Proof: The proof of this theorem is organized as an algorithm consisting of four steps: 

Step 1: Re-organizing the last equation 𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟎𝟎 + 𝛑𝛑𝐍𝐍 �𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀𝟎𝟎� = of (12), and 

using the definition 𝐔𝐔(𝑵𝑵) =  𝐀𝐀𝟏𝟏
(𝐍𝐍) + 𝐀𝐀𝟎𝟎 of (8), we conclude that 𝛑𝛑𝐍𝐍  = 𝛑𝛑𝐍𝐍−𝟏𝟏  𝐑𝐑𝐍𝐍. 

Step 2: Putting n = N−1 in (12), we have 

𝛑𝛑𝐍𝐍−𝟐𝟐 𝐀𝐀𝟎𝟎 +𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟏𝟏
(𝐍𝐍−𝟏𝟏)  + 𝛑𝛑𝐍𝐍 𝐀𝐀𝟐𝟐

(𝐍𝐍) = 𝟎𝟎 (13) 

Re-organizing the equation (13) with the substitution of 𝛑𝛑𝐍𝐍  =  𝛑𝛑𝐍𝐍−𝟏𝟏  𝐑𝐑𝐍𝐍 , we 
obtain that 

𝛑𝛑𝐍𝐍−𝟐𝟐  𝐀𝐀𝟎𝟎+𝛑𝛑𝐍𝐍−𝟏𝟏  𝐀𝐀𝟏𝟏
(𝐍𝐍−𝟏𝟏) + 𝛑𝛑𝐍𝐍−𝟏𝟏  𝐑𝐑𝐍𝐍 𝐀𝐀𝟐𝟐

(𝐍𝐍) = 𝟎𝟎 

⇒ 𝛑𝛑𝐍𝐍−𝟏𝟏  [𝐀𝐀𝟏𝟏
(𝐍𝐍−𝟏𝟏) + {−𝐀𝐀𝟎𝟎�𝐔𝐔(𝐍𝐍)�

−𝟏𝟏
 } 𝐀𝐀𝟐𝟐

(𝐍𝐍)] = 𝛑𝛑𝐍𝐍−𝟏𝟏  [𝐔𝐔(𝐍𝐍−𝟏𝟏)]  = −𝛑𝛑𝐍𝐍−𝟐𝟐  𝐀𝐀𝟎𝟎 

⇒ 𝛑𝛑𝐍𝐍−𝟏𝟏  =  𝛑𝛑𝐍𝐍−𝟐𝟐  𝐑𝐑𝐍𝐍−𝟏𝟏 𝐨𝐨𝐧𝐧 𝐮𝐮𝐮𝐮𝐮𝐮𝐧𝐧𝐮𝐮 𝐭𝐭𝐭𝐭𝐭𝐭 𝐟𝐟𝐟𝐟𝐟𝐟𝐭𝐭   𝐑𝐑𝐍𝐍−𝟏𝟏 = -A0   [𝐔𝐔(𝐍𝐍−𝟏𝟏)]−𝟏𝟏 (14) 

Step 3: Continuing the similar iterative process for n = (N-2), (N-1), … 1 and using the 
results of step preceding step, we can establish that 𝛑𝛑𝒏𝒏 =  𝛑𝛑𝒏𝒏−𝟏𝟏 𝐑𝐑𝐧𝐧 = 𝛑𝛑𝟎𝟎 ∑ 𝐑𝐑𝐤𝐤

𝒏𝒏
𝒌𝒌=𝟏𝟏  for 

n = 1, 2, …, N. 
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Step 4: To find the vector  𝛑𝛑𝟎𝟎, the normalizing condition is 𝚷𝚷e = 1, we use the 
following steps. 

i) Solve  𝛑𝛑𝟎𝟎 𝐔𝐔(𝟎𝟎) = 𝟎𝟎,  𝛑𝛑𝟎𝟎𝐭𝐭 =1.  

ii) Compute  𝛑𝛑𝒏𝒏 =  𝛑𝛑𝒏𝒏−𝟏𝟏 𝐑𝐑𝐧𝐧 for n = 1, 2, ..., N. 
iii) Calculate 𝚷𝚷e and renormalize 𝚷𝚷 using 𝚷𝚷 = (𝚷𝚷 / 𝚷𝚷e). 

Thus, now the steady-state probability vector 𝚷𝚷 of the Z process is completely 
determined. We can now discuss the steady-state probabilities of various events, such 
as the conditional probability that a server is on vacation, busy, or idle, etc., and 
measures of system performance. In addition, we can investigate the optimal number 
of vacations to minimize the average operating cost of the system. 

3. Performance Measures: M/M/1/N/(K-vacations) queue with impatient 
customers 

Let us compute the conditional mean system size 𝐐𝐐�𝐣𝐣 given J = j of the (j+1)th 
vacation for j = 0,1, . . . ,(K-1), K: 

𝐐𝐐�𝐣𝐣 = ∑ 𝐧𝐧 𝛑𝛑(𝐧𝐧, 𝐣𝐣),𝐍𝐍
𝐧𝐧=𝟏𝟏  j = 0, 1, 2, . . ., K (15) 

The conditional probability PV that the server is on vacation: 

𝐏𝐏𝐕𝐕  =  �� 𝛑𝛑(𝐧𝐧, 𝐣𝐣)
𝐊𝐊−𝟏𝟏

𝐣𝐣=𝟎𝟎
 

𝐍𝐍

𝐧𝐧=𝟎𝟎

 
(16) 

The conditional probability PB that the server is busy: 

𝐏𝐏𝐁𝐁  =  �  
𝐍𝐍

𝐧𝐧=𝟏𝟏

𝛑𝛑(𝐧𝐧,𝐊𝐊) 
(17) 

The conditional probability PI that the server is idle: 

𝐏𝐏𝐈𝐈  = 𝟏𝟏 −  𝐏𝐏𝐁𝐁 −   𝐏𝐏𝐕𝐕 = �  
𝐍𝐍

𝐧𝐧=𝟏𝟏

𝛑𝛑(𝟎𝟎,𝐊𝐊) 
(18) 

The expectation is that PV + PB + PI = 1. The conditional probability Plost of lost 
customers is given by: 

𝐏𝐏𝐥𝐥𝐨𝐨𝐮𝐮𝐭𝐭  =  �  
𝑲𝑲

𝒋𝒋=𝟎𝟎

𝝅𝝅(𝑵𝑵, 𝒋𝒋) 
(19) 
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The effective arrival rate λeff is given by: 

𝛌𝛌𝐭𝐭𝐟𝐟𝐟𝐟  =
𝛌𝛌

𝟏𝟏 − 𝐏𝐏𝐥𝐥𝐨𝐨𝐮𝐮𝐭𝐭
  (20) 

The unconditional mean system size 𝐐𝐐 �  is given by  

𝐐𝐐� = ∑  𝐐𝐐� 𝐣𝐣 𝐊𝐊
𝐣𝐣=𝟎𝟎 =∑  ∑ 𝐧𝐧 𝛑𝛑(𝐧𝐧, 𝐣𝐣)𝐍𝐍

𝐧𝐧=𝟏𝟏
𝐊𝐊
𝐣𝐣=𝟎𝟎  (21) 

The mean waiting time 𝐖𝐖�  can be calculated by Little’s law. Thus, 

𝐖𝐖�  = 𝐐𝐐
�

𝛌𝛌𝐭𝐭𝐟𝐟𝐟𝐟
 (22) 

3.1. Numerical illustrations 

We now discuss the numerical calculations of some of the measurements discussed 
so far in the previous discussions. The crux of the calculation lies in the calculation of 
the stationary probability vectors {πn; n = 0, 1, . . ., N} because there is no explicit 
expression for each probability function πn. Calculations are based on the algorithm 
given from the matrix equations reported in Theorem 1. 

Any external observer can find the server in one of the three mutually exclusive 
states i.e. “V: Vacation, B: Busy and I: Idle”. Let the probabilities of these three states V, 
B and I be PV, PB, and PI respectively. Then, PV, PB, and PI (PV + PB + PI = 1) values can 
be easily calculated and checked from the stationary probability vector Π satisfying the 
conditions ΠG = 0 and Π e = 1.  

Using server state distribution {PV, PB, and PI (PV + PB + PI = 1)}, we now notice an 
issue related to fee collection and loss of rental owner. Assume the server is a leased 
machine. Let us say the server rental is USD (245.25, 80.8, 125.5) per unit time. Let the 
vacation state of the server cost be 425.25 USD per unit time to manage loss due to 
impatient customers and non-availability of service which each customer spends on 
vacation. Suppose that the management collects profit USD 80.8 per unit time from 
customers when the server is busy and USD 125.45 when server is idle. The objective of 
the management is to fix the maximum number ’K’ of vacations for the server to take 
consecutively, which ensues ’no loss and no gain’ status. For this experiment, random 
values of input quantities are selected as λ = 2.2, ψ = 1.1, ν = 2.25 and µ = 2.5. For j = V, 
B, and I, let us calculate the vector of probabilities V(j)= (Pj

(K=1), Pj
(K=2) , …, Pj

(K=9), Pj
(K=10)),  

respectively for K = 1, 2,. . . , 10. 
Let us compute the following costs:   

• T1(K) = 425. 25 V(1), called vacation loss cost; 

• T2(K) = 80.6 V(2), called the busy server profit;  

• T3(K) = 125.45 V(3), called the idle server profit. 
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The objective is now finding a K∗ value such that the total cost T4(K∗) = 0: 

T4(K) = (T2(K) + T3(K)) − T1(K) > 0 for all K < 𝑲𝑲∗  

                T4(K) = (T2(K) + T3(K)) − T1(K) < 0 for all K >𝑲𝑲∗ (23) 

The general trend is that the function T1(K) increases as the values of K increase. 
On the other hand, both functions T2(K) and T3(K) decrease as the values of K increase. 
We call the total costs T4(K) = T2(K) T3(K) − T1(K). If any of the components of T4(K) 
>0, it gives a profit or a loss for that value of K.  

To demonstrate these facts and to get an optimum on K to meet the no-loss no-
profit condition, numerical values are computed for the given data set and the 
corresponding curve is plotted in Figure 1. 

 

Figure 1:  Relationships among Vacation, Busy and Idle states of the server’s cost for “no loss and No 
gain level as K = 4  

A simple look at Figure 1 tells us that an optimum of vacations is attained if K* = 4. 
This means that if management allows K = 1, 2 and 3 consecutive vacations, 
management earns a positive profit. There is no profit or loss from the maximum 
number of vacation periods K* = 4. But if K ≥ 5, the lead is only a negative profit or loss. 
This type of test can also be designed to monitor a typical K-value, which provides "no 
loss, no gain" efficiency while adding a larger number of cost effects. 
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4.  Conclusions 

A single-server M/M/1/N/(K-vacations) queue with impatient customers, which 
conditionally accepts impatient customers in every vacation period, is well studied by 
matrix analysis. The special thing is that if the customer's service does not end before 
the random deadline chosen by the customer, he can leave the queue. Additionally, the 
server can take multiple vacations in a row, but no more than K vacations. 

The steady-state results of this study are supported by numerical algorithms to 
obtain the necessary probability vectors and the optimal number of K* for consecutive 
vacations. We obtain the steady-state queue length distribution and the scalar value of 
the vector expression for multiple events and measurements. A "no Loss; no Profit" cost 
model is proposed to test the appropriate value for the maximum K-value of 
consecutive vacations and provide a solution using a numerical representation. 

The proposed methodology is implemented by showing an exponential 
distribution of arrival times, service times, impatient customer deadlines and vacation 
periods. Our opinion is thatthe proposed theoretical and computational aspects of 
single-server Poisson queue M/M/1/N are useful not only for academics but also for all 
practitioners dealing with queues that have many vacations. 

Future scope can be expanded by replacing exponential distribution with general 
distribution in single server or multi-server queues. 
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