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From the Editor  

The March issue of Statistics in Transition new series, presented to our readers 
hereby, opens this year's series of our quarterly. It contains a set of twelve articles by 
twenty-eight authors from nine countries (in order of appearance): Poland, USA, Sri 
Lanka, India, Botswana, Pakistan, Malaysia, Nigeria, and France. The wide spectrum of 
issues discussed confirms that our journal consistently strives to cover a wide 
geographical scope while remaining open to a variety of statistical problems that are of 
interest to experts from different fields of research, world-wide. 

It is with great satisfaction that I note that this issue opens with an article by  
a distinguished member of our Editorial Board, Professor Janusz Wywiał. 

Invited papers 

Janusz L. Wywiał’s paper, Generalised spatial autocorrelation coefficients, focuses 
on properties of coefficients of spatial correlation generalised to the multidimensional 
case. The main result of the work is the decomposition of the introduced generalised 
autocorrelation coefficients into the sum of ordinary autocorrelation coefficients, but 
calculated on the basis of the principal components of the originally observed 
multidimensional variable. The development is illustrated with an empirical example. 
The coefficients provide a more detailed and useful description of the spatial 
relationships of a set of variables characterizing a population. 

Research papers 

In the article entitled An expectation-maximization algorithm for logistic 
regression based on individual-level predictors and aggregate-level response, Zheng 
Xu proposes an Expectation-Maximization (EM) algorithm to avoid the direct 
maximization of the complicated likelihood function. Simulation studies have been 
conducted to evaluate the performance of the EM estimator compared to different 
estimators proposed in the literature. Two real data-based studies have been conducted 
to illustrate the use of the different estimators. The EM estimator proves efficient for 
the logistic regression problem with an aggregate-level response and individual-level 
predictors. 

The next paper by D. Dilshanie Deepawansa and Priyanga Dunusinghe Selection 
criteria and targeting the poor for poverty reduction: the case of social safety nets  
in Sri Lanka discusses a multidimensional selection criterion for the leading social 
safety net for Sri Lanka, Multidimensional Deprivation Score Test (MDST). The method 
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used has been applied to the HIES-2019 data. It showed that exclusion error is less than 
existing selection criteria when compared with different targeted groups. According to 
the selection cut-off, Samurdhi/welfare beneficiaries can be identified. In addition, in 
order to impact poverty, the transfer schemes should be varied concerning the severity 
of poverty. Otherwise, if all the beneficiaries get same amount of money, the impact on 
poverty is unlikely to change significantly. In addition to identifying the suitable 
beneficiaries, MDST helps to compute the contribution of deprivation in every 
dimension, which is taken into consideration by household or family, community, or 
geographical level. 

Hemani Sharma’s and Parmil Kumar’s article On survival estimation of Lomax 
distribution under adaptive progressive type-II censoring compares the maximum 
likelihood (ML) estimation and the Bayesian approach for parameter estimation of the 
Lomax distribution. Additionally, the study aims to determine the approximate 
intervals for the parameters and the survival function based on adaptive progressive 
type-II censored data. The ML estimators of the probability distribution parameters 
were calculated using the Newton-Raphson method, while the delta method was used 
to compute the approximate confidence intervals for the survival function. The 
Bayesian approach was also used to estimate the unknown parameters and survival 
function. This was achieved through the construction of Bayesian estimators under an 
informative and non-informative prior based on the squared error loss function (SELF) 
and approximate credible intervals. The Markov Chain Monte Carlo (MCMC) method 
was employed to test the efficiency of the proposed method in various situations based 
on different criteria such as mean-squared error, bias, coverage probability, and 
expected length-estimated criteria. 

In the paper entitled A fuzzy hybrid MCDM approach to the evaluation of 
subjective household poverty, Aleksandra Łuczak and Sławomir Kalinowski propose 
a comprehensive procedure for constructing a synthetic measure of subjective poverty. 
This involves aggregating factors describing the present, future, and past, which makes 
it easier to grasp the feeling of deprivation over time. Methods such as fuzzy TOPSIS 
and fuzzy hierarchical analysis (FHA) based on the fuzzy sets theory were used for this 
purpose. This innovative procedure was applied to assess the level of subjective 
household poverty in Poland based on data from survey research carried out in three 
stages in 2020 using the CAWI method. The results show that the assessment of 
household’s current level of living conditions is also influenced by past events as well as 
projections of future developments. Changes in the values of the synthetic index 
illustrate the trajectory of switching from panic to negation, and attempting to cope 
with the situation or, alternatively, switching to a state of irritation. 

The next paper, Type I heavy-tailed family of generalized Burr III distributions: 
properties, actuarial measures, regression and applications, by Wilbert Nkomo, 
Broderick Oluyede, and Fastel Chipepa, presents a new family of distributions (FoD) 
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called type I heavy-tailed odd Burr III-G (TI-HT-OBIII-G) distribution. Several 
statistical properties of the family are derived along with actuarial risk measures. The 
maximum likelihood estimation (MLE) approach is adopted in the parameter 
estimation process. The estimates are evaluated centered on mean square errors and 
average bias via the Monte Carlo simulation framework. A regression model is 
formulated and the residual analysis is investigated. Members of the new FoD are 
applied to heavy-tailed data sets and compared to some well-known competing heavy-
tailed distributions. The practicality, flexibility and importance of the new distribution 
in modeling are empirically proven using three data sets. 

Laba Handique, Farrukh Jamal, and Subrata Chakraborty in their article On  
a family that unifies the generalized Marshall-Olkin and Poisson-G family of 
distributions propose a unification of the generalized Marshall-Olkin (GMO) and 
Poisson-G (P-G) distributions into a new family of distributions. The density and 
survival function are expressed as infinite mixtures of an exponentiated-P-G family. 
The quantile function, asymptotes, shapes, stochastic ordering and Rényi entropy are 
derived. The paper presents a maximum likelihood estimation with large sample 
properties. A Monte Carlo simulation is used to examine the pattern of the bias and the 
mean square error of the maximum likelihood estimators. The utility of the proposed 
family is illustrated through its comparison with some important models and sub 
models of the family in terms of modeling real data. 

Iwona Skrodzka’s paper, Impact of human capital on the innovation performance 
of EU economies attempts to empirically determine the impact of human capital on the 
innovation performance of EU economies, given a gap in the literature regarding this 
issue. There are difficulties associated with the measurement as well as the limited 
number of methods to study the relationships between unobservable variables. In order 
to fills this gap, the partial least squares structural equation modelling (PLS-SEM) was 
used, covering the years 2014-2020.  

The next article, Improving detectability of the indicator saturation approach 
through winsorization: an empirical study in the cryptocurrency market, by Suleiman 
Dahir Mohamed, Mohd Tahir Ismail, and Majid Khan Bin Majahar Ali, presents  
a hybrid approach called the Win-IS strategy, focusing on the influence of extreme 
outliers in the tail and subsequently identify breaks, trend breaks and outliers in crypto-
currencies. The study uses cryptocurrencies like Bitcoin (BTC), Ethereum (ETH), 
Litecoin (LTC), Tether (USDT), and Ripple (XRP). This article improves the 
detectability of the IS approach by combining it with the winsorization strategy and 
hence proposes a technique known as Win-IS. The performance of Win-IS is then 
empirically compared to IS in five cryptocurrency markets. The Win-IS strategy 
outperformed the IS technique, as demonstrated by BIC scores. Furthermore, the Win-
IS technique reduced severe outliers in four coins while revealing new outliers, breaks, 
and trend breaks, some of which were duplicated from the IS results. The repeated 
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outliers, breaks, and trend breaks show their importance in this market because they 
remained constant in both winsored and original returns.  

M. Dileepkumar’s, R. Anand’s, and P. G Sankaran’s paper, Reliability properties 
and applications of proportional reversed hazards in reversed relevation transform, 
describes important reliability properties of the reversed relevation transform under the 
proportional reversed hazards assumption. The results of research on information 
measures are presented. Various ageing concepts and stochastic orders are discussed. 
A new flexible generalization of the Fréchet distribution is introduced using the 
proposed transformation, and reliability properties and applications are discussed.  
The ageing and stochastic ordering properties of the model were derived.  

In the paper Analytical modelling for COVID-19 data (fatality): a case study of 
Nigeria for the period of February 2020 – April 2022, E. Torsen, U. M. Modibbo, 
M. Mijinyawa, L. L. Seknewna, and I. Ali used univariate time series models to analyze 
the confirmed cases of COVID-19 fatalities (count data and having zero inflation) due 
to COVID-19 in Nigeria. Specifically, the Autoregressive Integrated Moving Average 
(ARIMA), Zero-Inflated Poison Autoregressive (ZIPAR), and Zero-Inflated Negative 
Binomial Autoregressive (ZINBAR) models were employed. The  findings indicate that 
ZINBAR having the lowest Root Mean Square Error (RMSE), the Akaike Information 
Criterion (AIC), and the Bayesian Information Criterion (BIC) outperforms the other 
two models: hence, the ZINBAR performs better than the ZIPAR and the ARIMA. This 
demonstrates and emphasized the fact that for count time series data, count time series 
models should be used, with indication to  the ZINBAR  to be used to predict and 
forecast COVID-19 in Nigeria. 

Research Communicates and Letters 

Stanisław Jaworski’s article Optimal sample size in a triangular model for 
sensitive questions considers the nonrandomized response model (proposed by Tian et 
al., 2007) and  introduces a novel CI for the fraction of sensitive questions in the 
triangular model. Unlike the widely used asymptotic CI, the new approach maintains 
the prescribed confidence level. The minimum sample size satisfying two criteria was 
considered: average length and almost sure length. To obtain such sample sizes, the 
restrictions on privacy protection were imposed, specifically the probability of 
discovering a YES answer to the sensitive question. This probability should be 
sufficiently small to ensure the interviewee’s comfort in answering the questionnaire. 

 

Włodzimierz Okrasa 
Editor  

© Włodzimierz Okrasa. Article available under the CC BY-SA 4.0 licence   
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Generalised spatial autocorrelation coefficients

Janusz L. Wywiał1

Abstract

The article focuses on properties generalised to the multidimensional case of known co-
efficients of spatial correlation. The main result of the work is the decomposition of the 
introduced generalised autocorrelation coefficients into the sum of ordinary autocorrelation 
coefficients, but calculated on the basis of the principal components of the originally ob-
served multidimensional variable. The development is illustrated with an empirical example. 
The coefficients provide a more detailed description of the spatial relationships of a set of 
variables defined in a population.

Key words: Moran coefficient, Geary coefficient, spatial autocorrelation, Mahalanobis dis-
tance, principal components.

1. Introduction

Exploration of various phenomena in natural, social, economic and other populations
requires an approach involving the analysis of relationships among observations of many
features defined in these populations. This applies to populations in which a distance be-
tween pairs of its members is defined. This can lead to the division of the population into
a set of homogeneous subpopulations. This was the inspiration for the preparation of this
work. The known Moran (1950) and Geary (1954) spatial autocorrelation coefficients de-
scribed below allow for the analysis of the spatial similarity in terms of single variables.
The properties of autocorrelation coefficients were considered by, among others, Getis and
Ord (1992), Griffith and Chun (2022). Recently, in the works of Krzyśko et al. (2023),
Krzyśko et al. (2024), the autocorrelation coefficients were significantly generalised to the
multivariate case. These generalizations use advanced functional analysis to simultaneously
analyze the spatio-temporal autocorrelation of time-varying vector observations. Du (2012)
generalised the Geary coefficient to a random vector. It could also be adapted to the Moran
coefficient.

Let xi, i = 1, ...,N be observations of x variable. Moran (1950) defined the coefficient of
spatial autocorrelation in the following way:

IM =
1

wv

N

∑
i=1

N

∑
j=1

(xi − x̄)(x j − x̄)wi j =
1
v

N

∑
i=1

N

∑
j=1

(xi − x̄)(x j − x̄)qi j (1)

1Deaprtment of Statistics, Econometrics and Mathematics, University of Economics in Katowice, Katowice,
Poland. E-mail: wywial@ue.katowice.pl. ORCID:https://orcid.org/0000-0002-3392-1688.

© Janusz L. Wywiał. Article available under the CC BY-SA 4.0 licence



2 Janusz L. Wywiał: Generalised spatial autocorrelation...

where wi j ≥ 0, wii = 0, w=∑
N
i=1 ∑

N
j=1 wi j, v=∑

N
i=1(xi− x̄)2/N, x̄=∑

N
i=1 xi/N, qi j =wi j/w,

0 ≤ qi j ≤ 1. When neighbors are more similar (more different) than observations in general,
then Moran’s coefficient coefficient takes positive (negative) values. Values of this coeffi-
cient close to zero indicates absence of spatial similarity. Usually, −1 ≤ IM ≤ 1, see Cliff
and Ord (1981) or Overmars et al. (2003). However, this is not always the case. The range
of coefficient variability may take into account such distribution features of the examined
variable, as kurtosis or skewness.

Geary (1954) proposed the following coefficient:

IG =
N −1
2Nvw

N

∑
i=1

N

∑
j=1

(xi − x j)
2wi j =

N −1
2Nv

N

∑
i=1

N

∑
j=1

(xi − x j)
2qi j ≥ 0. (2)

The value of the Geary coefficient greater (smaller) than one means large differences
(similarity) of neighboring objects. The value of this coefficient close to one means the lack
of substantial spatial autocorrelation in the sense described above.

Weight wi j, i ̸= j = 1, ...,N can be defined in several ways. For instance, the weights
may indicate the economic relationship between sub-areas. They may, for example, indi-
cate cooperative connections between economic regions, characterised by observations of a
multidimensional variable. In particular, these connections may be financial flows between
these companies. In this case, e.g. well-known input-output matrix of Leontief (1986) could
be used to construct the weights. Getis and Ord (1992) suggested to set that wi j = 1, when
|xi − x j| ≥ d0 and wi j = 0 in otherwise case, i ̸= j = 1, ...,N. For example, the constant
d0 could define the minimum flow of funds from one region to another or the maximum
distance (in km) between them.

2. Generalization and decomposition of spatial autocorrelation
coefficients

Let xit be the i-th observation of the t-th variable, i = 1, ...,N, t = 1, ...,k. These data are
elements of X = [xit ] matrix of dimension N×k, k ≤ N, X = [x∗1...x∗t ...x∗k], where x∗t is the
t-th column of X , xT

∗t = [x1t ...xit ...xNt ]. The i-th row of X is denoted by xi∗ = [xi1...xit ...xik].
In particular, for k = 1, X = [x11 x21...xN1]

T = [x1 x2...xN ]
T . The variance-covariance matrix

is denoted by V = [v jt ] where v jt =
1
N ∑

N
i=1(xi j − x̄ j)(xit − x̄t), x̄t =

1
N ∑

N
i=1 xit , t, j = 1, ...,h.

We assume that V is nonsingular.
Du et al. (2012)) proposed the following generalization of Geary’s coefficient:

IG
k =

N −1
2kNw

N

∑
i=1

N

∑
j=1

(xi∗− x j∗)V−1(xi∗− x j∗)
T wi j =

N −1
2Nk

N

∑
i=1

N

∑
j=1

di jqi j. (3)

where qi j is explained below the expression (1) and

di j = (xi∗− x j∗)V−1(xi∗− x j∗)
T (4)

is the Mahalanobis distance between xi∗ and x j∗. Values of IG
k close to unity indicate lack of
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similarity or differences of neighboring objects due to the multidimensional variable value
vectors observed in them than in the case of all the objects (not necessary neighbours).

When IG
k > 1, there is a tendency that neighboring objects are more dissimilar from each

other in terms of Mahanalobis distance than in the case of IG
k < 1. For instance, taking into

account the aforementioned suggestion of Getis and Ord (1992) we can assume that wi j = 1
if di j ≥ d0 and wi j = 0 in otherwise case, i ̸= j = 1, ...,N, d0 > 0.

Let us generalize Moran’s coefficient for the case when k ≥ 1 as follows:

IM
k =

1
wk

N

∑
i=1

N

∑
j=1

(xi∗− x̄)V−1(x j∗− x̄)T wi j =
1
k

N

∑
i=1

N

∑
j=1

bi jqi j (5)

where
bi j = (xi∗− x̄)V−1(x j∗− x̄)T . (6)

Positive values of IM
k coefficient indicate that the observations of the vectors of the

multivariate variable are similar in terms of the direction of their deviation from the vector
of means. If the observation vectors of variables in neighboring objects deviate from the
average vector in different directions, then we can expect that the autocorrelation coefficient
is negative. Values of the autocorrelation coefficient close to zero indicate lack of similarity
or dissimilarity of neighboring objects due to the multivariate variable. Just like it was in
the case of IG we can assume that wi j = 1 if bi j ≥ b0 and wi j = 0 in otherwise case, b0 > 0,
i ̸= j = 1, ...,N.

In order to decompose the coefficients let us assume that C is such orthogonal matrix
that CTC = Uk and CTVC = λ where Uk is k× k identity matrix, λ = [λt ] is the diagonal
matrix consisting of the eigenvalues of V denoted by λt ≥ 0, t = 1, ...,k, see, e.g. Harville
(1997) or Morrison (1976). Note that V ct = λtUk where ct is the t-th column of C, cT

t =

[c1t ...ckt ] and it is the t-th eigenvector of V . Observations of the t-th principal component
are determined by zt = Xct . The components of the vector λtct are covariances between
the t-th principal component zt and the entire variables represented by the columns of X .
The correlation coefficient between the t-th principal component and observations of the
i-th original variable represented by the column x∗i is as follows:

r(zt ,x∗i) = cit

√
λt

vi
, i = 1, ...,k. (7)

In Appendix we show that the generalised Moran coefficient could be decomposed as
follows:

IM
k =

1
k

k

∑
t=1

IM
k,t (8)

where

IM
k,t =

1
λt

N

∑
i=1

N

∑
j=1

(zit − z̄t)(z jt − z̄t)qi j (9)

is the ordinary Moran spatial autocorrelation coefficient calculated based for the t-th prin-
cipal component of X . Hence, IM

k is the average of the Moran autocorrelation coefficients
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calculated for the principal components. If this average is equal to zero, the coefficients for
the principal components may be non-zero – they happen to cancel each other out.

Similarly to (8) we derive (see Appendix) the following decomposition of Geary’s coef-
ficient:

IG
k =

1
k

k

∑
t=1

IG
k,t (10)

where

IG
k,t =

N −1
2Nλt

N

∑
i=1

N

∑
j=1

(zit − z jt)
2qi j (11)

is the ordinary Geary’s spatial autocorrelation coefficient calculated based on the t-th prin-
cipal component of X . Thus, IG

k is average of Geary’s autocorrelation coefficients calculated
for the principal components.

Example

We illustrate the generalised autocorrelation coefficient with an example of the fol-
lowing variables defined for Polish voivodships: revenues from total economic activity
(x1), sold production of industry (x2), capital expenditures per capita (x3), gross value of
fixed assets per capita (x4), average monthly gross salaries (x5). Data are available at:
https://bdl.stat.gov.pl/bdl/start. Variables have been scaled to have the value of each variable
divided by the value assigned to the capital voivodship.

The values of the ordinary Moran autocorrelation coefficient (see expression (1)) for the
listed variables x1, ...,x5 are as follows: -0.2242, -0.3408, -0.2328, 0.2478, -0.2227. So, all
Moran’s coefficients are negative except x4. The values of the ordinary Geary autocorre-
lation (given by expression (5)) for these variables are as follows: 2.7022, 2.7408, 2.4931,
1.8085, 2.5498.

Moran’s and Geary’s generalised coefficients take the following values −0.0332 and
1.0039, respectively. Thus, both coefficients would indicate that the spatial autocorrelation
for all variables is very weak.

Now, let us consider the decomposition of the generalised coefficients. The eigenvalues
(variances of principal components) of the considered x1, ...,x5 are: 0.1633, 0.0318, 0.0082,
0.0060, 0.0018. The shares of these eigenvalues in their sum are as follows (%): 77.3, 15.1
3.9. 2.9, 0.8. The first two principal components explain 92.4% of the overall variation of
x1, ...,x5. Thus, the first two principal components explain almost all of the variability of
x1, ...,x5. So, the other three principal components can be ignored.

The Moran coefficient for the successive principal components are as follows: -0.2811,
0.3227, -0.0494, -0.7024 and -0.0856. The Geary coefficient for the successive principal
components are as follows: 2.8019, 1.3663, 1.7604, 1.7323 and 2.3778.

The matrix of the ordinary correlation coefficients between the principal components
and the original variables is as follows:
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
−0.9563 −0.9167 −0.8233 0.7170 −0.8099
0.1825 −0.3515 −0.2944 −0.6659 −0.1934
0.0048 −0.1692 0.4652 0.0167 0.2725
0.2270 −0.8640 −0.1176 0.2072 0.0776
0.0247 −0.9779 −0.0726 0.0137 −0.4759

 (12)

In the i-th row there are correlation coefficients between the i-th principal component
and the original variable, i = 1, ...,5. The first principal component representing the disper-
sion of all the original variables is strongly correlated with the original variables (see the
first row of the matrix given by expression (12)). The second and last principal components
are distinctly correlated with the original variables denoted by x2, x4 and x2, x5, respectively.
The third and fourth principal components are rather clearly correlated with variables x3 and
x2, respectively. The last three principal components explain less than 9% variability of the
original variables. Therefore, it suffices to consider only spatial autocorrelation coefficient
for the first and second component. Moran’s and Geary’s coefficients calculated on the basis
of the first component are -0.2811 and 2.8019, respectively. Therefore, it can be concluded
that neighboring Polish voivodeships differ in their observations of the first principal com-
ponent. Moran’s and Geary’s coefficients calculated on the basis of the second component
are 0.3227 and 1.3663, respectively. In this case, the coefficient indicated similarity and
dissimilarity, respectively.

Note that the values of both the generalised Moran and Geary coefficients (calculated
for the original vector observations) are close to zero and one, respectively. This means
that there is no tendency to similarity or dissimilarity between the values of a multivariate
variable observed on neighboring objects. In our case this is due to the fact that the gen-
eralised autocorrelation coefficients are the average values of the ordinary autocorrelation
coefficients calculated for the individual principal components of a multivariate variable.

3. Conclusions

The results of considerations on the properties of generalised spatial autocorrelation
coefficients of the population objects characterized by observation vectors of a multidimen-
sional variable are as follows. For this purpose, a generalization of the Moran coefficient
was defined in a similar way to the generalization of the Geary coefficient proposed by Du
et al. (2012). Both generalised coefficients indicate the degree of similarity between neigh-
boring objects due to the distance between the observation vectors of the multidimensional
variable observed in them. The principal components of a multivariate variable allow for the
presentation of each of the generalised coefficients as the arithmetic mean of the ordinary
spatial autocorrelation coefficients, but calculated on the basis of the principal components.
It was shown that the decomposition of the original variable into principal components can
lead to a substantial simplification of the analysis of multivariate spatial autocorrelation.
Moreover, it was concluded that the interpretation of the generalised autocorrelation coeffi-
cients may lead to misleading results and therefore must be carried out simultaneously with
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the analysis of ordinary autocorrelation coefficients determined on the basis of individual
principal components. Finally, we can say that the obtained results allow the use of prin-
cipal component analysis to enrich the interpretation of generalised spatial autocorrelation
coefficients.
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Appendix

According to notation introduced in Section 2, the equation CVCT = λ is transformed to
the following V =CT

λC because C−1 =CT . The t-the principal component is determined
by z∗t = Xct , t = 1, ...,k and Z = [z∗1...z∗k] = XC, C = [c1...ck].

The equation C−1 =CT let us write V−1 = (CλCT )−1 = (CT )−1(Cλ )−1 =Cλ
−1CT . More-

over: ZCT = X , zi∗CT = xi∗, x̄ = UT
NX/N = UT

NZCT/N = z̄CT , i = 1, ...,N. These results
let us rewrite the equation (6) as follows:

bi j = (zi∗CT − z̄CT )V−1(z j∗CT − z̄CT )T = (zi∗− z̄)CTV−1C(z j∗− z̄)T =

= (zi∗− z̄)CTCλ
−1CTC(z j∗− z̄)T = (zi∗− z̄)λ−1(z j∗− z̄)T =

= [(zi1 − z̄1)...(zit − z̄t)...(zik − z̄k)][λ
−1
t ][(z j1 − z̄1)...(z jt − z̄t)...(z jk − z̄k)]

T =

= [(zi1 − z̄1)λ
−1
1 ...(zit − z̄t)λ

−1
t ...(zik − z̄1)λ

−1
k ][(z j1 − z̄1)...(z jt − z̄t)...(z jk − z̄k)]

T =

=
k

∑
t=1

(zit − z̄t)λ
−1
t (z jt − z̄t) =

1
λt

k

∑
t=1

(zit − z̄t)(z jt − z̄t).

This and equations (1) and (5) lead to the following:

IM
k =

N

∑
i=1

N

∑
j=1

bi jqi j =
N

∑
i=1

N

∑
j=1

1
λt

k

∑
t=1

(zit − z̄t)(z jt − z̄t)qi j =

=
k

∑
t=1

1
λt

N

∑
i=1

N

∑
j=1

(zit − z̄t)(z jt − z̄t)qi j.

This directly leads to equation (8).

Similarly, equation (10) could be derived as follows:

di j = (zi∗CT − z j∗CT )V−1(zi∗CT − z j∗CT )T = (zi∗− z j∗)CTV−1C(zi∗− z j∗)
T =

= (zi∗− z j∗)CTCλ
−1CTC(zi∗− z j∗)

T = (zi∗− z j∗)λ
−1(zi∗− z j∗)

T =

= [(zi1 − z j1)...(zit − z jt)...(zik − z jk)][λ
−1
t ][(zi1 − z j1)...(zit − z jt)...(zik − z jk)]

T =

= [(zi1 − z j1)λ
−1
1 ...(zit − z jt)λ

−1
t ...(zik − z jk)λ

−1
k ][(z j1 − z j1)...(z jk − z jk)]

T =

=
1
λt

k

∑
t=1

(zit − z jt)
2.
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This and equations (2), (3) lead to the following:

IG
k =

N −1
2N

N

∑
i=1

N

∑
j=1

di jqi j =
N

∑
i=1

N

∑
j=1

N −1
2Nλt

k

∑
t=1

(zit − z jt)
2qi j =

=
k

∑
t=1

N −1
2Nλt

N

∑
i=1

N

∑
j=1

(zit − z jt)
2qi j.

This directly leads to equation (10).
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An expectation-maximization algorithm for logistic
regression based on individual-level predictors and

aggregate-level response

Zheng Xu1

Abstract

Logistic regression is widely used in complex data analysis. When predictors are at individ-
ual level and the response at aggregate level, logistic regression can be estimated using the 
Maximum Likelihood Estimation (MLE) method with the joint likelihood function formed 
by Poisson binomial distributions. When directly maximizing the complicated likelihood 
function, the performance of MLE will worsen as the number of predictors increases. In this 
article, we propose an expectation-maximization (EM) algorithm to avoid the direct maxi-
mization of the complicated likelihood function. Simulation studies have been conducted to 
evaluate the performance of our EM estimator compared to different estimators proposed in 
the literature. Two real data-based studies have been conducted to illustrate the use of the 
different estimators. Our EM estimator proves efficient f or t he l ogistic r egression problem 
with an aggregate-level response and individual-level predictors.

Key words: expectation-maximization algorithm, missing values, Poisson binomial distri-
bution, logistic regression, data aggregation, numerical optimization.

1. Introduction

With the fast development in technology, massive complex data have been collected
from multiple sources. New methods have been proposed for complex data situations such
as (1) how to deal with semi-structured data and structured data in the web (Zhai and Liu,
2006; Getdoor and Mihalkova, 2011), (2) analysis of graph-structured data (Geamsakul et
al., 27 2005; Henaff et al., 2015) and (3) multi-level and mixed-level data analysis (Primo
et al., 2007; Saramago et al., 2012).

Data can be collected, reported, and are available at different levels due to a range of
reasons such as confidentiality, data collection difficulty, and cost saving. For example, the
United State Department of Agriculture (USDA) National Agricultural Statistical Services
(NASS) (https://www.nass.usda.gov/) reports agricultural crop yields at the county
level instead of at the farm level, where county-level average or total is aggregated or es-
timated based on farm-level data in each county and farm-level data are confidential and
unavailable to the public. Business data may only publish aggregated commodity purchase
data at the store level and the month level to the public and keep individual-level data and

1Correspondence Author. Department of Mathematics and Statistics, Wright State University, Dayton, OH,
USA. E-mail: zheng.xu@wright.edu. ORCID: https://orcid.org/0000-0003-0311-7004.

© Zheng Xu. Article available under the CC BY-SA 4.0 licence
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daily data confidential. Biological data, social-economic data, survey data, business data
are often collected and reported at different levels.

Data can be aggregated in different ways. For example, a sequential two-stage testing
method is used to study infectious diseases in epidemiology and bio-statistics. In the first
stage, group testing is applied to the combined sample. In the second stage, individuals
showing positive in the first stage are called for testing at the individual level. This group-
testing strategy has been widely used in coronavirus disease 2019 (COVID-19) testing to
increase efficiency and reduce cost (Mercer and Salit, 2021). Group-level Y in Group i can
be calculated via the formula Yi = 1(∑ni

j=1 Yi j > 0), where Yi j is the response for the j-th per-
son in group i, ni is the number of individuals in group i, and 1(.) is the indicator function.
The US Census Bureau reports household income as aggregate-level Y and individual in-
come as individual-level Y , the aggregation method is summation, i.e. Yi = ∑

ni
j=1 Yi j, where

Yi j is the income of the j-th person in the i-th household.
When individual-level X and individual-level Y are modeled by logistic regression,

individual-level Y follows a Binomial Distribution with success probability as a function
of individual-level X , denoted as π(X) = exp(XT β )/(1+exp(XT β )). Then aggregate-level
Y , as the sum of individual-level Y , follows a Poisson-Binomial distribution (Hong, 2013;
Xu, 2023). A complicated likelihood function L(β ) is derived and we previously proposed
MLE estimator β̂MLE = argmaxβ L(β ) with satisfactory statistical performance (Xu, 2023).

Because the maximization of the complicated likelihood function L(β ) is with respect to
β ∈R p, the performance of β̂MLE will decrease when the dimension p increases (Xu, 2023).
Different optimization methods to maximize the likelihood function have been considered
and compared in our previous study (Xu, 2023).

We noticed that the limitation of β̂MLE is mainly due to the direct optimization of
the complicated likelihood function L(β ), β ∈ R p, formed by Poisson binomial distribu-
tions. This optimization can be avoided when an expectation-maximization (EM) method
is adopted. As stated in Hastie et al (2009) and Givens and Hoeting (2012), the EM al-
gorithm is a popular tool for simplifying difficult maximum likelihood problems for which
maximization of the likelihood function is difficult, but made easier by enlarging the sam-
ple with latent data, i.e. a data-argumentation process. For our logistic regression problem
with individual-level X and aggregate-level Y , we can enlarge the sample with the latent
individual-level Y . One reason for using latent individual-level Y is that the usual logistic
regression can be easily conducted when both X and Y are at the same level. Under mild con-
ditions, this usual logistic regression has a unique MLE solution as a convex optimization
problem with a convex objective function (Agresti, 2013; Hilbe, 2009). The unique solution
can be obtained numerically via Newton’s method, which uses the observed second deriva-
tive or the Fisher scoring method, which uses the expectation of this second derivative, and
the Fisher scoring method is an application of the method of iteratively reweighted least
squares (IRLS) (Agresti, 2013; Hilbe, 2009). Our EM algorithm conducts the usual logistic
regression using IRLS method with stable performance and avoids the difficult optimization
of the complicated likelihood function. Another reason to propose our estimator as an EM
algorithm is that the EM algorithm view our problem in the perspective of missing values
and data augmentation. This different perspective, compared with our previously proposed
MLE estimator, makes our problem easily adapted and extensible to more complicated but
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similar problems including (1) the problem that predictors X themselves are at mixed lev-
els, (2) the problem that both X and Y contain missing values and (3) the problem that X
and Y are modeled via a generalized linear model (GLM). Both the EM algorithm and our
previously proposed MLE estimator in Xu (2023) have their own advantage in model ex-
tension to solve more complicated data situations, and choosing which is better depends on
specific data situations. Therefore, both EM estimator and MLE estimator are necessary in
methodological development of logistic regression.

The aim of this article is to study the performance of EM estimator in logistic regres-
sion based on aggregate-level Y and individual-level X . We proposed our EM estimator
in Section 2. We conducted simulation studies to evaluate the performance and compare
our EM estimator with literature estimators in Section 3. We illustrated the use of different
estimators in real data-based studies in Section 4. We provided discussion in Section 5 and
made conclusions in Section 6.

2. Materials and Methods

2.1. Data and Model Specification

Suppose there are N independent individuals aggregated into M groups, with group i
having ni individuals, i.e. N = ∑

M
i=1 ni. Denote (Xi j,Yi j), Xi j ∈R p, Yi j ∈R, i = 1,2, . . . ,M,

j = 1,2, . . . ,ni, as the predictor vector and the response for the j-th individual in the i-
th group. Thus, Xi j and Yi j are individual-level predictor vector (X) and individual-level
response (Y ). Aggregate-level Y is obtained by summation within a group, i.e. Yi =∑

ni
j=1 Yi j.

Suppose there is a logistic regression model at the individual level, i.e.

ln(
P(Yi j = 1)

1−P(Yi j = 1)
) = XT

i j β , i = 1,2, ...,M, j = 1,2, ...,ni. (1)

Then Yi j ∼ Bernoulli(πi j), where πi j = P(Yi j = 1) =
exp(XT

i j β )

1+exp(XT
i j β )

. When individual-level X

and individual-level Y are both available, the logistic model as a generalized linear model
(GLM) can be estimated using a range of methods including the Newton-Raphson method
and the Fisher scoring method and the Fisher scoring method is an application of the method
of iteratively reweighted least squares (IRLS) (Agresti, 2013; Givens and Hoeting, 2012).
We name the logistic regression based on X and Y at the same level as the “usual” logistic
regression (Agresti, 2013; Givens and Hoeting, 2012), to be compared with our problem
of conducting logistic regression based on individual-level X and aggregate-level Y , which
was considered in Xu (2023) and this article.

2.2. Joint Likelihood and MLE Method

Then the distribution of aggregate-level response, Yi = ∑
ni
j=1 Yi j, as the sum of ni in-

dependent Bernoulli random variables Yi j ∼ Bernoulli(πi j), j = 1,2, . . . ,ni, is a Poisson
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binomial distribution, i.e.

Yi ∼ PoissonBinomial(ni,(πi1,πi2, · · · ,πini)), (2)

where πi j = P(Yi j = 1) =
exp(XT

i j β )

1+exp(XT
i j β )

(Wang, 1993; Hong, 2013; Xu, 2023).

The joint likelihood function is

L(β ) =
M

∏
i=1

P(Yi|Xi1, ...,Xini ;β ), (3)

where P(Yi|Xi1, ...,Xini ;β ) is the probability of Yi, as specified in Equation 2.
The calculation of probability for a Poisson binomial distribution is complicated. In gen-

eral, for a variable Y ∼ PoissonBinomial(n,(π1,π2, . . . ,πn)), the probability mass function
is P(Y = y) = ∑A∈Fy ∏i∈A πi ∏ j∈Ac(1−π j), where Fy is the set of all subsets of y integers
that can be selected from {1,2,3, ...,n} and Ac is the complement of A (Wang, 1993). The
set Fk contains

(n
k

)
elements so the sum over it is computationally intensive and even infeasi-

ble for large n. Instead, more efficient ways were proposed, including the use of a recursive
formula to calculate P(Y = y) based on P(Y = k), k = 0, ...,y− 1, which is numerically
unstable for large n (Chen et al., 1994), and the inverse Fourier transform method (Fernan-
dez and Williams, 2010). Hong (2013) further developed it by proposing an algorithm that
efficiently implements the exact formula with a closed expression for the Poisson binomial
distribution (Hong, 2013). We adopted Hong’s algorithm and exact formula in calculat-
ing the likelihood function L(β ), β ∈ R p in Equation 3 since they are more precise and
numerically stable (Xu, 2023). Three optimization methods (Nelder and Mead’s simplex
method (NM) (Nelder and Mead, 1965), the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method (Fletcher, 1970), and the conjugate gradient (CG) method (Fletcher and Reeves,
1964)) to maximize the joint likelihood function L(β ) were compared in Xu (2023) and
the three methods show similar performance with NM method slightly better as our recom-
mended method, and NM method is derivative free (Xu, 2023; Givens and Hoeting, 2012).
We note that along the category of methods of directly optimizing the likelihood function
L(β ), β ∈ R p, there can be a range of potential methods including evolutional algorithm
and simulated annealing which may have similar or even better performance compared with
our recommended directly optimization method (Givens and Hoeting, 2012; Xu, 2023). The
search of optimization methods which directly maximizes L(β ) is not the objective of this
article. Instead, we intend to develop methods not in this category of methods, i.e. methods
not directly maximizing L(β ).

2.3. Expectation Maximization Algorithm

As an optimization problem maxβ L(β ), β ∈ R p, its performance will become worse
when the number of predictors p increases. The objective function L(β ) is a complicated
likelihood function so that we consider whether it is possible to circumvent or avoid the
direct optimization of L(β ).

We noticed that the “usual” logistic regression, i.e. logistic regression when X and Y are
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at the “same” level, is numerically stable and relatively easy to calculate. However, for our
data situation, the usual logistic regression is infeasible because individual-level X is not
available. To address this issue, we view our problem as a missing value problem where the
latent variable is individual-level Y and we adopt an EM algorithm to substitute it. In each
iteration of the EM algorithm, the usual logistic regression is conducted with individual-
level Y , i.e. Yi j, substituted with its expectation given current-iteration parameter estimate,
i.e. E(Yi j|Yi,β

(k)), where β (k) is the estimated value of parameter β in iteration k.
Illuminated by the materials of EM algorithm in Hastie et al. (2009) and Givens and

Hoeting (2012), we developed the EM algorithm for our problem. The EM algorithm is de-
scribed as Algorithm 1 in the following page. The estimator obtained via the EM algorithm
is named as the EM estimator.

One advantage of EM estimator is that it can avoid the direct optimization of the com-
plicated nonlinear likelihood function L(β ). EM algorithm conducts the usual weighted
logistic regression in each iteration. EM estimator is expected to have similar performance
or even potentially slightly better performance compared with our MLE estimator in Xu
(2023), which directly maximizes L(β ).

Another advantage of EM estimator is that it views our problem in a different perspec-
tive, i.e. missing values and data augmentation. This makes our method easily adapted
and extensible for some applications. Potential applications which our EM algorithm may
solve after modifications include (1) the situation where X are at mixed levels, i.e. different
predictors are at levels, (2) the situation where there are missing values in X and Y , (3) the
situation where individual-level X and Y is described by a generalized linear model (GLM),
and (4) the situation where the objective is to use a variational Bayes to find a posteriori
estimation (MAP) and make use of prior information (Bernardo et al., 2003).

3. Simulation Studies

3.1. Simulation Setups

We conducted simulation studies to evaluate the performance of the following four es-
timators. Estimator 1, named as “individual-LR”, is the logistic regression estimator based
on individual-level X and individual-level Y . This estimator is infeasible in our data sit-
uation where only aggregate-level Y is available. Because aggregate-level Y contains less
information compared to individual-level Y , we expect that this infeasible estimator can
provide an upper bound for the performance of feasible estimators based on aggregate-level
Y . Estimator 2, named as “naive–LR”, is the logistic regression estimator based on the
aggregate-level X , which is the mean of X in each group, and the aggregate-level Y , i.e.
Yi ∼ Binomial(ni,∑

ni
j=1 Xi j/ni), i = 1,2, . . . ,M. This estimator can provide a rough approx-

imate estimation. Estimators 3 is our previously recommended MLE estimator via Nelder-
Mead optimization (Xu, 2023). Estimator 4 is our proposed EM estimator as described
above. The performances of these estimators were compared under three scenarios. In each
scenario, simulations were conducted with the number of groups (M = 300,500,1000), and
equal group sizes (ni = 5,10, i = 1,2, . . . ,M). The setup of data generation is specified as
follows:
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Algorithm 1 EM Algorithm for Logistic Regression Based on Individual-Level X and
Aggregate-Level Y

1. Start with initial value for the parameter β , i.e. β̂ (0), where the initial value is obtained
from the following values: (1) estimated value by the usual logistic regression of
aggregate-level Y on aggregate-level X , (2) MLE estimate in Xu (2023), (3) the zero
vector (0,0, . . . ,0) ∈ R p, (4) the unit vector (1,1, . . . ,1) ∈ R p, and (5) the vector
(−1,−1, . . . ,−1) ∈ R p.

2. Expectation Step: at the j-th step, compute

Q(β ′, β̂ ( j)) = E(l(β ′;{Yi j})|{Yi}, β̂ ( j)) (4)

=
M

∑
i=1

ni

∑
j=1

{E(Yi j|Yi, β̂
( j)) ln(πi j)+(1−E(Yi j|Yi, β̂

( j))) ln(1−πi j)}

as a function of the dummy argument β ′. The expected value of latent value Yi j is
computed via the formula

E(Yi j|Yi = y, β̂ ( j)) (5)

= P(Yi j = 1|Yi = y, β̂ ( j)) =
P(Yi j = 1)P(Yi −Yi j = y−1)

P(Yi = y)

=
πi j ×PoissonBinomial(y−1;ni −1,πi1, . . . ,πi, j−1,πi, j+1, . . . ,πini)

PoissonBinomial(y−1;ni,πi1,πi2, . . . ,πini)
,

where PoissonBinomial(.) is the probability mass function of a Poisson binomial dis-
tribution, and πi j = exp(XT

i j β
′)/(1+ exp(XT

i j β
′)). As the convention in regression

analysis, we can treat X as fixed. For random X , we can use the argument of condi-
tioning Y on X and this conditioning is equivalent to treating X as fixed (Hastie et al.,
2009; Givens and Hoeting, 2012).

3. Maximization Step: determine the new estimate β̂ ( j+1) as the maximizer of
Q(β ′, β̂ ( j)) over β ′. This step is obtained by conducting weighted logistic regres-
sion with the likelihood function specified in Equation 4. To be more specific,
our dataset has N observations of individual-level X , i.e. Xi j, i = 1,2, . . . ,M,
j = 1,2, . . . ,ni, N = ∑

M
i=1 ni. A pseudo-dataset of 2N pseudo-observations is cre-

ated with the pseudo-observation represented as (X̃i jk,Ỹi jk,W̃i jk), i = 1,2, . . . ,M,
j = 1,2, . . . ,ni, k = 0,1, where X̃ , Ỹ and W̃ are respectively the predictor vector,
response and weight in the pseudo-dataset. For each observation Xi j, two pseudo-
observations, i.e. (X̃i j0,Ỹi j0,W̃i j0) and (X̃i j1,Ỹi j1,W̃i j1), are created as follows:

X̃i j0 = Xi j, Ỹi j0 = 0, W̃i j0 = 1−E(Yi j|Yi, β̂
( j))

X̃i j1 = Xi j, Ỹi j1 = 1, W̃i j1 = E(Yi j|Yi, β̂
( j)).

Weighted logistic regression is conducted based on the pseudo-dataset.

4. Iterate steps 2 and 3 until convergence.
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• In Scenario 1, p = 5, (Xi1,Xi2) ∼ multinormal2(02×1,Σ2×2), 02×1 = (0,0)T , Σ2×2 =

(σi j) where σi j = 1 for i = j and σi j = 0.6 for i ̸= j. Xi3 ∼ t(df = 2),
Xi4 ∼ Bernoulli(0.5), Xi = (1,Xi1,Xi2,Xi3,Xi4)

T ∈ R p,
Yi ∼ Bernoulli(eXT

i β/(1+ eXT
i β )), β = (−0.5,1,−0.5,2,−1.6)T .

• In Scenario 2, p = 10, (Xi1,Xi2,Xi3,Xi4) ∼ multinormal4(04×1,Σ4×4),
04×1 = (0,0,0,0)T , Σ4×4 = (σi j) where σi j = 1 for i= j and σi j = 0.6 for i ̸= j. Xi5 ∼
t(df = 2), Xi6 ∼ t(df = 4), Xi7 ∼ chi-square(df = 2), Xi8 ∼ chi-square(df = 3), Xi9 ∼
Bernoulli(0.5), Xi = (1,Xi1,Xi2, . . . ,Xi9)

T ∈ R p, Yi ∼ Bernoulli(eXT
i β/(1+ eXT

i β )),
β = (−0.5,1,−2.5,2,−1.6,0.7,0.9,−2.4,0.5,−1.3)T .

• In Scenario 3, p = 20, (Xi1,Xi2, . . . ,Xi10) ∼ multinormal10(010×1,Σ10×10), 010×1 =

(0,0, . . . ,0)T , Σ10×10 = (σi j) where σi j = 1 for i = j and σi j = 0.6 for i ̸= j. Xi11 ∼
t(df = 2), Xi12 ∼ t(df = 4), Xi13 ∼ t(df = 6), Xi14 ∼ chi-square(df = 2),
Xi15 ∼ chi-square(df = 3), Xi16 ∼ chi-square(df = 4), Xi17 ∼ Bernoulli(0.3), Xi18 ∼
Bernoulli(0.5), Xi19 ∼ Bernoulli(0.7), Xi = (1,Xi1,Xi2, . . . ,Xi19)

T ∈ R p,
Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )), β = (−0.5,−0.8969,0.1848,1.5878,−1.1304,

−0.0803,0.1324,0.7080,−0.2397,1.9845,−0.1388,0.4177,0.9818,−0.3927,
−1.0397,1.7822,−2.311,0.8786,0.036,1.013)T . Note that the values of the 19 slope
coefficients, i.e. β1, . . . ,β19, were generated as standard normal random variables,
and the generation of the values of the 19 slope coefficients was implemented in R
language using the command: “set.seed(2); rnorm(19)”. The value of the intercept
parameter, i.e. β0, was fixed at -0.5.

3.2. Performance Evaluation Metrics

The squared bias, variance, mean square error (MSE), and mean absolute deviation
(MAD) of each of the four estimators’ (E1 to E4) model parameters (β0, ...,βp−1) ∈ R p

were calculated. Denote the bias, variance, MSE, and MAD of the q-th estimator of β j as
Bias(β̂ j,Eq),Var(β̂ j,Eq), MSE(β̂ j,Eq), and MAD(β̂ j,Eq). The average squared bias, variance,

MSE, and MAD of the q-th estimator were calculated as Bias2(Eq)= (1/p)∑
p−1
j=0 Bias2(β̂ j,Eq),

Var(Eq) = (1/p)∑
p−1
j=0 Var(β̂ j,Eq), MSE(Eq) = (1/p)∑

p−1
j=0 MSE(β̂ j,Eq), and MAD(Eq) =

(1/p)∑
p−1
j=0 MAD(β̂ j,Eq).

3.3. Simulation Results

In Table 1, we report the average squared biases and variances for the four estima-
tors (Individual-LR, Naive-LR, MLE and EM) under different scenarios, sample sizes, and
group sizes. Regarding bias, the infeasible individual-LR shows smallest bias and the naive-
LR shows biggest bias. The reason for individual-LR to have smallest bias is that individual-
LR conducts the usual logistic regression based on individual-level X and individual-level Y
which makes use of more information than available in our data situation where individual-
level Y is not available. Naive-LR is found to have the biggest bias, which was explained by
the fact that logistic regression model uses a “non-linear” logit link function and Naive-LR
conducts a naive rough approximate using the mean of X , which ignores the nonlinearity in
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the link function, so that Naive-LR can induce a big bias. The biases of MLE estimator and
EM estimator are found to be between the two extremes, i.e. individual-LR and naive-LR.

Regarding variance, individual-LR and naive-LR have relatively smaller variance, com-
pared with MLE estimator and EM estimator. We explained that the smaller variance in
individual-LR is because it uses more information than available in our data situation where
individual-level Y is not available. The smaller variance in naive-LR is also reasonable. As
a poor rough approximate estimator, naive-LR can have big bias and small variance. For ex-
ample, suppose that a toy estimator always reports a constant value as its estimate. This toy
estimator will have zero variance and a big bias. Thus, we put more focus on mean square
error (MSE) and mean absolute deviation (MAD) instead of bias and variance in evaluating
estimators.

Next, we check MSE and MAD of the four estimators. In Table 2, we report average
MSE and average MAD. The infeasible individual-LR estimator shows the best performance
in terms of both MSE and MAD. This is because individual-LR estimators makes use of
more information than available in our data situation where individual Y is latent. The
naive-LR estimator shows the worst performance in terms of both MSE and MAD. This is
because naive-LR is a naive rough approximate estimator which can lead to a big bias due
to non-linearity in link function. In terms of MSE and MAD, we found our MLE estimator
and EM estimator are between the two extremes (individual-LR and naive-LR). Our MLE
and EM estimator show similar performance with EM estimator having potentially slightly
better performance.

We add a cautionary note that simulation studies cannot substitute theoretical verifica-
tion. Simulation studies cannot fully assess theoretical properties of estimators. Theoretical
properties of MLE estimators and EM estimators have to be inferred based on theoretical
literature on MLE and EM.

4. Real Data-Based Studies

We used real data to illustrate the use of our EM estimator and compare it with dif-
ferent estimators in the literature. Two real data-based studies are shown. One study is
wine quality modeling based on physico-chemical tests. The other study is maternal health
risk modeling. Both studies used the datasets from UC Irvine machine learning repository
(https://archive.ics.uci.edu/).

4.1. Wine Quality Modeling

We obtained two datasets of wine quality from UC Irvine machine learning repository
(Cortez and Reis, 2009). The two datasets are related to red and white verde wine samples,
from the north of Portugal. Due to privacy and logistic issues, only physicochemical (inputs,
i.e. X) and sensory (the output, i.e. Y ) variables are available. The output variable sensory
wine quality score is a score between 1 and 10. This wine quality score was dichotomized
into a binary variable, which takes the value of 1 (high-quality) or 0 (low-quality) depend-
ing on whether the score is between 6 and 10, or between 1 and 5. Thus, as specified in
UC Irvine machine learning repository, the wine quality datasets can be used for both clas-
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Table 1: Average Squared Bias and Variance of Estimator E1 (Individual-LR), E2 (Naive-
LR), E3 (MLE) and E4 (EM). In the columns for average squared bias and average variance,
the unit is 0.001.

Average Squared Bias Average Variance

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1 300 5 0.08 718 0.68 0.37 15.8 21.1 35.3 34.0

1 300 10 0.11 788 3.16 0.74 7.4 16.5 48.3 34.5

1 500 5 0.20 717 0.36 0.90 9.0 11.3 30.7 27.6

1 500 10 0.03 788 0.96 1.12 4.8 13.3 36.4 25.7

1 1000 5 0.03 729 0.29 0.31 4.8 8.3 19.3 12.8

1 1000 10 0.01 799 3.57 0.05 2.3 5.9 23.0 11.2

2 300 5 0.72 1007 6.48 4.39 34.3 24.3 91.2 57.5

2 300 10 0.43 1064 25.23 5.08 13.6 23.0 134.9 46.2

2 500 5 0.43 1021 19.14 0.25 14.6 14.3 63.2 26.4

2 500 10 0.18 1063 49.26 1.54 7.8 11.6 96.0 27.0

2 1000 5 0.18 1018 17.67 0.57 7.8 7.7 57.2 15.1

2 1000 10 0.06 1078 49.59 0.37 4.0 6.8 81.5 11.7

3 300 5 6.25 658 178.2 14.39 48.0 27.6 86.3 78.6

3 300 10 2.15 683 282.9 10.05 22.3 25.3 63.8 65.3

3 500 5 1.08 667 200.2 3.23 28.7 15.2 70.0 43.6

3 500 10 0.40 693 300.0 2.46 13.1 14.4 47.5 33.5

3 1000 5 0.40 668 192.5 0.96 13.1 7.5 59.3 20.3

3 1000 10 0.13 689 306.2 1.03 6.4 6.5 35.1 16.0

sification problem (Y is the binary wine quality variable) and regression problem (Y is the
wine quality score which is between 1 and 10). There are 11 continuous features/predictors
in X . They are (1) fixed acidity, (2) volatile acidity, (3) citric acid, (4) residual sugar, (5)
chlorides, (6) free sulfur dioxide, (7) total sulfur dioxide, (8) density, (9) pH, (10) sulphates
and (11) alcohol. For more details in the wine quality datasets, please refer to Cortez and
Reis (2009).

We used the wine quality datasets to illustrate the use of logistic regression under the
data situation of aggregate-level Y and individual-level X . In practice, there are multiple
reasons which can contribute to the situation that Y is available at aggregate level instead
of individual level. One reason is confidentiality. For example, suppose the objective is
to predict or model wine quality provided by some specific wine association or agency.
However, the wine association or agency wants to keep its evaluation in confidentiality
and do not want its evaluation to be easily modeled or predicted. In addition, the wine
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Table 2: Average Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) of
Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and E4 (EM). In the columns for
average MSE and average MAD, the unit is 0.001.

Average MSE Average MAD

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1 300 5 15.9 739 36.0 34.4 95.5 680.7 146.5 140.1

1 300 10 7.5 804 51.5 35.2 63.7 714.5 169.4 146.4

1 500 5 9.2 729 31.0 28.5 74.6 676.7 137.1 130.7

1 500 10 4.9 801 37.4 26.8 53.6 708.0 140.4 125.3

1 1000 5 4.9 738 19.6 13.1 53.6 685.0 100.2 89.0

1 1000 10 2.3 805 26.6 11.3 37.4 715.0 113.7 82.4

2 300 5 35.0 1032 97.7 61.9 136.9 865.6 228.7 188.2

2 300 10 14.0 1087 160.2 51.3 87.5 885.9 290.2 166.8

2 500 5 15.1 1035 82.3 26.7 90.5 869.1 205.7 122.5

2 500 10 8.0 1075 145.2 28.5 65.2 886.7 264.9 126.0

2 1000 5 8.0 1026 74.9 15.6 65.2 868.5 186.5 91.5

2 1000 10 4.1 1084 131.1 12.0 46.2 897.6 248.6 84.0

3 300 5 54.2 685 264.5 93.0 176.7 645.6 401.8 233.7

3 300 10 24.5 709 346.7 75.3 119.1 658.1 465.2 207.6

3 500 5 29.8 682 270.2 46.8 127.9 643.7 413.7 163.8

3 500 10 13.5 708 347.6 36.0 89.6 658.2 472.1 143.3

3 1000 5 13.5 675 251.8 21.3 89.6 639.1 401.4 112.1

3 1000 10 6.6 695 341.3 17.0 61.2 647.9 466.3 98.3

association is interested in ranking wineries or wine firms based on multiple wine samples
submitted by each winery or firm. The rule is that each winery or firm is allowed to submit
samples from multiple brands the winery or firm owns. The wine association will only
specify how many samples are in high-quality in their submission and does not disclose
wine quality of each individual wine sample. In this way, the firms will compete with
aggregate-level Y available instead of individual-level Y , and the wine association or agency
keep its evaluation result of individual samples to be confidential.

We illustrated the use of our EM estimator and other estimators (infeasible individual-
LR, naive aggregate-LR, and MLE estimator in Xu (2023)) in the literature for wine quality
modeling. There are 4898 observations in white wine data, and 1599 observations in red
wine data. We conducted random aggregation with equal group size ni = 5 and 10. For
white wine data, there are 979 = 4895/5 groups of size ni = 5 formed, and 489 = 4890/10
groups of size ni = 10 formed. Thus, there are 4895 and 4890 observations used in our data
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situation ni = 5 and ni = 10 for white wine data. For red wine data, there are 319 = 1595/5
groups of size ni = 5 formed, and 159 = 1590/10 groups of size ni = 10 formed. Thus,
there are 1595 and 1590 observations used in our data situation ni = 5 and ni = 10 for red
wine data.

We showed the estimated values of the estimators based on our data sets with random ag-
gregation. The estimators are: (1) individual-LR, which conducts logistic regression based
on individual-level X and individual-level Y . Individual-LR is considered to be the best
estimator since it uses more information (individual-level Y ) than the information avail-
able in our data situation where aggregate-level Y instead of individual-level Y is available.
Thus, individual-LR is infeasible. (2) naive-LR, which conducts logistic regression based
on aggregate-level X and aggregate-level Y . (3) our previously proposed MLE in Xu (2023).
(4) our EM estimator proposed in this article. We illustrated the use of each estimator based
on wine quality data and report the estimated values of parameters for white wine data in
Table 3 and the estimated values of parameters for red wine data in Table 4. As shown in
Table 3 and 4, these estimators reported numerically different values. We recommend the
use of EM estimator and MLE estimator, since individual-LR is infeasible and naive-LR can
induce a big bias. Because there is no ground truth (true values) of logistic model param-
eters known in the real data, no statistical performances (such as bias and variance) were
evaluated based on the real data.

Table 3: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On White Wine Quality Data.

ni = 5 ni = 10

Variable E1 E2 E3 E4 E1 E2 E3 E4

β0 0.920 0.719 0.910 0.923 0.920 0.703 0.913 0.917

β1 0.032 0.048 0.075 0.018 0.033 0.026 0.065 0.042

β2 -0.651 -0.456 -0.627 -0.636 -0.650 -0.459 -0.645 -0.658

β3 0.015 0.066 0.075 0.090 0.015 -0.028 0.010 -0.001

β4 0.865 0.395 0.599 0.451 0.866 0.984 1.435 1.359

β5 0.020 -0.066 -0.058 -0.075 0.019 -0.131 -0.078 -0.082

β6 0.163 0.170 0.170 0.223 0.164 0.214 0.264 0.285

β7 -0.056 -0.066 -0.019 -0.045 -0.057 -0.141 -0.101 -0.112

β8 -0.812 -0.267 -0.473 -0.212 -0.814 -0.789 -1.202 -1.086

β9 0.166 0.131 0.172 0.139 0.167 0.217 0.347 0.323

β10 0.205 0.159 0.209 0.191 0.206 0.182 0.397 0.387

β11 0.915 0.840 1.056 1.210 0.911 0.536 0.681 0.749
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Table 4: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On Red Wine Quality Data.

ni = 5 ni = 10

Variable E1 E2 E3 E4 E1 E2 E3 E4

β0 0.239 0.143 0.239 0.226 0.237 0.141 0.291 0.295

β1 0.247 0.367 0.382 0.693 0.251 0.853 0.880 1.000

β2 -0.585 -0.337 -0.500 -0.571 -0.588 -0.454 -0.702 -0.771

β3 -0.248 -0.379 -0.371 -0.532 -0.252 -0.282 -0.356 -0.413

β4 0.079 -0.043 -0.003 0.108 0.080 0.028 -0.137 -0.296

β5 -0.183 0.083 -0.023 0.052 -0.180 -0.114 -0.144 -0.161

β6 0.233 0.337 0.260 0.309 0.230 0.273 0.352 0.083

β7 -0.539 -0.574 -0.684 -0.721 -0.535 -0.288 -0.317 -0.110

β8 -0.104 0.051 -0.020 -0.197 -0.104 -0.491 -0.478 -0.544

β9 -0.052 -0.101 -0.217 -0.117 -0.053 0.159 0.079 0.190

β10 0.475 0.224 0.296 0.326 0.469 0.550 0.643 0.642

β11 0.917 0.688 0.993 0.973 0.917 0.451 0.805 0.876

4.2. Maternal Health Risk Modeling

We obtained the dataset of maternal health risk from UC Irvine machine learning repos-
itory (Ahmed, 2023; Ahmed et al., 2020). The data were collected through the IoT-based
risk monitoring system from a range of hospitals, community clinics, maternal health care
in the rural areas of Bangladesh (Ahmed, 2023). The response variable is the binary ma-
ternal health risk level (low risk or high risk). The predictors are (1) age, (2) systolic blood
pressure, (3) diastolic blood pressure, (4) blood glucose, (5) body temperature, and (6) heart
rate. All these predictors are the responsible and significant risk factors for maternal mortal-
ity (Ahmed et al., 2020). UC Irvine machine learning repository specify it as a classification
problem since the response variable is binary. There are 1013 individual observations in the
dataset. For more details in the maternal health risk data, please refer to Ahmed et al. (2020)
and Ahmed (2023).

We conducted random aggregation on the data. There are 202=1010/5 groups of size
ni = 5 and 101=1010/10 groups of size ni = 10 formed. Thus, there are 1010 observations
in our study of maternal health risk modeling.

Based on the maternal health risk data with random aggregation, we conducted individual-
LR, naive-LR, MLE in Xu (2023) and EM estimator proposed in the article. The estimated
values of these estimators are shown in Table 5. There is numerical difference in the esti-
mated values of different estimators. We recommend the use of our proposed EM estimator
and our previously proposed MLE estimator in the study.
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Table 5: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On Maternal Health Risk Data.

ni = 5 ni = 10

Variable E1 E2 E3 E4 E1 E2 E3 E4

β0 0.913 0.544 0.785 0.784 0.913 0.546 0.592 0.669

β1 -0.079 -0.062 -0.075 -0.079 -0.079 -0.075 -0.019 -0.113

β2 1.116 2.014 1.060 1.059 1.116 3.413 1.138 1.102

β3 -0.365 -0.551 -0.346 -0.345 -0.365 -1.205 -0.357 -0.433

β4 1.631 0.717 1.333 1.329 1.631 0.460 0.640 1.032

β5 0.668 0.998 0.652 0.650 0.668 1.388 0.746 0.594

β6 0.272 0.177 0.213 0.214 0.272 -0.104 0.433 0.228

5. Discussion

There are at least two categories of methods to solve the problem of logistic regression
based on individual-level X and aggregate-level Y . The first category is directly maximizing
the complicated likelihood function L(β ), β ∈ R p to find MLE as we previously proposed
in Xu (2023). The second category is to avoid the direct optimization of the likelihood func-
tion L(β ), β ∈ R p using the EM algorithm as we propose in this article. In theory, both
categories of methods are valid. Similar but slightly different performances are expected
theoretically. We note that the two categories of methods are generic so that there are a range
of ways in each category. Along the first category, i.e. obtaining MLE by directly maximiz-
ing L(β ), β ∈R p, there can be a range of optimization methods with slightly better or worse
performance. A non-exhaustive list of these methods includes: (1) Nelder and Mead’s sim-
plex method (NM) (Nelder and Mead, 1965), (2) the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method (Fletcher, 1970), (3) the conjugate gradient (CG) method (Fletcher and
Reeves, 1964), (4) simulated annealing (Brooks and Morgan, 2018), and (5) evolutional
algorithm (Lambora et al., 2019), and their combinations or variants such as Generalized
simulated annealing (GSA) and variable step size generalized simulated annealing (VGSA)
(Kalivas, 1992). Along the second category avoiding directly maximization of likelihood
function L(β ), β ∈ R p, there can be a range of methods including (1) the standard EM
(McLachlan and Krishnan, 2007), (2) Monte Carlo EM (Wei and Tanner, 1990), and (3)
variational Bayes EM (Bernardo et al., 2003).

Both categories of methods have their own advantages and are necessary for the logistic
regression based on individual-level X and aggregate-level Y . Which category of methods
to use in practice depends on the specific problem. The advantages of the second category
of methods, including EM algorithms, Bayes methods and their variants, are the conve-
nience in solving a range of data situations including missing values. Along this category
of methods, methods can be potentially adapted to solve data situations such as (1) the sit-
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uation where X and Y are at mixed-levels, (2) the situation where X and Y contain missing
values, (3) the situation where prior information is preferred to use or consider, (4) the sit-
uation where individual-level X and individual-level Y is described by a generalized linear
model, which can be a linear model, logistic model, Poisson model or other generalized lin-
ear models. In comparison, the advantages of the first category of methods include (1) there
are a range of optimization methods to try, (2) the potential further extension of methods
to penalized likelihood functions which will add a penalty term such as Lp norm of model
parameter β with 1 ≤ p ≤ 2 to the current complex likelihood function (Hastie et al., 2009),
and (3) likelihood-based statistical inferences such as likelihood ratio test, score test, stan-
dard errors, and confidence intervals. Studies of these extensions are beyond the scope of
this article and are under development as future work.

The dimension p, i.e. the number of predictors, influences the performance of EM esti-
mator and MLE estimator. Given the sample size n, both EM performance and MLE perfor-
mance are expected to decrease when p increases. The deterioration of both performances
with the increase in p is as expected since the optimization problem maxL(β ), β ∈ R p in
theory will decrease when p increases, given a fixed sample size n. Both EM and MLE will
maximize L(β ), either indirectly or directly.

However, we need to note although EM algorithms always have likelihood non-decreasing
in each step, EM may converge to a local maximum of the observed likelihood function for
some starting values instead of a global maximum so that EM estimators may not converge
to MLE (Givens and Hoeting, 2012). Our EM estimator is a standard EM estimator, suffer-
ing from the (common) limitations of EM estimators while enjoying the (common) benefits
and advantages of EM estimators.

In logistic regression, both continuous predictors and categorical predictors can be in-
cluded. Our simulation studies used both types of predictors. However, for categorical
predictors, we only used binary predictors. A categorical predictor with K levels can lead to
or amount to K −1 binary predictors, which will increase the number of predictors, i.e. p.
As the number of levels K increases, the number of predictors, i.e. p, increases, which will
make estimation performance become worse. Thus, a categorical predictor with multiple
levels may decrease estimation performance of our estimators. Future studies can be on the
influence of categorical predictors with more than two levels.

There are some assumptions in our model setup. Firstly, we only consider independent
individual-level data, i.e. (Xi,Yi), i = 1,2, · · · ,n, in this article. In practice, individual-level
observations can be correlated or dependent. Secondly, we only consider the situation of
“grouping completely at random”, which means that the grouping mechanism is completely
random, and is not influenced by the values of X and Y . In practice, grouping may not
be completely random such as the situation where individuals with similar values in X or
Y are more likely to be grouped together. Further studies can be conducted for grouping
not completely at random. Thirdly, only summation aggregation Yi = ∑

ni
j=1 Yi j is studied.

Other aggregations, such as Yi = 1(∑ni
j=1 Yi j > 0) used in group testing of infectious disease,

are not studied in this article, since the group-testing problem with Yi = 1(∑ni
j=1 Yi j > 0) for

logistic regression has been well studied in bio-statistics and epidemiology.
Although the method is proposed for a logistic regression (logistic link function) to deal

with binary response variable Y , other link functions can also be used to handle the binary
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response. For example, the tobit regression which uses a probit link function can also be
used to analyze individual-level X and aggregate-level Y . In addition, the current article is
based on the binary response variable Y . A follow-up study to extend our method to handle
responses with more than two levels are under development.

6. Conclusions

We proposed an EM estimator for logistic regression based on individual-level pre-
dictors (X) and aggregate-level response (Y ). We conducted simulation studies to evalu-
ate the performance of the EM estimator and compare it with estimators in the literature
(individual-LR, naive-LR and MLE). We then conducted two real data-based studies, i.e.
wine quality modeling and maternal health risk modeling, to illustrate the use of differ-
ent estimators. Both the simulation studies and real data-based studies have shown the
use of our EM estimator in conducting logistic regression based on individual-level X and
aggregate-level Y . We think both categories of methods (MLE category of methods or EM
category of methods) work and are necessary for the problem of logistic regression based
on individual-level X and aggregate-level Y . Similar and slightly different performances are
expected for estimators along the two categories of methods.
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Appendix

A. Additional Real Data Study Using Data in Xu (2023)

We conducted additional real data study based on the same data as used in Xu (2023).
The dataset is “Social-Network-Ads” data in Kaggle Machine Learning Forum (https:
//www.kaggle.com). The dataset is a categorical dataset to determine whether a user
purchases a particular product. It contains 400 observations. Two predictors are age and
salary, after data standardization. The same as in Xu (2023), we impose data aggregation on
this dataset with the group size equal to 3, 5 and 7. We conducted (1) infeasible individual-
level logistic regression, (2) naive logistic regression, (3) MLE estimator in Xu (2023),
and (4) our proposed EM estimator in this manuscript. Because true parameter values are
unknown, we illustrate the use of different estimators and report estimated values using
different estimators in Table 6.

Table 6: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On Social Network Ads Data.

ni = 3 ni = 5 ni = 7

Var E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

β0 -1.14 -0.71 -1.17 -1.17 -1.14 -0.68 -1.25 -1.24 -1.13 -0.64 -1.27 -1.27

β1 2.45 1.67 2.53 2.53 2.45 1.61 2.79 2.79 2.44 1.59 2.97 2.97

β2 1.22 0.79 1.47 1.47 1.22 0.64 1.54 1.54 1.22 0.53 1.26 1.26

B. Additional Simulation Study Using Xu (2023)’s Setup

We conducted additional simulation study using Xu (203)’s simulation setup as follows.
In each scenario, simulations were conducted with sample sizes (K = 300,500,100), equal
group sizes (ng = 7,30), and different parameter values. Data were generated as follows:

• In Scenario 1, Xi1 ∼ N(0,1), Xi = (1,Xi1)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )),

β = (1,−2)T (Scenario 1A) or (1,3) (Scenario 1B).
• In Scenario 2, Xi1 ∼ N(0,1), Xi2 ∼ t(d f = 5), Xi = (1,Xi1,Xi2)

T ,
Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )), β = (−1,1,2)T (Scenario 2A) or

(0,−2,1) (Scenario 2B).
• In Scenario 3, (Xi1,Xi2) ∼ BivariateNormal(0,2,1,4,ρ = 0.5), Xi3 ∼ Cauchy(0,1),

Xi = (1,Xi1,Xi2,Xi3)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )),

β = (−1,1,0,−1)T (Scenario 3A) or (0,−2,1,1) (Scenario 3B).

We reported squared bias and variance of four estimators (E1: Individual-LR, E2: Naive-
LR, E3: MLE and E4: EM) in Table 7. We reported MSE and MAD of the four estimators
in Table 8. Results obtained from additional simulation studies confirm our findings based
on simulation studies. The same findings were obtained.
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Table 7: Average Squared Bias and Variance of Estimator E1 (Individual-LR), E2 (Naive-
LR), E3 (MLE) and E4 (EM) Based On Simulation Setup in Xu (2023). In the columns for
average squared bias and average variance, the unit is 0.001.

Average Squared Bias Average Variance

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1A 300 7 0.28 310.34 0.76 0.86 7.69 6.84 23.74 22.58

1A 300 30 0.09 343.26 0.53 0.82 1.43 6.81 30.52 24.37

1A 500 7 0.02 317.16 0.00 0.00 3.56 3.49 11.45 10.60

1A 500 30 0.01 356.36 0.01 0.07 0.91 2.70 11.68 11.33

1A 1000 7 0.08 302.01 0.20 0.26 2.14 1.83 6.90 6.99

1A 1000 30 0.01 352.87 0.24 0.22 0.42 1.76 6.29 6.21

1B 300 7 0.01 1256.06 0.36 0.54 10.90 6.91 37.38 35.02

1B 300 30 0.17 1376.61 1.90 3.24 2.96 5.12 38.64 30.50

1B 500 7 0.16 1264.86 0.35 0.51 6.86 3.30 16.90 16.43

1B 500 30 0.00 1401.36 0.00 0.02 1.58 2.32 23.51 19.81

1B 1000 7 0.02 1267.42 0.05 0.07 3.00 1.74 10.07 10.04

1B 1000 30 0.00 1400.68 0.37 0.07 0.69 1.23 13.19 6.68

2A 300 7 0.00 485.55 0.12 0.14 6.09 6.33 17.56 17.33

2A 300 30 0.02 547.58 0.32 0.23 1.37 4.72 27.61 26.45

2A 500 7 0.09 487.78 0.05 0.08 4.19 3.95 12.23 12.35

2A 500 30 0.01 540.78 0.07 0.13 0.89 3.48 13.58 11.83

2A 1000 7 0.04 484.78 0.04 0.04 1.86 1.70 6.49 6.33

2A 1000 30 0.00 540.90 0.02 0.00 0.47 1.65 7.32 6.88

2B 300 7 0.04 304.21 0.35 0.40 5.37 5.82 17.33 17.08

2B 300 30 0.03 339.23 0.35 0.39 1.25 4.09 18.77 18.82

2B 500 7 0.04 304.27 0.11 0.18 3.21 3.18 10.89 10.67

2B 500 30 0.00 334.51 0.16 0.23 0.80 2.48 12.16 11.68

2B 1000 7 0.06 304.24 0.06 0.09 1.62 1.44 5.31 4.99

2B 1000 30 0.00 333.05 0.12 0.16 0.37 1.38 6.51 6.09

3A 300 7 0.06 336.15 0.55 0.58 4.46 6.19 13.40 12.67

3A 300 30 0.02 336.61 0.60 0.91 0.83 6.34 14.10 13.88

3A 500 7 0.03 342.89 0.12 0.08 2.04 3.22 7.70 7.67

3A 500 30 0.00 345.45 0.74 0.55 0.64 3.39 8.91 7.21

3A 1000 7 0.02 343.02 0.27 0.21 1.24 2.40 4.98 4.38

3A 1000 30 0.00 350.84 0.18 0.01 0.27 1.75 4.83 3.26

3B 300 7 0.27 587.43 0.48 0.62 6.67 4.84 17.43 16.45

3B 300 30 0.04 605.00 0.27 1.11 1.24 3.65 17.57 13.91

3B 500 7 0.10 588.20 0.15 0.18 3.12 2.85 11.54 8.89

3B 500 30 0.01 611.21 0.12 0.36 0.67 2.20 17.26 13.13

3B 1000 7 0.01 592.02 0.03 0.14 1.67 1.46 6.01 4.82

3B 1000 30 0.01 615.74 0.28 0.06 0.33 1.22 6.56 4.26
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Table 8: Average Mean Squared Error (MSE) and Average Mean Absolute Deviation
(MAD) of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and E4 (EM) Based
On Simulation Setup in Xu (2023). In the columns for average MSE and average MAD, the
unit is 0.001.

Average MSE Average MAD

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1A 300 7 7.98 317.18 24.50 23.44 67.78 529.08 116.88 113.94

1A 300 30 1.53 350.07 31.05 25.19 30.39 558.73 118.68 107.82

1A 500 7 3.58 320.65 11.45 10.60 48.31 534.84 80.78 77.99

1A 500 30 0.92 359.06 11.69 11.40 24.30 567.55 76.76 76.65

1A 1000 7 2.22 303.84 7.10 7.25 35.76 523.73 60.91 61.97

1A 1000 30 0.43 354.63 6.53 6.42 16.33 565.64 56.66 55.27

1B 300 7 10.91 1262.97 37.74 35.56 79.25 1003.77 138.60 135.89

1B 300 30 3.13 1381.73 40.54 33.74 42.20 1051.67 139.06 129.85

1B 500 7 7.03 1268.16 17.25 16.95 66.24 1006.76 97.60 96.12

1B 500 30 1.58 1403.67 23.52 19.84 30.15 1059.46 106.15 99.14

1B 1000 7 3.02 1269.16 10.12 10.11 43.39 1007.77 74.67 73.13

1B 1000 30 0.69 1401.91 13.55 6.75 19.30 1059.49 73.50 59.47

2A 300 7 6.09 491.88 17.68 17.47 62.82 634.87 102.26 101.07

2A 300 30 1.38 552.30 27.93 26.68 29.40 675.59 121.24 117.04

2A 500 7 4.28 491.72 12.27 12.43 51.44 635.26 83.97 83.86

2A 500 30 0.90 544.26 13.65 11.96 23.51 673.15 87.50 82.35

2A 1000 7 1.90 486.48 6.53 6.37 34.90 636.25 62.12 61.98

2A 1000 30 0.47 542.56 7.35 6.89 17.05 671.85 64.59 62.78

2B 300 7 5.40 310.03 17.68 17.48 58.39 444.51 101.07 100.09

2B 300 30 1.28 343.31 19.11 19.21 27.81 460.20 93.87 93.62

2B 500 7 3.26 307.45 11.00 10.85 45.17 441.17 75.70 75.21

2B 500 30 0.80 336.99 12.32 11.91 22.86 458.86 78.42 77.51

2B 1000 7 1.68 305.68 5.37 5.07 31.61 437.72 55.62 53.87

2B 1000 30 0.37 334.43 6.63 6.25 14.96 455.67 56.98 55.07

3A 300 7 4.52 342.34 13.95 13.26 51.25 475.14 89.68 87.77

3A 300 30 0.85 342.95 14.70 14.79 22.81 471.88 90.96 91.01

3A 500 7 2.06 346.11 7.81 7.75 36.19 478.33 66.02 66.15

3A 500 30 0.64 348.84 9.65 7.76 19.24 479.12 72.57 66.37

3A 1000 7 1.27 345.42 5.25 4.59 26.67 474.11 53.40 51.13

3A 1000 30 0.28 352.59 5.00 3.27 12.73 482.34 50.64 43.76

3B 300 7 6.94 592.27 17.91 17.07 62.77 648.17 98.15 96.75

3B 300 30 1.28 608.65 17.84 15.02 27.56 653.18 93.76 88.13

3B 500 7 3.23 591.06 11.70 9.07 41.68 646.40 78.30 70.34

3B 500 30 0.68 613.41 17.38 13.48 20.27 656.09 86.77 79.63

3B 1000 7 1.68 593.48 6.04 4.97 31.43 646.77 55.45 51.70

3B 1000 30 0.34 616.96 6.84 4.32 13.78 657.31 54.93 45.06
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Selection criteria and targeting the poor for poverty reduction: the 
case of social safety nets in Sri Lanka 

Diana Dilshanie Deepawansa1, Priyanga Dunusinghe2 

Abstract 

Reducing poverty and improving the living standards of the poor and vulnerable 
populations in Sri Lanka have been one of the country’s key goals. The government has 
designed poverty-targeting programs with relevant government agencies working to support 
low-income families. The programs include cash transfers, microfinancing and various 
community-based and livelihood development activities, including the “Aswasuma” 
program, which is the primary safety net initiative. Although safety net programs have been 
receiving significant financial support for decades, many people still remain excluded as 
a result of mistargeting, lack of transparency and poor beneficiary selection methods. To 
address these challenges, the selection criteria have to be redesigned to effectively target 
poverty. This article explores the Multidimensional Deprivation Score Test (MDST), which 
assesses the multiple dimensions of household deprivation by weighting each deprivation 
through a data-driven approach. This methodology aims to identify the poorest and most 
vulnerable people more accurately. Using the data collected during the 2019 Household 
Income and Expenditure Survey, conducted by the Department of Census and Statistics, the 
MDST has improved targeting accuracy and thus the impact of social protection programs. 
It is therefore crucial to increase the efficiency of data collection and to compile the weighted 
deprivation score. Moreover, incorporating a community-level evaluation and regular 
monitoring is essential for maximizing the accuracy and effectiveness of targeting poverty. 

Key words: poverty, social safety net, selection criteria. 

1. Introduction

Under successive governments, Sri Lanka has initiated much effort to ensure
sustainable and viable economic development since independence. Consequently, Sri 
Lanka had witnessed mixed results prior to the COVID-19 pandemic and the 
subsequent economic crisis. Sri Lanka’s economy recorded an 8.7 per cent GDP growth 
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rate in 2011 and the country’s per capita income reached US$ 4,293 in 2017 though 
witnessed some setbacks in subsequent years (DCS,2023a). With the expansion of 
economic activities, the unemployment rate hovered around 5 per cent during the last 
decade. In addition, despite several global and domestic challenges, inflation had been 
retained at a single digit for four consecutive years as measured by year to year at 
Colombo Consumer Price Index (CCPI) (DCS, 2023b). Moreover, the poverty 
headcount index decreased dramatically from 46.8 per cent to 14.3 per cent from 2002 
to 2019 (DCS, 2021a). 

In the aftermath of the COVID-19 and economic crisis in 2022, Sri Lanka’s 
economic outlook turned uncertain due to unsustainable public debt and a severe 
balance of payment crisis. Hence, the economy contracted by 11.7 percent year-on-year 
in the third quarter of 2022 (DCS, 2023a) and CCPI year-to-year. Inflation reached two 
digits from December 2021 and an unprecedented 69.8 per cent in September 2022 due 
to high food inflation of 94.9 per cent. Subsequently, it decreased to 54.2 per cent 
in January 2023 (DCS, 2023b). 

Due to economic imbalance described above, many people in the country face 
severe economic hardships exacerbating vulnerability and increasing number of people 
live in poverty. Understanding the past economic experiences in the country it is crucial 
to shape the policies to overcome the existing challenges and adapt to economic 
dynamics effectively. Reducing poverty and improving the living standard of the poor 
population in Sri Lanka has been a critical agenda of the government. Hence the 
incumbent government has also designed and accelerated poverty-targeting programs 
to reduce poverty to increase the living standard of poor people. Successive 
governments have implemented Social Protection policies and programs since the 
1940s, such as universal free education and health and food subsidy programs (Ganga 
& Sahan, 2015). Currently, there are many fragmented social protection schemes in the 
country. Ministry of Social Empowerment and Welfare (MoSEW) plays a significant 
role in identifying low-income families and supporting them in numerous ways to lift 
their living standards and achieve sustainable development by providing them cash 
transfers, microfinance, and various community-based and livelihood development 
activities. The primary safety net program currently targeting the poor in terms of Sri 
Lanka is the “Samurdhi/Aswasuma” program launched under the Department of 
Samurdhi Development/Welfare Benefit Bord (WBB). The schemes mainly cover 
disability, old age, and Chronic Kidney Disease of Unknown Etiology (CKDU). Besides, 
there are schemes covering health care, school food programs, maternal programs and 
other social safety net programs targeting the poor and social security schemes, old age 
pensions, and lump-sum payments at the retirement of government and non-
government workers. 

The social protection floor system is one of the main policy instruments in devel-
oping countries to target the poor to reduce chronic poverty and protect vulnerable 
people. One of the main targets of global and local development agendas is reduced 
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poverty (Goal one of MDG and SDG). The development of the human capital of the 
poor through social safety net programs is a long-lasting solution to poverty. Social 
protection covers social assistance, social security, social care, and labor market 
inclusion and productive employment. Developing countries have recently increased 
social protection coverage by expanding their social protection systems. Due to the 
COVID-19 impact and the economic crisis, the Sri Lanka economy has faced a sizable 
economic recession. Many people and households hit by the crisis face the hardships of 
their livelihoods. This situation further increases the focus on social protection 
programs to protect impoverished and vulnerable individuals and families coping with 
generated fiscal shock and economic crises.  

During the post-independence, successive governments in Sri Lanka implemented 
several social protection programs such as Janasaviya, Samurdhi and the food subsidy 
programs, investing yet more resources. However, the outcome has not been 
commensurate with such investments, and none achieved its desired target 
(Samaraweera, 2010). The previous social protection programs have reported high 
inclusive and exclusive errors. Specifically, these programs have not effectively targeted 
their intended beneficiaries resulting in both inclusion of individuals who are not 
eligible with criteria (inclusive errors) and exclusion of individuals who are eligible 
(exclusion errors). These discrepancies challenge the effectiveness and quality of the 
social protection programs. Hence, it is very crucial to address these issues to improving 
the accuracy and impact of social protection programs. Therefore, this research 
investigates these errors and proposes to enhance the accuracy of social protection 
programs.  

According to the Household Income and Expenditure Survey (HIES) 2019 
conducted by the Department of Census and Statistics (DCS), out of 13 main social 
protection programs, currently, 33.8 per cent of poor people are not covered (Under-
coverage), and 70.6 per cent of non-poor people has received transfers (leakage). Hence, 
the impact of social protection spending to reduce poverty has not achieved the desired 
results. This is due to weak targeting in which the welfare benefit has not always 
benefitted the needy. Thus, social protection programs have limited impact on poverty 
(DCS, 2021a). An early study has been carried out by the World Bank for Sri Lanka 
using the data from the Sri Lanka Integrated Survey (SLIS), conducted by the World 
Bank in collaboration with local institutions in 1999–2000, using a Proxy Means Test 
(PMT). However, the targeting accuracy was not as expected (Narayan & Yoshida, 
2005). Kidd and Wylde (2011) studied the regression accuracy of PMT for Bangladesh, 
Indonesia, Rwanda, and Sri Lanka and found that high in-built inclusion and exclusion 
errors were high. This study has developed a criterion that enhances effectiveness of 
targeting which is essential in minimizing the exclusion and inclusion errors in poverty 
reduction programs.  

This paper is structured as follows. Section 2 presents the literature review 
presenting different methods used as beneficiary selection criteria for targeting the 
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poor. Section 3 describes the methodologies employed to assess the selection criteria 
and new method used to compute Multidimensional Deprivation Score for identifying 
the new target group. Section 4 presents results and output. Finally, Section 5 concludes 
the paper with discussion and some recommendations.  

2. Literature review  

Effective targeting increases the impact of poverty reduction and raises the standard 
of living of the poor. Different countries have different selection criteria for identifying 
the poor people for targeting (Kidd &Wylde, 2011; Alatas et al., 2012; Alkire & Seth, 
2013; Brown, Ravallion, & Van de Walle, 2018; Sabates‐Wheeler, Hurrell, & Devereux, 
2015; Diamond, et al., 2016; Bird & Hanedar, 2023). The social safety net programs have 
promotion and protection effects (Devereux, et al., 2017). Morestin, Grant & Ridde 
(2009) did a systematic review of literature on selection criteria presenting 68 
experiences used by developing countries, of which 27 were in sun-Sahara Africa. This 
study has identified 30 incidents of the identification of the poor based on 
administrative, community-based, and mixed processes. 

Poverty is a multidimensional phenomenon. Amartya Sen’s capability concept 
significantly contributed to the development of multifaceted poverty measures of 
understanding poverty after his seminal work (Sen, 1983,1995,1997). People are poor 
in terms of income, and many other aspects, such as health, education, shelter, 
inadequate sanitation facilities, social exclusion, access to essential services and lack of 
assets (Sabina ,2023; Sabina, et al., 2015). Morestin, Grant & Ridde (2009) found 260 
selection criteria based on 68 surveyed and categorized those into 11 dimensions. The 
eleven dimensions are: 1) Possession of goods and means of production; 2) Household 
compositions; 3) Income; 4) Condition of dwelling; 5) Occupational status; 6) Food 
security; 7) State of health; 8) Education; 9) Access to essential services and to credit; 
10) Expenses; and 11) Physical appearance and clothing. Further, this study identified 
that in administrative processes, in 48 per cent of experiences, the program manager 
was responsible for determining the poor. In the community process, 36 per cent of 
studied community members have identified the poor. In the mixed method, in 20 per 
cent of surveys, the first selection was made by the program manager decided the final 
beneficiaries. Based on the study review Morestin, F., Grant & Ridde (2009) conclude 
that there are no perfect criteria for selecting beneficiaries and that developing countries 
should pay more attention to implementing an effective process for choosing 
beneficiaries. The effectiveness is based on inclusive and exclusive error of the selection 
criteria. 

The Proxy Mean Test (PMT) is a widely used method to select the poor for 
targeting. This method is based on a score produced from a set of coefficients of 
variables reflecting the household living condition chosen for the best regression model 
(WB, 1999). This method commonly targets the poor for social safety net programs 
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when income or consumption expenditure data are unavailable. The early contribution 
of the PMT method for selection criteria was made by Grosh (1994) for Latin America. 
He concluded that this method produces the best targeting outcomes reducing 
inclusion and exclusion errors. Proxy Mean Test (PMT) model is based on a statistical 
method used to estimate income or expenditure based on observable characteristics 
correlated with income or consumption expenditure. This method is based on national 
household surveys. The term “Proxy Mean Test” describes estimating income or 
consumption when precise measures are unavailable or difficult to obtain. Brown, 
Ravallion and Van de Walle (2018) state that “Proxy-means testing is a popular method 
of poverty targeting with imperfect information”. The methodology estimates 
household income or expenditure by associating indicators or proxies. They include 
demographic characteristics (such as the age of household members and size of 
household), human capital characteristics (such as education of household head and 
enrolment of children in school), physical housing characteristics (such as type of roof 
or floor), durable goods (such as refrigerators, televisions, or cars) and productive assets 
(such as land or animals), etc. It uses the weights for the variable derived through 
statistical analysis of household survey data like Household Income and Expenditure 
Survey. Using the agreed weights, a score is calculated for each household. Households 
that score below the cut-off point are eligible for social protection programs. 

Narayan and Yoshida (2005) applied the PMT method for Sri Lanka using 
household data from the Sri Lanka Integrated Survey (SLIS) conducted by the World 
Bank in collaboration with local institutions in 1999–20003. In this exercise, seven main 
models were developed, and different cut-offs based on per capita consumption were 
applied for the selection. Further, considering several modifications, four additional 
models, Model 8, Model 9, Model 10, and Model 1, were developed based on Model 7. 
The model shows that the inclusion and exclusion errors were high. For example, the 
under-coverage rate varies from 50 per cent to 55 per cent. The leakage rate varies from 
39 per cent to 40 per cent based on a 25 per cent cut-off, and at the 40 per cent cut-off, 
coverage ranges from 20 per cent to 31 per cent, and leakage varies from 31 per cent to 
35 per cent based on the selected models 7, 10 and 11. 

Proxy Means Test has become a popular method with many advocates and 
detractors. The Australian Agency for International Development (AusAID) supports 
evidence-based debates to investigate the PMT's strengths and weaknesses further. This 
study assesses the regression accuracy of the PMT model in Bangladesh, Indonesia, 
Rwanda, and Sri Lanka, which was done in this exercise earlier and found that inclusion 
and exclusion vary between 44 per cent and 55 per cent with the coverage of 20 per cent 
of the population and 57 to 71 per cent when 10 per cent were covered (Kidd & Wylde, 
2011). In addition to non-sampling errors of the dependent survey's accuracy of PMT 
partially depend on the interaction with error arising from the regression with the 
                                                           

3 The survey data was excluded for the analysis for Northern and Eastern provinces due to conflict and concern 
with the quality of the data. 
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correlation of proxies and consumption expenditures. According to the finding of the 
new PMT test done by the WB based on the currently conducted survey and the 
assessment made by Kidd and Wylde (2011). The Australian Agency for International 
Development based on the PMT test done by WB for Sri Lanka in 2003 evident that 
PMT regression-based method is inaccurate for targeting and the majority of eligible 
poor households may be permanently excluded from the social grant scheme from the 
results from PMT scoring. Further, capturing the dynamic changes of a focus unit 
family/household or individual is impossible. However, it can be updated after doing 
a large-scale household survey frequently maintaining the integrity of the 
specifications. 

3. Methodology 

Table 1 presents the targeting accuracy of the selection method. It can be evaluated 
through the Type I and Type II errors, which indicate the share of under-coverage4 and 
leakage5, respectively. Type I error shows the number of individuals incorrectly 
excluded (exclusion error). Type II error (inclusion error) indicates the individuals 
incorrectly identified as eligible by the selection criteria as a share of the total 
population. When increased the under-coverage reduces the impact of the program and 
does not affect the cost of the welfare budget; however, leakage does not affect the 
program's impact but unnecessarily increases the cost of the welfare budget.   

Table 1: Illustration of Type I and Type II errors 

Type Target group Non-target group Total 
Eligible: predicted Targeting Success 

(S1) 
Type II Error 

(e2) 
m1 

Ineligible predicted Type I Error 
(e1) 

Targeting Success 
(S2) 

m2 

- n1 n2 n 

Those in the bottom quintile of per capita expenditure or poor constitute the “target 
group”, while those predicted and grouped by eligibility threshold constitute the 
“eligible” group. The individual correctly classified as eligible by the formula that 
belongs to the target group (bottom per capita expenditure quintile or poor) is 
“Targeting Success”. A person who is incorrectly excluded by the procedure is a case of 
Type I error. Conversely, a person incorrectly identified as eligible constitutes a Type II 
error; under-coverage is calculated by dividing the number of cases of Type I error by 
the total number of individuals who should get benefits [e1/n1]. Leakage is calculated 
by dividing the number in the Type II error category by the number of persons classified 
as eligible by the formula [e2/m1].   
                                                           

4  Under-coverage is the percent of poor individuals that do not receive the social transfer. 
5 Leakage is the percent of individuals that receive social transfer and are not poor. 
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Effectiveness is the capacity to identify the actual beneficiaries or the “real” poor. 
Conversely, two types of errors are possible: excluding poor individuals and including 
persons who are not poor as beneficiaries. Therefore, it is more desirable to reduce both 
under-coverage and leakage for effective targeting. The efficiency of the selection 
criteria can be evaluated through the magnitude of Type I and Type II error. Arguably 
in a climate of “no method is perfect”, it is essential to minimize these two errors as 
much as possible. 

Existing beneficiary selection procedure in Sri Lanka 

This will review the present main social safety net program in Sri Lanka, 
"Samurdhi6. The beneficiaries of the Samurdhi program are currently selected based on 
self-reported income level. However, that method generates high inclusion and 
exclusion errors. The 2019 Household Income and Expenditure Survey data shows that 
Samurdhi covered only 42 per cent (direct and indirect beneficiaries) of the total poor 
population, which under-coverage is 58 per cent, and leakage is 62 per cent. Among the 
leakage, 29 per cent are in the second quintile7, 18.7 per cent are in the third quintile, 
9.7 per cent are in the fourth quintile, and 4.5 are in the richest fifth quintile (top 20 per 
cent). In other words, of the non-poor population, 15.7 per cent are receiving Samurdhi 
benefits. To mitigate this issue, this study introduced a new criterion for identifying 
beneficiary’s potential beneficiaries more efficiently through a criterion for effective 
target beneficiaries and assessing the deprivations at the family level in 
multidimensional aspects called “Multidimensional Deprivation Score Test (MDST)”.8 
The following section presents the method of MDST. 

Multidimensional Deprivation Score Test (MDST) 

Multidimensional Deprivation Score Test (MDST) assesses the living standard of 
the poor in terms of multiple aspects, reflecting the deprivation at the family level. 
However, this research used the data from Household Income and expenditure survey 
conducted by DCS in 2019 and has collected information at the household level. Hence, 
this analysis considered the dimensions: Education, Health, Economic Level, Assets 
and Housing characteristics and Family Demography by household level.9 Under these 
dimensions 22 indicators were considered (Appendix). These dimensions and 
indicators were selected normatively. This method proposed a data-driven weight 
function in which the frequency of the ‘definitely poor’ phenomenon weights each 
dimension. This weight function is built to assign lower weight to the extent in which 

                                                           
6  In Household Income and Expenditure Survey in 2019 capture the Samurdhi. 
7  Based on per capita consumption expenditure. 
8  This method was introduced by DCS to the WBB (see gazette in No. 2302/23 - Thursday, October 20, 2022). 
9  This approach recommended to apply to the survey data collected from vulnerable and poor people to develop 

an index in computing a deprivation score for each family. Usually, social protection benefits are given to the poor 
and vulnerable families or individuals rather than households.   
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lower frequency of families is ‘definitely poor’, and higher significance to families with 
higher frequency of ‘definitely poor’ in a dimension. This weight can be introduced as 
an attempt to achieve Sustainable Development Goals (SDGs) with current information 
in the concept of no one behind all its form everywhere. 

For example, an indicator of having safe drinking water, in an area called A, most 
households need access to a safe source of drinking water. Thus, definitely, the poor 
frequency for that indicator would be very high. Therefore, assigning a very high weight 
to that indicator is reasonable. In area B, the frequency of access to safe drinking water 
could be higher. Then a low weight was given to that indicator for that area. Each 
household’s deprivation score is constructed based on a weighted average of the 
deprivations, and each household is identified as deprived or non-deprived based on  
a deprivation cut-off. If a household’s weighted deprivation score  is above the cut-off 
that household should be considered eligible for the social protection program. 

Computation of Multidimensional Deprivation Score 

MDST develops an index called the Multidimensional Deprivation Score (MDS) at 
the unit of the analysis. In this research, the unit of analysis is a household. This score 
is between 0 to 100, 0 indicates completely not deprived, and 100 means completely 
deprived.  

Calculation of the deprivation score for a household is done in three steps: 
a. Set of indicator deprivation 
b. Computation of weight for indicators 
c. Calculation of weighted deprivation score for each household  

 
Every indicator is assigned a deprivation cut-off, and if a household is deprived 

in the relevant indicator, then it is considered completely deprived and assigned 1 for 
that indicator and otherwise 0. Accordingly, every indicator is assigned one and zero. 

Indicator deprivation 

Deprivation cut-off for each and every indicator was assigned as given in Appendix.  
If the deprivation cut-off is denoted as 𝑧௝ then the household is considered deprived if 
the ith family/household achievement of indicator 𝑥௝ is below the cut-off ൫𝑥௝ ൏ 𝑧௝൯. 

If ith household owns indicator j, then its indicator deprivation can be calculated 
using the following equation: 

𝑥௝ሺ𝑖ሻ  is the household value on indicator j.  

Then 

𝜇௝ሺ𝑖ሻ ൌ 1; if household deprived in indicator j, 

𝜇௝ሺ𝑖ሻ ൌ 0; if household is not deprived in indicator j. 
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The formula for the weight function 

This method uses the frequency-based data-driven weight function to weight the 
indicators considering the number of completely deprived household for each indicator 
in the area of interest (e.g.  district or any administrative or geographical level). The 
steps for calculating the indicator weight are given below: 
 Count the sum of the number of deprived households in every indicator in the area 

of interest. 
 Get the natural log value of the inverse of the sum of the number of deprived 

households in every indicator in the area of interest. 
 Get the total sum of natural log values obtained for every indicator for the area of 

interest. 
 Finally, get the ratio of the natural log values to the total sum of natural log values 

(normalize the weight). 
 
Getting this natural log of the inverse of deprived frequency is smoothing out the 

weight and reducing the over-dispersion of values. This weight function is built to 
assign lower weight to the indicator in which many households turn out to be ‘definitely 
poor’, and higher weight to households with a high frequency of ‘definitely poor’ in an 
indicator. The mathematical formula is given below: 

                                    

                                        (1) 
 

where 𝑓௝ denotes the frequency of households completely deprived in the jth indicator 
and 𝜔௝ is the weight for the jth indicator. Lower weights mean the criterion many 
households are less deprived of; lower weights indicate lower importance. Higher 
weights mean a high frequency of deprived households’ in a indicator that households 
highly belong to deprivation of that indicator. Higher weights indicate greater im-
portance. 

Calculation of weighted deprivation score for individual 

 

                                     (2) 

 

Where 𝜇௪௜  is the weighted deprivation score for ith households. The weighted 
deprivation score gets values between 0 and 100, in which zero (0) is not deprived, and 
one (100) is completely deprived. 
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4. Results  

The data used for this study is the Household Income and Expenditure Survey 
(HIES) conducted in 2019 by the Department of Census and Statistics. The sample of 
this survey was drawn scientifically to represent the entire country's population. It was 
conducted throughout the year to capture the seasonal variation of the living standard 
of the household population in Sri Lanka. Two-stage stratified sampling method was 
used to draw the survey sample, and the sample size was 25,000 housing units in Sri 
Lanka. This survey collects information on household income and consumption 
expenditure and details on living standards and selected main social welfare programs. 
The Official Poverty Line (OPL) of Sri Lanka is computed based on consumption 
expenditure collected from this survey (DCS, 2021a). 

The HIES, which was conducted in 2019, revealed that of the total population in Sri 
Lanka, 14.3 per cent (3.04 million individuals) live in poverty based on Official Poverty 
Line while from the total households, 11.9 per cent (681,800 households) live in poverty 
(DCS, 2021a). The Survey found that approximately out of every six (16 per cent) 
people are multidimensionally poor (DCS, 2021b). Further, it shows that 6.2 per cent 
of people has been lifted out of monetary poverty due to the thirteen social protection 
programs including the Samurdhi program considered in this survey. Table 1 shows 
the coverage of the population by the Samurdhi program by per capita expenditure 
decile, and Table 2 shows the distribution of direct and indirect Samurdhi beneficiaries 
by real per capita expenditure decile. That is the proportion of direct and indirect 
Samurdhi beneficiaries in each decile group. The total coverage of Samurdhi is 20.6 per 
cent of the total population. Both Tables 2 & 3 indicated the inefficient targeting of the 
Samurdhi program shows that the beneficiaries are also in the richest top two deciles. 
It is evident that among all beneficiaries, 4.6 per cent are in the top 20 per cent.   

 
Table 2: Coverage of the Samurdhi program by real per capita expenditure decile 

Per capita expenditure decile 
Coverage of Samurdhi 

(Per cent) 
Sri Lanka 20.6 

1 40.5 
2 34.6 
3 32.7 
4 28.0 
5 21.1 
6 18.2 
7 12.1 
8 9.6 
9 7.0 

10 2.4 
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The Table 4 presents the estimated number of people who are correctly and 
incorrectly classified as direct and indirect Samurdhi beneficiaries within the poorest 
20 percent of the population based on real per capita expenditure quintile. The finding 
reveals that the exclusion error (under-coverage) is 62.5 and inclusion error (leakage) 
is 63.6 percent. 

 

Table 4:  Distribution of eligible and ineligible Samurdhi beneficiaries by target and non-target 
group 

Specification Target group (Q1) Non-target group Total 

Eligible:  1,595,043 
(S1) 

2,786,943 
(e2) 

4,381,986 
(m1) 

Ineligible  
2,654,626 

(e1) 
14,211,736 

(S2) 
16,866,362 

(m2) 

Total  
4,249,669 16,998,679 21,248,348 

(n1) (n2)   
 

The Target group is the individual who is in the bottom real per capita expenditure 
quintile (Q1) 
Direct and indirect Samurdhi beneficiaries 
Under-coverage10 = [e1/n1] = 62.5 per cent 
Leakage11 = [e2/m1] = 63.6 per cent 

 

                                                           
10  Under-coverage is the percent of poor individuals that do not receive transfer. 
11  Leakage is the percent of individuals that receive transfer and are not poor. 

Table 3: Distribution of beneficiaries by real per capita expenditure decile 

Per capita expenditure decile Proportion of beneficiaries (%) 

Sri Lanka 100.0 
1 19.6 
2 16.8 
3 15.8 
4 13.6 
5 10.2 
6 8.8 
7 5.8 
8 4.7 
9 3.4 

10 1.2 
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Comparing the coverage and distribution of beneficiaries by different approaches 

Figure 1. presents the coverage of three types of targeting approaches for poor 
individuals and actual Samurdhi beneficiaries by per capita income deciles to examine 
their effectiveness for better targeting. MDSQ5 represents the individuals in the poorest 
20 per cent based on Multidimensional Deprivation Score Test. OPL_new means the 
individuals who live in poverty based on the official monetary poverty line. MPI_poor 
means the individuals who are multidimensionally poor on official multidimensional 
poverty index based on the Alkire and Foster method. Finally, Samurdhi represents the 
actual direct and indirect beneficiaries currently receiving benefits, while looking at the 
output reveals that among the poorest 40 per cent (bottom four deciles), the highest 
number of poor individuals are covered by the individuals identified by the MDST 
method. 
 

Figure 1. Distribution of predicted, targeted and Samurdhi beneficiaries by per capita income decile 

There are vast discrepancies in coverage of actual direct and indirect Samurdhi 
beneficiaries and targeted individuals across districts (Figure 2). According to the 
official multidimensional poverty index the Colombo district (3.5 per cent) has the 
lowest incidence of poverty. In comparison, Nuwara Eliya (44.2 per cent) shows the 
highest poverty (DCS, 2021b). However, based on official monetary poverty based on 
consumption expenditure, the lowest poverty incidence was reported from Colombo 
(2.3 per cent), while the highest was from Mullaitivu (44.5 per cent) (DCS, 2021a). 
When examining the Nuwara Eliya district, more than half of the individuals are poor 
on MDS, more than two-fifths are poor on MPI, and more than one-fourth are poor on 
OPL, but coverage of Samurdhi is 10 per cent. The situation is different in Mullaitivu; 
two-fifths are poor in terms of OPL, three-tenth and more than one-tenth are poor in 
terms of MDST and MPI, and the Samurdhi coverage is almost 50 per cent, while in the 
Mannar district, the coverage of the Samurdhi is much higher than the share of the 
targeted beneficiaries. These findings demonstrate that the existing beneficiary 
selection method for the leading social net program in Sri Lanka should be revised for 
effective targeting. 
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Figure 2: Distribution of predicted, targeted and Samurdhi beneficiaries by district 

Figure 3 presents the graphical presentation of the distribution of the Multidimen-
sional Deprivation Score. It appears as the normal distribution and has no skewness. 

 
Figure 3: Distribution of Multidimensional Deprivation Score (MDS) 

Selection cut-off 

It is essential to identify the most appropriate cut-off for selection of beneficiaries 
for welfare programs. For this purpose, it is necessary to decide the targeting group 
either in monetary, non-monitory or mixed approach or to decide normatively on 
policy decisions. For instance, it can be per capita income or consumption expenditure 
decile or quintile or multidimensional deprivation quintile or decile. The coverage of 
the target population is very high; then the selection cut-off is more accurate with less 
under-coverage. Figure 4 plots the percentage of deprived people based on 
multidimensional deprivation scores by different cut-offs concerning the per capita 
expenditure quintiles. The graph shows that the MDST cut-off concerning the AA’ line 
covers 100 per cent of the bottom 20 per cent of the poor individual (first per capita 
expenditure quintile). The exclusion error is very low, and the cut-off on the BB’ line 
shows that the richest top 20 per cent is excluded 100 per cent, and the inclusion error 
is significantly less. Further, it reveals that when increase the cut-off exclusion error is 
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reduced. Accordingly, the plot provides valuable information to decide the cut-off with 
minimum inclusion and exclusion errors. 

 

 
Figure 4:  Distribution of multidimensional poor of per capita expenditure quintile by different 

deprivation cut-off k 

 

Target Performance 

Table 5 presents the under-coverage and leakage of currently existing Samurdhi 
beneficiaries and predicted Samurdhi beneficiaries on MDS test considering different 
target groups. To assess the existing Samurdhi beneficiaries three target groups were 
considered12. For predicted Samurdhi beneficiaries instead of target group 3 a new 
target group 4 was considered13. 

Table 5 shows that the existing selection method report high exclusion errors on all 
three targeting groups. Further, it reveals that the predicted Samurdhi beneficiaries-
based om MDST is much more accurate than the currently available method, (under 
coverage and leakage is less for three types of targeting groups on MDST in compared 
with the currently available selection method). Nevertheless, these findings strongly 
suggest that the current selection beneficiary method should be reevaluated. Table 6 
shows the exclusion errors with three different MDS selection cut-offs. It reveals that 
when increase the cut-off exclusion error is reduced due to increase of the coverage. 

 
 
 

                                                           
12 1). Target group 1 - Target group is poor with respect to OPL-     2019 (Updated 2012/13_NCPI)  
  2). Target group 2 - First real per capita expenditure quintile  
        Q1  
  3). Target group 3 - Multidimensional deprivation score 5th 
         quintile-Q5 
13  Target group 4- MPI poor 

A

A 

B’ 

B 
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Table 5: Targeting errors on existing and predicted Samurdhi beneficiaries on different target groups 

  Existing Samurdhi beneficiaries 

  Target group1(OPL) Target group2 
(rlpcexpQ1) 

Target group3 
(MDSQ5) 

Under-coverage  60.4 61.9 62.1 
Leakage  72.5 63.1 63.4 
  Predicted Samurdhi beneficiaries (MDS 5th quintile) 

  Target group1(OPL) Target group2 
(rlpcexpQ1) Target group4 (MPI poor) 

Under-coverage  47.3 50.5 55.1 
Leakage  62.2 50.3 63.8 

Note: Under-coverage – exclusion errors. 
Leakage - inclusion errors. 

Key findings of multidimensional poverty on MDS approach 

Multidimensional Deprivation Score can be used as a tool to measure poverty 
through  multidimensional lens. To identify the poor individuals, it necessitates to 
identify the poverty cut-off. With the evidence of Figure 4, the poverty cut-off was set 
as k=0.5. It says that if an individual is deprived at least 11 indicators out of 22, that 
person is considered multidimensionally poor. Accordingly, Table 6 presents the key 
significant finding of MDS poor.  

Table 6 reveals the incidence of poverty on MDS multidimensional score test, i.e. 
that the percentage of poor people is 47 per cent. The average of deprivation experience 
by multidimensional poor individual is 60%. That is the average proportion of weighted 
indicators experience by a poor person. MPI means that the poor people experience 
28.2 percent of total deprivation if all people were deprived in all indicators. 

Table 6: Incidence, Intensity and Multidimensional Poverty Index (MPI) for MDS, 2019 

Specification Index Value Confidence interval (95%) 

Poverty cut-off 
K=50% 

MDS_MPI 0.282 0.276 0.288 
Incidence, H (%) 47.0% 46.1% 48.0% 
Intensity, A (%) 60.1% 0.599 0.603 

Comparison of poverty measures by different approach 

The approaches use to measure poverty depends on different objectives. The main 
objective of monetary poverty is to identify the individual or household experiencing 
economic hardship and lack of resources necessary for minimum standard of living to 
inform policy makers to design targeted interventions allocating necessary resources 
for reducing poverty effectively. The multidimensional poverty measure aims to 
identify the individuals who are experiencing deprivation in non-monetary aspect from 
different factors at the same time to targeting poor by identifying specific indicators 
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cause poor to formulate policies to reduce poverty at whole more effectively. Hence, 
multidimensional poverty measures are complimentary to the monetary poverty. 
Poverty headcount depends on the conditions and the techniques used in each method.  

Figure 5 shows the poverty headcount given by three main approaches in Sri Lanka. 
Multidimensional deprivation Test Score mainly focuses on identifying the targeting 
beneficiaries among poor reducing exclusion and inclusion errors to support them by 
providing social protection assistance to uplift their living standard. Hence, in the 
selection process it is important to identify the individuals who rely on assistance from 
others to meet their daily living needs. 

 
Figure 5: Poverty headcount ratio by different approaches 

5. Conclusion and discussion 

Developing countries face a massive challenge in implementing effective poverty 
reduction programs due to less effective criteria for identifying eligible welfare 
recipients and political interferences. The people are poor not only lack money but also 
the experience of deprivation in other dimensions such as health, education, shelter, 
nutrition, and assets at the same time. Therefore, for effective targeting, it is essential to 
correctly identify the needy through a selection criterion on a multidimensional 
approach to provide social welfare benefits. 

Poverty reduction is the main objective lined with social safety net programs. 
Subsequently, policymakers are more concerned about exclusion errors than inclusion 
errors with the allocated budget. To achieve this, a proper method should be applied to 
cover the needy people broadly. The countries use different methods for selecting 
beneficiaries. Proxy Mean Test (PMT) is widely used by developing countries. 
However, many countries have reported a significant exclusion error based on some 
conceptual and methodological limitations. Hence, the countries are rethinking new 
selection criteria.   
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This paper discussed a multidimensional selection criterion for the leading social 
safety net for Sri Lanka, Multidimensional Deprivation Score Test (MDST). In this 
paper, this method has been applied to the HIES-2019 data and reveals that the 
exclusion error is less than the existing selection criteria when compared with different 
targeted groups. The MDS method computes a multidimensional deprivation score for 
every household. Thus, according to the selection cut-off, Samurdhi/welfare 
beneficiaries can be identified. The cut-off is the more critical policy decision and 
should be determined in terms of the impact of poverty and for an affordability within 
a budget. In addition, to impact of poverty, the transfer schemes should be varied 
concerning the severity of poverty. Otherwise, if all the beneficiaries get the same 
amount of money, the impact on poverty is unlikely to change significantly. In addition, 
to identify the suitable beneficiaries, MDST help to compute the contribution of 
deprivation in every dimension, which is taken into consideration by household or 
family, community, or geographical levels. 

The results of the MDS method show that the individuals who are not identified as 
poor based on official poverty measures are poor in terms of the MDS method, and 
there are considerable gaps of the incidence of poverty across districts. Further, when 
compared with current Samurdhi targeting, the performance varies across district and 
evidence that the current selection method is associated with high exclusion errors.   

Sri Lanka is currently selecting the beneficiaries considering the family aspect based 
on monetary measures. This paper utilizes HIES 2019 data and assesses the selection 
performance at the household level. Consequently, the outcome performance might 
not match accurately. The Samurdhi beneficiary family background might be different 
from the household background. 

Poverty-targeting measures are more productive when the analysis is focused on 
poor people.  The MDST method for selection criteria is more productive to apply to 
get information from existing and potential beneficiaries first and then apply the MDST 
criteria. The MDST method is a data-driven approach focusing on the target population 
to make an evidence-based policy decision to reduce poverty based on current 
information. MDST depends on the dimensions and indicators decided use for the 
criteria and the selection cut-off.  This test provides   important policy decisions for the 
government for effective targeting to reduce poverty. 

This analysis has been carried out considering the entire population based on a 
representative sample used for the Household Income and Expenditure survey 
conducted in 2019. The proposed MDST for the selection performance can be properly 
assessed when applied to the targeting group based on the multidimensional poverty 
approach and considering the selected beneficiaries from the MDS method. To improve 
the effectiveness of this method it would be more accurate to collect the information 
from existing and potential beneficiaries and assess the targeting performance through 
a subjective evaluation at the community level. 
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Appendix 

The list of Dimensions, Indicators, and definition 
Dimension Indicator Definition 

1. Education 1. Education Level of 
family members 

A household is considered poor based on this 
indicator when all household members have less than 
O/L (or poor) education 

2. Number of non-
school going children 
between the age of 5-16 
years  

A household is considered poor based on this 
indicator if at least one school aged (5-16) child is not 
enrolled in school 

2.  Health 1. Family members 
suffering from long 
term chronic diseases 

A household is considered poor based on this 
indicator if at least one family member has suffered 
from a chronic disease 

2. Family members with 
disabilities 

A household is considered poor based on this 
indicator if at least one family member is disabled 

3. Economic 
Level 

1. Monthly per capita 
expenditure 

A household is considered poor based on this 
indicator when monthly per capita expenditure is less 
than Rs. 13,500 

2. Monthly per capita 
income 

A household is considered poor based on this 
indicator when monthly per capita income is less than 
Rs. 14,000 

3. Electricity 
consumption less than 
60 units per month 

A household is considered poor based on this 
indicator when electricity consumption is less than 60 
units (Rs.472) per month 

4. Assets 1. Not having 
ownership of the 
occupied house and 
land to a family 
member 

A household is considered poor based on this 
indicator if it does not have ownership of the 
occupied house and land to a family member 

2. Not having 
ownership of other 
house or a building to a 
family member 

A household is considered poor based on this 
indicator if it does not have ownership of other 
houses and buildings 

3. Not having at least 
0.5 acre of cultivable 
highland to a family 

A household is considered poor based on this 
indicator if it does not have at least 0.5 acre of 
highland to a family 

4. Not having at least 
one acre of cultivable 
paddy land to a family 

A household is considered poor based on this 
indicator if it does not have at least one acre of paddy 
land to a family 

5. Not having at least 
one asset related to 
mobility (Motor 
bike CC 125>, Three-
wheeler, Car, Van, Jeep, 
Bus, 
Lorry, Tipper, Hand 
tractor (2 wheels), 
Tractor 
(4 wheels) 

A household is considered poor based on this 
indicator if it does not have at least one asset related 
to mobility 
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The list of Dimensions, Indicators, and definition  (cont.) 
Dimension Indicator Definition 

 6. Not having at least 
one asset related to 
economic 
activity (Fishing boat, 
Combined harvest 
machines, Threshers) 

A household is considered poor based on this 
indicator if it does not have at least one asset related 
to mobility 

7. Not having at least 
one asset related to 
livelihood 
(5 cattle for milk, 20 
goats, 50 chickens, 50 
ducks, 10 
swine) 

A household is considered poor based on this 
indicator if it does not have at least one asset related 
to livelihood 

5. Housing 
condition 

1. Living in line 
room/row 
house/slum/shanty or 
other. 

A household is considered poor based on this 
indicator when living in line room/row 
house/slum/shanty or other 

2. Not having a living 
home with a permanent 
wall and 
permanent floor and 
permanent roof 

A household is considered poor based on this 
indicator if it does not have a living home with a 
permanent wall, floor, and roof 

3. Total floor area is less 
than 500 square feet 

A household is considered poor based on this 
indicator if it lives in a house with floor area less than 
500 square feet 

4. No access to clean 
drinking water 

A household is considered poor based on this 
indicator if it does not have access to clean drinking 
water 

5. No access to 
adequate sanitation 

A household is considered poor based on this 
indicator if it does not have access to adequate 
sanitation 

6. Not access to 
electricity 

A household is considered poor based on this 
indicator if it does not have access to electricity 

6. Family 
Demography 

1. Dependency ratio 
(number of people aged 
0-14 and 
those aged 65 and 
over/number of people 
aged 15 – 
64) greater than 0.65 

A household is considered poor based on this 
indicator if dependency ratio is greater than 0.65 

2. Single parent family A household is considered poor based on this 
indicator when the family is a single parent family. 
** In HIES data file households are nuclear families or 
extended families or one person 
**Here we can only identify single parents with 
children age<18, when a single parent is the head of 
the household only 
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On survival estimation of Lomax distribution under
adaptive progressive type-II censoring

Hemani Sharma1, Parmil Kumar2

Abstract

The main objective of the research described in the article is to study the maximum like-
lihood (ML) estimation and the Bayesian approach for parameter estimation of the Lomax 
distribution. Additionally, the study aims to determine the approximate intervals for the 
parameters and the survival function based on adaptive progressive type-II censored data. 
The ML estimators of the probability distribution’s parameters were calculated using the 
Newton-Raphson method, while the delta method was utilised to compute the approximate 
confidence intervals for the survival function. The Bayesian approach was also used to 
estimate the unknown parameters and survival function. This was achieved through the con-
struction of Bayesian estimators under an informative and non-informative prior based on 
the squared error loss function (SELF) and approximate credible intervals. The Markov 
Chain Monte Carlo (MCMC) method was employed for this purpose. A Monte Carlo anal-
ysis was conducted to test the efficiency of the proposed method in various situations based 
on different criteria such as mean-squared error, bias, coverage probability, and expected 
length-estimated criteria. The results indicate that the Bayesian approach out-performs 
the likelihood method in estimating the Lomax model parameters. Finally, the study 
includes an application of these methods to real data.

Key words: Lomax distribution, maximum likelihood (ML); bayesian estimation; adaptive
progressive type-II censoring scheme; squared error loss function (SELF).

1. Introduction

The Lomax distribution is a probability distribution that is widely used in reliability and
survival analysis. The distribution is named after K. S. Lomax (1954), who first introduced
it in 1954. It is a parametric distribution that is used to model the lifetime of products or sys-
tems, and it has several applications in engineering, medical sciences, and social sciences.
The Lomax distribution is also known as the Pareto Type II distribution. The PDF of the
Lomax distribution with shape parameter β and scale parameter θ is given by

f (x;β ,θ) = θβ (1+θx)−(β+1);x,β > 0,θ > 0

.

and the corresponding Cumulative Distribution Function (CDF) and Survival Function is
given as

F(x;β ,θ) = 1− (1+θx)−β ;x,β ,θ > 0 (2)
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S(t;β ,θ) = (1+θ t)−β ; t,β ,θ > 0 (3)
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Figure 1: PDF of Lomax distribution for different values of parameters
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Figure 2: CDF of Lomax distribution for different values of parameters
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Figure 3: Survival Function of Lomax distribution for different values of parameters

The two-parameter Lomax distribution model, traditionally characterized by its shape
parameter β and scale parameter θ , can be generalized to include the effect of explanatory
variables. In this generalized model, the scale parameter θ is expressed as a function of
the covariates through a log-linear relationship. This allows the model to account for the
influence of various factors (denoted by Z) on the scale parameter, thereby providing a more
flexible and comprehensive framework for modeling data that may be influenced by multiple
explanatory variables. When incorporating explanatory variables Z, we often model β or
θ (or both) as functions of Z, similar to the approaches used by Altun (2021) and Khan
and Khan (2020). These authors demonstrated that using such link functions provides a
flexible alternative to models like gamma regression, allowing for more nuanced analysis by
accounting for the effects of various control variables on the distribution’s parameters. Both
MLE and Bayesian Estimation allows for the inclusion of explanatory variables by modeling
the parameters of the Lomax distribution as functions of these variables. This generalization
enhances the model’s applicability in fields like survival analysis and reliability engineering,
where understanding the impact of multiple covariates is crucial.

Balkema and de Haan (1974) has used this distribution for reliability and life testing
experiment. Hassan and Al-Ghamdi (2009) studied the optimum step stress accelerated life
testing for the Lomax distribution using maximum likelihood procedure. In many real-life
situations, the lifetime of a product or system is subject to progressive type-II censoring. In
such cases, the lifetime of a unit is only observed up to a certain point, and then it is cen-
sored. Adaptive progressive type-II censoring is a type of censoring where the sample size
changes based on the current state of the experiment. This type of censoring is commonly
used in reliability testing and is considered more efficient than traditional censoring meth-
ods. In some experiments, it may not be possible to observe the lifetime of all experimental
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units within the available time. In such cases, censoring is used to reduce the duration and
costs associated with the experiment. The two most common censoring schemes are type-I
and type-II censoring, which end the experiment at a predetermined time or after a speci-
fied number of failures, respectively. However, these schemes lack the flexibility to remove
units at points other than the end of the experiment. To address this, a progressive type-II
censoring scheme was introduced in real-life tests, and a more flexible scheme called the
type-II hybrid progressive censoring was proposed. An adaptive type-II progressive censor-
ing scheme that combines type-I and type-II progressive censoring was also proposed for
real-life studies. In a reliability experiment with n identical, independent units, the values
of m and n are predetermined and before the experiment begins, a progressive censoring
scheme R = (R1, ...,Rm) is given. It is possible that the experimental total time may exceed
the pre-fixed time T. J denotes the observed failure times before the predetermined time T,
i.e. XJ:m:n < T < XJ+1:m:n,J = 0,1, ...,m whereXJ:m:n, T < XJ+1:m:n,J = 0,1, ...,m where
X0:m:n = 0 and Xm+1:m:n = ∞. When the experiment’s total time exceeds the ideal test time
T, the scheme sets RJ+1 = ... = Rm−1 = 0 and Rm = n−m−∑

m
i=J Ri. This allows the ex-

periment to end as soon as possible, with no survival units removed except at the time of
the mth failure. There have been several studies on the Lomax distribution under different
types of censoring. Cramer and Schmiedt (2011) has considered progressively type-II cen-
sored competing risks data from the Lomax distribution and discuss the applicability of the
model in the presence of censoring schemes. In recent years, the Adaptive IIPH censoring
scheme has been studied by a vast number of authors, including Cui et al. (2019), who
discussed the problem of estimating the Weibull distribution parameters in a constant-stress
accelerated life test. Sewailem and Baklizi (2019) provided inference for the log-logistic
distribution based on an adaptive progressive type-II censoring scheme. Ye et al. (2014)
estimated the parameters of the extreme value distribution using the maximum likelihood
technique (MLE). Helu and Samawi (2021) studied Statistical analysis based on adaptive
progressive hybrid censored data from the Lomax distribution. Helu (2022) discussed Adap-
tive Type-II Hybrid Progressive Schemes Based on Maximum Product of Spacings for Pa-
rameter Estimation of Kumaraswamy Distribution. Nassr et al. (2021) studied statistical
inference for the extended Weibull distribution based on adaptive type-II progressive hybrid
censored competing risks data. Chen and Gui (2020) discussed the problem of estimating
the parameters of the bathtub-shaped failure rate function. Panahi et al. (2021) derived
the maximum likelihood and Bayes estimates for the Burr Type-III distribution. Kohansal
and Shoaee (2021) studied the statistical inferences for a multicomponent stress-strength
reliability model. Okasha et al. (2021) discussed Reliability Estimation of the Lomax Dis-
tribution under Adaptive Type-I Progressive Hybrid Censoring Scheme. The purpose of this
study is to explore and investigate the Lomax distribution under adaptive progressive type-II
censoring. Specifically, this study aims to estimate the parameters and survival function of
the Lomax distribution based on the adaptive progressive type-II censored data.
The structure of the article is as follows: Section 1 provides an introduction, outlining the re-
search problem and objectives. Section 2 focuses on estimating the parameters and survival
function using Maximum Likelihood Estimation (MLE). Section 3 presents the confidence
intervals for the parameters and survival function. Section 4 presents the Bayesian estima-
tors for the parameters and survival function based on SELF. To assess the performance of
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the estimators, a simulation study is conducted in Section 5 and the estimators are compared
using the R software. Section 6 presents the analysis of a real-life dataset to demonstrate the
practical application of the proposed estimators. Finally, in Section 7, the article concludes
by summarizing the key findings and implications of the study.

2. Maximum Likelihood Estimation

Suppose that XR
1:m:n,X

R
2:m:n, ...X

R
m:m:n is an adaptive progressive type-II censored sample

of size m from a sample of size n with censoring scheme R = (R1,R2, ...,Rm) taken from
distribution having f(x) as the PDF and F(x) as the CDF, and XJ:m:n is the last observed
failure before T which is prefixed best testing time. The observed values of an adaptive type-
II progressively censored sample are represented by x = xR

1:m:n,x
R
2:m:n, ...x

R
m:m:n (simplified as

x = x1,x2, ...xm in later equations). On this basis, the corresponding likelihood function is
given by

L(xR
1:m:n,x

R
2:m:n, ...,x

R
m:m:n) = DJ

m

∏
i=1

f (xi:m:n)

[ J

∏
i=1

(1−F(xi:m:n))

]Ri
[
(1−F(xm:m:n))

]RJ

(4)

DJ = ∏
m
i=1[n− i+1−∑

max(i−1,J)
k=1 Rk] and RJ = n−m−∑

J
i=i Ri.

The Likelihood function for xR
1:m:n,x

R
2:m:n, ...,x

R
m:m:nbased on the Lomax distribution is

written as

L(β ,θ ;x) = DJ

m

∏
i=1

[
θβ (1+θxi)

−(β+1)
][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]RJ

(5)

Further, the log-likelihood function can be written as

lnL(β ,θ ;x) = m ln(θ)+m ln(β )− (β +1)
m

∑
i=1

ln(1+θxi)−β

J

∑
i=1

Ri ln(1+θxi)

−βRJ ln(1+θxm) (6)

Then, take the partial derivative of the log-likelihood function, and obtain the likelihood
equations as:

∂ lnL(β ,θ ;x)
∂θ

=
m
θ
− (β +1)

m

∑
i=1

xi

1+θxi
−β

J

∑
i=1

Rixi

1+θxi
−βRJ

xm

1+θxm
= 0 (7)

∂ lnL(β ,θ ;x)
∂β

=
m
β
−

m

∑
i=1

ln(1+θxi)−
J

∑
i=1

Ri ln(1+θxi)−RJ(1+θxm) = 0 (8)

Equations (7) and (8) cannot be solved for β and θ explicitly. So, these equations
required numerical solving.

The ML estimator for the survival function by using the invariance property of ML
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estimator is as follows:
ˆS(t) = (1+ θ̂ t)−β̂ (9)

3. Asymptotic Confidence Intervals

The Fisher information matrix was discussed by Aldrich (1997) and the consequently
observed Fisher information matrix of the parameters β and θ for large n, is given as fol-
lows:

I(β̂ , θ̂) =

− ∂ 2lnL(β ,θ ;x)
∂β 2 − ∂ 2lnL(β ,θ ;x)

∂β∂θ

− ∂ 2lnL(β ,θ ;x)
∂θ∂β

− ∂ 2lnL(β ,θ ;x)
∂θ 2


β̂ ,θ̂

(10)

where
∂ 2lnL(β ,θ ;x)

∂β 2 =− m
β 2

∂ 2lnL(β ,θ ;x)
∂θ 2 =− m

θ 2 +(β +1)
m

∑
i=1

x2
i

(1+θxi)2 +β

J

∑
i=1

Rix2
i

(1+θx2
i )

+βRJ
x2

m

(1+θxm)2

∂ 2lnL(β ,θ ;x)
∂θ∂β

=−
m

∑
i=1

xi

(1+θxi)
−

J

∑
i=1

Rixi

(1+θxi)
−RJ

xm

(1+θxm)

∂ 2lnL(β ,θ ;x)
∂β∂θ

=−
m

∑
i=1

xi

(1+θxi)
−

J

∑
i=1

Rixi

(1+θxi)
−RJ

xm

(1+θxm)

It is difficult to find the expected Fisher information analytically. Therefore, by using
the concept of large sample theory and the variance covariance matrix, which is the inverse
of the observed Fisher information matrix I−1(β̂ , θ̂), the approximate 100(1−α) normal
confidence intervals for the parameters β and θ are given respectively as(

β̂ − z α
2

√
var(β̂ ), β̂ + z α

2

√
var(β̂ )

)
(11)

(
θ̂ − z α

2

√
var(θ̂), θ̂ + z α

2

√
var(θ̂)

)
(12)

where z α
2

is the percentile of the standard normal distribution N(0,1) with right-tail probabil-
ity α

2 . In addition, the Delta method (Greene, 2010), is applied to evaluate the approximate
confidence intervals for the survival functions S(t). This is a natural way for calculating
the confidence interval for the functions of the ML estimators, in which these functions are
intractable to calculating the variance analytically. Then, we create linear approximations
of this survival function and then calculate the variance of linear approximation as follows:

C =
(

∂S(t)
∂β

∂S(t)
∂θ

)
(13)

where
∂S(t)
∂β

=−(1+θ t)−β . ln(1+θ t) (14)
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∂S(t)
∂θ

=−β t(1+θ t)(−β−1) (15)

The approximate estimate of the variance of S(t) is given by the following:

var ˆ(S(t)) =
[
Ct I−1(β ,θ)C

]
β̂ ,θ̂

Then, the approximate confidence interval for S(t) is as follows:(
ˆS(t)− z α

2

√
var ˆ(S(t)), ˆS(t)+ z α

2

√
var ˆ(S(t))

)
(16)

where z α
2

is the upper (α

2 )
th quantile of the standardized normal distribution.

4. Bayesian Estimation

Bayesian estimation is a statistical method for estimating the parameters of a probabil-
ity distribution based on prior knowledge and observed data. In this approach, the unknown
parameters are treated as random variables with their own prior probability distributions,
and the observed data are used to update these prior distributions to obtain a posterior dis-
tribution that reflects both the prior information and the new evidence provided by the data.
It includes the ability to incorporate prior knowledge into the analysis, the flexibility to han-
dle complex models and data structures, and the ability to quantify uncertainty in a more
intuitive way than traditional frequentist methods. In this paper, the Bayes estimates under
the Squared Error Loss Function (SELF) are constructed for the unknown parameters (θ ,β )
and for the survival function. The corresponding credible intervals for these quantities are
calculated. It is supposed that the unknown parameters β and θ are independent and follow
the gamma distributions as

π(β ) ∝ β
a1−1e−b1β ;a1,b1 > 0

π(θ) ∝ θ
a2−1e−b2θ ;a2,b2 > 0

Thus, the joint prior distribution becomes

π(β ,θ) ∝ β
a1−1

θ
a2−1e−(b1β+b2θ) (17)

The non-informative priors for both parameters β and θ are considered to be π1(θ) ∝ 1
and π2(β |θ) ∝

1
β

. When π1(θ) is multiplied by the π2(β |θ), corresponding prior density

of β and θ is given by π(β ,θ) = π1(θ)∗π2(β |θ); Clearly, π(β ,θ) ∝
1
β

. Subsequently, the
general form of the posterior density is proportional to the likelihood function time of the
prior density function, as follows:

p(β ,θ |x) ∝ (likelihood × prior)
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And the corresponding joint posterior conditional density function with informative pri-
ors is

p(β ,θ |x) ∝

[ m

∏
i=1

θβ (1+θxi)
−(β+1)

][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]n−m−∑
J
i=i Ri

×β
a1−1

θ
a2−1e−(b1β+b2θ) (18)

The corresponding joint posterior conditional density function with non-informative pri-
ors is

p(β ,θ |x) ∝

[ m

∏
i=1

θβ (1+θxi)
−(β+1)

][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]n−m−∑
J
i=i Ri

× 1
β

(19)

Hence, the Bayes estimates of any function of θ and β such as g(β ,θ), based on SELF
is obtained as

ĝ(β ,θ) = Eβ ,θ |xĝ(β ,θ) =
∫

∞

0
∫

∞

0 ĝ(β ,θ)L(β ,θ |x)×π(β ,θ)dβdθ∫
∞

0
∫

∞

0 L(β ,θ |x)×π(β ,θ)dβdθ
(20)

Clearly, calculating the Bayes estimators using (18), (19) and (20) analytically is unattain-
able. As a result, we advocate employing the MCMC technique to obtain the Bayes esti-
mates of θ and β and the associated credible intervals. The Metropolis-Hastings algorithm
is a Markov chain Monte Carlo (MCMC) method for sampling from a probability distribu-
tion that is difficult to sample directly. It is a general algorithm that can be used to sample
from any distribution, as long as the distribution can be evaluated up to a constant propor-
tionality factor. The algorithm works by defining a proposal distribution, which is used to
generate a candidate sample from the current state of the chain. The candidate sample is
then accepted or rejected based on the probability of moving from the current state to the
candidate state, as determined by a Metropolis-Hastings acceptance probability. To apply
the MCMC technique, we should first derive the full conditional distributions of β and θ as
follows:

h(β |θ ,x) ∝ β
m+a1−1eb1β

m

∏
i=1

[
(1+θxi)

−(β+1)
][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]RJ

(21)

h(θ |β ,x) ∝ θ
m+a2−1eb2θ

m

∏
i=1

[
(1+θxi)

−(β+1)
][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]RJ

(22)

To involve the MH sampling, we assume the normal distribution as the proposal dis-
tribution to acquire the Bayesian estimates and to obtain the credible intervals. Here, we
simulate samples from the full conditional posterior distribution and the proposal proceeds
by proposing a joint move on (θ , β ). The Metropolis-Hasting algorithm is illustrated below.

1) Initialize j=0, θ ( j) = 1.5, β ( j) = 1
2) j=1
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3) Generate θ and β using normal candidate distribution.

4) Compute the acceptance probability s= min
(

1, p(θ∗|data)
p(θ j−1|data)

f (θ j−1|θ∗)
f (θ∗|θ j−1)

)
5) Draw u from a uniform (0,1) density.
6) If u ≤ r; set θ j= θ ∗ and otherwise θ j= θ j−1

8) Increment j and repeat steps 3 to 6 for N = 11,000 times.
9) Approximate Bayes estimates of θ and β using MCMC samples based on the SELF as
θ̂B = 1

N−M ∑
N
i=M+1 θ (i) and β̂B = 1

N−M ∑
N
i=M+1 β (i) where M is burn-in.

10) An approximate Bayesian estimates of the S(t), based on the SELF, can be found as
Ŝ(t)B = 1

N−M ∑
N
i=M+1 S(i)(t)

11) Compute the credible intervals of θ and β , order θM+1,θM+2...,θN and βM+1,βM+2...,βN

as θ1,θ2...,θN−M and βM,βM...,βN−M Then, the 100(1−α)% symmetric credible intervals

of θ and β constructed as
(

θ((N−M)( α
2 ))

,θ((N−M)(1− α
2 ))

)
and

(
β((N−M)( α

2 ))
,β((N−M)(1− α

2 ))

)
.

12) Compute the credible intervals of S(t) order SM+1(t),SM+2(t)...,SN(t) as S1(t)< S2(t)<
... < SN−M(t)Then, the 100(1−α)% symmetric credible intervals of θ and β constructed

as
(

S((N−M)( α
2 ))

(t),S((N−M)(1− α
2 ))

(t)
)

.

5. Simulation Study

In this section, Monte Carlo simulations are performed to know the performance of the
proposed estimators developed in the previous sections of the parameters, the survival func-
tion based on an adaptive progressive type-II censoring scheme. The process of generating
an adaptive progressive type-II censored sample with a pre-determined number of n and m
and the progressive censoring schemes with given values of the ideal censoring time T from
the Lomax distribution is described below using the procedure described by Balakrishnan
and Sandhu (1995) and by Ng et al. (2009). The steps are as follows:
1) Define the values of n, m, θ , β , T and R = (R1,R2...Rm).
2) Simulate m random variables from uniform (0,1) as W1,W2...Wm.

3) Set Vi =W
1

(i+Rm+Rm−1+...+Rm−i+1)
i for i=1,2,...m.

4) Set Ui =VmVm−1...Vm−i+1, for i=1,2,...m. Then, U1,U2, ...Um, is the m progressive type-II
observed sample from the Uniform (0,1) distribution.
5) Set xi = F−1(Ui) for i=1,2,... m, where F−1(Ui)represent the quantile function of the
Lomax distribution. Thus, x1,x2, ...,xm, is the needed progressive type-II observed sample
from the specified distribution F(.) by using the inverse transformation method.
6) Identify the value of J, where xJ:m:n < T < xJ+1:m:n, discard the sample x j+2:m:n, ...,xm:m:n.
7) Simulate the first m -J -1 order statistics from a truncated distribution considered as

f (x)
[1− f (xJ+1:m:n)]

with sample size
(

n−∑
j
i=1 Ri − J−1

)
as x j+2:m:n,x j+3:m:n, ...,xm:m:n.

Hence, a simulation study was executed using the ideal total test time T=1. To generate
the data, we supposed that the initial true values of the parameters θ and β were (1.5, 1),
we used the values of t= 0.5, 1, the corresponding values of the survival function are S(t)
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are 0.5714 and 0.4 respectively. For prior information, the hyperparameters (a1 = 1,b1 =

0,a2 = 0,b2 = 1) were considered. To find the Bayesian estimates and the 95% Bayes
intervals for the unknown parameters, we simulate 10,000 MCMC values from the target
distribution using the Metropolis–Hastings algorithm.

Table 1: Average Estimate(AE), Bias, MSE, AL and CP of scale(θ ) and shape(β ) Parame-
ters Based on T=1

(n,m) CS MLE Bayes Informative Bayes Non-Informative

(50,20) (20,019) θ β θ β θ β

AE 1.7038 1.1901 1.3942 0.9590 1.3112 1.0904
Bias 0.2038 0.1901 0.1058 0.0410 0.1888 0.1090
MSE 1.5171 1.5063 0.8998 0.9327 1.527 0.7821

CI (-0.7851,0.9574) (0.12011,1.2738) (0.6177,1.7736) (0.5848,1.6417) (0.5283,1.6523) (0.6384,1.7601)
AL 1.7426 1.15374 1.1559 1.0569 1.1239 1.1216
CP 0.912 0.905 0.925 0.965 0.901 0.945
AE (25,110,05) 1.5862 0.9441 1.4156 1.1901 1.2270 1.1964
Bias 0.0862 -0.0558 -0.0843 0.1905 -0.2729 -0.1964
MSE 1.4522 1.1055 0.9428 0.7291 1.4048 0.9706

CI (-0.9843,0.7409) (-0.0415,1.2507) (0.7000,1.7187) (0.6674,1.6002) (0.5484,1.6839) (0.5979,1.7106)
AL 1.7252 1.2922 1.0186 1.0328 1.1355 1.1127
CP 0.930 0.935 0.920 0.95 0.93 0.985
AE (120) 1.7997 0.9693 1.3257 0.8897 1.4754 1.1809
Bias 0.2997 0.0306 -0.1742 -0.1102 -0.0245 0.1809
MSE 1.6223 1.3605 1.0921 0.7793 0.5040 0.3043

CI (-0.8943,0.9702) (0.1150,1.2709) (0.6177,1.7736) (0.5848,1.6417) (0.6042,1.7491) (0.5964,1.7373)
AL 1.8646 1.1558 1.1216 1.0895 1.4493 1.1409
CP 0.919 0.925 0.905 0.975 0.91 0.97

(70,30) (30,029)
AE 1.3252 1.0809 1.7165 1.0109 1.7409 0.8815
Bias 0.1748 -0.0809 0.2165 0.0109 0.2409 -0.1184
MSE 1.1773 1.1999 0.7331 0.5108 0.9231 0.4391

CI (-0.7000,1.0940) (-0.0109,1.4870) (0.5838,1.7535) (0.6278,1.7433) (0.5589,1.6820) (0.5800,1.6676)
AL 1.7241 1.1980 1.0696 1.0154 1.1031 1.0875
CP 0.92 0.95 0.915 0.965 0.915 0.975
AE (220,110,010) 1.4701 1.0816 1.4667 1.0401 1.5763 0.9887
Bias -0.0298 0.0816 -0.0332 0.0401 0.0763 -0.0112
MSE 1.1836 1.0439 0.0520 0.0190 0.9508 0.3430

CI (-0.8295,0.9942) (-0.1112,1.3783) (0.6065,1.7594) (0.5945,1.6390) (0.5847,1.7599) (0.5972,1.6978)
AL 1.5238 1.1896 1.0052 1.0044 1.0752 1.1006
CP 0.915 0.945 0.910 0.945 0.91 0.97
AE (130) 1.7147 0.9441 1.3224 1.0036 1.4864 1.0687
Bias 0.2147 -0.0558 -0.1775 0.0036 -0.0135 0.0687
MSE 1.5038 0.9678 0.8607 0.5595 0.2036 0.0937

CI (-0.9605,0.7143) (-0.0223,1.3828) (0.6742,1.7820) (0.6395,1.6097) (0.6317,1.7392) (0.6522,1.7104)
AL 1.6749 1.2052 1.1078 0.9002 1.1074 1.0582
CP 0.922 0.910 0.91 0.945 0.905 0.95

(90,40) (40,039)
AE 1.3552 1.0911 1.4690 1.0950 1.2791 0.8908
Bias -0.1448 0.0911 -0.0309 0.0950 -0.2208 0.1092
MSE 0.8560 0.8938 0.6611 0.5093 0.7338 0.3827

CI (-0.4553,1.3351) (0.1222,1.8344) (0.5587,1.6813) (0.6407,1.7708) (0.6552,1.7481) (0.6160,1.5899)
AL 1.6905 1.0122 1.0226 1.0250 1.0929 1.1138
CP 0.91 0.93 0.90 0.95 0.925 0.975
AE (220,110,010) 1.4701 1.2008 1.4767 1.0201 1.3709 1.0938
Bias -0.0298 0.2008 -0.0233 0.0201 -0.1290 -0.0938
MSE 0.7395 0.8214 0.0420 0.0160 0.4358 0.2306

CI (-0.1921,1.3903) (0.7361,1.8359) (0.5741,1.7177) (0.5033,1.5436) (0.5534,1.7066) (0.5505,1.5849)
AL 1.4824 0.9370 0.9836 0.9943 1.0031 1.0344
CP 0.905 0.925 0.90 0.94 0.93 0.955
AE (140) 1.6753 1.0246 1.2259 1.2099 1.6934 1.0161
Bias 0.1752 0.0246 -0.2640 0.2099 0.1934 0.0161
MSE 0.8927 0.7349 0.8419 0.5322 0.1945 0.0083

CI (-0.7775,0.8605) (-0.0972,1.4627) (0.6231,1.7030) (0.6549,1.7312) (0.6401,1.7281) (0.6157,1.6686)
AL 1.6381 1.0599 1.0798 1.0062 1.0880 1.0528
CP 0.910 0.930 0.905 0.955 0.90 0.97
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Table 2: Average Estimate(AE), Bias, MSE, AL and CP of S(t), t=0.5, 1 Parameters Based
on T=1

(n,m) CS MLE Bayes Informative Bayes Non-Informative

(50,20) (20,019) S(0.5) S(1) S(0.5) S(1) S(0.5) S(1)
AE 0.7856 0.5863 0.5422 0.3675 0.6225 0.4614
Bias 0.2141 0.1863 -0.0292 -0.0325 0.0510 0.0614
MSE 0.1111 0.1259 0.0041 0.0.0046 0.0096 0.0141

CI (0.6302,0.9456) (0.4404,0.9110) (0.5164,0.5685) (0.3383,0.3977) (0.5277,0.7128) (0.3488,0.5709)
AL 0.3153 0.4705 0.0578 0.0671 0.1864 0.2221
CP 0.925 0.915 0.943 0.952 0.925 0.935
AE (25,110,05) 0.7694 0.5671 0.6107 0.4471 0.5889 0.4248
Bias 0.1980 0.1671 0.0392 0.0471 0.0175 0.0248
MSE 0.0953 0.0959 0.0711 0.0191 0.0252 0.0388

CI (0.6041,0.9072) (0.4250,0.8495) (0.5245,0.7034) (0.3447,0.5597) (0.5362,0.6298) (0.3587,0.4770)
AL 0.3030 0.4245 0.1788 0.2150 0.1936 0.2402
CP 0.915 0.92 0.935 0.94 0.93 0.905
AE (120) 0.7398 0.5418 0.6063 0.4414 0.6169 0.4584
Bias 0.1684 0.1418 0.0348 0.0413 0.0455 0.0584
MSE 0.1134 0.1022 0.0091 0.0121 0.0158 0.0238

CI (0.5214,0.7963) (0.4072,0.7662) (0.5217,0.7053) (0.3442,0.5647) (0.5699,0.8347) (0.3938,0.7460)
AL 0.2748 0.3589 0.1836 0.2205 0.2648 0.3481
CP 0.92 0.93 0.945 0.95 0.925 0.93

(70,30) (30,029)
AE 0.7514 0.5366 0.5422 0.3675 0.6231 0.4602
Bias 0.1799 0.1366 -0.0292 -0.0325 0.0517 0.0602
MSE 0.0820 0.0696 0.0041 0.0046 0.0094 0.0131

CI (0.5632,0.8759) (0.3614,0.7911) (0.5164,0.5685) (0.3383,0.3977) (0.5306,0.7171) (0.3519,0.5753)
AL 0.3127 0.4297 0.1751 0.2203 0.0521 0.0594
CP 0.925 0.93 0.955 0.95 0.91 0.935
AE (210,110,010) 0.7391 0.5236 0.6165 0.4537 0.6605 0.5134
Bias 0.1676 0.1238 0.0451 0.0537 0.0891 0.0113
MSE 0.0719 0.0537 0.0210 0.0172 0.0119 0.0166

CI (0.5537,0.8362) (0.3654,0.7352) (0.5211,0.7150) (0.3423,0.5731) (0.5533,0.7352) (0.3770,0.6174)
AL 0.2825 0.3697 0.1639 0.2008 0.1818 0.2103
CP 0.905 0.92 0.935 0.935 0.92 0.93
AE (130) 0.7391 0.5284 0.6136 0.4487 0.6824 0.5395
Bias 0.1667 0.1284 0.0422 0.0487 0.1110 0.1395
MSE 0.0796 0.0632 0.00811 0.0113 0.0126 0.0125

CI (0.5561,0.8299) (0.3806,0.7390) (0.5256,0.7040) (0.3466,0.5611) (0.5539,0.7685) (0.3776,0.6608)
AL 0.2738 0.3583 0.1784 0.2144 0.2145 0.2832
CP 0.93 0.89 0.94 0.945 0.93 0.915

(90,40) (40,039)
AE 0.7309 0.5086 0.5571 0.3832 0.6208 0.4587
Bias 0.1595 0.1086 -0.0144 -0.0167 0.0493 0.0587
MSE 0.0668 0.0424 0.0022 0.0027 0.0089 0.0126

CI (0.5400,0.8170) (0.3414,0.6989) (0.5279,0.5783) (0.3493,0.4082) (0.5240,0.7145) (0.3450,0.5729)
AL 0.2770 0.3574 0.1505 0.2079 0.0503 0.0589
CP 0.925 0.91 0.955 0.955 0.93 0.925
AE (220,110,010) 0.6809 0.4522 0.6362 0.4598 0.6183 0.4789
Bias 0.1094 0.0522 0.0648 0.0598 0.0468 0.0789
MSE 0.0539 0.0234 0.0115 0.0158 0.0116 0.0161

CI (0.4578,0.6991) (0.2710,0.5441) (0.2285,0.4721) (0.5274,0.7409) (0.3503,0.6116) (0.3354,0.6028)
AL 0.2413 0.2731 0.1234 0.1612 0.1589 0.1973
CP 0.91 0.92 0.95 0.94 0.93 0.935
AE (140) 0.7210 0.5043 0.6156 0.4543 0.7160 0.5792
Bias 0.1496 0.1043 0.0442 0.0543 0.1446 0.1792
MSE 0.0654 0.0407 0.0077 0.0101 0.0111 0.0118

CI (0.5654,0.8275) (0.3393,0.6841) (0.5191,0.6973) (0.3416,0.5519) (0.5463,0.6668) (0.3701,0.5263)
AL 0.2621 0.3448 0.1782 0.2103 0.1205 0.1562
CP 0.925 0.91 0.94 0.935 0.925 0.905
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We generated 10,000 MCMC samples and then discard the first 1000 random values.
Table 1 and 2 summarizes the ML estimators and the Bayes estimators for the parameters
θ ,β and S(t)) via the censored sample. Furthermore, from this table, it seems that the Bayes
estimates under the non-informative prior and the ML Estimator were close to each other.
The approximate 95% confidence intervals were computed together with the corresponding
length for each interval, as reported below in Table 1 and 2. From these tables, it was dis-
covered that the average length of the confidence interval and the credible interval decreased
as n and m increased. The coverage probabilities of the confidence intervals based on the
likelihood are close to the nominal level of 0.95 for θ and β , and S (t =0.5, 1) as n grew
larger, but failed to reach the desired level for small values of n. On the other hand, the
coverage probabilities of the credible intervals approached the nominal level of 0.95 for θ

and β and S (t =0.5, 1) in most cases.

6. Real Data Analysis

In this section, we consider a real life data to demonstrate the proposed method and
verify how our estimates work in practice. The dataset was initially considered by Chhikara
and Folks (1977). It represents the 46 repair times (in hours) for an airborne communication
transceiver. The ordered dataset is presented below:
————————————————————————————————————–
0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5,
1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8,
9.0, 10.3, 22.0, 24.5.
————————————————————————————————————–
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Figure 4: (a) ECDF plot for the dataset I (b) Q-Q plot for the dataset I
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Table 3: Adaptive Progressive Type-II censored sample for n=46, m=20

T=7.5, j=20 0.3,0.5,0.5,0.5,0.5,0.7,0.7,1.0,1.0,1.5,1.5,2.0,2.2,2.5,2.7,
3.3,4.5,4.7,5.4,7.0

T=2.0, j=11 0.2,0.3,0.5,0.5,0.6,0.7,1.0,1.0,1.0,1.3,1.5,2.0,2.2,2.7,4.0,
4.0,4.75.4,7.5,22.0.

In this illustration, the value of the Kolmogorov-Smirnov (K-S) distance and its corre-
sponding p-value for the dataset are 0.1272 and 0.4462 respectively. It indicates that the
dataset fits well through this distribution. This can further be seen through the visualization
of the empirical Cumulative Distribution Function (ECDF) plot, the quantile-quantile (Q-Q)
plot, as shown in Figure 4. The ML estimators for the unknown quantities are computed
for the complete sample (uncensored), i.e. n=m, (θ=0.1082 and β=3.5494) the dataset was
used to simulate an adaptive progressive type-II censored sample with m = 20 and with
two distinct values of ideal total test time T (2.0,7.5), as displayed in Table 3. For clarity
R = (5,05) is given as a short form of R = (5,0,0,0,0,0). Thus, the observed adaptive pro-
gressive type-II censored samples are shown below in Table 3, for two different values of T
and two distinct values of J. If J = 11 means that only 11 observed failures were observed
before time T = 2.0 and J = 20 means that all the observed failure times were observed
before time T = 7.5, then this implies that the experiment ended before time T. Table 4 and
5 represents the average estimates, CI and AL based on dataset I for the different values of
T and R.

Table 4: AE, CI, and AL of θ , β and S(t), t=0.5,1 Parameters Based on Real dataset I for
n=46, m=20, T=2.0, R=(20,019)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.5277 0.3698 0.9170 0.8549 0.9188 0.9241 0.4620 0.3765
(-0.1641,1.2197)(0.0620,0.6776)(0.7639,1.0700)(0.6097,1.1000)(0.0921,1.5362)(0.1335,1.7083)(0.1652,0.7379)(0.0970,0.6672)

1.3838 0.6156 0.3061 0.4903 1.4441 1.5747 0.5726 0.5701

Table 5: AE, CI, and AL of θ , β and S(t), t=0.5, 1 Parameters Based on Real dataset I for
n=46, m=20, T=7.5, R=(10,018,10)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.2651 1.0303 0.8796 0.7847 1.2675 0.9710 0.3795 0.2685
(-0.2903,0.8206)(-0.5284,1.2289)(0.4890,1.2701)(0.1478,1.4216)(0.1240.1.7566)(0.2088,1.5464)(0.2746,0.6518)(0.1441,0.5712)

1.1103 1.7573 0.0.7811 1.2738 1.6325 1.3375 0.3772 0.4271
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Dataset 2: The data represents the breakdown time of an insulating fluid between elec-
trodes at a voltage of 34 kV studied by Nelson (1982). The data are recorded as follows:
————————————————————————————————————–
0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16,4.85, 2.78, 4.67, 1.31,
12.06, 36.71, 72.89.
————————————————————————————————————–
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Figure 5: (a) ECDF plot for the dataset II (b) Q-Q plot for the dataset II

Table 6: Adaptive Progressive Type-II censored Sample for n=19 and m=10

T=7, j=5 0.19,0.96,4.15,4.85,6.50,8.01,31.75,32.52,33.91,36.71
T=37, j=10 0.19,1.31,2.78,3.16,4.15,4.85,6.50,32.52,33.91,36.71.

In this illustration, the Kolmogorov-Smirnov (K-S) distance and its corresponding p-
value for the dataset are 0.1479 and 0.7467 respectively. It indicates that the dataset fits
well through this distribution. This can further be seen through the visualization of the
empirical Cumulative Distribution Function (ECDF) plot, the quantile-quantile (Q-Q) plot
as shown in Figure 5. The ML estimators for the complete sample (uncensored), i.e. n=m,
(θ=0.0597 and β=2.0323) the dataset was used to simulate an adaptive progressive type-II
censored sample, as displayed in Table 6 with m = 10 and with two distinct values of ideal
total test time T (7,37). Thus, the observed adaptive progressive type-II censored samples
are shown below in Table 6, for two different numbers of T and two distinct numbers of J. If
J =5 means that only 5 observed failures were observed before time T = 7 and J = 10 means
that all the observed failure times were observed before time T = 37, then this implies that
the experiment ended before time T. Table 7 and 8 presents the values of AEs, CI and AL
based on dataset II for different values of T and R.
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Table 7: AE, CI, and AL of θ , β and S(t), t=0.5, 1 Parameters Based on Real dataset II for
n=19, m=10, T=37, R=(5,08,5)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.1331 0.5242 0.9667 0.9365 1.1017 1.0280 0.3675 0.2657
(-0.2363,0.5027)(-0.3422,1.3906)(0.8274,1.1061)(0.6795,1.1935)(0.1685.1.5000)(0.3529,1.5228)(0.2603,0.5294)(0.1824,0.4358)

1.3314 1.1698 0.2690 0.2534 0.5333 1.5530 0.4571 0.8790

Table 8: AE, CI, and AL of θ , β and S(t), t=0.5, 1 Parameters Based on Real dataset II for
n=19, m=10, T=7, R=(5,09)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.4370 1.0630 0.9772 0.9554 1.2704 1.0935 0.3067 0.1783
(-0.2229,0.3103)(0.2969,1.2561)(0.7486,1.2058)(0.5160,1.3950)(0.9188.1.5265)(0.9053,1.7482)(0.9103,0.3543)(0.1115,0.2101)

0.5330 1.5530 0.4571 0.8790 0.6077 0.5428 0.1641 0.0985

7. Conclusion

In this study, the likelihood and Bayesian approaches were utilized to estimate the pa-
rameters of the Lomax distribution and survival function, under an adaptive progressive
type-II censored data. However, closed-form solutions for the ML estimators of the param-
eters and survival function were unavailable, which led to the use of the Newton-Raphson
numerical method for computation. Moreover, the study constructed asymptotic confidence
intervals for θ and β , and an approximate confidence interval for the reliability function
was obtained through the Delta method. The Bayesian approach used in the study em-
ployed both informative prior and non-informative prior. However, the Bayes estimates
under the squared error loss function could not be derived analytically. As a result, the
Metropolis-Hastings algorithm was utilized to generate 10,000 samples for estimation of
the two unknown parameters, and credible intervals were computed for these quantities, as
well as for the survival function. Furthermore, a simulation study was conducted to inves-
tigate the proposed methods for various sample sizes n, effective sample sizes m, and three
different progressive censoring schemes, replicated 2000 times. The study also evaluated
the proposed methods based on a real-life example. The estimators were observed to have
small biases in all situations, indicating approximate unbiasedness. The average length of
the estimators decreases with increase in the value of m and n. The MSEs of the estimators
decreases with increase in the sample size. Overall, the study suggests that the Bayesian
inference approach performs better than the classical approach. In the future endeavours,
one could explore these estimation techniques in the presence of explanatory variables and
develop more efficient computational algorithms to handle high-dimensional data and com-
plex models. Further studies might also investigate the application of these generalized
Lomax models in various domains, such as finance and biomedical sciences, to validate
their practical utility.
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A fuzzy hybrid MCDM approach to the evaluation of subjective 
household poverty 

Aleksandra Łuczak 1, Sławomir Kalinowski 2 

Abstract 

Poverty is one of the most important global socio-economic problems. Despite a strong 
interest in this phenomenon, there is no unified concept for measuring it. It is difficult to 
quantify due to the diversity of the dimensions of perceived poverty, particularly subjective 
ones. Thus, the aim of the research described in the article is to propose a comprehensive 
procedure for constructing a synthetic measure of subjective poverty in households. This 
involves aggregating factors describing the present, future, and past, which make it easier to 
grasp the feeling of deprivation. Methods such as fuzzy TOPSIS and fuzzy hierarchical 
analysis (FHA) based on the fuzzy sets theory were used for this purpose, which is not 
standardly used for this type of research. This innovative procedure was applied to assess the 
level of subjective household poverty in Poland. The analyses are based on data from primary 
research carried out in three stages in 2020 using the CAWI method. The results show that 
the assessment of households’ current socio-economic situation is also influenced by past 
events as well as projections of future developments. Changes in the values of the synthetic 
index illustrate the trajectory of switching from panic to negation, and attempting to cope 
with the situation or, alternatively, switching to a state of irritation. The research results can 
form the basis for formulating policies and strategies to combat poverty. 

Key words: fuzzy TOPSIS, fuzzy hierarchical analysis (FHA), MCDM, subjective poverty, 
household, CAWI 

1.  Introduction 

Due to its interdisciplinary nature, poverty is a specific research category. 
Understanding its specificity requires various scientific disciplines – economics 
(including behavioral), sociology, social policy, or psychology. The considerations of 
poverty highlight that it is the result of many overlapping social and economic 
difficulties, including the lack of work, low income, dysfunctions, limited opportunities 
or low human capital. Schiller (1989) points to three causes: flawed character, restricted 
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opportunities and inefficient state policy, which Schiller describes as Big Brother. 
Bradshaw (2007) suggests that it is the “effect of individual deficiencies, cultural belief 
systems that support subcultures in poverty, political-economic distortions, geographic 
disparities, or cumulative and circumstantial origins”. Given the wide range of causes 
of poverty, it can be assumed that it is an anomic feature of the contemporary world. 
Although there are many causes (Brandt, 1908; Thurow, 1967; Shaw, 1996; Jennings, 
1999; Dudek, 2008; Dudek & Szczesny, 2021; Brady, 2019; Kalinowski, 2020), the 
problem of the COVID-19 pandemic and its negative effects on the functioning of 
households seems to have been the most important in recent years (Kalinowski & 
Wyduba 2020; Gupta et al., 2021; Asfaw, 2021).  

Although 120 years have passed since Rowntree’s first poverty research (1901), 
there is still no unified definition. The concept of poverty is unclear, which makes 
it difficult to define it (Blank, 1997; van Praag at al., 2008), as a result of which there is 
also no generally accepted method of measuring it (Kalinowski, 2015). In most research 
into poverty, a person is classified as poor if he or she lacks sufficient resources to 
achieve an acceptable standard of living. Usually the analysis is limited to economic 
deprivation and distress. However, as Shaw (1996) and Blank (2003) (among others) 
point out, poverty is a very complex social problem with many variants and roots, all of 
which are important depending on the situation. The very attempt to define poverty 
itself is a consequence of research traditions resulting from the overlapping of 
behavioral, social and economic factors, reinforced by political considerations. 

The essence of poverty is inequality (Valentine, 1968). It can be reflected both 
in unequal income and consumer spending, as well as in the level of perceived needs 
and the way in which they are perceived. Thus it can be assumed that inequality in terms 
of perceived needs may favor various levels of satisfaction, regardless of the objective 
dimension of satisfying the needs. The amount of funds held cannot reflect satisfaction. 
It can be assumed after Ahuvia (2008) that the chances of determining an individual’s 
situation are greater when knowing the evaluation of satisfaction with life as a whole 
rather than by knowing the level of income. Thus the objective dimension expressed 
in income or expenditure will not be reflected in the subjective satisfaction with the 
various dimensions of life (cf. Easterlin, 1974; Nettle, 2005; Rayo & Becker, 2007; 
Michoń, 2010).  

Since the objective dimension is not sufficient to describe multidimensional 
poverty, we have chosen to redefine subjective poverty. “We assumed that this is an 
awareness of the lack of sufficient resources to meet one’s needs in terms of socio-
economic status (income and current financial situation, level of education and 
occupation, residence, lifestyle and leisure) and one’s own aspirations to achieve and 
maintain the desired standard of living” (Łuczak & Kalinowski, 2022). We recognized 
that to some extent subjective poverty is a consequence of the emphasis on relative 
deprivation of needs discussed by Townsend (1979) and Runciman (1966). We 
assumed after Townsend that poverty is an inability to meet the standards of a given 
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society. Although Townsend’s definition refers to a relative dimension, it is simply 
reflected in individuals’ subjective expectations, especially given their aspirations. 

It is worth noting that the definition of subjective poverty that we adopted limits 
the fraction of poor people only to those who have a feeling of unmet needs, while 
leaving out those who do not have this feeling. In conceptualizing subjective poverty, 
we thus found that behavioral factors are extremely important. This emphasis allows 
us to assume that subjective poverty is influenced by the respondents’ circumstances. 
We assumed that the sense of poverty is influenced by the feeling of deprivation 
in relation to the environment, i.e., the situation of the surveyed individual and how he 
or she perceives his or her own well-being. To quote John Stuart Mill (1907), “Men do 
not desire merely to be rich, but to be richer than other men.” This relativism of 
thinking at the same time encourages the formation of subjective assessments of one’s 
own position in relation to the environment. A question arises – what is this 
environment? Who is this benchmark for respondents’ assessments? Without much 
error, it can be assumed that they are people closely related to the respondents (family, 
friends) or other people they know (neighbors, co-workers). However, without being 
sure of who constitutes the comparison group, one should be cautious in this regard. 

According to Haveman (2015), “the process of measuring poverty and analyzing its 
causes and consequences has advanced social science research in several areas, 
including identifying the underlying causes of poverty, understanding social mobility, 
attainment, and income dynamics, and measuring the behavioral effects of antipoverty 
policy interventions.” A problematic issue in all the measures indicated is the feeling of 
deprivation of needs in relation to expectations and, consequently, the estimation of 
one’s own line of prosperity. This leads to measurement errors. In deciding to create 
a synthetic measure, we therefore wanted it to be the result of the evaluation of financial 
situation and material conditions of one’s own household, as well as the perception of 
one’s own income compared to the income of other households. We also wanted the 
proposed measure to be based on a subjective sense of the standard of living of 
household members and a sense of helplessness against the risk of poverty. We believe 
that it is not only the moment of the pandemic that is important, but also the past 
situation and the anticipation of future changes. It should be emphasized that our 
innovation in research consists in the use of the time dimension in research, including 
the past, present, and future. We propose a procedure for constructing a synthetic 
measure based on repeated surveys (in this case from three periods) conducted using 
the CAWI method. The comprehensive procedure we propose is a hybrid MCDM 
approach based on fuzzy methods that extend the approach proposed by Łuczak and 
Kalinowski (2022). The key elements of the methodology, i.e. determination of the 
indicator-weighting system and calculation of synthetic measures, are based on the 
fuzzy hierarchical analysis (FHA) and the fuzzy technique for order of preference by 
similarity to ideal solution (FTOPSIS), respectively. In addition, we propose our own 
compactness measure to examine the homogeneity of the created groups of objects. 
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As the main objective of the research, we adopted a presentation of a unconventional 
procedure for the construction of a synthetic measure of subjective household poverty 
in the context of poverty types and household types based on a hybrid multi-criteria 
decision-making approach in a fuzzy environment. The proposed approach was used 
to study the perception of subjective poverty by households in Poland during the 
COVID-19 pandemic. The research was carried out on the basis of three-stage primary 
research in April, June and September 2020. This paper consists of five parts. 
In addition to the introduction, section 2 provides a detailed description of the 
proposed multiple-criteria decision-making method. Section 3 describes the results of 
empirical research on the evaluation of subjective household poverty in Poland during 
the COVID-19 pandemic. Chapter 4 discusses the proposed research procedure and 
the results obtained. The conclusions are presented in Chapter 5. 

2.  Literature review 

Poverty is a multidimensional phenomenon, the definition and measurement of 
which raises a lot of controversy and discussion. In research on poverty, the lines of 
poverty separating relatively well off (non-poor) people from poor people are most 
often used (Golinowska 1997, Broda-Wysocki 2012). They are criticized in many 
studies because they cause a dichotomous division of society. Generally, there are two 
approaches to determining the poverty line – economic and multidimensional (Figure 
1). The objective approach is determined both on the basis of normative and parametric 
lines. The first are absolute, while the second are relative. Determining the normative 
lines consists in determining the value of income necessary to satisfy a certain group of 
needs (Booth 1889, Rowntree 1901, Orshansky 1969). They are based on various types 
of standards (expert or political)  regarding the fulfillment of needs (Kalinowski, 2015).  

Relatively the least important in the measurements is the poverty threshold based 
on official lines. Its minor importance results, on the one hand, from a certain 
underestimation, and on the other from overestimation. This is due to several factors 
(Kalinowski, 2015): 
1) lowering the statistics contributes to the apparent reduction of the poverty threshold 

without its actual elimination, which may lead to a lack of valorization of the number 
entitled to receive benefits, 

2) for fear of being stigmatized some people consciously do not want receive social 
welfare benefits, thus they are not included in the assistance systems, and as a result 
they are not treated as poor, even though they cannot meet their needs, 

3) some people receive benefits, although they are not formally entitled to them  
(e.g. working illegally), 

4) lack of international comparability. 
The subjective measures of poverty are also important (cf. Hagenaars, van Praag 

1985, Kapteyn, van Praag, van Herwaarden 1978, Goedhart et al. 1977). These are 
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considered the most democratic methods of defining poverty, which results from the 
individual setting of the limit of deprivation.  

Measurement of poverty is often limited to objective, one-dimensional indicators 
(e.g. income or expenses). However, when assessing poverty, its subjective dimension 
is also important, as it shows the perceptions of the poor. The growing contrast between 
the rich and the poor only increases the level of feeling poverty. There are many levels 
of poverty, from no poverty to extreme poverty. It should be noted that poverty is not 
always immediately noticeable, and those that are visible are not always felt by the 
respondents. Hence the problem of subjective poverty measurement is important, as it 
identifies various degrees of poverty perception among respondents and often depends 
on the point of reference (on the people to whom the respondents compare themselves, 
e.g. family, friends, neighbors). For these reasons, research on the measurement of 
subjective poverty was undertaken. The study of subjective poverty allows for the 
identification of the diversity of the respondents’ perceptions of poverty. 

 

Figure 1: Methods of determining the poverty.  

Source: Kalinowski (2015). 

Existing definitions of poverty are characterized by a high degree of subjectivity and 
individual interpretation by individual researchers. This is why some of them have  
a broad scope, others are narrower. Due to this, in many cases, it is difficult to make 
comparisons because adopting a different understanding of the definition often means 
that the researcher had a research sample that was different in terms of quality. 
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Nevertheless, in many cases, one can note that despite the differences in the approach 
to particular definitions, the core is similar and many elements remain common 
(Kalinowski, 2015). Thus we defined subjective poverty as a conscious sense of the lack 
of sufficient resources to meet one’s needs in relation to the “socioeconomic status 
(income and current financial situation, level of education and profession, place of 
residence, lifestyle and leisure activities) and one’s own aspirations to achieve and 
maintain the desired standard of living” (Łuczak & Kalinowski, 2022).  

To complete the picture of measurement of poverty, it is necessary to add an 
observation of problems that need to be taken into account when assessing subjective 
poverty. They are related to the selection of variables, survey design, measurement 
errors, frames of reference, idiosyncratic characteristics of respondents, and differences 
in their personality and tastes (Ravallion & Lokshin, 2002; Ravallion, 2012; Ravallion 
et al., 2016). Some of these can be solved by conducting research which is well grounded 
in theory and practice. However, some of them are unmeasurable and elusive in nature, 
regardless of the research procedure adopted.  

We would like to emphasize the fact that objective and subjective dimensions of 
poverty are equally important, just as in well-being analyses (cf. Stiglitz et al., 2009). 
Instead of treating them as substitutes, they should be regarded as complementary. The 
picture of reality should be created by juxtaposing various approaches. Only then will 
it be possible to draw the correct conclusions.  

3.  Methodological approach 

There are different approaches to assessing poverty based on fuzzy sets theory 
(Cerioli & Zani, 1990; Chiappero-Martinetti, 1994; Betti et al., 2008; Montrone et al., 
2010; Belhadj, 2011; Neff, 2013; Betti et al., 2017; Belhadj & Limam, 2012; Aristondo & 
Ciommi, 2017; Ciani et al., 2019). However, our proposed composite-index approach 
goes far beyond what has been proposed so far, describing the subjective evaluation of 
household poverty as a multi-dimensional self-evaluation of respondents using 
multiple-criteria decision-making methods i.e. the fuzzy hierarchical analysis (FHA) 
and the fuzzy technique for order of preference by similarity to ideal solution 
(FTOPSIS). In this paper we introduce the time dimension to the poverty measure and 
propose a triple reference-point approach. This is based on the respondents’ past, 
present and future feelings. Each step of the proposed procedure is described in detail 
below. 

Step 1: Preparation of and conducting a survey on subjective poverty. In this step, 
we assume that households are characterized by three criteria: perceptions of the 
present situation, perception of the past, and future projections. In typical measures of 
subjective poverty, participants are asked to assess their financial situation or standard 
of living in relation to other families. Individual prosperity lines are constructed on this 
basis. Without going into the details of the creation of these lines, they can be reduced 
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to a number of commonly used ways of measuring poverty on the basis of subjective 
perceptions. They are related to: 
a) an evaluation of one’s own income situation (Hagenaars, van Praag, 1985), 
b) a feeling of being poor – a minimum income (Kepteyn et al. 1988), 
c) evaluation of one’s life in verbal terms, e.g.: “very bad”, “bad”, “sufficient” and 

“good”, “very good” (Van Praag, 1971, Van Praag et al. 1980). Such questions treat 
poverty as a more general concept than just income poverty and often approach 
terms such as subjective well-being, satisfaction with life and happiness,  

d) assessment of the possibility of “making ends meet” (often referred to as the Deleeck 
question) or difficulties in making the necessary payments (Deleeck & Van Den 
Bosch, 1990; Ghiatis, 1990). 

On one hand, households’ perception of their own poverty may affect self-
evaluation in the future, even if objective poverty decreases. On the other hand, 
previous experience of poverty may also result in a household currently having  
a sensation of a higher level of income than it actually does and vice versa (Ravallion & 
Lokshin, 2002). Thus the hysteresis in the perception of subjective poverty by 
households occurs. It should be added that the perceived condition of the household is 
also influenced by the actual dynamics of poverty (Alem et al., 2014). 

Each of these criteria is described by 𝑘𝑖 (𝑖= 1, 2, 3) indicators, 𝑘 ൌ   𝑘ଵ  ൅ 𝑘ଶ  ൅ 𝑘ଷ. 
Households are subject to self-evaluation within each indicator using an ordinal 
measurement scale and verbal descriptions. The measurement scales used in the study 
have 𝑚௝ categories ሺ𝑗 ൌ  1,  2,  … ,  𝑘ሻ, where 1 is the most optimistic response 
in relation to the criterion of subjective poverty, and 𝑚௝ is the most pessimistic. In other 
words, the higher the evaluation, the worse the perception with regard to the level of 
subjective poverty. So there are (𝑚௝ െ 1ሻ/2 positive and negative responses. In the case 
of an ordinal scale with inverted categories, these should be re-coded to the form 
described above.  

Step 2: The selection of indicators of subjective poverty. A set of indicators3 
(attributes) is used to describe subjective poverty, characterizing it in terms of: an 
assessment of the financial situation and material conditions of the household, the 
perception of one’s own income against the income of other households, the 
household’s standard of living, feeling helpless in the face of poverty. 

The collected indicator values are summarized in the data matrix: 

𝐗 ൌ ൣ𝑥௜௝൧           (1) 
where: 𝑥௜௝ – is the value of 𝑗-th indicator in 𝑖-th household, 𝑖  =  1, …,  𝑛; 𝑛  – the 
number of households; 𝑗 ൌ  1, … ,  𝑘, 𝑘 – the number of indicators.  

Step 3: Determination of the nature of the indicators in relation to the main 
criterion. The direction of indicator preferences in relation to the criterion in question 

                                                           
3 An indicator (variable) is a quantitative or a qualitative measure that can show value of characteristics or their 
level for an objects. On the other hand, aggregated indicators are an index. 
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is determined, i.e. their division into benefit and cost indicators. A benefit indicator 
contributes to increasing the level of a phenomenon, whereas a cost indicator is  
a variable that reduces the level of that phenomenon. We assumed that all indicators 
were benefit indicators, because when measuring complex phenomena (i.e. the level of 
subjective poverty) using surveys, the criteria are usually selected so that they are 
positively correlated with the phenomenon (the higher the evaluation of an indicator, 
the higher the level of subjective poverty)  

Table 1: Formulas for determining the parameters of triangular fuzzy numbers. 

Categories 
Triangular fuzzy number parameters 

𝑎௜௝ 𝑏௜௝ 𝑐௜௝ 

1 0 0 1/ሾ2(mj െ 1)ሿ 

2 1/ሾ2(mj െ 1)ሿ 1/(mj െ 1) 3/ሾ2൫𝑚௝ െ 1൯ሿ 

… … … … 

mj െ 1 ሺ2mj െ 5ሻ/ሾ2(mj െ 1)ሿ ሺmj െ 2ሻ/ሺmj െ 1ሻ ሺ2mj െ 3ሻ/ሾ2(mj െ 1)ሿ 

mj ሺ2mj െ 3ሻ/ሾ2(mj െ 1)ሿ 1 1 

Step 4: Conversion of ordinal categories of indicators to triangular fuzzy numbers. 
Indicator variants are transformed into triangular numbers ሺ𝑎,  𝑏,  𝑐ሻ  in the form of 
three evaluations (parameters). Table 1 shows the formulas for determining the 
parameters of triangular fuzzy numbers. The parameters of triangular fuzzy numbers 
can be scaled by a selected fixed value freely determined by the researcher. The 
triangular fuzzy numbers obtained are presented in the form of fuzzy data matrix: 

𝐗෩ ൌ ൣ𝑥෤௜௝൧            (2) 

where: 𝑥෤௜௝ ൌ ൫𝑎௜௝ , 𝑏௜௝ , 𝑐௜௝൯,   𝑖 ൌ  1,  … ,  𝑛 ;  𝑛 ൌ 𝑛ଵ ൅ 𝑛ଶ ൅ 𝑛ଷ; 𝑛ଵ , 𝑛ଶ, 𝑛ଷ – number of 
households in stages I, II and III respectively; 𝑗 ൌ  1,  … ,  𝑘, 𝑘 – number of indicators.  

Step 5: Determination of the indicator-weighting system. One of the most 
commonly used methods of determining the weighting system is equal treatment of all 
indicators (Aaberge & Brandolini, 2015). This is the case, for example, with the Human 
Development Index. However, it should be noted that indicators under each criterion 
have different impacts on the level of subjective poverty, so a differentiated indicator-
weighting system should be introduced. In our research, we used one version of the 
fuzzy analytical hierarchical process − the Fuzzy Hierarchical Analysis (FHA) − to 
determine the weighting system. This is an extension of the analytical hierarchical 
process (AHP) and also applies when there are difficulties in presenting the evaluations 
of comparisons of pairs of elements in the hierarchy in the form of real numbers. In our 
paper, we calculated the weighting system 𝑤෥௝ ൌ ൫𝑤௝

௅, 𝑤௝
ெ, 𝑤௝

௎൯, 𝑗 ൌ 1, … , 𝑘; 𝑘 ൌ 𝑘ଵ ൅
𝑘ଶ ൅ 𝑘ଷ using fuzzy hierarchical analysis (see Csutora & Buckley 2001, Buckley et al. 
2001, Łuczak & Wysocki 2008). 
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Step 6: Normalization of indicator values. Normalization of indicators with 
a nature of stimulants: 

𝑧̃௜௝ ൌ ቀ𝑎௜௝
ሺ௭ሻ, 𝑏௜௝

ሺ௭ሻ, 𝑐௜௝
ሺ௭ሻቁ ൌ ൬

௔೔ೕ
௖ೕ
శ ,

௕೔ೕ
௖ೕ
శ ,

௖೔ೕ
௖ೕ
శ൰              ሺ𝑖 ൌ 1,  2, … ,𝑛;  𝑗 ∈ 𝑃௦ሻ (3) 

where 𝑐௝ା ൌ max
௜
ሺ𝑐௜௝ሻ, 𝑐௝ା ് 0; 𝑃௦ – a set of stimulant indices. 

for the destimulants: 

𝑧̃௜௝ ൌ ቀ𝑎௜௝
ሺ௭ሻ, 𝑏௜௝

ሺ௭ሻ, 𝑐௜௝
ሺ௭ሻቁ ൌ ቐ

൬
௔ೕ
ష

௖೔ೕ
,
௔ೕ
ష

௕೔ೕ
,
௔ೕ
ష

௔೔ೕ
൰ for  𝑎௜௝ ,𝑏௜௝ , 𝑐௜௝ ് 0

ሺ0,0,0ሻ               for  𝑎௜௝, 𝑏௜௝ ൌ 0
       (4) 

ሺ𝑖 ൌ 1,  2, … ,𝑛;  𝑗 ∈ 𝑃஽ሻ  
where 𝑎௝ି ൌ min

௜
ሺ𝑎௜௝ሻ;  𝑃஽ –  a set of destimulant indices. 

Structure of the weighted normalized fuzzy data matrix: 
𝐑෩ ൌ ൣ𝑟̃௜௝൧            (5) 

where 𝑟̃௜௞ ൌ 𝑧̃௜௝(⋅)𝑤෥௝=ቀ𝑎௜௝
ሺ௭ሻ,𝑏௜௝

ሺ௭ሻ, 𝑐௜௝
ሺ௭ሻቁ(⋅)൫𝑤௝௅, 𝑤௝

ெ , 𝑤௝
௎൯ ൌ 

=ቀ𝑎௜௝
ሺ௭ሻ𝑤௝

௅, 𝑏௜௝
ሺ௭ሻ𝑤௝

ெ, 𝑐௜௝
ሺ௭ሻ𝑤௝

௎ቁ ൌ ቀ𝑎௜௝
ሺ௥ሻ,  𝑏௜௝

ሺ௥ሻ, 𝑐௜௝
ሺ௥ሻቁ, (⋅) is the fuzzy numbers multiplica-

tion. 
Step 7: Calculating the pattern and antipattern. Determination of a fuzzy pattern 

𝐴ሚା (cf. Hwang & Yoon 1981, Chen 2000): 

𝐴ሚା ൌ ቆmax
௜
ሺ𝑟̃௜ଵሻ ,max

௜
ሺ𝑟̃௜ଶሻ, … , max

௜
ሺ𝑟̃௜௞ሻቇ ൌ ሺ𝑟̃ଵ

ା, 𝑟̃ଶ
ା, … , 𝑟̃௞

ାሻ  (6) 

where 𝑟̃௝ା ൌ ቀ𝑎௜௝
ሺ௥ሻା,  𝑏௜௝

ሺ௥ሻା, 𝑐௜௝
ሺ௥ሻାቁ,  𝑗 ൌ 1,  … ,  𝑘. 

and fuzzy antipattern 𝐴ሚି : 

𝐴ሚି ൌ ൬min
௜
ሺ𝑟̃௜ଵሻ, min

௜
ሺ𝑟̃௜ଶሻ, … , min

௜
ሺ𝑟̃௜௞ሻ൰ ൌ ሺ𝑟̃ଵ

ି, 𝑟̃ଶ
ି, … , 𝑟̃௞

ିሻ  (7) 

where 𝑟̃௝ି ൌ ቀ𝑎௜௝
ሺ௥ሻି,  𝑏௜௝

ሺ௥ሻି, 𝑐௜௝
ሺ௥ሻିቁ,  𝑗 ൌ 1,  … ,  𝑘. 

Step 8: Calculation of the distance of each object from the pattern and antipattern. 
Calculation of the distance between fuzzy indicator values for the evaluated objects and 
the pattern is performed using the following formula (Chen 2000): 

𝑑௜
ା ൌ ∑ ටଵ

ଷ
൤ቀ𝑎௜௝

ሺ௥ሻ െ 𝑎௜௝
ሺ௥ሻାቁ

ଶ
൅ ቀ𝑏௜௝

ሺ௥ሻ െ 𝑏௜௝
ሺ௥ሻାቁ

ଶ
൅ ቀ𝑐௜௝

ሺ௥ሻ െ 𝑐௜௝
ሺ௥ሻାቁ

ଶ
൨௞

௜ୀଵ  (8) 

and  from the antipattern: 

𝑑௜
ି ൌ ∑ ටଵ

ଷ
൤ቀ𝑎௜௝

ሺ௥ሻ െ 𝑎௜௝
ሺ௥ሻିቁ

ଶ
൅ ቀ𝑏௜௝

ሺ௥ሻ െ 𝑏௜௝
ሺ௥ሻିቁ

ଶ
൅ ቀ𝑐௜௝

ሺ௥ሻ െ 𝑐௜௝
ሺ௥ሻିቁ

ଶ
൨௞

௜ୀଵ  (9) 

Step 9: Calculation of synthetic measures of the level of subjective poverty for 
households at different research stages. 
Calculation of the value of the synthetic measure (index) for each household i = 1, 2, 
…, n using the following formula of TOPSIS (Hwang and Yoon 1982): 

𝑆௜ ൌ 𝑑௜
ି/ሺ𝑑௜

ା ൅ 𝑑௜
ିሻ          (10) 
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The higher the value 𝑆௜, the higher the level of subjective poverty of the household. The 
measure 𝑆௜ is normalized to the range [0,1] and 𝑆௜ becomes 0 for the antipattern object 
and 1 for the pattern object. 

Step 10: Identification of subjective poverty types for households according to 
selected criteria and research stages. 

Averaging of the standard values within the researched criteria: 

𝑆௜
௖௦௩ ൌ med

௜∈௉೎ೞೡ
ሺ𝑆௜ሻ         (11) 

where 𝑃௖௦௩ – a set of household indices within the 𝑠-th category of the 𝑐-th criterion at 
the v-th stage of survey ሺ𝑣 ൌ  1,  2,  3ሻ. Three categories were adopted: for the whole 
country, divided into village and city, or village, small town with less than 20,000 
residents, urban area with 20,000-99,000 residents, urban area with 100,000-499,000 
residents, urban area with 500,000 or more residents. 

Table 2: Subjective poverty index values and theoretical types of poverty – poverty profiles 

 𝑆௜
௖௦௩ Level of index Type of household poverty Type of household 

ሾ0.00;  0.10ሻ very extreme low  no poverty 
prosperous 

ሾ0.10;  0.20ሻ extremely low very mild poverty 
ሾ0.20;  0.30ሻ very low at risk of poverty relatively prosperous/ 

coping/ resourceful ሾ0.30;  0.40ሻ low indistinct poverty 
ሾ0.40;  0.50ሻ medium-low moderate low poverty 

endangered by poverty 
ሾ0.50;  0.60ሻ medium-high moderate high poverty 
ሾ0.60;  0.70ሻ high strong advancing poverty 

poor 
ሾ0.70;  0.80ሻ very high severe poverty 
ሾ0.80;  0.90ሻ extremely high very severe poverty 

extremely poor 
ሾ0.80;  1.00ሿ very extreme low  utter poverty 

Source: own elaboration. 

The identification of subjective poverty level types can be carried out arbitrarily. 
Theoretical (hypothetical) poverty types – poverty profiles (Table 2) were also proposed 
on the basis of synthetic measure 𝑆௜

௖௦௩. Poverty is not dichotomous; households cannot 
be divided into poor or non-poor. There are many shades within the limits of the lack 
of poverty up to extreme poverty. Households may therefore be characterized by 
various levels of poverty (cf. Cerioli & Zani, 1990; Betti et al., 2008; Montrone et al., 
2010; Belhadj & Limam, 2012; Ciani et al., 2019). 

The authors’ indicators of 𝐿𝐾௖௦௩ compactness were also calculated as part of the s-
th category of the 𝑐-th criterion at the v-th stage of survey: 

𝐿𝐾௖௦௩ ൌ
∑ ൬ௌ೔

೎ೞೡି ୫ୣୢ
೔∈ು೎ೞೡ

ሺௌ೔ሻ൰
೙೎ೞೡ
೔సభ

௡೎ೞೡ∙୫ୟ୶೔
൬ଵି ୫ୣୢ

೔∈ು೎ೞೡ
ሺௌ೔ሻ; ୫ୣୢ೔∈ು೎ೞೡ

ሺௌ೔ሻ൰
       (12) 
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where 𝑛௖௦௩ – the number of households within the 𝑠- th category of the ሺ𝑠 ൌ  1,  2,  3ሻ 
𝑐-th criterion ሺ𝑐 ൌ 1, . . ,𝑛௦ሻ at the stage 𝑣 ሺ𝑣 ൌ  1,  2,  3ሻ. The indicators are 
normalized within the range [0, 1]. The lower the measure of the compactness index, 
the more homogeneous is the group. The degrees of compactness according to the 
gradation given in Table 3 can be assumed. 

Table 3: Degrees of compactness 

𝐿𝐾௖௦௩ ሾ0.00;  0.20ሻ ሾ0.20;  0.40ሻ ሾ0.40;  0.60ሻ ሾ0.60;  0.80ሻ ሾ0.80;  1.00ሿ 

Degree of 
compactness very high high medium low very low 

Source: own elaboration. 

4.  Conducting research and results 

The analyses used data from primary household research in Poland, during which 
the CAWI (Computer-Assisted Web Interview) method was used. The research was 
conducted in three stages: April, 2020 (1st research stage), June, 2020 (2nd research 
stage), September, 2020 (3rd research stage). In each of the three stages, the sample is  
a quota sample according to the key size category of the place of usual residence and 
covers 458 households. 

The research included variables describing the subjective situation of households 
according to three criteria: 
 perceptions of the present situation: feeling of being satisfied with life (x1), degree of 

present satisfaction of household needs through income earned (x2), evaluation of 
household income compared to other households, evaluation of the change in food 
needs during the pandemic period compared to previous years (x3), evaluation of 
own household situation (x4), whether it is possible to “make ends meet” with current 
income (x5), 

 future projections: perception of the degree of possibility of deterioration of one’s 
own household’s situation in the near future (x6), feeling concerning the degree of 
potential for loss of income (x7), perception of the degree of potential loss of financial 
stability (x8), perception of the degree of possibility of losing work (x9), evaluation of 
the possibility of change in one’s own household’s financial situation within the next 
12 months (x10), 

 perceptions of past situations: degree of satisfaction of one’s own household’s needs 
through income (before the epidemic) (x11), past feelings of being poor (x12). 

The variables adopted for the research define three unique time dimensions, not 
taken into account in research on poverty, in which it manifests itself, i.e.: the past (past 
fillings), the present (current subjective state) and the future (perceptions of future 
projections). We assumed that all indicators were stimulants. We assumed this because 
when measuring complex phenomena (i.e. the level of subjective poverty) by surveys, 
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usually the criteria are selected in such a way that they are positively correlated with this 
phenomenon. The higher the partial assessment, the higher is the level of subjective 
poverty. We adopted a system of differentiated fuzzy weights for indicators (Table 4). 

Table 4: Fuzzy weights system for indicators 

Indicator category Indicators 
Triangular fuzzy number 

a b c 
Perceptions of the present situation 𝑥ଵ െ 𝑥ହ 0.079 0.155 0.269 
Future projections 𝑥଺ െ 𝑥ଵ଴ 0.014 0.027 0.054 
Perception of the past situation 𝑥ଵଵ,  𝑥ଵଶ 0.043 0.045 0.097 

As shown in Figure 2, the levels of perceived poverty at the different stages of the 
research suggest that there has been a shift from panic to adaptation. Figure 3 shows 
box-plots for levels of subjective household poverty, in which even greater disparities 
can be observed in the evaluation of subjective poverty between the 1st and 2nd and 
3rd stages of the research; a relatively large increase in optimism can be observed 
in Poland between the 1st and 2nd stages of the research (the decrease in the index value 
from 0.387 to 0.354). At the third stage, despite the increase in disease incidence, 
the subjective evaluation of poverty remained almost unchanged (0.348). This may 
indicate that constant fear stimulation has become a factor of coronavirus becoming 
more common. Effective metaphors, war comparisons or post-apocalyptic language 
have become an adaptive factor to a “new normality” (Kalinowski, 2020a). This 
weakened the negative perception of one’s own socio-economic situation.  

 
Figure 2:  Levels of subjective household poverty by research stages and division into the village  
  and the city. 

Although, as indicated in public discourse, COVID-19 is treated more as an urban 
disease, studies indicate that it is a reason for rural residents’ unfavorable assessment of 
their own situation to a greater extent. Although in the first stage, poverty perceived 
among rural residents (0.385) was almost at the same level as among urban residents 
(0.388), in subsequent stages, stratification to the disadvantage of rural areas occurred 
(Figure 2). As many studies show, it is rural areas that suffer greater economic and 
social consequences of poverty. 

0,387 0,354 0,348

0,000

0,100

0,200

0,300

0,400

0,500

stage 1 stage 2 stage 3

0,385 0,388
0,363 0,345

0,380
0,331

0,000

0,100

0,200

0,300

0,400

0,500

village city

stage 1 stage 2 stage 3



STATISTICS IN TRANSITION new series, March 2025 

 

81

 

Figure 3:  The box-plot for levels of subjective household poverty by research stages and division 
 into village and city 

Note: A box based on: median, and the first and third quartiles. Above the third quartile, a distance of 
1.5 times the interquartile range (IQR) is measured and a whisker is drawn to the largest observed 
point from the set of data that falls within this distance. Similarly, a distance of 1.5 times the IQR is 
measured below the lower quartile, and the whisker is drawn to the bottom observed point from the 
set of data that falls within this distance. All other observed points are plotted as outliers. 

 
Figure 4:  Levels of subjective household poverty by research stages and the class of the locality of the 

household head  

 
 

Figure 5:  Box plot for levels of subjective household poverty by research stages and class of the locality 
of the household head 

It is worth noting that the village and city categories are a certain mental construct. 
Just as there is no one village (Stanny et al., 2018), it is difficult to speak of a unified city. 
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It is worth noting that residents of small towns (up to 20,000 residents) and urban areas 
with 20,000-100,000 residents evaluate the level of poverty much below residents of 
medium or large cities (over 100,000 residents). The level of subjective poverty of small 
towns and villages was similar at all stages of the research (Figure 4). Interestingly, 
in the largest cities, the poverty-perception level increased again at the third stage. 
On the one hand, this may result from the ongoing lockdown, but also from rising 
expectations and discouragement, which fostered negative evaluations during surveys. 
However, despite a fairly significant increase in negative evaluation, the largest cities – 
next to the medium-sized ones – were still at the lowest risk of subjective poverty 
(Figures 4 and 5). 

       
Figure 6:  Compactness indices (LK) of the synthetic measure of subjective household poverty 

in Poland by research stages and rural-urban division 
 

 
Figure 7:  Compactness indices (LK) of locality classes in terms of a measure of the subjective 

household poverty level by stages 

It is also worth mentioning that the groups of areas studied were characterized by 
high compactness of synthetic measures (Figures 6 and 7), as evidenced by the values 
of the LK index, which ranged from 0.193 (for large cities with more than 500,000 
residents at stage I of the research) to 0.277 (for cities with 20,000 to 99,000 residents at 
stages II and III of the research) (Figure 7). This confirms that large cities with more 
than 500,000 residents are more homogeneous in their perception of poverty than 
smaller cities. 
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5.  Conclusion 

The multiplicity of subjective poverty indicators raises the following question – 
what is the purpose of establishing an additional synthetic measure of it? In our view, 
decomposing poverty using self-assessments of unidimensional indicators and then 
constructing new synthetic measure is justified for several reasons. First, this makes it 
possible to show the impact of many factors on the changes in the socioeconomic 
situation of the population, especially during epidemics. Changes of the synthetic index 
illustrate the trajectory of switching from panic to negation or trying to cope with the 
situation or alternatively switching to the state of irritation. Second, the proposed 
synthetic measure takes account of several overlapping factors related to both income 
security, deprivation, job security and the expectation of changes in them in the future, 
all of which are extremely important for assessing subjective poverty. Third, in the 
analysis of this index we took into account the fact that the assessment of one’s own 
situation is influenced by expectations and aspirations. The index is therefore designed 
to take these aspects into account as well. Fourth, realizing that the current assessment 
of one’s own socioeconomic situation is also influenced by past events, as well as 
predictions of changes in that situation in the future, we also took these into account.  

Given the above aspects of perceived subjective poverty, our proposed synthetic 
measure allows us to easily compare various aspects of subjective poverty during the 
periods studied. The number of variables offsets the risk that a change in one factor will 
significantly alter the entire index. At the same time, the total level of perceived 
subjective poverty is affected by a number of variables that amplify or offset its 
magnitude. 

By constructing the synthetic index, we would like to show that the measurement 
of poverty is a complex issue. Our contribution to research into poverty is to show that 
the synthetic measure capturing factors combining the future, present and past makes 
it easier to grasp the feeling of deprivation. It is useful for studying changes in the level 
of poverty perception over time under the influence of unpredictable phenomena, 
in this case, during the coronavirus period, without going into detail about the factors 
causing it. The proposed procedure could be used for conducting official statistics with 
regularly repeated surveys. 

The indicators used are static. Both the LPL (Leyden Poverty Line) and the SPL 
(Subjective Poverty Line) or the CSP (The Center for Social Policy Poverty Line) are 
based on individual welfare lines, defining the situation at a given point in time. Such 
estimates ignore projections both of the future situations and take limited account of 
events from the distant past. It should be emphasized here that our innovative 
methodology for constructing a subjective measure of poverty takes into account 
indicators describing the past, present, and future. In addition, the previously 
mentioned indicators existing in the literature also have the disadvantage that  
a significant segment of the population cannot estimate the income that separates the 
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poor from the wealthy or the income that allows them to live at a certain acceptable 
level. Individual prosperity lines also have the disadvantage of focusing solely on 
income while ignoring behavioral aspects, or those related to the socioeconomic 
environment. 

Knowledge of subjective poverty makes it possible to define the elements that 
influence the sense of poverty. It helps to bridge the gap between its objective and 
subjective dimensions. In the subjective dimension, the research also makes it possible 
to pay attention to the nature of inequality. Our study is in line with Aristondo and 
Ciommi's (2017) observation that “the recent literature on poverty measurement 
stresses the importance of an index to take into account intensity, incidence and 
inequality.” By emphasizing subjective poverty, we wanted to highlight the importance 
of maximizing individual wealth, because, as Pouw (2020) argues, it translates into an 
increase in the prosperity of society as a whole. It is also worth adding, quoting Mowafi 
(2004), that “studies can only be justified if their conclusions are conscientiously used 
to inform the development of an adequate and accurate definition of poverty –  
a definition that not only withstands the rigors of science, but also reflects the realities 
of the poor.” 

To summarize our discussion of the construction of a measure of subjective 
household poverty, several facts should be noted. First, using a fuzzy approach to 
assessing subjective poverty allows us to identify individual indicators more precisely 
than with a standard poverty measurement. To the best of our knowledge, nearly all 
existing approaches to studying household poverty self-assessment are based on 
a dichotomous division of respondents into poor or non-poor. The advantage of our 
method is to determine the degree of poverty of the households studied. For these 
reasons, our work goes beyond a conventional poverty study. We confirm the opinion 
of Betti et al. (2017) that “the conventional approach presents a serious limitation: 
poverty is not an attribute that characterises an individual in terms of its presence or 
absence, but is rather a predicate that manifests itself in different shades and degrees.”  

Second, the subjective poverty index that we constructed is an attempt to explain 
poverty from the perspective of the poor. By estimating the level of subjective poverty 
for each household studied, the index we propose can be used to create a truly 
individual measure of poverty, taking account of a multi-faceted perceptions of feelings 
regarding the household’s current situation, but also its past situation and predictions 
for the future.  

Third, the subjective picture of the economic stratification of the population is 
reflected in the aggregate subjective poverty index for each class of locality. 
A comparison of the dynamics of population indicators revealed their multidirectional 
dynamics. This may indicate that either people are gradually getting used to the 
pandemic and are no longer bothered by it that much, or that they are adapting to the 
new circumstances. 
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In conclusion, our methodological proposal opens the door to new opportunities 
for research and applications of multidimensional subjective poverty. Quantitative 
measurement of subjective poverty at the micro (household) level is an important tool 
for evaluating anti-poverty policies. At the same time, research over time helps to 
explain changes occurring in households. In addition, the subjective poverty index can 
also be viewed as a measure of vulnerability to poverty and can provide a basis for 
formulating poverty-alleviation policies and strategies. 
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Abstract 

This study introduces a new family of distributions (FoD) called type I heavy-tailed odd Burr 
III-G (TI-HT-OBIII-G) distribution. Several statistical properties of the family are derived 
along with actuarial risk measures. The maximum likelihood estimation (MLE) approach is 
adopted in the parameter estimation process. The estimates are evaluated centered on mean 
square errors and average bias via the Monte Carlo simulation framework. A regression 
model is formulated and the residual analysis is investigated. Members of the new FoD  
are applied to heavy-tailed data sets and compared to some well-known competing heavy-
tailed distributions. The practicality, flexibility and importance of the new distribution  
in modeling is empirically proven using three data sets. 

Key words: type I heavy-tailed-G, odd Burr III-G, parameter estimation, regression, actuarial 
measures. 
Mathematics Subject Classification: 62E99, 60E05. 

1.  Introduction 

Heavy-tailed distributions have high variances due to outliers with very high values. 
Modeling data with high variances using standard distributions has deficiencies since 
they lack flexibility in providing the good fit to heavy-tailed data sets. In a similar vein 
to rare occurrences such as earthquakes and cyclones, financial risks, such as insurance 
losses, often exhibit right-skewed data with heavy tails. This characteristic poses 
challenges for modeling such data using conventional methods. 
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Several authors have proposed generalized distributions to curb this inadequacy, 
for instance, Zhao et al. (2020) in their research proposed the type I heavy-tailed 
Weibull (TI-HT-W) distribution using the transformed-transformer (T-X) approach. 
They evaluated its suitability for analyzing the prevention of HIV progression with two 
antiretroviral drugs and compared it to the Weibull distribution. The findings 
demonstrated that the TI-HT-W distribution outperformed the Weibull distribution. 
The study aimed to enhance understanding of treatment strategies for HIV by 
providing insights into the effectiveness of different approaches contributing to 
advancements in HIV prevention and management. In their study, Dey et al. (2019) 
introduced a statistical distribution called the alpha power transformed inverse Lindley 
(APTIL) distribution. This distribution incorporates the inverse Lindley distribution 
and utilizes the alpha power transformation (APT), resulting in a versatile model with 
both scale and shape parameters. They found that the density function exhibited 
a single peak, indicating unimodality, and the hazard rate function (hrf) displayed 
a bathtub-shaped pattern, hence the distribution was found effective in analyzing 
lifetime data. Descheemaeker et al. (2021) studied complex ecological communities 
using stochastic Lotka-Volterra models with heavy-tailed abundance distributions. 
Their research focused on explaining how numerous species coexist within these 
communities and why rare species tend to dominate. 

In situations where events exhibit very high deviations from the mean, surpassing 
what is expected based on the available baseline distributions, the application of heavy-
tailed distributions becomes necessary. Heavy-tailed distributions are utilized to handle 
exceptional or uncommon events that defy explanation by conventional distributions. 
The literature presents diverse heavy-tailed distributions, offering mathematical 
models tailored to capture the distinctive characteristics of these events and provide 
more accurate probability estimates. Some recent advancements in the field of heavy-
tailed distributions encompass various contributions including the heavy-tailed 
exponential by Affify et al. (2020), type II half logistical odd Fréchet by Alyami et al. 
(2022), alpha power Topp-Leone Weibull by Benkhelifa (2022) and heavy-tailed log-
logistic by Teamah et al. (2021), among others. The motivations behind the 
development of this heavy-tailed distribution include: 

(i) extending existing distributions using the TI-HT and the OBIII-G FoD. 
(ii) expanding the parental distribution’s adaptability in terms of density and 

hazard rate forms. 
(iii) controlling the magnitude or influence of the tails in a parental distribution. 
(iv) modeling and representing diverse data sets across multiple domains. 

The paper follows the subsequent organization. We develop and present the new 
TI-HT-OBIII-G distribution including its sub-families and special cases in Section 2. 
Several statistical properties including moments, Rényi entropy and order statistics are 



STATISTICS IN TRANSITION new series, March 2025 

 

95

presented. Section 3 presents parameter estimation. Section 4 discusses risk measures 
and their numerical simulations. Section 5 discusses simulations and findings. The 
regression model is formulated in Section 6 while Sections 7 and 8 cover applications 
and conclusions, respectively. 

2. The generalized distribution 

The type I heavy-tailed odd Burr III-G (TI-HT-OBIII-G) family is developed in this 
section. 

Zhao et al. (2020) proposed the type I heavy-tailed (TI-HT-G) FoD. The cumulative 
distribution function (cdf) of the TI-HT FoD is 

 𝐹்ூିு்ିீሺ𝑥; 𝜃,Ωሻ ൌ 1 െ ቀ
ଵିீሺ௫;ஐሻ

ଵିሺଵିఏሻீሺ௫;,ஐሻ
ቁ
ఏ

  (1) 
and the probability density function (pdf) is 

 𝑓 ூିு்ିீሺ𝑥; 𝜃,Ωሻ ൌ
ఏమ௚ሺ௫;ஐሻሼଵିீሺ௫;ஐሻሽഇషభ

ሼଵିሺଵିఏሻீሺ௫;ஐሻሽഇశభ
,

   (2) 
for θ, x > 0, where Ω denotes the parameter vector from the baseline distribution G(.). 

Alizadeh et al. (2017) presented the odd Burr III-G (OBIII-G) FoD. The OBIII-G 
cdf is 
 FOBIII−G (x; c, k, Ψ) = [1 + BG (x; c, Ψ)] −k 

  (3) 
and the pdf is 

    𝑓ை஻ூூூିீሺ𝑥;𝜃,Ωሻ ൌ 𝑐𝑘𝑔ሺ𝑥;𝛹ሻ
ሾଵିீሺ௫;అሻሿ೎షభ

ሾீሺ௫;ஐሻሿ೎శభ
ሾ1 ൅ 𝐵ீ  ሺ𝑥;  𝑐,𝛹ሻሿି௞ିଵ ,        (4) 

 

for c, k, x > 0, and parameter vector Ψ, where  𝐵ீ  ሺ𝑥;  𝑐,𝛹ሻ ൌ ቀ
ଵିீሺ௫;అሻ

ீሺ௫;అሻ
ቁ
௖
 . 

Replacing the baseline cdf in Equation (1) with the OBIII-G FoD yields the new 
FoD called TI-HT-OBIII-G with cdf 

 𝐹ሺ𝑥;  𝑐, 𝑘,𝜃,𝛹ሻ ൌ 1 െ ቀ
ଵିሾଵ ା ஻ಸ ሺ௫; ௖,అሻሿషೖ 

ଵିሺଵିఏሻሾଵ ା ஻ಸ ሺ௫; ௖,అሻሿ షೖ
ቁ
ఏ

                 
    (5) 
and pdf 

𝑓ሺ𝑥; 𝑐, 𝑘,𝜃,𝛹ሻ  ൌ
ఏమ௖௞௚ሺ௫;అሻ൤ଵାቀ

భషಸሺೣ;೽ሻ
ಸሺೣ;೽ሻ ቁ

೎
൨
షೖషభ

ሺଵିீሺ௫;అሻሻ೎షభ

ሺீሺ௫;అሻሻ೎శభ
൜1 െ ቂ1 ൅ ቀ

ଵିீሺ௫;అሻ

ீሺ௫;అሻ
ቁ
௖
ቃ
ି௞
ൠ
ఏିଵ

 ൈ ൜1 െ ሺ1 െ 𝜃ሻ ቂ1 ൅ ቀ
ଵିீሺ௫;అሻ

ீሺ௫;అሻ
ቁ
௖
ቃ
ି௞
ൠ
ିሺఏାଵሻ

 

 (6) 
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for c, k, θ > 0 and baseline parameter vector Ψ. The model contains many sub-families 
by letting some of the parameters equal to unit. 

2.1. Quantile function 

The quantile function of the TI-HT-OBIII-G FoD is 

𝑄௑ሺ௨ሻ ൌ 𝐺ିଵ

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛

1 ൅ ቎ቆ
ଵିሺଵି௨ሻ

భ
ഇ

ଵିሺଵି௨ሻ
భ
ഇሾଵିఏሿ

ቇ

షభ
ೖ

െ 1቏

భ
೎

⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
ିଵ

                   (7) 

for 0 ≤ u ≤ 1. To determine the quantile values of the TI-HT-OBIII-G FoD, the process 
involves solving Equation (7) and providing the baseline distribution G(.). The quantile 
function relies on the baseline cdf G(.), and the quantile values can be obtained by 
employing numerical methods in R software to solve the nonlinear equation. For more 
detailed derivations, please refer to the web appendix. 

2.2.  Linear representation 

This subsection seeks to expand the density of the TI-HT-OBIII-G FoD. The 
density of the TI-HT-OBIII-G FoD can be represented in the form𝑓ሺ𝑥;  𝑐, 𝑘,𝜃,𝛹ሻ ൌ
∑ 𝜂௪ାଵ𝑔௪ାଵஶ
௪ୀ଴ ሺ𝑥;  𝛹ሻ     (8) 

where gw+1(x; Ψ) = (w + 1) g (x; Ψ) Gw (x; Ψ) defines the exponentiated-G (Expon- 
G) distribution, (w + 1) is the power parameter and 

𝜂௪ାଵ ൌ ∑  ஶ
௥,௦,௧,௩ୀ଴  ሺെ1ሻ௥ା௦ା௩ା௪ሺ1 െ 𝜃ሻ௥ck 𝜃ଶ ቀെሺ𝜃 ൅ 1ሻ

𝑟
ቁ ቀ𝜃 െ 1

𝑠
ቁ ቀ

ଵ

௪ାଵ
ቁ

 ൈ ቀെሾ1 ൅ 𝑘ሺ𝑠 ൅ 𝑟 ൅ 1ሻሿ
𝑡

ቁ ቀെሾ1 ൅ 𝑐ሺ𝑡 ൅ 1ሻሿ
𝑣

ቁ ቀ𝑣 ൅ 𝑐ሺ𝑡 ൅ 1ሻ െ 1ሻ
𝑤

ቁ ⋅
  (9) 

As a result, the pdf of the TI-HT-OBIII-G FoD can be presented as an unbounded 
linear mixture of the exponentiated-G (Expon-G) densities. This representation allows 
for the direct deduction of structural properties associated with the TI-HT-OBIII-G 
FoD. The web appendix contains detailed derivations of the density expansion and 
explores structural properties, including moments, order statistics, and Rényi entropy. 

2.3.  Special cases 

This subsection presents some special cases of TI-HT-OBIII-G FoD by specifying 
G (x; Ψ) and g (x; Ψ) in Equation (5) and Equation (6). 

2.3.1.  Type I heavy-tailed odd Burr III-Weibull distribution 

Considering the Weibull distribution with cdf G (x; λ) = 1−exp(−xλ) and pdf 
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g (x; λ) = λxλ−1 exp(−xλ), for λ, x > 0, as the baseline distribution, we have the Type I 
heavy-tailed odd Burr III-Weibull (TI-HT-OBIII-W) distribution defined by the cdf 

𝐹ሺ𝑥;𝜃, 𝜆, 𝑐, 𝑘ሻ ൌ 1 െ ቆ
1 െ ሾ1 ൅ 𝐵ଵሺ𝑥; 𝑐, 𝜆ሻሿି௞

1 െ ሺ1 െ 𝜃ሻሾ1 ൅ 𝐵ଵሺ𝑥; 𝑐, 𝜆ሻሿି௞
ቇ
ఏ

, 

and pdf 

𝑓ሺ𝑥; 𝜃, 𝜆, 𝑐, 𝑘ሻ ൌ
𝜃ଶ𝑐𝑘𝜆𝑥ఒିଵሾ1 ൅ 𝐵ଵሺ𝑥; 𝑐, 𝜆ሻሿି௞ିଵexp ൫െ𝑥ఒ൯

௖

൫1 െ exp ሺെ𝑥ఒሻ൯
௖ାଵ

ሺ1 െ ሺ1 െ 𝜃ሻሾ1 ൅ 𝐵ଵሺ𝑥; 𝑐, 𝜆ሻሿି௞ሻሺఏାଵሻ

 ൈ ሼ1 െ ሾ1 ൅ 𝐵ଵሺ𝑥; 𝑐, 𝜆ሻሿି௞ሽఏିଵ
 

for 𝜃, 𝜆, 𝑐, 𝑘 ൐ 0, where 𝐵ଵሺ𝑥; 𝑐, 𝜆ሻ ൌ ൬
ୣ୶୮ ൫ି௫ഊ൯

ଵିୣ୶୮ ൫ି௫ഊ൯
൰
௖

.  

 
Figure 1: TI-HT-OBIII-W distribution’s density and hrf plots 

Figure 1 illustrates several density plots and hrf plots for the TI-HT-OBIII-W 
distribution. The TI-HT-OBIII-W density is capable of handling data that is right-
skewed as well as reversed-J shaped. The hrf exhibits a variety of geometric 
configurations, such as decreasing, increasing, and bathtub-shaped followed by 
inverted bathtub-shaped patterns, as well as inverted bathtub-shaped followed by 
bathtub-shaped patterns. 

2.3.2.  Type I heavy-tailed odd Burr III-Kumaraswamy distribution 

The type I heavy-tailed odd Burr III-Kumaraswamy (TI-HT-OBIII-Kum) 
distribution can be considered by utilizing the Kumaraswamy distribution as the 
baseline. The cdf and pdf of Kumaraswamy distribution are characterized by G (x; a, b) 
= 1 − (1 − xa) b and g (x; a, b) = abxa−1(1 − xa) b−1 respectively, for a, b, x > 0. The cdf of 
TI-HT-OBIII-Kum distribution is 

𝐹ሺ𝑥; 𝑏,𝑎,𝜃, 𝑐, 𝑘ሻ ൌ 1 െ ቆ
1 െ ሾ1 ൅ 𝐵ଶሺ𝑥; 𝑏,𝑎, 𝑐ሻሿି௞

1 െ ሺ1 െ 𝜃ሻሾ1 ൅ 𝐵ଶሺ𝑥; 𝑏,𝑎, 𝑐ሻሿି௞
ቇ
ఏ
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and the pdf is 

𝑓ሺ𝑥; 𝑏,𝑎, 𝜃, 𝑐, 𝑘ሻ ൌ
𝜃ଶ𝑎𝑏𝑐𝑘ሺ𝑥ሻ௔ିଵሾ1 ൅ 𝐵ଶሺ𝑥; 𝑏,𝑎, 𝑐ሻሿି௞ିଵሾሺ1 െ 𝑥௔ሻ௕ሿ௖ିଵ

ሺ1 െ ሺ1 െ 𝑥௔ሻ௕ሻ௖ାଵሺ1 െ ሺ1 െ 𝜃ሻሾ1 ൅ 𝐵ଶሺ𝑥; 𝑏,𝑎, 𝑐ሻሿି௞ሻሺఏାଵሻ

 ൈ ሼ1 െ ሾ1 ൅ 𝐵ଶሺ𝑥; 𝑏,𝑎, 𝑐ሻሿି௞ሽఏିଵ,
 

for 𝑎, 𝑏, 𝑐, 𝑘,𝜃, 𝑥 ൐ 0, where 𝐵ଶሺ𝑥; 𝑏, 𝑎, 𝑐ሻ ൌ ቀ
ሺଵି௫ೌሻ್

ଵିሺଵି௫ೌሻ್
ቁ
௖
. 

 
Figure 2: Density and hrf plots for the TI-HT OBIII-Kum distribution. 

Figure 2 reveals the density and hrf plots corresponding to the TI-HT-OBIII-Kum 
distribution. The pdf of the TI-HT-OBIII-Kum distribution is suitable for analyzing 
data that display positive skewness, negative skewness, and J-shaped pattern. The hrf 
exhibits both monotonically increasing and nonmonotonically increasing patterns. 

2.3.3.  Type I-heavy tailed odd Burr III-Pareto distribution 

The cdf and pdf of the Pareto (type I) distribution are 𝐺ሺ𝑥;𝜓ሻ ൌ 1 െ ቀ
ఈ

௫
ቁ
ఊ

 and 

𝑔ሺ𝑥;𝜓ሻ ൌ
ఊఈം

௫ംశభ
 respectively, where γ > 0 and x ≥ α. Setting the Pareto (type I) 

distribution as the baseline, we have the type I heavy-tailed odd Burr III-Pareto (TI-
HT-OBIII-P) distribution with cdf 

𝐹ሺ𝑥;𝜃, 𝛾,𝛼, 𝑐, 𝑘ሻ ൌ 1 െ ቆ
1 െ ሾ1 ൅ 𝐵ଷሺ𝑥;𝑎, 𝑐, 𝛾ሻሿି௞

1 െ ሺ1 െ 𝜃ሻሾ1 ൅ 𝐵ଷሺ𝑥;𝑎, 𝑐, 𝛾ሻሿି௞
ቇ
ఏ

 

and the pdf is 

𝑓ሺ𝑥;𝜃, 𝛾,𝛼, 𝑐, 𝑘ሻ ൌ
𝜃ଶ𝑐𝑘

ఊఈം

௫ംశభ
ሾ1 ൅ 𝐵ଷሺ𝑥;𝑎, 𝑐, 𝛾ሻሿି௞ିଵ ቂቀ

ఈ

௫
ቁ
ఊ
ቃ
௖ିଵ

ቂ1 െ ቀ
ఈ

௫
ቁ
ఊ
ቃ
௖ାଵ

ሾ1 െ ሺ1 െ 𝜃ሻሾ1 ൅ 𝐵ଷሺ𝑥;𝑎, 𝑐, 𝛾ሻሿି௞ሿሺఏାଵሻ

 ൈ ሼ1 െ ሾ1 ൅ 𝐵ଷሺ𝑥; 𝑎, 𝑐, 𝛾ሻሿି௞ሽఏିଵ

 

respectively for 𝜃, 𝛾,𝛼, 𝑐, 𝑘 ൐ 0 and 𝐵ଷሺ𝑥;𝑎, 𝑐, 𝛾ሻ ൌ ቀ
ఈം

௫ംିఈം
ቁ
௖
. 
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Figure 3: Pdf and hrf plots for the TI-HT-OBIII-P distribution 

Density and hrf plots for the TI-HT-OBIII-P distribution are depicted in Figure 3. 
The TI-HT-OBIII-P density is capable of handling data that is positively-skewed, 
reversed-J and almost symmetric. The distribution’s hrf displays inverted bathtub, 
decreasing and bathtub followed by inverted bathtub shapes. 

3. Maximum Likelihood Estimation 

The process of estimating unknown parameters for the TI-HT-OBIII-G FoD was 
carried out using the maximum likelihood estimation (MLE) technique. Consider a 
parameter vector Δ ൌ ሺ𝑐, 𝑘,𝜃,Ψሻ் and 𝑋௜ ∼ TI-HT-OBIII-G. Using ℓ ൌ ℓሺΔሻ to 
denote the log-likelihood function, we have   

ℓሺΔሻ ൌ 2𝑛ln ሺ𝜃ሻ ൅ 𝑛ln ሺ𝑐ሻ ൅ 𝑛ln ሺ𝑘ሻ ൅෍  

௡

௜ୀଵ

 ln ሾ𝑔ሺ𝑥௜;Ψሻሿ

 െሺ𝑘 ൅ 1ሻ෍  

௡

௜ୀଵ

 ln ቈ1 ൅ ቆ
1 െ 𝐺ሺ𝑥௜;Ψሻ

𝐺ሺ𝑥௜;Ψሻ
ቇ
௖

቉

 ൅ሺ𝑐 െ 1ሻ෍  

௡

௜ୀଵ

 ln ൫1 െ 𝐺ሺ𝑥௜;Ψሻ൯ െ ሺ𝑐 ൅ 1ሻ෍  

௡

௜ୀଵ

 ln ൫𝐺ሺ𝑥௜;Ψሻ൯

 ൅ሺ𝜃 െ 1ሻ෍  

௡

௜ୀଵ

 ln ൝1 െ ቈ1 ൅ ቆ
1 െ 𝐺ሺ𝑥௜;Ψሻ

𝐺ሺ𝑥௜;Ψሻ
ቇ
௖

቉
ି௞

ൡ

 െሺ𝜃 ൅ 1ሻln ෍ 

௡

௜ୀଵ

 ൝1 െ ሺ1 െ 𝜃ሻ ቈ1 ൅ ቆ
1 െ 𝐺ሺ𝑥௜;Ψሻ

𝐺ሺ𝑥௜;Ψሻ
ቇ
௖

቉
ି௞

ൡ .

 

The MLEs of ሺ𝑐, 𝑘, 𝜃 and Ψ௞ሻ are obtained by solving a system of non-linear 

equations ቀபℓ
ப௖

,
பℓ

ப௞
,
பℓ

பఏ
,
பℓ

பஏೖ
ቁ
்
ൌ 𝟎 using iterative methods in R. See web appendix for 

individual components of the score vector. 
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4. Risk measures 

Risk measures are statistical tools and formulae used by actuaries to evaluate 
market risk in prospective investments. These metrics encompass the value at risk 
(VaR), tail variance (TV), tail value at risk (TVaR), and tail variance premium (TVP). 

4.1. VaR 

VaR quantifies the magnitude of prospective financial losses over a specified time 
frame. VaRq for the TI-HT-OBIII-G FoD is calculated from 

 𝑋௤ ൌ 𝐺ିଵ

⎝

⎛

⎩
⎨

⎧
1 ൅ ቎ቆ

ଵିሺଵି௨ሻ
భ
ഇ

ଵିሺଵି௨ሻ
భ
ഇሾଵିఏሿ

ቇ

షభ
ೖ

െ 1቏

భ
೎

⎭
⎬

⎫

⎠

⎞

ିଵ

,  (10) 

where q ∈ (0,1) specifies the significance level. 

4.2. TVaR 

TVaR computes expected loss value, considering the occurrence of an event 
exceeding a predefined probability threshold. TVaR for the TI-HTOBIII-G FoD is 

 
𝑇𝑉𝑎𝑅௤ ൌ 𝐸൫𝑋 ∣ 𝑋 ൐ 𝑥௤൯ ൌ

ଵ

ଵି௤
׬  ௏௔ோ೜

 𝑥𝑓ሺ𝑥ሻ𝑑𝑥

 ൌ
ଵ

ଵି௤
∑  ஶ
௪ୀ଴  𝜂௪ାଵ ׬  

ஶ
௏௔ோ೜

 𝑥𝑔௪ାଵሺ𝑥;Ψሻ𝑑𝑥

  (11) 
where ηw+1 is provided by Equation (9), gw+1(x;Ψ) represents the Expon-G pdf and  
(w + 1) is the power parameter. 

4.3. TV 

TV captures the extent of variability in losses given that they exceed a predefined 
VaR threshold with a specific probability, denoted as p. The TV of the TI-HT-OBIII-G 
FoD is 

𝑇𝑉௤ ൌ 𝐸൫𝑋ଶ ∣ 𝑋 ൐ 𝑥௤൯ െ ൫𝑇𝑉𝑎𝑅௤൯
ଶ

 ൌ ሺ1 െ 𝑞ሻିଵ ׬  
ஶ
௏௔ோ೜

 𝑥ଶ𝑓ሺ𝑥ሻ𝑑𝑥 െ ൫𝑇𝑉𝑎𝑅௤൯
ଶ

 ൌ ሺ1 െ 𝑞ሻିଵ ∑  ஶ
௪ୀ଴  𝜂௪ାଵ ׬  

ஶ
௏௔ோ೜

 𝑥ଶ𝑔௪ାଵሺ𝑥;Ψሻ𝑑𝑥 െ ൫𝑇𝑉𝑎𝑅௤൯
ଶ

,    

   (12) 

where ηw+1 is defined by Equation (9) and gw+1(x; Ψ) defines the Expon-G distribution. 
Hence, the TV of TI-HT-OBIII-G FoD can be derived from those of Expon-G 
distributions. 
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4.4.  TVP 

Risk professionals are fretful about risks exceeding certain thresholds. Such 
situations are common in insurance, for example, in policies involving deductibles and 
reinsurance contracts. Tail value premium answers demands to these circumstances. 
The TVP of the TI-HT-OBIII-G FoD is expressed as 

 𝑇𝑉𝑃௤ ൌ 𝑇𝑉𝑎𝑅௤ ൅ 𝛿൫𝑇𝑉௤൯,  (13) 

for 0 < δ < 1. The TI-HT-OBIII-G FoD TVP is found by incorporating Equations (11) 
and (12) into Equation (13). 

4.5. Numerical analysis of risk measures 

We provide findings from numerical simulations for the risk measures associated 
with the TI-HT-OBIII-W distribution. These risk measures were then compared 
among various distributions, including the type-I heavy-tailed Weibull (TI-HT-W), the 
two-parameter Weibull, and the one-parameter Weibull distributions. The simulation 
results were derived by implementing the following procedure: 
(1) for each of the distributions under consideration, 100 random samples were 

generated, and the MLE method was used to estimate the parameters. 
(2) 1000 replications were made in computing the risk measures these distributions. 

Table 1: Numerical simulation results for risk measures 

Distribution 
Risk 

measure 
0.70 0.75 0.80 0.85 0.90 0.95 0.99 

TI-HT-
OBIII-W  

ሺ𝜃 ൌ 0.77, 𝜆
ൌ 1.3, c
ൌ 1.4, k
ൌ 0.5ሻ 

VaR 20.4389 22.5339 24.9911 28.0229 32.0982 38.6792 52.7591 
TVaR 29.4737 31.3723 33.6538 36.5297 40.4637 46.8901 48.7331 

TV 128.0030 130.5836 132.0992 134.9406 136.9434 293.2358 317.0861 
TVP 117.6757 124.0600 129.7331 134.2292 136.7127 135.4641 371.6070 

TI-HT-W  
ሺ𝜃 ൌ 0.77, 𝜆
ൌ 1.3, 𝛾
ൌ 0.04ሻ 

VaR 18.4988 20.4513 22.7442 25.5754 29.3817 35.5251 48.6520 
TVaR 27.3904 29.1343 31.2249 33.8559 37.4539 39.0051 41.024 

TV 94.5879 99.0216 105.7756 112.1283 115.8558 124.8394 207.4612 
TVP 94.3019 99.2408 103.8454 107.9151 111.0971 185.2480 316.6550 

Weibull  
ሺ𝜆 ൌ 1.3, 𝛾
ൌ 0.04ሻ 

VaR 13.6867 15.2406 17.0794 19.3654 22.4561 27.4667 38.1923 
TVaR 4.2572 5.1467 5.5777 5.9509 6.4436 6.4884 6.6304 

TV 79.8871 86.1114 102.2430 107.9056 110.8282 160.7040 166.8418 
TVP 66.0646 74.7844 81.3720 89.8165 93.7026 101.9418 112.4681 

Weibull  
ሺ𝜆 ൌ 1.3ሻ 

VaR 0.0701 0.0790 0.0896 0.1029 0.1212 0.1514 02182 
TVaR 0.0945 0.1021 0.1345 0.2310 0.2410 0.2610 0.3102 

TV 0.0213 0.0246 0.0294 0.0362 0.0483 0.0777 0.2197 
TVP 0.0149 0.0184 0.0234 0.0307 0.0435 0.0738 0.2175 
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Table [1] shows the findings of the risk metrics for the three heavy-tailed 
distributions. The model exhibiting elevated values of the risk measures implies that 
the model has a more pronounced tail. We can infer from the comparison that the  
TI-HT-OBIII-W distribution exhibits a heavier tail compared to both the TI-HT-W 
distribution and the Weibull distributions. As a result, the TI-HT-OBIII-W 
distribution is considered appropriate for modeling data sets with heavy-tail 
characteristics. 

5 Simulation Study 

We seek to weigh the efficiency of MLEs by carrying out a simulation study. Table 
2 gives simulation results. We simulated for n= 35, 70, 140, 280, 560, 1120 and 2240 for 
N=3000 from the TI-HT-OBIII-W distribution. Average bias (AvBIAS) and root mean 
square error (RMSErr) for an estimated parameter, say (𝛽), are computed as follows: 

𝐴𝑣𝐵𝐼𝐴𝑆൫𝛽̂൯ ൌ
∑  ಿ
೔సభ  ఉ̂೔
ே

െ 𝛽,   and  𝑅𝑀𝑆𝐸𝑟𝑟൫𝛽̂൯ ൌ ට∑  ಿ
೔సభ  ൫ఉ̂೔ିఉ൯

మ

ே
, respectively. 

Regarding the displayed data in Tables 2, it is evident that the average estimated 
parameter values converge towards the true parameter values. Additionally, both the 
RMSErr and AvBIAS decrease towards zero across all parameters as we increase the 
sample size. This shows that the TIHT-OBIII-W distribution produces consistent and 
efficient parameter estimates. 

Table 2: Monte Carlo Simulation Results 

Parameter n 
(0.8, 1.1, 1.1, 0.6) (0.9, 1.0, 0.8, 1.2) 

Mean RMSErr AvBias Mean RMSErr AvBias 

θ 35 1.4503 1.6864 0.6503 1.4685 1.1435 0.5685 
 70 1.2697 1.0268 0.4697 1.3473 1.0018 0.4473 
 140 1.0496 0.6277 0.2496 1.2106 0.9649 0.3106 
 280 0.9591 0.4094 0.1591 1.1390 0.7247 0.2390 
 560 0.8828 0.2049 0.0828 1.0796 0.4049 0.1796 
 1120 0.8551 0.1012 0.0551 0.9789 0.1716 0.0789 
 2240 0.8310 0.0714 0.0310 0.9176 0.0380 0.0176 

𝜆 35 2.0024 2.2259 1.4024 1.1118 0.2362 0.2118 
 70 1.9122 1.6588 0.9122 1.0757 0.1140 0.1757 
 140 1.7680 1.5527 0.6680 1.0566 0.0965 0.1466 
 280 1.6235 1.1358 0.5235 1.0419 0.0604 0.1219 
 560 1.5244 0.9048 0.4244 1.0285 0.0372 0.1085 
 1120 1.3954 0.6954 0.2954 1.0227 0.0166 0.0927 
 2240 1.2982 0.4760 0.1982 1.0205 0.0078 0.0605 
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Table 2: Monte Carlo Simulation Results 

Parameter n 
(0.8, 1.1, 1.1, 0.6) (0.9, 1.0, 0.8, 1.2) 

Mean RMSErr AvBias Mean RMSErr AvBias 

c 35 1.3164 1.5108 0.2164 1.0165 0.8932 0.2069 
 70 1.2170 0.4721 0.1170 0.9508 0.5928 0.2052 
 140 1.2118 0.3613 0.1118   0.9332 0.4495 0.2027 
 280 1.2012 0.2484 0.1012 0.9235 0.3788 0.1765 
 560 1.1893 0.2168 0.0893 0.8573 0.3268 0.1668 
 1120 1.1691 0.1764 0.0691 0.8348 0.2596 0.1492 
 2240 1.1434 0.1180 0.0634 0.8131 0.2013 0.0835 

k 35 1.5605 2.6207 0.9605 2.1491 3.2232 0.9491 
 70 1.2535 1.2710 0.6535 1.9198 1.6246 0.7198 
 140 0.9593 0.8515 0.3593 1.7307 1.2020 0.5307 
 280 0.8355 0.5619 0.2355 1.6073 1.0181 0.4073 
 560 0.7250 0.2926 0.1250 1.5180 0.6697 0.3180 
 1120 0.6515 0.1475 0.0815 1.3500 0.4386 0.1500 
 2240 0.6437 0.1162 0.0737 1.2286 0.2114 0.0486 

 

6. The TI-HT-OBIII-W regression model 

The process of conducting a regression analysis on lifetime data entails determining 
the distribution of a variable X based on a set of covariates u = (u1, . . .., uz) T. Within this 
context, we present a regression model for the TIHT-OBIII-W distribution which is 
designed to handle both censored and uncensored data. By letting c=1, we establish a 
relationship between the parameter λ and the covariates using a log-linear link function 
λj = exp (uT

j β) for j = 1, ..., n and β = (β1, β2, βz) T represents a vector comprising the 
regression coefficients. The survival function of X | u is 
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  .                      (14) 

 
The parametric regression model, known as the TI-HT-OBIII-W, is denoted by 

Equation (14). If we consider A and S as two separate groups of individuals, where xj 

represents the lifetime of individuals in set A and S represents the censoring 
information, the overall log-likelihood function for the parameter vector Δ = (θ,βT ,k)T 

derived from Equation (14) can be expressed in the form ℓ(Δ) = P
j ∈A ℓj(Δ)+P

j ∈S ℓj
s(Δ), 
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where ℓj(Δ) = log(f(xj | uj)), ℓs
j(Δ) = log(S(xj | uj)) and f(xj | uj), S(xj | uj) represent the 

density and survival functions of X, respectively. Let ρ take the value 0 if censoring 
occurs and 1 if failure is observed. Then the expression for the log-likelihood function 
for Δ can be expressed as 
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(15) 
 
 
The MLE  ∆෠  of the vector of unknown parameters can be obtained by maximizing 

Equation (15) using R software. We also consider residuals for the TI-HT-OBIII-W 
regression model. By plotting the deviance residuals against the index (numerical 
identifier assigned to each observation in the dataset), one can effectively identify and 
validate the appropriateness of the fitted model for a typical observation. The deviance 
residual, which serves as a measure of the disparity between the observed values and 
the predicted values, can be mathematically defined as 

 
 rDi=sign(rMi) (−2[rMi + ρi log(ρi) − rMi])0.5, 
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where rMi is the martingale residual defined by 
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and sign (.) assigns the values of +1 when the argument is positive, and −1 when the 
argument is negative. 

In the work by Atkinson (1985), a technique was proposed to create envelopes that 
facilitate the enhanced analysis of the normal probability plot of residuals. These 
envelopes, sometimes referred to as simulated confidence bands, are constructed to 
encompass the residuals. The anticipation is that when the model is suitably fitted, most 
data points will align within these specified ranges and demonstrate a random 
distribution. 

7. Applications 

Real data examples are fitted to the TI-HT-OBIII-W distribution and compared to 
several non-nested models including some known heavy-tailed distributions and 
equiparameter models. The TI-HT-OBIII-W distribution is compared to the 
transmuted exponentiated generalized Weibull distribution (TExGW) proposed by 
Yousof et al. (2015), the type I heavy-tailed Weibull distribution (TI-HT-W) introduced 
by Zhao et al. (2020), the heavy-tailed beta power transformed Weibull distribution 
(HTBPTW) introduced by Zhao et al. (2021), the Weibull Lomax distribution (WL) by 
Tahir et al. (2014), Kumaraswamy Weibull distribution (KW) introduced by Cordeiro 
et al. (2010) and the exponential Lindley odd log-logistic Weibull (ELOLLW) proposed 
by Korkmaz et al. (2018). Visit the web appendix for the pdfs of distributions used in 
the comparisons.  

We presented the goodness-of-fit (Gof) statistics: -2 log-likelihood (-2log(L)), 
Akaike Information Criterion (AIC), Consistent Akaike Information Criterion 
(CAIC), Bayesian Information Criterion (BIC), Cramér-von Mises (W∗) and Andersen-
Darling (A∗). These statistics are used to verify the best-fitting model for a given data 
set. Reduced values of these metrics indicate that the model is a better fit compared to 
other competing models. 
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Gof was also assessed by the Kolmogorov-Smirnov (K-S) statistic, its associated p-
value, and the sum of squares (SS) derived from probability plots. The model that 
exhibits the smallest K-S value and the highest p-value for the K-S statistic is considered 
as the best-fitting model. Furthermore, graphical presentations of the fitted densities 
and probability-probability (PP) plots, empirical cumulative distribution function 
(ECDF), Kaplan-Meier (K-M) survival, total time on test (TTT) plots and hrf plots were 
presented. 

7.1.  Stress-rupture life data 

The initial dataset showcases the stress-rupture life of Kevlar 49/epoxy strands 
under continuous sustained pressure at a 90% stress level until failure. This practical 
example was originally presented by Cooray and Ananda (2008), and subsequently 
reported by Cordeiro et al. (2014). The data can be found in the appendix. 

The asymptotic confidence intervals at a 95% confidence level for the model 
parameters are as follows:  
θ ∈ [0.7055 ± 0.4243], λ ∈ [0.9911 ± 0.3556], c ∈ 1.2942 ± 0.9120] and k ∈ [0.5288 ± 
0.60409]. 

The estimated variance-covariance matrix is 

൦

0.0469 0.0030 െ0.0830 0.0647
0.0030 0.0329 െ0.0473 0.0009
െ0.0830 െ0.0473 0.2165 െ0.1141
0.0647 0.0009 െ0.1141 0.0950

൪. 

Table 3: Parameter estimates on stress-rupture life data 
Model Estimates 

TI-HT-OBIII-W 𝜃 𝜆 c k 
 0.7055 0.9911 1.2942 0.5288 
  (0.2165) (0.1814) (0.4653) (0.3082) 
TExGW 𝜆 a 𝑏 𝛽 
 0.0011 0.8113 0.7930 1.0604 
  (2.7424) (2.0878) (0.6052) (1.0756) 
TI-HT-W 𝛼 𝜃 𝛾  
   0.8435 0.6277 1.9662 - - 

  (0.0959) (0.2431) (0.9963)  

HBPTW ⍺ 𝛾 𝑘  
 0.8840 1.1239 1.7284 - - 

  (0.0995) (0.2008) (0.6056)  
WL 𝛼 𝑏 ⍺ 𝛽 
 0.2506 0.7860 1.3581 0.3303 
  (0.4173) (0.1804) (0.4580) (0.6282) 
KW                                   𝑎 𝑏 ⍺ 𝛽 
   0.7280 0.3323 2.4974 1.0514 
  (0.2699) (0.5544) (4.3669) (0.1639) 
ELOLLW 𝛽 𝜆 𝜃 𝛾 
 6.7617 0.1641 7.0720 0.8374 

  (0.3733) (0.0853) (0.2268) (0.0144) 
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The MLEs together with their standard errors (SEs) (in parenthesis) for the models 
on stress-rupture life data are given in Table 3 and Gof statistics are presented in 
Table 4. The profile plots in Figure [4] clearly show that the TI-HT-OBIII-W 
parameters on stress-rupture life data are global maximums and are identifiable. 

 
 (a) (b) (c) (d) 

Figure 4:  Profile plots for the TI-HT-OBIII-W parameters: Stress-rupture life data 

Table 4: Gof statistics on stress-rupture life data 

Model 2log(L) AIC CAIC BIC W* A* K-S p-value 

TI-HT-
OBIII-W 204.7661 212.7661 213.1827 223.2266 0.1255 0.7790 0.0679   0.7409 

TExW 205.5743 213.5743 213.9910 224.0348 0.1652 0.9586 0.0844 0.4681 
TI-HT-W 207.9245 213.9245 214.7905 219.9504 0.1703 0.9742 0.0786   0.5612 
HBPTW 205.5669 211.5669 211.8144 219.4123 0.1864 1.0524 0.0854   0.4526 
WL 205.1976 213.1976 213.6143 223.6581 0.1440 0.5627 0.0787  0.5587 
KW 205.3001 213.3001 213.7183 223.7621 0.1414 0.1423 0.0773  0.5815 
ELOLLW 205.1945 213.1945 213.6112 223.6550 0.1666 0.9601 0.0816  0.5126 

Figure 4 shows profile plots for stress-rupture data. The plots illustrate that the TI-
HT-OBIII-W parameters are global maximums and are identifiable.   Figure 5 supports 
the dominance of TI-HT-OBIII-W model over the non-nested models on stress-
rupture life data. Gof statistics and the p-values obtained on stress-rupture life data 
show that the TI-HT-OBIII-W model outperforms the various non-nested models that 
were evaluated.  
 
 
 
 
 
 
 
 
 

Figure 5:  Graphical representations of fitted density functions and probability plots for stress-rupture 
life data 
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Figure 6:  Fitted ECDF curve and K-M plots for stress-rupture life data 

Figure 6 presents fitted and observed ECDF and K-M survival curves for stress-
rupture life data. The plots show that the TI-HT-OBIII-W distribution closely follows 
the ECDF and K-M survival curves. The TTT scaled and hrf plots in Figure 7 generally 
show a sequence of a bathtub followed by an inverted bathtub hazard rate shapes for 
the stress-rupture life data. 

 
Figure 7:  TTT scaled and hrf plots for stress-rupture life data 

 

7.2.  Turbocharger data 

The second data set was taken from Xu et al. (2003), describing a reliability study 
on turbochargers in diesel engines. The data is presented in the appendix. The 
estimated MLEs accompanied by their corresponding SEs (in brackets), and GoF 
statistics for the turbochargers data are displayed in Table 5. 

The asymptotic confidence intervals at a 95% confidence level for the model 
parameters are as follows: θ ∈ [ 2.64×104± 4.70×10−4], λ ∈ [1.0278±0.6633],  
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c ∈ [3.81×10−2± 6.90×10−2] and k ∈ [36.3600 ± 4.2571]. The estimated variance-
covariance matrix is 

൦

5.76 ൈ 10ି଼ 7.12 ൈ 10ିହ

7.12 ൈ 10ିହ 1.15 ൈ 10ିଵ
െ7.83 ൈ 10ିହ 5.21 ൈ 10ିସ

െ1.18 ൈ 10ିଶ െ6.44 ൈ 10ିଵ

െ7.83 ൈ 10ି଺ െ1.18 ൈ 10ିଶ

5.21 ൈ 10ିସ െ6.44 ൈ 10ିଵ
1.24 ൈ 10ିଷ 7.09 ൈ 10ିଶ

7.09 ൈ 10ିଶ 4.7200

൪. 

 

Table 5: Estimates on turbochargers data 

 

 
 (a) (b) (c) (d) 

Figure 8: Profile plots for the TI-HT-OBIII-W parameters: Turbochargers data 

The Gof statistics and the K-S p-values obtained on reliability of turbochargers 
in diesel engines data also show that the TI-HT-OBIII-W model is superior to the 
several non-nested models that were considered.  Figure 8 shows profile plots for 
turbochargers data. The plots illustrate that the TI-HT-OBIII-W parameters are global 

Model Estimates 
TI-HT-OBIII-W 𝜃 𝜆 c k 
 2.64 ൈ 10ସ 1.0278 5.76 ൈ 10ି଼ 36.3600 
  (2.40 ൈ 10ିସ) (0.3384) (3.52 ൈ 10ିଶ) (2.1720) 
TExGW 𝜆 a 𝑏 𝛽 
 0.0321 6.90 ൈ 10ିହ 0.6720 4.7712 
  ሺ5.21 ൈ 10ିଵ଴) (1.31 ൈ 10ିହ) (9.07 ൈ 10ିଵ଴) (1.85 ൈ 10ିଽ) 
TI-HT-W 𝛼 𝜃 𝛾  
   3.5513 0.6514 0.0019 - - 

  (0.6241) (0.3243) (0.0033)  

HBPTW ⍺ 𝛾 𝑘  
 3.2828 0.0026 0.1490 - - 

  (0.7116) (0.0042) (0.1766)  
WL 𝛼 𝑏 ⍺ 𝛽 
 0.7306 2.8721 2.12 ൈ 10ସ 1.98 ൈ 10ହ 
  (0.1329) (0.3790) (1.69ൈ 10ିହ) (1.82 ൈ 10ି଺) 
KW         𝑎 𝑏 ⍺ 𝛽 
   0.5021 89.1240 4.51 ൈ 10ସିଶ 7.6849 
  (6.68 ൈ 10ିଶ) (2.65 ൈ 10ସି଺) (6.72 ൈ 10ସିଷ) (4.36 ൈ 10ସିଷ) 
ELOLLW 𝛽 𝜆 𝜃 𝛾 
 1.944 0.1393 1.7917 3.4997 

  (1.0760) (0.0351) (1.1969) (0.6303) 
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maximums and are identifiable. Figure 9 shows that the TI-HT-OBIII-W model 
outperforms the non-nested models that were considered. 

Table 6: Gof statistics on turbochargers life data 

Model 2log(L) AIC CAIC BIC W* A* K-S p-value 

TI-HT-
OBIII-W 160.4252 168.4252 169.5681 175.1808 0.0350 0.2581 0.0752 0.9775 

TExW 160.7456 168.7456 171.8885 177.5011 0.0579 0.4441 0.1069 0.7511 
TI-HT-W 164.2436 170.2436 170.9103 175.3102 0.0674 0.5073 0.1005 0.8143 
HBPTW 163.5073 169.5073 170.1740 174.5739 0.0592 0.4493 0.0977 0.8396 
WL 162.3950 170.3950 171.5379 177.1505 0.0522 0.4018 0.1001 0.8173 
KW 164.7952 172.7952 173.9381 179.5507 0.0755 0.5633 0.1076 0.7430 
ELOLLW 163.7752 171.7752 172.9181 178.5308 0.0636 0.4815 0.1017 0.8028 

 

 
Figure 9: Visualizations of fitted density functions and probability plots for turbochargers data. 

 

  
Figure 10: Fitted ECDF curve and K-M plots for turbochargers data 

Figure 10 exhibits the convergence between the empirical and the fitted ECDF and 
K-M survival curves, for turbocharger data. We can see that the TI-HT-OBIII-W 
demonstrates a remarkable alignment with both the ECDF and K-M survival curves, 
indicating a close correspondence between the observed and fitted data. The TTT scaled 
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plot and hrf plots depicted in Figure 11 provide clear evidence that the data shows an 
increasing hazard rate. 

 
Figure 11: TTT scaled and hrf plots for turbochargers data 

7.3.  Regression model for transformer turns data 

This real data set is sourced from Nelson (2004) and represents a life testing of 
transformers conducted at high voltage, resulting in multiple censored data. The 
failures observed in the study were turn-to-turn failures of the primary insulation with 
13% censored observations. The data includes observations at three different voltage 
levels (35.4kV, 42.4kV, and 46.7kV), and the symbol (∗) indicates instances of censored 
data. The data set can be found in the appendix section. Firstly, we examine the TI-HT-
OBIII-W, TI-HT-W and ELOLLW distributions for the transformer turns data 
presented in Table 8. MLEs and their SEs (in parentheses) are provided for these 
distributions. Additionally, we report the -2log(L), AIC, and BIC Gof statistics 
associated with the fitted models.  

The variables considered in this study are xj=time of failure in hours of the 
transformer, j = 1, 2, ....,30, and three voltage levels defined by (35.4kV, 42.4kV and 
35.4kV). 

Table 7: Estimates and Gof statistics transformer turns data 

Distribution Parameter estimates 

TI-HT-OBIII-W 𝜃 
2.3871 
0.1361 

𝜆 
0.2362 
0.0307 

c 
0.9342 
0.3875 

k 
11.6409 
0.2855 

ELOLLW 𝛽 
0.0011 

(0.2866) 

𝜆 
0.0241 

(0.0144) 

𝜃 
0.7767 

ሺ6.24 ൈ 10ିସሻ 

𝛾 
0.7185 

(0.1034) 
TI-HT-W 𝛼 

0.7105 
(0.1024) 

𝜃 
1.17 ൈ 10ିଷ 
ሺ6.12 ൈ 10ିସሻ 

𝛾 
47.4190 

ሺ1.93 ൈ 10ି଺ሻ 

k 
11.6409 
0.2855 
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Table 8: Gof statistics on transformer turns data. 

Distribution 
Gof Statistics 

െ2log ሺLሻ AIC CAIC BIC 𝑆𝑆 

TI-HT-OBIII-W 267.4544 212.7661 213.1827 223.2266 0.0455 
ELOLLW 270.6383 213.5743 213.991 224.0348 0.1052 
TI-HT-W 270.2332 211.5669 211.8144 219.4123 0.0623 

 
We consider the following structured regression 

𝜆௝ ൌ exp൫𝛽ଵ଴ ൅ 𝛽ଵଵ𝑢௝ଵ ൅ 𝛽ଵଶ𝑢௝ଶ൯,  

where uj1 and uj2 are the covariates representing the predictor variables for j = 1,2,3, 
....,30, to maximize the log-likelihood function in Equation (17) to obtain the MLEs of 
the parameters of the proposed model. We provide the parameter estimates, SEs, and 
the significance of the MLEs in Table 9. The findings presented in Table 9 offer 
convincing empirical support, at a significance level of 5%, indicating a substantial 
disparity between the 35kV level and the 46.7 kV level. 
 

 
Figure 12: Fitted models: Histogram, K-M curve and hrf plot for transformer turns data 

Figure 12 displays the histograms and fitted densities of the TI-HT-OBIII-W and 
TI-HT-W distributions. The K-M survival curve demonstrates that the TIHT-OBIII-
W closely corresponds to the transformer turns data. The hrf curve indicates an 
inverted hazard rate shape.  

Table 9: MLEs for regression model fitted to transformer turns 
Parameters Estimate SE p-value 

𝜃 0.5000 0.1515 -- 

k 3.7576 7.33 ൈ 10ିସ -- 

𝛽ଵ଴ 7.43 ൈ 10ିସ 0.0104 0.3109 

𝛽ଵଵ 0.0659 0.0162 <0.00001 

𝛽ଵଶ -0.0269 0.2687 0.0978 
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7.4.  Goodness-of-fit 

We present the results of the residual analysis in Figure 13, specifically focusing on 
the deviance component residual rDi   discussed in Section 6. In the deviance residual vs 
index plot, we observe a prominent outlier, indicating a significant deviation from the 
expected pattern. However, when considering the normal probability plot along with 
the generated envelope, we find that approximately 93% of the data points fall within 
the envelope. This suggests that the proposed TI-HT-OBIII-W regression model is 
indeed appropriate for these data, as only a single observation lies outside the expected 
range. 

 
                             Deviance Residuals vs Index                                                     Deviance Residuals vs. Quantiles 

 
Figure 13:  Plot of deviance residuals against index and normal probability plot with envelopes for 

  the deviance component residuals. 

8. Summary 

We developed and presented a new heavy-tailed FoD called the type I heavy-tailed 
odd Burr III-G (TI-HT-OBIII-G) distribution. Statistical properties of this new FoD 
were derived and presented. The MLE technique was utilized in the estimation of 
parameters. Actuarial risk measures were computed. Numerical comparisons of 
actuarial measures with other distributions were conducted and the results were 
presented. The regression model and the analysis of residuals were examined in the 
context of the new distribution. Finally, the superiority of the TI-HT-OBIII-G FoD was 
illustrated by the Kevlar 49/epoxy strands and turbocharger data sets. We recommend 
bivariate regression models and different parameter estimation techniques for future 
research. 

To access the appendix, kindly click the link provided below: 
https://drive.google.com/file/d/1KEtYcoHXU3FhE4OK8DvdFSg5v01_Qi1M/view?us
p=sharing 
 

0 5 10 15 20 25 30 
Index 

−2 −1 0 1 2 
Theoretical Quantiles 
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On a family that unifies the generalized Marshall-Olkin  
and Poisson-G family of distributions 

Laba Handique1, Farrukh Jamal2, Subrata Chakraborty3 

Abstract 

The aim of the article is to propose a unification of the generalized Marshall-Olkin (GMO) 
and Poisson-G (P-G) distributions into a new family of distributions. The density and 
survival function are expressed as infinite mixtures of an exponentiated-P-G family. The 
quantile function, asymptotes, shapes, stochastic ordering and Rényi entropy are derived. 
The paper presents a maximum likelihood estimation with large sample properties. A Monte 
Carlo simulation is used to examine the pattern of the bias and the mean square error of the 
maximum likelihood estimators. The utility of the proposed family is illustrated through its 
comparison with some important models and sub models of the family in terms of modeling 
real data. 

Key words: GMO family, Poisson-G family, stochastic ordering, MLE, AIC. 

1.  Introduction 

Generalized classes of univariate continuous distributions through introduction 
of additional shape parameter(s) to a baseline distribution have attracted a lot of 
attention in recent times. With the basic motivation to bring in more flexibility in the 
modelling different types of data, a preferred area of research in the field of probability 
distribution is that of generating new distributions starting with a baseline distribution 
by inducing one or more additional parameters through various methodologies.  
A number of useful continuous univariate-G families have been added in the literature 
in recent times. Notable families introduced since 2017 are Poisson-G family 
(Abouelmagd et al., 2017), Marshall-OlkinKumaraswamy-G family (Handique et al., 
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2017), Generalized Marshall-Olkin Kumaraswamy-G family (Chakraborty and 
Handique, 2017), Exponentiated generalized-G Poisson family (Gokarna and Haitham, 
2017), Beta Kumaraswamy-G family (Handique et al., 2017), Beta generated 
Kumaraswamy Marshall-Olkin-G family (Handique and Chakraborty, 2017a), Beta 
generalized Marshall-Olkin Kumaraswamy-G family (Handique and Chakraborty, 
2017b), Beta generated Marshall-Olkin Kumaraswamy-G (Chakraborty et al., 2018), 
Kumaraswamy generalized Marshall-Olkin-G family (Chakraborty and Handique, 
2018), Odd modified exponential generalized family (Ahsan et al., 2018), Zografos-
Balakrishnan Burr XII family (Emrah et al., 2018), Exponentiated generalized Marshall-
Olkin-G family by (Handique et al., 2019), Beta-G Poisson family (Gokarna et al., 2019), 
Zero truncated Poisson family (Abouelmagd et al., 2019), Extended generalized 
Gompertz family (Thiago et al., 2019), Generalized modified exponential-G family 
(Handique et al., 2020), Odd Half-Cauchy family (Chakraborty et al., 2021), Poisson 
Transmuted-G family (Handique et al., 2021), Beta Poisson-G family (Handique et al., 
2022), Kumaraswamy Poisson-G family (Chakraborty et al., 2022), Complementary 
Geometric-Topp-Leone-G family (Handique et al., 2023), generalized Marshall-Olkin 
Transmuted-G family (Handique et al., 2024) and Truncated Cauchy Power 
Kumaraswamy-G family (Ibrahim et al., 2024), among others. 

In this article, a new family of continuous probability distribution called the 
Generalized Marshall-Olkin Poisson-G (𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ) is introduced to unify 
generalized Marshall-Olkin (GMO) of Jayakumar and Mathew, (2008) and the Poisson-
G (P-G) family of distribution (Tahir et al., 2016). Now, we briefly describe the GMO 
and P-G family and then introduce GMOP-G in the next section. 

1.1. Generalized Marshall-Olkin (GMO) family 

Jayakumar and Mathew (2008) proposed a new generalization of the Marshall-
Olkin family (Marshall and Olkin, 1997) of distributions called the generalized 
Marshall-Olkin (GMO) family of distributions. The survival function (sf) and 
probability distribution function (pdf) of the GMO distribution are given respectively 
by 

𝐹ሜGMOሺ𝑡 ;𝜃 ,𝛼ሻ ൌ ቂ
ఈிሜሺ௧ሻ

ଵିఈ̄ிሜሺ௧ሻ
ቃ
ఏ

and 𝑓GMOሺ𝑡 ;𝜃 ,𝛼ሻ ൌ
ఏఈഇ௙ሺ௧ሻிሜሺ௧ሻഇషభ

ሾଵିఈ̄ிሜሺ௧ሻሿഇశభ
,                  (1) 

where െ∞ ൏ 𝑡 ൏ ∞,𝛼 ൐ 0 (𝛼̄ ൌ 1 െ 𝛼), 𝜃 ൐ 0 is an additional shape parameter and 
𝐹ሜ ሺ𝑡ሻ and𝑓ሺ𝑡ሻ is the baseline sf and pdf respectively. 

When 𝜃 ൌ 1, 𝐹ሜ GMOሺ𝑡 ;𝜃 ,𝛼ሻ ൌ 𝐹ሜMOሺ𝑡 ;𝛼ሻ and for ,1  𝐹ሜ GMOሺ𝑡 ;𝜃 ,𝛼ሻ ൌ
𝐹ሜ ሺ𝑡ሻ. 
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1.2. Poisson-G (P-G) family 

The Poisson-G (P-G) family of distributions with survival function and cdf is 
given by (see Kumaraswamy Poisson-G family, Chakraborty et al., 2022) 

𝐺ሜ PGሺ𝑡 ; 𝜆ሻ ൌ
𝑒ିఒீሺ௧ሻ െ 𝑒ିఒ

1 െ 𝑒ିఒ
 

             
𝑎𝑛𝑑  𝐺PGሺ𝑡 ; 𝜆ሻ ൌ

ଵି௘షഊಸሺ೟ሻ

ଵି௘షഊ
, 𝜆 ∈ 𝑅 െ ሼ0ሽ; 𝑛 ൌ 1, 2, . ..                     (2) 

The corresponding pdf of (2) is given by 

           𝑔
PGሺ𝑡 ; 𝜆ሻ ൌ ሺ1 െ 𝑒ିఒሻିଵ𝜆𝑔ሺ𝑡ሻ𝑒ିఒீሺ௧ሻ, 𝜆 ∈ 𝑅 െ ሼ0ሽ; െ∞ ൏ 𝑡 ൏ ∞.            (3) 

where 𝐺ሺ𝑡ሻand𝑔ሺ𝑡ሻ is the baseline distribution.  

The article is arranged in the following 5 sections. In Section 2, we introduce the 
proposed family along with its physical basis and list of some important sub models 
and also define some mathematical properties. In Section 3, a linear representation of 
the sf and pdf of the proposed family is discussed along with some statistical properties 
of the proposed family. In Section 4, maximum likelihood methods of estimation of 
parameters and simulation are presented. The data fitting applications are presented 
in Section 5. Final conclusion is provided in Section 6. 

2. Generalized Marshall-Olkin Poisson-G family 

In this section we introduce the 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ family and also provide its 
special cases and a statistical genesis. 

The sf, cdf, pdf and hrf of this distribution are given respectively by: 

𝐹ሜ GMOPGሺ𝑡 ; 𝜃 ,𝛼, 𝜆ሻ ൌ ቂ
ఈሺ௘షഊಸሺ೟ሻି௘షഊሻ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
ቃ
ఏ

, 𝐹GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ ൌ 1 െ ቂ
ఈሺ௘షഊಸሺ೟ሻି௘షഊሻ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
ቃ
ఏ

 
                      (4) 

𝑓GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ ൌ
ఏఒఈഇሺଵି௘షഊሻ௚ሺ௧ሻ௘షഊಸሺ೟ሻሺ௘షഊಸሺ೟ሻି௘షഊሻഇషభ

ሺଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻሻഇశభ
, 

                 (5) 

and                  ℎGMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ ൌ
ఏఒሺଵି௘షഊሻ௚ሺ௧ሻ௘షഊಸሺ೟ሻሺ௘షഊಸሺ೟ሻି௘షഊሻషభ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
.              

            (6) 
In particular, we get for   

(i)   𝜃 ൌ 1, the 𝑀𝑂𝑃 െ 𝐺ሺ𝛼, 𝜆ሻ distribution. 
(ii)  𝜃 ൌ 𝛼 ൌ 1, the 𝑃 െ 𝐺ሺ𝜆ሻ distribution. 
(iii) 𝜆 → 0, the 𝐺𝑀𝑂ሺ𝜃,𝛼ሻ distribution. 
(iv) 𝜃 ൌ 1, 𝜆 → 0, the 𝑀𝑂ሺ𝛼ሻ distribution. 
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Proposition 1 Let 𝑇௜ଵ,𝑇௜ଶ, . . . ,𝑇௜ே, 𝑖 ൌ 1,2,⋯ ,𝜃 be a sequence of 𝜃𝑁i.i.d. random 
variables from Poisson-G distribution and 𝑊௜ ൌ 𝑚𝑖𝑛ሺ𝑇௜ଵ,𝑇௜ଶ, . . . ,𝑇௜ேሻ and 𝑉௜ ൌ
𝑚𝑎𝑥ሺ𝑇௜ଵ,𝑇௜ଶ, . . . ,𝑇௜ேሻ. Then  

(i) 𝑚𝑖𝑛
௜

 𝑊௜follows 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ if 𝑁~𝐺 𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐ሺ𝛼ሻ and 

(ii) 𝑚𝑎𝑥
௜

 𝑉௜follows 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ if𝑁~𝐺 𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐ሺ1/𝛼ሻ. 

Proof: Case (i) When 0 ൏ 𝛼 ൑ 1, considering N  has a geometric distribution with 
parameter 𝛼, we get   

𝑃ሾ𝑚𝑖𝑛ሼ𝑊ଵ,𝑊ଶ, . . . ,𝑊ఏሽ ൐ 𝑡ሿ ൌ 𝑃ሾ𝑊ଵ ൐ 𝑡ሿ𝑃ሾ𝑊ଶ ൐ 𝑡ሿ. . .𝑃ሾ𝑊ఏ ൐ 𝑡ሿ 

ൌ ∏ 𝑃ሾ𝑊௜ ൐ 𝑡ఏ
௜ୀଵ ሿ ൌ ሾ𝐹ሜெை௉ீሺ𝑡;𝛼, 𝜆ሻሿఏ ൌ ቂ

ఈሺ௘షഊಸሺ೟ሻି௘షഊሻ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
ቃ
ఏ

. 

Case (ii) For𝛼 ൐ 1, considering N has a geometric distribution with parameter1/𝛼, we 
get 

𝑃ሾ𝑚𝑖𝑛ሼ𝑉ଵ,𝑉ଶ, . . . ,𝑉ఏሽ ൐ 𝑡ሿ ൌ 𝑃ሾ𝑉ଵ ൐ 𝑡ሿ𝑃ሾ𝑉ଶ ൐ 𝑡ሿ. . .𝑃ሾ𝑉ఏ ൐ 𝑡ሿ 

ൌ ∏ 𝑃ሾ𝑉௜ ൐ 𝑡ఏ
௜ୀଵ ሿ ൌ ሾ𝐹ሜெை௉ீሺ𝑡;𝛼, 𝜆ሻሿఏ ൌ ቂ

ఈሺ௘షഊಸሺ೟ሻି௘షഊሻ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
ቃ
ఏ

. 

In what follows we investigate some general properties, parameter estimation and 
real life applications. 

2.1. Special model and shape of the density and hazard function 

In this section we have plotted the pdf and hrf of the𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ for 
some chosen values of the parameters in Figure 1 and Figure 2 respectively  to show the 
variety of shapes assumed by the family.   

The pdf and hrf of the𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ are as follows:  
 The GMOP-Exponential (GMOP-E) distribution. 

Considering the Exponential distribution with parameters 𝛽 ൐ 0 having pdf and 
cdf 𝑔ሺ𝑡ሻ ൌ 𝛽𝑒ିఉ௧ and 𝐺ሺ𝑡ሻ ൌ 1 െ 𝑒ିఉ௧respectively we get the pdf and hrf of 𝐺𝑀𝑂𝑃 െ
𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution as  

𝑓GMOPEሺ𝑡 ;𝜃 ,𝛼, 𝜆,𝛽ሻ ൌ ఏఒఈഇሺଵି௘షഊሻఉ௘షഁ೟௘షഊሺభష೐
షഁ೟ሻሺ௘షഊሺభష೐

షഁ೟ሻି௘షഊሻഇషభ

ሺଵିఈ௘షഊିఈ̄௘షഊሺభష೐షഁ೟ሻሻഇశభ
, 

and  ℎGMOPEሺ𝑡 ;𝜃 ,𝛼, 𝜆,𝛽ሻ ൌ ఏఒఈഇሺଵି௘షഊሻఉ௘షഁ೟௘షഊሺభష೐
షഁ೟ሻሺ௘షഊሺభష೐

షഁ೟ሻି௘షഊሻషభ

ଵିఈ௘షഊିఈ̄௘షഊሺభష೐షഁ೟ሻ
. 
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Figure 1: pdf plots of the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution 

 
Figure 2: hrf plots of the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution 

Remark 1. From Figures 1 and 2 it can be seen that the proposed family of distributions 
is very flexible and can offer different types of shapes for density and hazard like 
increasing, decreasing and right skewed. 

Quantile and related measures 

The 𝑝௧௛ quantile 𝑡௣for 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ can be easily obtained by solving the 
equation 𝐹GMOPGሺ𝑡ሻ ൌ 𝑝 as  

                                       

𝑡௣ ൌ 𝐺ିଵ ൤െ
ଵ

ఒ
𝑙𝑜𝑔 ൤

ఈ௘షഊାሺଵିఈ௘షഊሻሺଵିிሺ௧ሻሻ
భ
ഇൗ

ఈାఈ̄ሺଵିிሺ௧ሻሻ
భ
ഇൗ

൨൨.                                       

Here the flexibility of skewness and kurtosis of 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ is checked by 
plotting Galton skewness (S) that measures the degree of the long tail and Moors (1988) 
kurtosis (K) that measures the degree of tail heaviness in Figure 3 for the 𝐺𝑀𝑂𝑃 െ
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𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution for some values of parameters. These are respectively defined 
by 

𝑆 ൌ
ொሺ଺/଼ሻିଶொሺସ/଼ሻାொሺଶ/଼ሻ

ொሺ଺/଼ሻିொሺଶ/଼ሻ
 and 𝐾 ൌ

ொሺ଻/଼ሻିொሺହ/଼ሻାொሺଷ/଼ሻିொሺଵ/଼ሻ

ொሺ଺/଼ሻିொሺଶ/଼ሻ
. 

 
Figure 3: Plots of the Galton skewness S and the Moor kurtosis K for the GMOP-E distribution with 
parameters 𝜃 ൌ 3,𝛼 ൌ 2,0.2 ൏ 𝜆,𝛽 ൏ 2 

2.2. Asymptotes and shapes 

Two propositions regarding asymptotes of the proposed family are discussed here. 
Proposition 2 The asymptotes of pdf, cdf and hrf of 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ as 𝑡 → 0 are 
given by  

                                  𝑓
GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ~

ఏఒ௚ሺ௧ሻ

ఈሺଵି௘షഊሻ
,                                

                                   𝐹
GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ~ 0 and                                                               

                                   ℎ
GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ~

ఏఒ௚ሺ௧ሻ

ఈሺଵି௘షഊሻ
.                                

Proposition 3 The asymptotes of pdf, cdf and hrf of 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ as 𝑡 → ∞ are 
given by  

       𝑓
GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ~𝜃 𝜆𝛼ఏ𝑒ିఒ𝑔ሺ𝑡ሻሺ𝑒ିఒீሺ௧ሻ െ 𝑒ିఒሻఏିଵ/ሺ1 െ 𝑒ିఒሻఏ,              

       𝐹
GMOPGሺ𝑡 ; 𝜃 ,𝛼, 𝜆ሻ~ 1 െ 𝛼ఏሺ𝑒ିఒீሺ௧ሻ െ 𝑒ିఒሻఏ/ሺ1 െ 𝑒ିఒሻఏ  and                       

       ℎ
GMOPGሺ𝑡 ;𝜃 ,𝛼, 𝜆ሻ~𝜃 𝜆𝑒ିఒ𝑔ሺ𝑡ሻሺ𝑒ିఒீሺ௧ሻ െ 𝑒ିఒሻିଵ.                                              

Analytically the shapes of the pdf and hazard rate function can be stated through 
critical points. The critical points of the pdf are the roots of the equation 

௚ᇲሺ௧ሻ

௚ሺ௧ሻ
െ 𝜆𝑔ሺ𝑡ሻ െ ሺ𝜃 െ 1ሻ

ఒ௘షഊಸሺ೟ሻ௚ሺ௧ሻ

௘షഊಸሺ೟ሻି௘షഊ
െ ሺ𝜃 ൅ 1ሻ

ఈ̄ఒ௘షഊಸሺ೟ሻ௚ሺ௧ሻ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
ൌ 0.        (7) 

be
ta

0.5

1.0

1.5

2.0

lambda

0.5

1.0

1.5

2.0

1.285
1.290

1.295

1.300

1.305

Kurtosis
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The critical point of 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ family hazard rate are the roots of the 
equation 

                    

௚ᇲሺ௧ሻ

௚ሺ௧ሻ
െ 𝜆𝑔ሺ𝑡ሻ ൅

ఒ௘షഊಸሺ೟ሻ௚ሺ௧ሻ

௘షഊಸሺ೟ሻି௘షഊ
െ

ఈ̄ఒ௘షഊಸሺ೟ሻ௚ሺ௧ሻ

ଵିఈ௘షഊିఈ̄௘షഊಸሺ೟ሻ
ൌ 0.                       (8) 

Equations (7) and (8) may have multiple solutions. If 𝑡 ൌ 𝑡଴ is a root then it is  
a local maximum, a local minimum or a point of inflexion if 𝜓ሺ𝑡଴ሻ ൏ 0,𝜓ሺ𝑡଴ሻ ൐
0𝑜𝑟𝜓ሺ𝑡଴ሻ ൌ 0 and for (8) if 𝜔ሺ𝑡଴ሻ ൏ 0,𝜔ሺ𝑡଴ሻ ൐ 0𝑜𝑟𝜔ሺ𝑡଴ሻ ൌ 0 where 𝜓ሺ𝑡ሻ ൌ
ሺ𝑑ଶ 𝑑𝑡ଶ⁄ ሻ 𝑙𝑜𝑔ሾ 𝑓ሺ𝑡ሻሿ and 𝜔ሺ𝑡ሻ ൌ ሺ𝑑ଶ 𝑑𝑡ଶ⁄ ሻ 𝑙𝑜𝑔ሾ ℎሺ𝑡ሻሿ 

2.3. Stochastic orderings 

Let X and Y be two random variables with cdfs F and G, respectively, 
corresponding pdf’s f and g. Then X is said to be smaller than Y in the likelihood ratio 
order ( ) if 𝑓ሺ𝑡ሻ 𝑔ሺ𝑡ሻ⁄  is decreasing in 𝑡 ൒ 0. Here we present a result of 
likelihood ratio ordering. 
Theorem 1 Let 𝑋~𝐺𝑀𝑂𝑃𝐺 ⥂ ሺ𝜃,𝛼ଵ, 𝜆ሻ and𝑌~𝐺𝑀𝑂𝑃𝐺ሺ𝜃,𝛼ଶ, 𝜆ሻ. If 𝛼ଵ ൏ 𝛼ଶ, then 
𝑋 ൑௟௥ 𝑌 

Proof: ௙ሺ௧ሻ
௚ሺ௧ሻ

ൌ ቀ
ఈభ
ఈమ
ቁ
ఏ
ቂ
ଵିఈమ௘షഊିఈ̄మ௘షഊಸሺ೟ሻ

ଵିఈభ௘షഊିఈ̄భ௘షഊಸሺ೟ሻ
ቃ
ఏାଵ

 
𝑑
𝑑𝑡
ሺ𝑓ሺ𝑡ሻ/𝑔ሺ𝑡ሻሻ ൌ ሺ𝜃 ൅ 1ሻሺ

𝛼ଵ
𝛼ଶ
ሻఏሺ𝛼ଵ

െ 𝛼ଶሻ
ሾ1 െ 𝛼ଶ𝑒ିఒ െ 𝛼̄ଶ𝑒ିఒீሺ௧ሻሿఏ𝜆𝑒ିఒீሺ௧ሻ𝑔ሺ𝑡ሻሺ1 െ 𝑒ିఒሻ

ሾ1 െ 𝛼ଵ𝑒ିఒ െ 𝛼̄ଵ𝑒ିఒீሺ௧ሻሿఏାଶ
.

 
Now this is always less than 0, since 𝛼ଵ ൏ 𝛼ଶ. Hence, 𝑓ሺ𝑡ሻ/𝑔ሺ𝑡ሻ is decreasing in t. 

That is 𝑋 ൑௟௥ 𝑌. 

3. Linear representation 

Linear representation of sf and pdf, etc. in terms of corresponding functions of 
known distributions is an important tool for further mathematical properties. In this 
section we present some important results for the proposed family. 

3.1. Expansions of the survival and density functions as infinite linear mixture 

Here the sf and pdf of the 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ are expressed as linear mixture of 
the corresponding functions of exponentiated-𝑃 െ 𝐺ሺ𝜆ሻ distribution. 

Consider the series representation  

               

ሺ1 െ 𝑧ሻି௞ ൌ ∑ ௰ሺ௞ା௝ሻ

௰ሺ௞ሻ௝!
ஶ
௝ୀ଴ 𝑧௝ ൌ ∑ ሺ௝ା௞ିଵሻ!

ሺ௞ିଵሻ!௝!
ஶ
௝ୀ଴ 𝑧௝,|𝑧| ൏ 1 and 𝑘 ൐ 0,               (9) 

where 𝛤ሺ. ሻis the gamma function.  

YX lr
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Using equation (9) in equation (4), for 𝛼 ∈ ሺ0,1ሻ we obtain  

𝐹ሜீெை௉ீሺ𝑡 ; 𝜃 ,𝛼, 𝜆ሻ ൌ 𝛼ఏሼ𝐺ሜ PGሺ𝑡 ; 𝜆ሻሽఏ෍
ሺ𝑗 ൅ 𝜃 െ 1ሻ!
ሺ𝜃 െ 1ሻ! 𝑗!

∞

௝ୀ଴

ሺ1 െ 𝛼ሻ௝ሼ𝐺ሜ PGሺ𝑡 ; 𝜆ሻሽ௝ 

                                             
ൌ ∑ 𝜂ᇱ௝

∞
௝ୀ଴ ሾ𝐺ሜ PGሺ𝑡 ; 𝜆ሻሿ௝ାఏ .                                                                 (10) 

Differentiating in equation (10) with respect to ‘t’ we get 
𝑓ீெை௉ீሺ𝑡 ; 𝜃 ,𝛼, 𝜆ሻ ൌ 𝑔௉ீሺ𝑡 ; 𝜆ሻ∑ 𝜂௝ሾ𝐺ሜ ௉ீሺ𝑡 ; 𝜆ሻሿஶ

௝ୀ଴
௝ାఏିଵ

                                         
(11) 

                                           
ൌ െ∑ 𝜂ᇱ௝

ௗ

ௗ௧
ሾ𝐺ሜ PGሺ𝑡 ; 𝜆ሻሿ௝ାఏ∞

௝ୀ଴                                               (12) 

where  𝜂ᇱ௝ ൌ 𝜂ᇱ௝ሺ𝛼ሻ ൌ ൬
𝑗 ൅ 𝜃 െ 1

𝑗 ൰ ሺ1 െ 𝛼ሻ௝𝛼ఏ,    𝜂௝ ൌ 𝜂௝ሺ𝛼ሻ ൌ ሺ𝑗 ൅ 𝜃ሻ𝜂ᇱ௝.      

We have presented a numerical evaluation result of mean, variance, skewness and 
kurtosis of the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution for some selected parameter values 
in Table 1. 

Table 1:  Mean, variance, skewness and kurtosis of the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution with 
different values of θ, α, λ and β 

𝜃 𝛼 𝜆 𝛽 Mean Variance Skewness Kurtosis 
10 10 2 2 0.1572 0.0163 1.2096 4.6452 
10 10 1 2 0.2224 0.0306 1.0761 4.0834 
10 10 0.5 2 0.2648 0.0408 0.9749 3.7373 
10 10 0.1 2 0.3033 0.0502 0.8840 3.4698 
10 10 2 1 0.3145 0.0652 1.2096 4.6452 
10 10 2 0.5 0.6291 0.2610 1.2096 4.6452 
10 10 0.5 0.5 1.0592 0.6528 0.9749 3.7373 
10 10 0.1 0.1 6.0675 20.1022 0.8840 3.4698 
10 5 2 2 0.0918 0.0066 1.5144 6.0241 
10 2 2 2 0.0419 0.0016 1.9171 8.4744 
10 0.5 2 2 0.0115 0.0001 2.4163 12.8206 
10 0.5 0.5 0.5 0.0834 0.0077 2.3537 12.1190 
5 10 2 2 0.2692 0.0424 1.0978 4.3497 
5 5 2 2 0.1676 0.0206 1.4448 5.8193 
2 5 2 2 0.3615 0.0914 1.5105 6.3958 
2 2 2 2 0.2049 0.0427 2.1968 10.7924 
1 2 2 2 0.4180 0.19284 2.3136 11.2913 
5 0.1 0.1 0.1 0.2309 0.0804 3.6320 30.5202 
5 5 5 3 0.0489 0.0016 1.4027 5.7915 
5 5 3 5 0.04882 0.0017 1.5071 6.2776 
5 5 5 8 0.0183 0.0002 1.3967 5.7764 
5 5 10 10 0.0069 0.00001 1.1168 2.1041 
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3.2. Rényi entropy 

Entropy of a random variable is a measure of uncertainty and has been used in 
various situations in science and engineering. The Rényi entropy (see details, Song, 
2001) is defined by 

                          
𝐼ோሺ𝛿ሻ ൌ ሺ1 െ 𝛿ሻିଵ 𝑙𝑜𝑔൫׬ 𝑓ሺ𝑡ሻఋ𝑑𝑡

ஶ
ିஶ ൯ , where 𝛿 ൐ 0 and 𝛿 ് 1.                  

Thus the Rényi entropy of 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ distribution can be obtained as 

               
𝐼ோሺ𝛿ሻ ൌ ሺ1 െ 𝛿ሻିଵ 𝑙𝑜𝑔൫∑ 𝜇௝

∞
௝ୀ଴ ׬ ሾ𝑔PGሺ𝑡 ; 𝜆ሻ𝐺ሜ PGሺ𝑡 ; 𝜆ሻఏିଵሿఋሾ𝐺ሜ PGሺ𝑡 ; 𝜆ሻሿ௝𝑑𝑡

∞
ି∞ ൯,     

where 𝜇௝ ൌ 𝜇௝ሺ𝛼ሻ ൌ ሼ𝜃ఋ𝛼ఋఏሺ1 െ 𝛼ሻ௝𝛤ሾ𝛿ሺ𝜃 ൅ 1ሻ ൅ 𝑗ሿሽ/ሼ𝛤ሾ𝛿ሺ𝜃 ൅ 1ሻሿ𝑗!ሽ.  

Table 2 shows the values of  numerical values of Rényi entropy 𝐺𝑀𝑂𝑃 െ
𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution for some selected parameter values. As expected, the Rényi 
entropy turns out to be non-increasing with 𝛿. 

Table 2:  Rényi entropy 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution with different values of 𝜃,𝛼, 𝜆 and 𝛽 

Parameter 𝛿 
𝜃 𝛼 𝜆 𝛽 0.2 0.5 1.5 2 3 5 
10 10 2 2 -0.2550 -0.6403 -0.9916 -1.0647 -1.1549 -1.2490 
5 5 0.5 0.5 1.6816 1.3053 0.9722 0.9032 0.8176 0.7280 
5 5 2 0.5 1.3469 0.8661 0.4519 0.3687 0.2669 0.1621 
3 3 2 0.5 1.6090 1.0220 0.5252 0.42839 0.3113 0.1924 

1.5 1.5 2 0.5 2.1288 1.3773 0.6945 0.5640 0.4097 0.2571 
2 0.5 0.5 0.5 1.7182 0.8594 0.4390 -0.1133 -0.2982 -0.4789 

4.  Estimation 

Here, we consider the parameter estimation of 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃,𝛼, 𝜆ሻ via the 
maximum likelihood (ML) method.  

4.1 Maximum likelihood method 

Let 𝑇 ൌ ሺ𝑡ଵ, 𝑡ଶ, . . ., 𝑡௡ሻ be a random sample of size 𝑛 from 𝐺𝑀𝑂𝑃 െ 𝐺ሺ𝜃, 𝛼, 𝜆ሻ 
with parameter vector 𝜌 ൌ ሺ𝜃, 𝛼, 𝜆, 𝜉ሻ, where 𝜉 ൌ ሺ𝜉ଵ,  𝜉ଶ, . . ., 𝜉௤ሻ is the parameter 
vector of G. Then, the log-likelihood function for 𝜌 is given by 
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Due to its complex form, this function cannot be solved precisely, but it can be 
numerically maximized by using  optimization methods available with the software R.   
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We obtain the components of the score vector ),,,( ξUUUUU ρ  by taking 
the partial derivatives of the log-likelihood function with respect to ξand,,  . 

The asymptotic variance-covariance matrix of the MLEs of parameters is obtained 
by inverting the Fisher information matrix 𝐼ሺ 𝜌ሻ derived using the second partial 
derivatives of the log-likelihood function with respect to each parameter. 
The 𝑖𝑗௧௛ elements of 𝐼௡ሺρሻ are given by  

𝐼௜௝ ൌ െ𝐸ሾ𝜕ଶ𝑙ሺ𝜌ሻ 𝜕𝜌௜𝜕𝜌௝ൗ ሿ, 𝑖, 𝑗 ൌ 1,2,⋯ , 3 ൅ 𝑞. 

In practice one can estimate 𝐼௡ሺ𝜌ሻ by the observed Fisher’s information matrix 
𝐼መ௡ሺ𝜌ොሻ ൌ ሺ𝐼መ௜௝ሻ defined as      

𝐼መ௜௝ ൎ ൫െ𝜕ଶ𝑙ሺ𝜌ሻ 𝜕𝜌௜𝜕𝜌௝ൗ ൯
𝜼ୀ𝜼ෝ

,   𝑖, 𝑗 ൌ 1,2,⋯ , 3 ൅ 𝑞. 

From the asymptotic theory of MLEs under some regularity conditions on the 
parameters as 𝑛 → ∞ the asymptotic distribution of √𝑛ሺ𝜌ො െ 𝜌ሻ is 𝑁௞ሺ0,𝑉௡ሻ 
where 𝑉௡ ൌ ሺ𝑣௝௝ሻ ൌ 𝐼௡ିଵሺ𝜌ሻ. This holds even if 𝑉௡ is replaced by 𝑉෠௡ ൌ 𝐼መିଵሺ𝜌ොሻ. Using this 
result large sample standard errors of jth parameter 𝜌௝ is given byඥ𝑣ො௝௝. 

4.2 Simulation 

Here, a Monte Carlo simulation study is conducted to compare the performance 
of the different estimators of the unknown parameters for the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ 
distribution using R program. We generate 𝑁 ൌ 3000 samples of size 𝑛 ൌ 5to80from 
GMOP-E distribution with true parameter values 𝜃 ൌ 2,𝛼 ൌ 8, 𝜆 ൌ 5,𝛽 ൌ 0.5, and 
calculate the bias and mean square error (MSE) of the MLEs empirically by 

𝐵𝑖𝑎𝑠௛ ൌ
ଵ

ே
∑ ሺℎ෠௜ െ ℎሻே
௜ୀଵ and 𝑀𝑆𝐸௛ ൌ

ଵ

ே
∑ ሺℎ෠௜ െ ℎሻଶே
௜ୀଵ respectively (forℎ ൌ 𝜃,𝛼, 𝜆,𝛽). 

Results of this simulation study are presented graphically in Figures 4 and 5 and 
tell us that as the sample sizes increases the biases and MSE’s approach to 0 in all caess, 
which is consistent with the theoretical properties of the MLE and hence appropriate 
for estimating the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution parameters. 
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Figure 4: The Biases for the parameter values 𝜃 ൌ 2,𝛼 ൌ 8, 𝜆 ൌ 5, 𝛽 ൌ 0.5 for 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ 
distribution 

 

 

Figure 5: The MSEs for the parameter values 𝜃 ൌ 2,𝛼 ൌ 8, 𝜆 ൌ 5,𝛽 ൌ 0.5 for 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ 
distribution 
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5. A Real Data Application 

Here, we consider modelling of the one failure time data set to illustrate the 
suitability of the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution in comparison to some existing 
distributions by estimating the parameters by numerical maximization of log-
likelihood functions. The data set consists of survival time of 72 guinea pigs infected 
with virulent tubercle bacilli, reported by Bjerkedal (1960). The descriptive statistics 
about the data set shown in Table 3 reveal that the data set is positively skewed as 
expected from the nature of life time data and has higher kurtosis.  

Table 3:  Descriptive Statistics for the guinea pigs survival time’s data set 
Data Set      n        Min.       Mean   Median     s.d.    Skewness    Kurtosis      1st Qu.   3rd Qu.      Max. 

      I            72       0.100       1.851     1.560     1.200      1.788         4.157          1.080      2.303       7.000 

We have compared the 𝐺𝑀𝑂𝑃 െ 𝐸ሺ𝜃,𝛼, 𝜆,𝛽ሻ distribution with exponential (Exp), 
moment exponential (ME), transmuted exponential (T-E), Marshall-Olkin exponential 
(MO-E) (Marshall and Olkin, 1997), generalized Marshall-Olkin exponential (GMO-
E) (Jayakumar and Mathew, 2008) and Marshall-Olkin transmuted exponential (MOT-
E), Kumaraswamy exponential (Kw-E) (Cordeiro and de Castro, 2011), Beta 
exponential (BE) (Eugene et al., 2002), Marshall-Olkin Kumaraswamy exponential 
(MOKw-E) (Handique et al., 2017), Kumaraswamy Marshall-Olkin exponential 
(KwMO-E) (Alizadeh et al., 2015), beta Poisson exponential (BP-E) (Handique et al., 
2022)  and Kumaraswamy Poisson exponential (KwP-E) (Chakraborty et al., 2022) 
distributions for the failure time data set. 

Model with the lowest AIC (Akaike Information Criterion), BIC (Bayesian 
Information Criterion), CAIC (Consistent Akaike Information Criterion), and HQIC 
(Hannan-Quinn Information Criterion) is chosen as the best. Also, to verify which 
distribution fits better these data goodness-of-fit tests, Anderson-Darling (A), Cram′er-
von Mises (W) and Kolmogorov-Smirnov (K-S) statistics are applied. Asymptotic 
standard errors of the MLEs for each competing model are also provided. The best fitted 
density and the fitted cdf are plotted with the corresponding observed histograms and 
ogives in Figure 7, which indicates that the proposed distributions provide a close fit to 
this data set.  

To check the shape of the observed hazard function the total time on test (TTT) 
plot Aarset, (1987) is used. A straight diagonal line indicates constant hazard for the 
data set, whereas a convex (concave) shape implies decreasing (increasing) hazard. The 
TTT plots for the data set Figure 6 indicate that the data set has increasing hazard rate. 
We also provide the box plot of the data to summerize the minimum, first quartile, 
median, third quartile, and maximum, where a box is shown from the first quartile to 
the third quartile with a vertical line going through the box at the median.  
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Figure 6:  TTT and Box plot for the failure time data set 

Table 4:  MLEs, standard errors (in parentheses) values for the guinea pigs survival time’s data set 

  Models                     𝜃෠                       𝜶ෝ                        𝒂ෝ                          𝒃෡                       𝜆መ                      𝜷෡ 
     Exp                        ---                    ---                    ---                        ---                    ---                  0.540 
    ሺ𝛽ሻ                                                                                                                                                    (0.063)  
     ME                        ---                     ---                    ---                       ---                    ---                   0.925 
    ሺ𝛽ሻ                                                                                                                                                     (0.077)   
     T-E                       ---                      ---                    ---                       ---                  -0.812               1.041 
   ሺ𝜆,𝛽ሻ                                                                                                                          (0.038)           (0.105)  
   MO-E                     ---                    8.778                 ---                       ---                    ---                  1.379     
   ሺ𝛼,𝛽ሻ                                            (3.555)                                                                                         (0.193)  
                                                          
   GMO-E                0.179                47.635                ---                       ---                    ---                  4.465    
 ሺ𝜃,𝛼,𝛽ሻ               (0.070)             (44.901)                                                                                        (1.327)    
   MOT-E                  ---                     3.245                ---                       ---                  -0.696              1.354    
 ሺ𝛼, 𝜆,𝛽ሻ                                          (1.863)                                                                 (0.137)           (0.125)   
    Kw-E                     ---                       ---                    3.304                  1.100               ---                 1.037     
ሺ𝑎, 𝑏,𝛽ሻ                                                                      (1.106)               (0.764)                                  (0.614)    
     B-E                        ---                     ---                     0.807                  3.461               ---                 1.331     
ሺ𝑎, 𝑏,𝛽ሻ                                                                      (0.696)               (1.003)                                  (0.855)    
  MOKw-E                ---                    0.008                 2.716                   1.986               ---                 0.099     
 ሺ𝛼, 𝑎, 𝑏,𝛽ሻ                                     (0.002)              (1.316)                (0.784)                                 (0.048)     
  KwMO-E                ---                    0.373                 3.478                   3.306               ---                 0.299     
ሺ𝛼, 𝑎,𝑏,𝛽ሻ                                      (0.136)              (0.861)                (0.779)                                 (1.112)     
     BP-E                      ---                      ---                   3.595                  0.724               0.014             1.482    
ሺ𝑎, 𝑏, 𝜆,𝛽ሻ                                                                 (1.031)               (1.590)            (0.010)          (0.516) 
    KwP-E                    ---                      ---                  3.265                  2.658                4.001             0.177     
ሺ𝑎, 𝑏, 𝜆,𝛽ሻ                                                                 (0.991)               (1.984)            (5.670)          (0.226)     
  GMOP-E               0.333               12.584                  ---                      ---                   0.054             2.858     
ሺ𝜃,𝛼, 𝜆,𝛽ሻ            (0.151)              (7.696)                                                                  (1.376)          (0.959)    
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Table 5: Log-likelihood, AIC, BIC, CAIC, HQIC, A, W and KS (p-value) values for the guinea 
 pigs survival times data set   

       Models                 AIC             BIC            CAIC        HQIC             A            W               KS   
                                                                                                                                                    (p-value)    

           Exp                   234.63        236.91        234.68        235.54          6.53        1.25             0.27  
           ሺ𝛽ሻ                                                                                                                                    (0.06) 
           ME                   210.40        212.68        210.45        211.30          1.52        0.25             0.14  
          ሺ𝛽ሻ                                                                                                                                     (0.13) 
           T-E                   209.94        214.50        210.11        211.74          0.98        0.19             0.10  
        ሺ𝜆,𝛽ሻ                                                                                                                                    (0.17) 
         MO-E                210.36        214.92        210.53        212.16          1.18         0.17            0.10        

         ሺ𝛼,𝛽ሻ                                                                                                                                  (0.43) 
        GMO-E              210.54        217.38        210.89        213.24          1.02         0.16            0.09         
       ሺ𝜃,𝛼,𝛽ሻ                                                                                                                               (0.51) 
        MOT-E              208.26        215.10         208.61        210.96          0.86         0.15            0.10         
         ሺ𝛼, 𝜆,𝛽ሻ                                                                                                                              (0.47) 
           Kw-E               209.42        216.24         209.77        212.12          0.74          0.11           0.08        

         ሺ𝑎, 𝑏,𝛽ሻ                                                                                                                              (0.50) 
             B-E                 207.38       214.22         207.73        210.08           0.98         0.15            0.11 

         ሺ𝑎, 𝑏,𝛽ሻ                                                                                                                              (0.34)        
         MOKw-E          209.44       218.56         210.04         213.04          0.79         0.12           0.10   

        ሺ𝛼, 𝑎, 𝑏,𝛽ሻ                                                                                                                          (0.44)        
         KwMO-E          207.82       216.94        208.42          211.42          0.61         0.11           0.08          

         ሺ𝛼, 𝑎, 𝑏,𝛽ሻ                                                                                                                         (0.73) 
           BP-E                205.42       214.50        206.02          209.02          0.55         0.08           0.09 

       ሺ𝑎, 𝑏, 𝜆,𝛽ሻ                                                                                                                           (0.81)          
           KwP-E             206.63       215.74       207.23          210.26           0.48         0.07           0.09  

        ሺ𝑎, 𝑏, 𝜆,𝛽ሻ                                                                                                                           (0.79)      
         GMOP-E          204.24       213.36        204.83          207.84           0.44         0.04           0.07 

ሺ𝜃,𝛼, 𝜆,𝛽ሻ                                                                                                                          (0.83)               
 
MLEs of parameters with standard errors for all the fitted models and AIC, BIC, 

CAIC, HQIC, A, W and K-S statistic with p-value for the failure time data set are 
presented respectively in Tables 4 and 5. It is obvious from these results that the 
𝐺𝑀𝑂𝑃 െ 𝐸distribution is not only a better model than the entire sub models but is also 
better than most of the recently introduced three or four parameters models. The plots 
in Figure 7 also indicate that the proposed distribution provides a close fit to the data 
set considered here.        
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Figure 7:   Plots of the observed histogram and estimated pdf on left and on right the observed ogive 
  and estimated cdf for failure time data set for the GMOP-E model 

6. Conclusions 

In this work, we propose a new family of continuous distributions called the 
Generalized Marshall-Olkin Poisson -G family of distributions. Several new models can 
be generated by considering special distributions for G. We demonstrate that the pdf of 
any GMOPG distribution can be expressed as a linear combination of exponentiated-
G density functions, which allowed us to derive some of its mathematical and statistical 
properties. The estimations of the model parameters are obtained by the maximum 
likelihood method. One application of the proposed family empirically proves its 
flexibility to model real data sets. In particular, we verified that a special case of the 
GMOPG family can provide better fits than its sub models and other models generated 
from well-known families. 
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Impact of human capital on the innovation performance  
of EU economies 

Iwona Skrodzka1 

Abstract 

The purpose of the paper is to empirically determine the impact of human capital on the 
innovation performance of EU economies. Currently, most researchers consider human 
capital a significant factor of economic growth based on knowledge and innovation. 
Depending on the amount and quality of the available resources, human capital can play 
various parts in an economy, e.g. that of a user of existing knowledge and technology 
(general human capital), an implementer of new solutions, or a creator of previously 
undiscovered knowledge (specialised human capital). However, there is a gap in the 
literature regarding empirical research into the influence of human capital on the 
innovativeness of economies. This is related to the difficulties associated with the 
measurement of the two categories, as well as the limited number of methods to study the 
relationships between unobservable variables. The research described in the paper fills this 
gap. In order to study the relationship between human capital (general and specialised) and 
the innovation performance of economies, the partial least squares structural equation 
modelling (PLS-SEM) was used. The research spanned the years 2014-2020. Four PLS-SEM 
models were estimated based on cross-sectional data for the EU economies. The results 
showed that human capital significantly boosts the innovation performance of EU 
economies. Both general human capital and specific human capital had a significant positive 
impact on the innovation performance of these countries in the analysed years. The results 
can have a practical application and serve as an instrument of innovation policies or as a tool 
helpful in creating conditions for innovation systems. 

Key words: human capital, innovativeness, innovation performance, structural equation 
modeling, PLS-SEM. 

1.  Introduction 

Human capital, understood as the knowledge, skills, competences and other 
attributes embodied in individuals that are relevant to economic activity (OECD, 1998), 
has nowadays become a crucial factor behind knowledge- and innovation-based 
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growth. The significance of human capital is corroborated by numerous studies 
(see Azariadis and Drazen, 1990;  Mankiw et al., 1992; Benhabib and Spiegel, 1994; 
Barro, 2001). Many of them emphasize direct relationships between human capital and 
economic growth. There are, however, reasons to believe that these relationships are 
more complex than is often assumed (Aleknavičiūtė et al., 2016). Depending on the size 
and quality of resources, human capital can play various parts in an economy, e.g. that 
of a user of existing knowledge and technology, an implementer of new solutions,  
or a creator of previously undiscovered knowledge. 

The article analyses the problem of human capital in terms of its impact on the 
innovativeness of EU countries. Innovativeness is defined as the ability to create and 
implement innovations. Moreover, two categories to describe innovation are distin-
guished: 
 innovation capacity, i.e. the extent to which an economy is capable of creating and 

commercialize new ideas,   
 innovation performance, i.e. the outcome stemming from a combination of 

society’s creativity and the financial assets of a given economic and institutional 
environment.     
The purpose of the paper is to empirically identify the impact of human capital on 

the innovation performance of EU economies. Two kinds of human capital are distin-
guished: general human capital, i.e. overall base of knowledge, skills, competences, and 
qualifications indispensable in processes associated with diffusion of knowledge and 
innovation; and specialized human capital, i.e. specialized knowledge, skills, compe-
tences and qualifications used for creating new knowledge and developing innovative 
solutions.     

The paper consists of five parts. Section 2 presents selected empirical studies 
featuring analyses of the relationships between human capital and the innovativeness 
of European economies. Section 3 describes the research method – partial least squares 
structural equation modelling. Section 4 discusses the results of modeling. Section 5 
sums up the conducted research.   

2.  Literature review 

Empirical verification of the hypothesis that human capital significantly influences 
the innovativeness of economies presents numerous difficulties. First, the definitions of 
both of these categories vary in the literature. Second, neither of them is directly 
observable. Third, there is no universally accepted method to measure them. Fourth, 
few econometric methods make it possible to examine the influence of one 
unobservable variable on another. Below presented are examples of empirical research 
regarding European economies.   
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R. Aleknavičiūtė, V. Skvarciany and S. Survilaitė (2016) analyzed the impact of 
human capital on innovation in 26 EU countries. The study covered the years 2002-
2012. Ten indicators were used to measure human capital and one indicator to measure 
innovation.   

The studied countries were divided into two clusters: highly innovative economies 
(Austria, Belgium, Czechia, Cyprus, Dania, Estonia, Finland, Germany, Greece, 
Ireland, Italy, Luxembourg, Netherlands, Portugal, Sweden, United Kingdom) and 
economies with low innovation levels (Bulgaria, France, Hungary, Latvia, Lithuania, 
Poland, Romania, Slovakia, Slovenia, Spain). Correlation analysis was the research 
method used. The following conclusions were reached (Aleknavičiūtė et al., 2016): 
1. Among the countries with low innovation, 9 human capital indicators were found to 

have significant correlations with the level of innovativeness, whereas one – 
participation of young people in education – was insignificantly correlated. Lifelong 
learning and high level of computer skills were the most strongly correlated 
indicators. 

2. In the group of highly innovative countries, 6 indicators proved to be significantly 
correlated with innovation, while 4 (lifelong learning, secondary and higher 
education, high level of computer skills, and the level of satisfaction with one's 
education) had insignificant correlations. 'Results achieved by school students 
in Mathematics' was the indicator which was the most closely correlated with 
innovation performance.  

3. In all the analyzed countries, 8 human capital indicators showed significant 
correlations with the level of innovation in the economies, with one of them 
(population with secondary or higher education) being negatively correlated. Two 
indicators (participation of young people in education and high level of computer 
skills) were insignificantly correlated. Indicators of the quality of human capital were 
the most strongly associated with the level of innovation. 

One of the advantages of the above-discussed research is the fact that it takes into 
consideration the qualitative aspect of human capital. As far as its limitations are 
concerned, innovation is addressed one-dimensionally. Apart from this, analysis of 
dependencies on the basis of correlation coefficients poses interpretation problems, 
because it is difficult to unequivocally determine the direction of each dependency.  

The influence of human capital and social capital on the innovation activity of 
economies was investigated by A. Kaas, E. Parts and H. Kaldaru (2012). The statistical 
sample consisted of 30 European countries. Data on human and social capital were 
derived from the year 1999, while data on innovation activity from the period of 2002-
2004. Innovation was measured with 4 indicators, human capital with 2 indicators, and 
social capital with 10 indicators.  
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The countries were divided into 4 groups: 
 large, developed Western European economies: Austria, Belgium, France, Germany, 

Greece, Italy, Netherlands, Portugal, Switzerland, Spain, Sweden, Turkey, United 
Kingdom,  

 small, developed Western European economies: Denmark, Finland, Ireland, Island, 
Luxembourg, Malta, 

 large, catching-up post-communist economies: Bulgaria, Czechia, Hungary, Poland, 
Romania,  

 small, catching-up post-communist economies: Estonia, Latvia, Lithuania, Slovakia, 
Slovenia. 

The values of variables 'human capital' and 'social capital' were estimated by means 
of the confirmatory factor analysis. The conclusions of the study were as follows (Kaasa 
et al., 2012):   
1. Small, developed Western European economies were found to be the most 

innovating, followed by large, developed Western European economies. Western 
economies were relatively far ahead of small, catching-up economies, whereas large, 
catching-up economies were in the most difficult situation. 

2. An analogous pattern applied to the levels of human capital and social capital.  
3. Catching-up economies were characterized by less innovation activity and, at the 

same time, lower levels of human and social capital.   
Among the merits of the study is that it accounts for several different indicators of 

innovation and that it measures human and social capital using the confirmatory factor 
analysis. What raises doubts, however, is the large disproportion between the numbers 
of indicators ascribed to the categories under analysis. Besides, the conclusions 
regarding dependencies were drawn merely on the basis of comparison between the 
values of latent constructs and the mean values of innovation indicators.   

Different statistical and econometric methods were applied by M. Dakhli and D. 
Clercq (2004) in their research into the impact of human and social capital on the 
country’s level of innovation. The statistical sample comprised 59 countries: 30 from 
Europe, 13 from Asia and Australia, and 3 from Africa. Data related to human and 
social capital were from 1995, while data on innovation from 1998.  

Innovation was measured with 3 indicators, human capital with 4, while social 
capital with 31 indicators deriving from surveys. The first stage involved construction 
of synthetic measures of human capital and social capital, and their dimensions. Next, 
a correlation analysis was conducted, which revealed that (Dakhli and Clercq, 2004): 
1. Human capital was positively correlated with each of the indicators of the level of 

innovation in an economy. 
2. 'Level of overall confidence' and 'trust in institutions' were positively correlated with 

at least one indicator of innovation. 



STATISTICS IN TRANSITION new series, March 2025 

 

139

3. 'Activity in associations' and 'norms of civic behavior' did not have any correlation 
with the level of innovation in an economy.    

In the next step, three regression models were estimated. The innovation indicators 
were used as dependent variables, while human capital and selected dimensions of 
social capital were independent variables. Moreover, each country's population size was 
taken into consideration. In order to ascertain whether social polarization had an 
impact on the relationship between social capital and innovation, a control variable – 
'income gap' – was included into the models. The analysis yielded the following 
conclusions (Dakhli and Clercq, 2004):    
1. Human capital had a positive impact on each of the specified indicators of the level 

of innovation in an economy.  
2. Level of overall confidence and trust in institutions had a positive impact on at least 

one of the three indicators of innovativeness, i.e. a high level of overall confidence 
leads to an increase in the number of patents and amount of expenditure on R&D, 
while trust in institutions had a positive influence on the volume of high-tech 
exports. 

3. 'Activity in associations' had a positive impact on only one indicator of innovative-
ness, and namely 'R&D expenditure  index'.  

4. 'Norms of civic behavior' had a negative influence on the level of high-tech exports.  
5. Inclusion of 'income gap' as a control variable resulted in higher parameter estimates. 

Nevertheless, the control variable proved significant only in the model where 'R&D 
expenditure' was the dependent variable.     

Application of various methods of statistical analysis should be regarded as an asset 
of the study. However, the paper also seems to have several weaknesses. The level of 
innovation in an economy was approached in a one-dimensional way in each of the 
regression models. What is more, no full statistical verification of the estimated models 
was performed. The authors failed to include information as to, e.g. whether the 
estimated models met the rigorous standards of the least squares method. There is also 
an evident disproportion between the number of indicators used for measuring the 
analyzed types of capital.   

3.  Research method 

3.1.  Fundamentals of PLS-SEM modelling 

Structural equation models (SEM) include a number of statistical methodologies 
meant to estimate a network of causal relationships, defined according to a theoretical 
model, linking two or more latent complex concepts, each measured through a number 
of observable indicators. Among the methods of estimating SEM models, the 
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covariance-based method (CB), invented by K. G. Jöreskog, enjoyed the greatest 
popularity for a long time. Its recognition was so universal that in social sciences the 
phrases: structural equation modeling (SEM) and covariance-based structural equation 
modeling (CB-SEM) used to be synonymous for many years (Chin, 1998). Meanwhile, 
H. Wold developed an alternative approach – the partial least square method (PLS). 

An SEM model consists of two submodels: a structural one and a measurement one. 
A structural model describes the relationships among latent variables, whereas 
a measurement model – the relationships among the latent variables and the indicators 
by which they are identified (Wold, 1980). Definition of latent variables by means of 
indicators can be done either deductively or inductively (Rogowski, 1990). Under the 
former approach, indicators reflect the defined latent variable. In the case of inductive 
definition, it is assumed that indicators make up the latent variables, hence the 
expressions formative indicators.  

Estimation of a PLS-SEM model is performed using the PLS method. The algorithm 
simultaneously estimates inner model parameters – path coefficients – and outer model 
parameters – outer weights and outer loadings. The procedure also yields estimations 
of the values of all the latent variables included in the model (see Hair et al., 2022). 
Verification of a PLS-SEM model is a two-stage process. First, the structural model is 
assessed. Second, if the validity of the structural model has been confirmed, the 
structural model is tested. Table 1 lists the properties of the model which should 
undergo evaluation. 

Table 1: Evaluation of PLS-SEM model 

Evaluation of the measurement models 

Reflective measurement model Formative measurement model 

Internal 
consistency 

Cronbach’s 
alpha 

0.60-
0.95 Convergent 

validity 
Redundancy 

analysis 
≥ 0.7 

correlation Composite 
reliability 

0.60-
0.95 

Convergent 
validity 

Loadings ≥ 0.7 Collinearity 
between 

indicators 

Variance 
Inflation factor 

(VIF) 
≥ 0.5 Average variance 

extracted (AVE) ≥ 0.5 

Discriminant 
validity 

Cross-loadings - 

Significance of 
outer weights p-value < 0.05 

Fornell-Larcker 
criterion - 

Heterotrait-
monotrait ratio 

(HTMT) 
< 0.9 



STATISTICS IN TRANSITION new series, March 2025 

 

141

Table 1: Evaluation of PLS-SEM model  (cont.) 

Evaluation of the structural model 

Collinearity Variance Inflation factor 
(VIF) ≥ 0.5 

Predictive power 
Coefficients of 

determinations (R2) 

values of 0.75, 0.50 and 0.25 
are considered substantial, 

moderate and weak 
Predictive relevance Stone-Geisser’s Q2 value ≥ 0 

Significance of path coefficients p-value < 0.05 

Source: own work on the basis of (Hair et al., 2017, p. 106). 

3.2.  PLS-SEM models with higher order latent variables 

Introducing a higher-order latent variable to an SEM model has numerous 
advantages associated, among other things, with the theoretical usefulness of the model, 
the level of abstraction, or the integrity and accuracy of the measurement model. 
Nevertheless, using higher-order latent variables also involves several challenges, e.g. 
the decision to choose the type of higher-order latent variable measurement model, 
selection of estimation method, or the more complex process of statistical verification 
of the model (Wetzels et al., 2009). 

The literature offers a variety of approaches to identification and estimation of 
models with higher-order latent variables. The most frequently cited is the approach 
proposed by Wold, now known as the repeated indicators approach. In this approach, 
higher-order latent variables are defined by means of the indicators of all the lower-
order latent variables which define them (Sarstedt et al., 2019). 

Statistical verification of a PLS-SEM model with higher-order latent variables is 
relatively complicated. Admittedly, the evaluation criteria used are analogous to those 
applied in standard PLS-SEM models, but particular attention must be paid to 
distinguishing the relationships which are part of the measurement model from those 
which belong to the structural model. The measurement model of a higher-order latent 
variable is a complex one, which should be taken into consideration at the evaluation 
stage. It consists of a measurement model of lower-order latent variables and 
a measurement model of higher-order latent variables (as a whole), represented by the 
relationships among the higher-order variable and the lower-order variables (Hair et 
al., 2022). 

The PLS-SEM method is not without its limitations. Some researchers note that the 
non-parametric nature of this modelling technique is a serious flaw. Also, collection of 
samples of insufficient size and application of PLS-SEM instead of CB-SEM is subject 
to criticism in the case of studies based on sample sets. Another disadvantage of PLS-
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SEM models is that they are linear, whereas the relationships between many economic 
variables are of non-linear nature.     

3.3.  PLS-SEM model specification 

In line with the stated research objective, the following main hypothesis was 
adopted: Human capital has a positive influence on the innovation performance of EU 
economies. Apart from this, two specific hypotheses were verified: 
1. General human capital has a positive impact on the innovation performance of EU 

economies.  
2. Specialized human capital has a positive impact on the innovation performance of 

EU economies.   
The PLS-SEM model (a diagram of which is shown in Figure 1) was used to verify 

the above hypotheses. Latent variable HC was defined by means of two unobservable 
indicators comprising: general human capital (GHC) and specialized human capital 
(SHC). The model contained, therefore, a second-order latent variable (HC). In the 
next step, latent variables GHC and SHC were defined by means of reflective indicators. 
A deductive approach and reflective indicators were also applied to define latent 
variable INN. The indicators which defined the latent variables are presented in Table 1.  

 

 

Figure 1:  Specification of PLS-SEM model. 
Source: own work. 
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Table 2: Indicators of latent variables 

Latent 
variable Indicator Description Source 

GHC 

GHC1 Population aged 25-64 having completed tertiary education 
(%). Eurostat 

GHC2 Employees aged 20-64 having completed tertiary education 
(%). Eurostat 

GHC3 Population aged 25-64 participating in education and 
training (%). Eurostat 

SHC 

SHC1 Population aged 25-64 employed in science and technology 
(%). Eurostat 

SHC2 Researchers (% of total employment). Eurostat 

SHC3 Employment in technology and knowledge-intensive sectors 
(% of total employment). Eurostat 

INN 

INN1 SMEs introducing product innovations (%). EIS 
INN2 SMEs introducing business process innovations (%). EIS 
INN3 PCT patent applications per billion GDP (PPS). EIS 

INN4 
Scientific publications among the top-10% most cited 
publications worldwide (% of total scientific publications of 
the country). 

EIS 

INN5 Knowledge-intensive services exports (% of total services 
exports). EIS 

Source: own work. 

The database, constructed with the use of data from the Eurostat, the World Bank 
and the European Innovation Scoreboard (EIS), consisted of 42 indicators. Seventeen 
of them regarded the innovation performance of economies, while 25 – human capital. 
As a result of statistical verification, at various stages of the modelling process, the 
indicators were removed from the base, e.g. due to gaps in data, insufficient variation, 
of negative verification of the measurement model. Eventually, 11 indicators were 
selected for estimation (Table 1). The model was estimated using the SmartPLS 
software, on the basis of cross-sectional data for four years:  2014, 2016, 2018, and 2020.   

4.  Results and discussion 

The results of the estimation of the models are depicted in Figures 2–5. The 
estimated models underwent multi-stage statistical verification. First, the properties of 
the measurement models of the first-order latent variables (GHC, SHC, INN) were 
tested. Tables 3–6 present the results of these analyses. The indicators fulfilled the 
criteria of convergent validity, internal consistency reliability, and discriminant 
validity, and thus were approved.   
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Figure 2:  PLS-SEM2014 results of estimation 
Source: own work. 

 

 

Figure 3:  PLS-SEM2016 results of estimation 
Source: own work. 

 

 

Figure 4:  PLS-SEM2018 results of estimation 
Source: own work. 
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Figure 5:  PLS-SEM2020 results of estimation 
Source: own work. 

 

 

Table 3: Assessment of reflective measurement model in PLS-SEM2014 

Latent 
variable 

Indicator 

Convergent 
validity 

Internal consistency 
reliability 

Discriminant 
validity 

Loading AVE 
Composite 
reliability 

Cronbach’s 
alpha Cross loadings  

criteria 
>0.7 >0.5 0.6-0.95 0.6-0.95 

GHC 
GHC1 0.954 

0.74 0.82 0.82 Yes GHC2 0.883 
GHC3 0.735 

SHC 
SHC1 0.871 

0.71 0.83 0.79 Yes SHC2 0.926 
SHC3 0.710 

INN 

INN1 0.913 

0.72 0.91 0.90 Yes 
INN2 0.759 
INN3 0.786 
INN4 0.922 
INN5 0.835 

Source: own work. 

GHC1 

GHC2 

GHC3 

SHC1 

SHC2 

SHC3 

INN1 

INN2 

INN3 

INN4 

INN5 

 

GHC 

0.964 

0.900 

0.805 

  

SHC 

0.894 

0.888 

0.650 

 

0.563 

0.509 

0.807 

0.758 

0.731 

0,915 

0,775 
INN 

0.61 

HC 

0.778 
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Table 4: Assessment of reflective measurement model in PLS-SEM2016 

Latent 
variable 

Indicator 

Convergent 
validity 

Internal consistency 
reliability 

Discriminant 
validity 

Loading AVE 
Composite 
reliability 

Cronbach’s 
alpha Cross loadings  

criteria 
>0.7 >0.5 0.6-0.95 0.6-0.95 

GHC 
GHC1 0.953 

0.75 0.84 0.83 Yes GHC2 0.873 
GHC3 0.766 

SHC 
SHC1 0.898 

0.69 0.84 0.76 Yes SHC2 0.935 
SHC3 0.615 

INN 

INN1 0.861 

0.67 0.90 0.88 Yes 
INN2 0.705 
INN3 0.803 
INN4 0.930 
INN5 0.789 

Source: own work. 

 

Table 5: Assessment of reflective measurement model in PLS-SEM2018 

Latent 
variable 

Indicator 

Convergent 
validity 

Internal consistency 
reliability 

Discriminant 
validity 

Loading AVE 
Composite 
reliability 

Cronbach’s 
alpha Cross loadings  

criteria 
>0.7 >0.5 0.6-0.95 0.6-0.95 

GHC 
GHC1 0.960 

0.79 0.87 0.87 Yes GHC2 0.895 
GHC3 0.805 

SHC 
SHC1 0.900 

0.69 0.81 0.76 Yes SHC2 0.898 
SHC3 0.662 

INN 

INN1 0.662 

0.62 0.88 0.85 Yes 
INN2 0.736 
INN3 0.817 
INN4 0.916 
INN5 0.775 

Source: own work. 
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Table 6: Assessment of reflective measurement model in PLS-SEM2020 

Latent 
variable 

Indicator 

Convergent 
validity 

Internal consistency 
reliability 

Discriminant 
validity 

Loading AVE 
Composite 
reliability 

Cronbach’s 
alpha Cross loadings  

criteria 
>0.7 >0.5 0.6-0.95 0.6-0.95 

GHC 
GHC1 0.964 

0.80 0.87 0.87 Yes GHC2 0.900 
GHC3 0.805 

SHC 
SHC1 0.894 

0.67 0.81 0.75 Yes SHC2 0.888 
SHC3 0.650 

INN 

INN1 0.731 

0.64 0.89 0.86 Yes 
INN2 0.758 
INN3 0.807 
INN4 0.915 
INN5 0.775 

Source: own work. 

Next, the second part of the measurement models of the second-order latent 
variable (HC) was verified. The unobservable indicators of HC were not colinear, 
whereas the estimates of weights proved to be statistically significant (Table 7). 
Therefore, the models were approved.  

Table 7: Significance testing results of the formative model weights  

Relation Weight t value p value 
95% 

confidence interval 
Significance  

(p<0.05)? 

PLS-SEM2014 
GHCHC 0.513 13.79 0.000 (0.43, 0.58) Yes 
SHCHC 0.550 13.14 0.000 (0.48, 0.65) Yes 

PLS-SEM2016 
GHCHC 0.530 14.01 0.000 (0.44, 0.59) Yes 
SHCHC 0.540 11.76 0.000 (0.47, 0.65) Yes 

PLS-SEM2018 
GHCHC 0.553 13.29 0.000 (0.48, 0.64) Yes 
SHCHC 0.518 11.65 0.000 (0.44, 0.62) Yes 

PLS-SEM2020 
GHCHC 0.563 12.75 0.000 (0.48, 0.65) Yes 
SHCHC 0.509 11.00 0.000 (0.43, 0.61) Yes 

Source: own work. 
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In the last step, statistical verification of the structural models was conducted. 
In every case, variable HC showed a statistically significant effect on variable INN 
(Table 8). The statistical hypothesis that HC did not have significant effect on INN was, 
therefore, rejected in favor of the alternative hypothesis.  

Table 8: Significance testing results of the structural model path coefficients 

Model Path  
coefficient t value p value 

95% 
confidence interval 

Significance  
(p<0.05)? 

PLS-SEM2014 0.813 16.86 0.000 (0.72, 0.91) Yes 
PLS-SEM2016 0.825 17.45 0.000 (0.74, 0.92) Yes 
PLS-SEM2018 0.808 14.50 0.000 (0.70, 0.92) Yes 
PLS-SEM2020 0.778 11.85 0.000 (0.65, 0.91) Yes 

Source: own work. 

The coefficients of determination had values ranging from 0.61–0.68 (Figures 2–5), 
which means that the variability of INN was explained by the models to a satisfactory 
degree. The Q2 values of the Stone-Geisser test were positive (Table 9), and thus the 
models proved to have high prognostic accuracy. The structural models were positively 
assessed. The next stage of the modelling process involved analysis of the obtained 
results. 

Table 9: Q2 values 

Indicators  
Q2 

PLS-SEM2014 PLS-SEM2016 PLS-SEM2018 PLS-SEM2020 

INN1 0.37 0.24 0.11 0.14 
INN2 0.22 0.13 0.11 0.13 
INN3 0.48 0.54 0.54 0.49 
INN4 0.48 0.57 0.54 0.51 
INN5 0.53 0.46 0.40 0.34 

General 0.63 0.64 0.62 0.57 

Source: own work. 

The estimates of the parameters of structural models demonstrated that general 
human capital had a strong, positive influence on the innovation performance of EU 
economies in each of the four analyzed years. The path coefficients assumed values 
within the range 0.778–0.836. Moreover, both general human capital and specialized 
human capital had a positive impact on the innovation performance of the economies 
under study. This is evidenced by the parameters of substitution relationships, which 
can be derived by substituting latent variable HC with the relationships of its 
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measurement model (Table 10). The strength of the influence exerted by both kinds of 
capital on innovation performance was comparable, although it should be noted that 
in the years 2014 and 2016, specialized human capital had a slightly stronger impact, 
while in 2018 and 2020 the influence of general human capital was more pronounced.    

Table 10:  Significance testing results of  the substitution relation parameters 

Relation Parameter  t value p value 
95% 

confidence interval 
Significance  

(p<0.05)? 
PLS-SEM2014 

GHCINN 0.417 9.66 0.000 (0.33, 0.48) Yes 
SHCINN 0.447 13.33 0.000 (0.39, 0.52) Yes 

PLS-SEM2016 
GHCINN 0.437 9.42 0.000 (0.34, 0.52) Yes 
SHCINN 0.445 12.95 0.000 (0.39, 0.53) Yes 

PLS-SEM2018 
GHCINN 0.447 9.06 0.000 (0.35, 0.54) Yes 
SHCINN 0.418 11.77 0.000 (0.36, 0.50) Yes 

PLS-SEM2020 
GHCINN 0.438 8.80 0.000 (0.35, 0.54) Yes 
SHCINN 0.396 9.11 0.000 (0.31, 0.49) Yes 

Source: own work. 

PLS-SEM modelling also yielded estimates of the values of the latent variables 
included in the model. They were treated as values of synthetic measures and used for 
ranking and classification of the studied countries. Four typological groups were 
created: Group I – very high level of analyzed category; Group II – high/medium level; 
Group III – low level; and Group IV – very low level. Interval boundaries were 
calculated using the mean and standard deviation of the synthetic measures. 

The classification of EU countries according to the level of human capital in 2014 
was as follows (the order of countries within groups corresponds to the ranking status): 
 Group I: Finland, Denmark, Sweden, Luxembourg, Ireland, 
 Group II: Netherlands, Belgium, France, Austria, Estonia, Slovenia, 
 Group III: Germany, Spain, Lithuania, Cyprus, Czechia, Latvia, Malta, Portugal, 

Hungary, Poland, Greece, Bulgaria, 
 Group IV: Slovakia, Italy, Croatia, Romania. 

The division of the studied countries into typological groups in terms of their 
innovation performance in 2014 is presented below:    
 Group I: Finland, Sweden, Netherlands, Ireland, Germany, Belgium, Denmark, 
 Group II: Luxembourg, Austria, France, Cyprus, Portugal, Italy,  
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 Group III: Greece, Slovenia, Czechia, Spain, Estonia, Malta, Hungary, Lithuania, 
Croatia, 

 Group IV: Slovakia, Latvia, Bulgaria, Poland, Romania 

In 2020 several changes occurred in both classifications, as compared to 2014. 
In the human capital clustering, Lithuania rose from group III to group II, whereas 
Slovakia moved up from group IV to group II. Bulgaria, meanwhile, dropped from 
group III to group IV. In the innovation performance clustering, Ireland fell from group 
I to group II, Portugal – from group II to group III, whereas Greece advanced from 
group III to group II.    

The present empirical study confirmed that human capital is an important factor 
behind enhancing the innovation performance of EU economies. Similar conclusions 
can be drawn from theoretical and empirical research by other authors. In particular, 
selected endogenous models emphasize the indirect effect of human capital on 
increased productivity due to improvement of capacity for creating domestic 
innovations and absorption of new technologies (see Nelson and Phelps; 1966, Romer, 
1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992; Jones, 2003). Empirical 
investigations performed for various groups of countries indicate that human capital 
exerts a positive influence on the level of innovation in economies and increases their 
capacity to transfer knowledge and technology (see Benhabib and Spiegel, 2005; 
Vandenbussche et al., 2006, Ang et al., 2011; Danquah and Ouattara, 2014, Balcerzak 
and Pietrzak, 2016). 

5.  Conclusions 

Empirical research on the relationship between human capital and innovativeness 
of economies is a very complex issue. This is related to the difficulties associated with 
measurement of the two categories, as well as the limited number of methods to study 
the relationships between unobservable variables. Nevertheless, various authors have 
attempted to identify the strength and direction of the impact of human capital on 
different aspects of innovativeness. This paper also makes such an attempt. 

The research focused on EU economies during the years 2014–2020. PLS-SEM 
models were developed and estimated, containing the variables: human capital, general 
human capital, specialized human capital, and the innovation performance of the 
economy. The results of the modeling revealed a positive impact of human capital on 
the innovation performance of the analyzed economies. This indicates that economies 
with higher levels of human capital are also more innovative. Moreover, the model 
showed that the impact of general human capital and specialized human capital on 
innovation performance was comparable.  
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Based on the obtained results, the following conclusions can be drawn. The 
diversification of human capital is crucial for the innovativeness of an economy. 
General human capital provides flexibility and broad adaptability to new technologies 
and market changes, while specialized human capital enables the creation of advanced 
technological innovations. Optimal conditions for innovation arise when both types of 
human capital are well-developed and complement each other. Although both types of 
human capital have their specific functions, their combination is crucial for maximizing 
the innovativeness of an economy. General human capital creates the foundation on 
which specialized human capital can develop, meaning that countries must invest 
in both forms simultaneously. 

The results of the conducted study can have a practical application and serve as an 
instrument of innovation policies or as a tool helpful in creating conditions for 
innovation systems. 

Future research can be improved by considering other factors of innovation,  
e.g. financial factors. Then, it would be possible to verify which type of factors, tangible 
or intangible, have a stronger impact on innovation. Models accounting for relation-
ships between various aspects of an economy's innovation capacity and its innovation 
performance provide an interesting direction for future research. 
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Abstract 

Despite the introduction of several adjustments, mitigating data anomalies in financial 
datasets has proven challenging, particularly in the context of cryptocurrencies with extreme 
values and increased volatility. The progress in properly addressing these anomalies prior to 
testing remains restricted, highlighting the unique and complex nature of financial data in 
this domain. Thus, in this paper we propose a hybrid approach called the Win-IS strategy. It 
is meant to address the influence of extreme outliers in the tail and subsequently identify 
breaks, trend breaks and outliers in cryptocurrencies. This methodology uses the 
winsorization (Win) process to enhance the effectiveness of the indicator saturation (IS) 
approach. The study uses cryptocurrencies like Bitcoin (BTC), Ethereum (ETH), Litecoin 
(LTC), Tether (USDT), and Ripple (XRP). The results of the research indicate that the 
winsorization strategy improved the detectability of the IS approach, with Win-IS 
outperforming the IS method in terms of the Bayesian Information Criterion. Furthermore, 
the Win-IS technique uncovered additional breaks, trend breaks and outliers that were 
previously unknown and repeated in some cases as detected by the IS strategy. The effect of 
winsorization is dependent on the chosen percentile and dataset attributes. Through detailed 
examination and comparison, the findings of this research contribute to the improvement 
of other detection approaches, providing a valuable perspective for researchers and 
practitioners in the field. Additionally, this hybrid approach can improve decision-making, 
risk management and model creation, benefiting investors, legislators and scholars. 
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1.  Introduction 

A structural break is an abrupt change in a time series of data. The structural break 
and outliers are an important aspect to consider in economics and statistics since they 
are unexpected. A structural break denotes a change in the behavior of a variable over 
time, such as a rise in the money stock, or a shift in a previously observed link between 
observable variables, such as inflation and unemployment, or the balance of trade and 
the exchange rate (Brooks, 2019). Outliers are data points that deviate from the norm 
(Hawkins, 1980). Extreme values can have a significant impact on the performance of 
statistical tests. As a result, correctly identifying changepoints in time series data 
becomes challenging when working with big samples including a large number of 
extreme values (outliers), which can either coincide with or disguise major shifts 
(breaks). Aside from the masking effect, recognizing and correctly identifying breaks 
and outliers concurrently is another significant challenge. According to Mulry et al. 
(2014), correctly detecting breaks and outliers is crucial for making educated 
investment decisions, managing risk, and maintaining the accuracy of financial 
analysis. Particularly when dealing with financial data, such as cryptocurrency, which 
is known to undergo major changes as a result of external factors such as wars, natural 
disasters, etc. (Chatzikonstanti, 2017). Satoshi Nakamoto, the alias for an anonymous 
computer programmer or group of programmers, invented the first cryptocurrency on 
January 3, 2009, when the Bitcoin software was made public. Later, numerous 
additional coins appeared. Cryptocurrencies have emerged as a disruptive digital asset 
class that has the potential to disrupt traditional financial systems. As these digital assets 
gain popularity, the need for reliable and effective solutions to monitor and manage 
data fluctuations grows.  

So far, a variety of statistical methodologies have been used to identify breaks and 
anomalies within cryptocurrency datasets, including single change detection 
approaches such as Chow (1960) and Quandt (1960), two change detection approaches 
such as Papell and Prodan (2003), and multiple change detection approaches such as 
BP of Bai and Perron (1998, 2003), as well as the Iterative Cumulative Sum of Squares 
(ICSS) approach developed by Iclan and Tiao (1994). In addition, researchers used 
these strategies separately for break or outlier detection. Chatzikonstanti (2017) used 
the wavelet approach to handle outliers and the CUSUM approach to find breaks. 
Mandaci and Cagli (2022) used Bai and Perron to determine the frequency of 
cryptocurrency breaks. Yen et al. (2022) used the BP approach to analyze ten 
cryptocurrencies and found structural breaks in return, price, and squared return. 
Sahoo (2021) employed the Narayan and Popp (2010) endogenous two structural 
breakdowns unit root test to identify breaks in bitcoin returns. Canh et al. (2019) 
applied the Wald test and discovered structural fractures in all well-known 
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cryptocurrencies. Thies and Molnár (2018) used Bayesian change point (BCP) analysis 
to examine the presence of many segments in the Bitcoin return distribution and 
demonstrated evidence of structural breaks in the first and second moments of the 
return distribution. Dutta and Bouri (2022) used Ane et al. (2008) technique and found 
no indication that any of the top cryptocurrencies have outliers except the Bitcoin 
return series. Kaseke et al. (2022) used the Pruned Exact Linear Time (PELT) method 
to identify breakpoints in the cryptocurrency market, which tests for changepoints in 
the mean, variance, and both mean/variance of the series. Abakah et al. (2020) used Bai 
and Perron approach and its extension to the fractional case and discovered the 
existence of breaks in the cryptocurrency market. Aharon (2023) found breaks in 
cryptocurrency by employing modified ICSS technique. Jiang and Yoon (2023) used BP 
and ICSS to detect cryptocurrency breaks.  

However, many of these traditional techniques may struggle in situations when 
outliers exist (Fearnhead and Rigaill, 2019). Rodrigues and Rubia (2011) demonstrate 
that outliers can conceal the presence of structural breaks. Thus, the challenge is to 
determine which magnitude can be classified as a break or an outlier. The topic of 
distinguishing between changepoints and outliers has gotten very little consideration. 
As a result, when evaluating data for structural changes, outliers can frequently obscure 
major trends, yielding incomplete or misleading conclusions. Traditional approaches 
may not properly discriminate between genuine changes and those disguised by 
extreme values.  

To solve this problem, Hendry (1999) suggested the indicator saturation strategy 
known as the IS approach. So far, this technology has been able to detect various data 
patterns such as breaks and outliers in the data simultaneously. However, because the 
IS technique can detect many data patterns at the same time, a masking effect may 
occur, as previously discussed. Specifically, when the IS technique is used in very high 
frequency datasets such as rapidly fluctuating markets like cryptocurrencies. Therefore, 
this study uses the IS technique to first identify and record the dates of the breaks, trend 
breaks, and outliers simultaneously in five distinct cryptocurrency log returns. Second, 
by ignoring the outcome of the first objective, lessens the impact of extreme 
observations in each data set using Winsorization technique. Thirdly, employs the IS 
approach to simultaneously re-identify and record the dates of outliers, trend breaks, 
and breaks in the Winsorized log returns of each cryptocurrency. Fourth, detects 
presence of masking effect by comparing and categorizing results into repeating and 
emerging changes. 

The study is driven by the fact that outliers can influence data analysis, masking 
actual structural changes that are crucial for accurate interpretation. By tackling outliers 
first, we can uncover hidden breaks, resulting in a better comprehension of the data and 
more informed decision-making. When applying the IS technique to high-frequency 
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data, a caution is to be exercised since outliers and rapid changes in the data may 
generate a masking effect, and high-frequency data with rapid ups and downs may 
confound the IS approach's automatic detection system. This paper presents a 
methodological framework for integrating the winsorization strategy into the indicator 
saturation approach. The hybrid technique might be referred to as the Win-IS 
approach. The hybrid technique identifies Hidden Patterns that are disguised by 
outliers, improving the accuracy of break identification.  This method may improve risk 
management and assist investors, traders, and financial analysts in making sound 
judgments in the ever-changing world of digital assets and other financial markets. The 
paper is organized as follows. Section 2 contains the body of the current literature; 
Section 3 describes the approach used; Section 4 shows the results and the discussion; 
and Section 5 offers the conclusion. 

2. Literature review  

Literature documented various approaches for detecting data breaks and outliers. 
Most known break detection methods are based on regression. Chow (1960) pioneered 
structural break testing for regression models, developing the F-test for a single break, 
assuming that the break date is previously known under the null of no break. Quandt 
(1960) altered the Chow framework to consider the F-statistic with the highest value 
among all potential break dates to loosen the requirement that the candidate break date 
be known. Later research revealed the assumption of prior knowledge of the break 
dates, which expanded on previous experiments to allow for multiple breaks, 
particularly the Bai and Perron tests (Bai and Perron, 1998, 2003). The Bai and Perron 
approach is limited to trimming 15% of the data and a maximum of 5 breaks. Ohara 
(1999) also used a method based on Zivot and Andrews (2002) sequential t-tests to 
analyze the case with m breaks with ambiguous break dates. Papell and Prodan (2003) 
developed a test based on restricted structural change that explicitly enables two 
offsetting structural modifications. Detection of breaks in the case of variance has also 
been investigated using Iclan and Tiao (1994) iterative cumulative sum of squares 
(ICSS) approach.  

Two popular ways to deal with outliers are trimming and winsorization (Moir, 
1988). Winsorizing, also known as Winsorization, is a statistical transformation 
technique that limits extreme values in statistical data to lessen the impact of potentially 
inaccurate outliers.  It is named after the engineer-turned-biostatistician Charles P. 
Winsor (1895–1951).  According to Tukey (1962) when Winsor discovered an outlier 
in a sample, he did not just discard it; instead, he altered its value. Winsor proposed 
utilizing the size of the next greatest (or smallest) observation to estimate the magnitude 
of an extreme, poorly known, or unknown observation. According to Xao et al. (2014) 
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Winsorization is another reliable method for handling non-normal distributions to 
prevent information loss and preserve the original sample size. In another classification, 
the most common outlier treatments in finance are winsorizing, trimming, and 
dropping (Adams et al., 2019). To lessen the influence of the outlying points, robust 
solutions based on Winsorization are frequently used (Cheng & Young, 2023).  
Winsorization method provides adjustments for the observed influential value and 
winsorization processes can be one-sided or two-sided (Mulry et al., 2014). However, 
determining the cutoff sites is a vital part of these approaches (Cheng and Young 2023). 
The more the data is winsorized, the bigger the bias in the coefficient estimates for 
variables (Lien et al., 2005).  Adams et al. (2019) extended the winsorization approach 
into multivariate case. Hamadani and Ganai (2023) cleaned and processed their data 
using the winsorization approach. Li et al. (2021) combined the change detection 
method and the Winsorization method into the prediction model based on the 
autoregressive moving average model. 

On the other hand, Hendry (1999) suggested a strategy called indicator saturation 
(IS). The indicator saturation methodology employs an automatic multi-path search 
strategy that can handle more candidate variables N than observations T, separates 
variables into blocks, and records significant ones using impulse-indicator saturation 
(Castle et al., 2011). According to Pretis et al. (2017), indicator saturation offers an 
alternate technique based on an expanded general-to-specific methodology based on 
model selection. Starting with a full set of indicators and discarding all except the most 
significant ones, structural breaks can be identified without specifying a minimum 
break length, maximum break number, or imposed co-breaking. Hendry et al. (2008) 
demonstrated that different numbers of splits and uneven splits have no effect on the 
retention rate. According to Castle (2022), numerous indicator saturation estimators 
(ISEs) are available to model a wide range of non-stationarity phenomena. However, 
each ISE is created to address a particular issue. For example, the step indicator 
saturation (SIS) of Castle et al. (2015) for location shifts, the trend indicator saturation 
(TIS) of Pretis et al. (2015) for trend breaks, and the impulse indicator saturation (IIS) 
of Hendry et al. (2008) and Johansen and Nielsen (2016) for outliers. Pretis et al. (2018) 
developed an algorithm for the indicator saturation approach in general to specific 
modelling (Gets), which provides a straightforward computation of this approach. This 
method has been applied in a variety of fields in the literature. Marczak and Proietti 
(2016) used IIS and SIS in the framework of structural time series models. Ghouse 
(2021) employed IIS to discover structural breaks in Pakistan Islamic banks data. Pretis 
et al. (2015) used TIS and SIS to assess climate models. Castle et al. (2021) utilized TIS 
and SIS in identifying shifts in trends within a long-term UK production function. 
Ghouse et al. (2022) utilized the IIS technique to identify the structural breaks in the 
returns and volatility of commercial banks in Pakistan. Muhammadullah (2022) 
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applied IIS to detect outliers in the cross-sectional analysis estimated through the 
application of regularization techniques with COVID-19 data. Panday (2015) utilized 
IIS to investigate the influence of monetary policy on the exchange rate of Nepal. Castle 
et al. (2012) employed U.S. real interest rates to assess the effectiveness of IIS in 
comparison to the BP approach and found that IIS successfully reproduces the results 
of the BP. Ismail and Nasir (2018) conducted a comparison between IIS and BP in 
ASEAN sharia-compliant indices and found almost identical results. However, IIS can 
identify significant breaks and outliers that occur at the start and end of a sample, while 
BP necessitates a designated percentage of the sample for analysis. Mohamed et al. 
(2023) conducted an empirical study to compare BP and IS in detecting cryptocurrency 
breaks and outliers and found that the IS approach produce more.  

Structural break tests allow us to assess when and whether there is a major change 
in data. The indicator saturation approach uses regression model and identifies non 
stationarity shifts at any point and location. According to Choi (2009), empirical results 
can be misleading when researchers disregard abnormal observations, particularly 
when it comes to dependent variables. The study assumes that the winsorization 
approach helps the IS approach in lessening the extreme values. Brownen (2019) and 
Afanasyev et al. (2019) investigated how the winsorization technique influences the 
performance of regression models and discovered three factors: the level of data 
inaccuracies in the tails, the characteristics of enterprises affected by the process, and 
the usage of scaling. Moir (1988) found that when the distribution is non-normal, 
winsorization is suggested as an alternative to trimming. Rivest (1994) also 
recommended the use of winsorization for skewed distributions. Dixon (1960) claims 
that maintaining symmetric winsorizaiton and making suitable changes will result in 
improved estimators. Sharma and Chatterjee (2021) discovered that Winsorization is a 
versatile strategy for compensating for data outliers. Yuliyani and Indahwati (2017) 
used winsorization in linear mixed models to detect violations of the normalcy 
assumption in national exam data. In this study, just 1% of the observations are 
winsorized in order to prevent winsorization from affecting all observations. Adams et 
al. (2019) found that the estimation of trimmed or winsorized least squares can still be 
influenced (possibly dramatically) by a single lingering outlier 

Finally, the study combines two existing methodologies. The two approaches are 
Hendry's indicator saturation technique (1999) and Charles P. Winsor's winsorization 
strategy (1895-1951). There is a huge knowledge gap regarding the combination of 
these two approaches to increase the detectability of the indicator saturation strategy. 
This study addresses this gap by offering a hybrid strategy that combines the 
winsorization and indicator saturation approaches. The IS strategy is responsible for 
recognizing outliers, breaks, and trend breaks all at once, whereas winsroization aids 
the IS technique in reducing and mitigating extreme outliers. 
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3. Methodology 

3.1. Datasets 

The data used in this study consists of five different cryptocurrencies: Tether 
(USDT), Litecoin (LTC), Ripple (XRP), Ethereum (ETH), and Bitcoin (BTC). The data 
was obtained from https://finance.yahoo.com/. All prices are through June 30, 2023. 
The total number of observations for BTC, which began on November 22, 2014, LTC, 
which began on September 22, 2014, and XRP, ETH, and USDT, which began on 
November 13, 2017, are 3143, 3204, and 2056, respectively. The study employed price 
log-returns calculated using the following formula: 

r୲ ൌ ln ቀ
୔౪
୔౪షభ

ቁ ൌ lnሺP୲ሻ െ lnሺP୲ିଵሻ                                      (1) 

In this case, 𝑟௧ represents returns, 𝑃௧ is the lag price at time 𝑡, and 𝑃௧ିଵ is the lag 
price from time 𝑡 െ 1. 

3.2. Theoretical framework 

3.2.1. Winsorization Approach 

The Winsorization approach is a robust test that targets reducing the impact of 
outliers using certain percentile values and dealing with non-normality. This method 
preserves the original sample size by replacing the tail of the data rather than removing 
it. The default percentiles of the winsorization approach are the 5th and 95th percentiles. 
Our strategy assigns the extreme values to a very tight percentile of returns. So, the 
study uses a 99% winsorization that would assign all returns below the 1st percentile to 
the 1st percentile value and data above the 99th percentile to the 99th percentile value.  
Mathematically speaking, given a sample of T observations, Winsorizing entails 
replacing the 𝑘 highest values with the 𝑘 െ  1 value and the 𝑙 lowest values with the 
𝑙 െ  1 value, then calculating the desired statistic on the T values. For example, consider 
the situation of BTC with 𝑇 ൌ 3142 observed ordered values and 𝑘 ൌ 𝑙 ൌ 32, where 
the winsorized values are the 𝑘 ൅  𝑙 ൌ  32 ൅  32 ൌ  64 substituted values. 

The winsorized vector of returns is achieved by 

𝑤ሺ𝑟௧ሻ ൌ ൝
െ𝑣   For  𝑟௧ ൑ െ𝑣
𝑟௧   For |𝑟௧| ൏ 𝑣
𝑣  For   𝑟௧ ൒ 𝑣

 

where 𝑤ሺ𝑟௧ሻ represents the winsorized vector, 𝑟௧ represents the original returns of each 
cryptocurrency, 𝑣 is the 𝑘 െ 1 observation (nearest 99th percentile) and െ𝑣 is the 𝑙 െ 1 
observation (nearest 1st percentile). 
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To winsorize the returns of every cryptocurrency, the following steps have been 
taken. The process is based on Bitcoin, however, Table 1 shows the outcomes of 
applying the same process to other currencies:  
1. Order each cryptocurrency data in ascending order. 
2. Decide length of 𝑘 and 𝑙.  
3. For the case of BTC, the length of 𝑙 can be found by the 1st percentile ൈ sample size 

ሺ0.01 ൈ 3142 ൎ 32ሻ, while the length of 𝑘 is found by 99th percentile ൈ sample size 
ሺ0.99 ൈ 3142 െ 3142 ൎ 3110ሻ.   

4. In this case we have symmetric values. So,  𝑘 ൌ 𝑙 ൌ 32 matching 32 observations 
less than 33rd observation and another 32 observations greater than 3111th 
observation. 

5. Pick the െ𝑣 value which is 33rd observation and 𝑣 value which is 3111th observation. 
6. Replace Values Greater than the 99th percentile ሺ𝑘 𝑣𝑎𝑙𝑢𝑒𝑠ሻ. So, all values greater 

than the 99th percentile are replaced with the 𝑣. 
7. Replace Values Less than the 1st percentile. So, all values less than the 1st percentile 

are replaced with the െ𝑣. 

Table 1: The framework of winsorized observations 

Series Sample size ሺ𝑻ሻ Winsorized observations minValሺെ𝒗ሻ maxValሺെ𝒗ሻ 

BTCW 3142 𝑘 ൌ 32, 𝑙 ൌ  32, 𝑘 ൅ 𝑙 ൌ 64 -0.11092 0.104009 
LCTW 3203 𝑘 ൌ 32, 𝑙 ൌ  32, 𝑘 ൅ 𝑙 ൌ 64 -0.14447 0.169612 
ETHW 2055 𝑘 ൌ 20, 𝑙 ൌ  20, 𝑘 ൅ 𝑙 ൌ 40 -0.14658 0.127828 
USDTW 2055 𝑘 ൌ 20, 𝑙 ൌ  20, 𝑘 ൅ 𝑙 ൌ 40 -0.01277 0.013738 
XRPW 2055 𝑘 ൌ 20, 𝑙 ൌ  20, 𝑘 ൅ 𝑙 ൌ 40 -0.15583 0.200854 

Note: symbol BTCW stands for winsorized Bitcoin return. 

3.2.2. Indicator Saturation Approach 

Hendry (1999) introduced the IS approach. Pretis et al. (2018) state that the IS 
technique was created in order to identify and model outliers as well as structural breaks 
in the mean. Several IS estimators (ISEs) can be utilized to model distinct aspects of 
wide-sense non-stationarity (Castle & Hendry, 2022). Step-indicator saturation (SIS) 
for location shifts, impulse indicator saturation (IIS) for outliers, and trend indicator 
saturation (TIS) for trend breaks are a few examples. IIS is a reliable and effective 
statistical method, according to Hendry (1999) and Johansen et al. (2009). Both Castle 
et al. (2015) and Pretis et al. (2015) broadened the definition of IIS to encompass SIS 
and TIS. 

The IS method is based on a regression model that uses a general-to-specific 
modeling strategy to produce indicator variables for every observation. A different 
approach that uses a general-to-specific procedure based on model selection is provided 
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by IS, claim Pretis et al. (2018). In other words, a regression model is overloaded with 
indicators, which are then chosen using the general-to-specific at a predefined level of 
significance. All indicators that are not significant are then removed without imposing 
co-breaking or defining a minimum or maximum break segment. By starting with  
a general model (the GUM) and lowering variables along search paths while assessing 
the diagnostics at each stage, the general-to-specific technique (GETS) offers an 
organized search. Marczak and Proietti (2016) state that IS has been shown to be 
effective and useful when used with a dynamic regression model. This IS method was 
developed by Pretis et al. (2018) using the GETS package in the R programming 
language. Three IS estimators—SIS, TIS, and IIS—are used in this study to identify 
breaks, trend breaks, and outliers. The following is the formulation of these estimators: 

IIS  𝑦௧ ൌ μ ൅ ∑ δ୨1ሼ୲ୀ୨ሽ
୬
୨ୀଵ ൅ ε୲                                                     (2) 

SIS 𝑦௧ ൌ μ ൅ ∑ δ୨1ሼ୲ஹ୨ሽ
୬
୨ୀଶ ൅ ε୲                                                      (3) 

                  TIS 𝑦௧ ൌ μ ൅ ∑ δ୨1ሼ୲வ୨ሽሺt െ jሻ୬
୨ୀଵ ൅ ε୲                                         (4) 

A break, trend break, or outlier's size is denoted by δ, errors are represented by ε, 
the BTC return over time is represented by 𝑦௧, and the constant term is denoted by μ. 
We regressed with the constant and used 𝑦௧ as a dependent variable in order to apply 
the IS technique. According to suggestion by Ismail and Nasir (2018) we set alpha value 
that is based on the sample size, 𝛼 ൌ 1/𝑇. With an alpha value determined by sample 
size, the three equations were executed concurrently. The tight alpha value allows us to 
limit the number of significant indicators (dates); however, larger alpha values can be 
allowed if the interest is to increase number of changepoints. 

During the application, the IS approach creates dummy variables automatically 
when the algorithm is executed. The IS approach will first create dummy variables 
representing each estimator that is equal to the number of observations in the returns. 
The BTC dataset generates 9423 indicators when three IS estimators (IIS, SIS, and TIS) 
are performed concurrently, divided into 105 blocks of 30 indicators each. Table 2 
shows details of the dummy variables and their blocks.  

Table 2: Dummy variables  

Returns Sample size Alpha 
Dummy Variables 

Indicators Blocks 
BTC 3142 0.0003 9423 105 
LCT 3203 0.0003 9606 107 
ETH 2055 0.0005 6162 69 
USDT 2055 0.0005 6162 69 
XRP 2055 0.0005 6162 69 
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3.2.3. Incorporating Winsorization into IS approach 

The incorporation begins by winsorizing the returns of each digital coin as stated. 
Then, each winsorized return is considered as the dependent variable. Since the IS 
approach is based on regression model, we regress a constant to the winsorized returns 
(dependent variable). Then, the IS approach automatically allows the incorporation of 
dummy variables into the regression equation to detect either breaks, trend breaks or 
outliers. Different alpha values can be considered under the null of no breaks or outlier 
or trend breaks. The algorithm of the IS approach estimators can be executed either 
separately or jointly. We allow simultaneously detection of breaks by SIS, trend breaks 
by TIS and outliers by IIS.  The general formula of the Win-IS approach is as follows: 

𝑊ሺr୲ሻ ൌ 𝜇 ൅ 𝐼𝑆 ൅ 𝜀௧                                                        (5) 

This is a quite general formula but since the IS approach has estimators including 
IIS, SIS and TIS, this general formula can be reformatted as: 

𝑊ሺr୲ሻ ൌ 𝜇 ൅ IIS ൅ SIS ൅ TIS ൅ 𝜀௧                                           (6) 

Pretis et al. (2018) formulated the three types of IS approaches. Equation 6 can be 
rewritten as: 

𝑊ሺr୲ሻ ൌ 𝜇 ൅ ∑ δ୨1ሼ୲ୀ୨ሽ
୬
୨ୀଵ ൅ ∑ δ୨1ሼ୲ஹ୨ሽ

୬
୨ୀଶ ൅ ∑ δ୨1ሼ୲வ୨ሽሺt െ jሻ୬

୨ୀଵ ൅ 𝜀௧          (7) 

In this case, IS denotes the indicator saturation approach, 𝑟௧ represents original 
returns of each coin, 𝑊ሺr୲ሻ represents winsorized vector of returns of each coin,  
μ represents constant term, δ represents the size of break, trend break, or outlier, and ε 
represents errors.  Equation 7 represents the developed hybrid approach. The strategy 
is simply winsorizing the dependent variable and then applying IS approach. However, 
the Win-IS has sub formulas that can be derived from equation 4 including Win-IIS for 
outlier identification, Win-SIS for break identification and Win-TIS for trend break 
identification.   

3.3. Empirical Application of Win-IS Approach 

The process of empirical application of the Win-IS approach begins by: 
1. Applying IS technique to identify and record the location and dates of breaks, trend 

breaks, and outliers in the original returns of each cryptocurrency.  
2. Then winsorize each returns following steps given above. 
3. Again, apply the IS approach to identify and record the location and dates of breaks, 

trend breaks, and outliers in the winsorized returns of each cryptocurrency. 
4. Compare the performance of the IS approach in the two returns. 
5. Report improvements achieved. 
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4. Results and Discussions 

4.1. Descriptive Statistics 

Table 3 displays descriptive statistics for each cryptocurrency's winsorized and 
original returns. The table is split into two panels. Panel A for the original returns, 
whereas Panel B for the winsorized returns. The results in Table 3 can be classified as 
central tendency measures, variability measures, and distribution tests. Except for 
USDT, the original and winsorized returns for each coin have positive mean as 
expected. This suggests that holders of these coins profited during the examined period, 
whilst USDT holders lost, signifying its tendency to underperform and generate losses 
on average.  The standard deviation for both the original and winsorized results of each 
coin is quite high. These high standard deviations indicate significant risk and that 
returns are very varied or spread around the mean. However, winsorization lowered 
the risk marginally. According to the data range for each coin, the winsorized returns 
had a smaller data range than the original returns, indicating that extreme values were 
pushed closer to the mean. For example, in BTC, the original series ranged from -0.465 
to 0.2251, but when winsorized, the minimum value increased to -0.11 and the 
maximum value reduced to 0.104. This broader adjustment implies a compression of 
the data range, bringing both extremes closer to zero. The original and winsorized 
returns for BTC and ETH have negative skewness, indicating a left-skewed distribution. 
However, LTC, USDT, and XRP have a positively skewed distribution. In contrast, all 
coins have positive kurtosis greater than +3 in both returns, indicating that the 
distributions are heavy-tailed and non-normal. Furthermore, the heavier tail of original 
returns suggests that they are riskier. Following winsorization, each kurtosis decreased, 
indicating that the tails are becoming less heavy. The Jarque-Bera (JB) test statistic 
confirms the kurtosis values. Original returns have significant and exceedingly high JB, 
indicating a large departure from the normally distribution. In comparison, the JB test 
for winsorized returns is substantially lower, but still significant. This means that, while 
both the original and winsorized returns are non-normal, the adjustment technique has 
reduced the divergence from normality by some amount. However, the JB test does not 
take into consideration variables other than skewness and kurtosis. The JB test still 
yields a low p-value since the non-normality may be caused by other non-normal 
features, outliers, or structural breaks in the data. 
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Table 3: Descriptive statistics 

Panel A: Original Returns 

Series Min Max Mean Std. Dev. Skewness Kurtosis JB 

BTC -0.465 0.2251 0.001419 0.038 -0.7895 14.2458 16883.03 
LCT -0.515 0.512 0.001011 0.055 0.103561 15.851 22044.84 
ETH -0.551 0.235 0.000880 0.0497 -0.923868 13.145 9104.12 
USDT -0.053 0.0567 -0.000005 0.004283 0.745575 53.31 216890.1 
XRP -0.551 0.6068 0.000412 0.0615 0.850 20.35 26032.13 

Panel B: Winsorised Returns 

Series Min Max Mean Std. Dev. Skewness Kurtosis JB 

BTC -0.1109 0.104009 0.001569 0.0347 -0.174 4.9258 501.45 
LCT -0.14447 0.169612 0.001014 0.048 0.222771 5.239 695.69 
ETH -0.146580 0.127828 0.001096 0.046 -0.243741 4.428 195.03 
USDT -0.012770 0.013738 -0.000016 0.003285 0.10443 8.9266 3011.28 
XRP -0.155830 0.200854 0.000173 0.0514 0.496705 6.2204 972.52 
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Figure 1: Histograms of Winsorized and unwinsorized returns 

Figure 1 shows how the tails of each two histograms presenting winsorized and 
original returns have changed. This suggests that the distribution of the returns data for 
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each cryptocurrency has been impacted by winsorizing. The winsorizing strategy 
effectively capped or shaped the extreme results to a less extreme value, reducing the 
impact of outliers.  The original data histograms show a wider distribution with more 
noticeable tails. The inherent uncertainty and possible non-normality in financial log 
returns are reflected in this broader spread. These features can make it more difficult to 
identify structural breaks by adding noise, even if they are crucial for capturing real-
world financial dynamics. Detecting structural breaks in the dataset entails locating the 
points at which the data's statistical characteristics alter. Maintaining a certain amount 
of non-normality with returns is crucial for capturing dynamics and changes over time 
in the real world.  We reduced the impact of extreme outliers, which otherwise have the 
potential to distort the results and make it difficult to identify structural fractures, by 
winsorizing just 1% of the data. Without completely enforcing normalcy, this 
adjustment results in a distribution that is more symmetrical and closer to normal. The 
integrity of the data's dynamic features is preserved by such a slight modification, which 
is essential when looking for structural breaks in time series. Thus, the winsorization 
acts as a tactical middle ground, improving the data's regression analysis applicability 
while maintaining important non-stationary components. 

4.2. Comparison of IS and Win-IS Performance 

4.2.1. Breaks, Trend breaks, and Outliers Detected by IS and Win-IS  

Descriptive statistics in Table 3 reveal that even when severe outlier are mitigated 
by the winsorization strategy, their influence persists since winsorized returns exhibit 
non-normality. Outliers have a significant effect on summary statistics such as mean 
and standard deviation. With such high frequency and non-normal data returns, we 
investigated existing breaks, trend breaks, and outliers that continue to cause this non-
normality. This section discusses the performance of IS and Win-IS approaches in 
detecting breaks, trend breaks, and outliers. Table 4 provides an overview of the 
performance of the two approaches, IS and Win-IS. Tables 5, 6, and 7 report the 
significant indicators recognized and retained as outliers, breaks, or/and trend breaks, 
respectively. Significant indicators are those retained by the method after 
rejecting the null hypothesis of no break, outlier, or trend break. Each table is 
divided into two panels, panel A gives the IS approach results and panel B the Win-IS 
approach results to compare the dates and total of the identified outliers, breaks, and 
trend breaks in each cryptocurrency. The brackets indicated by positive (+) or negative 
(-) sign, represent whether the shock on the identified date is up or down. Tables 5, 6, 
and 7 also provide additional information, such as the dates of the breaks, trend breaks, 
and outliers found with the two techniques. The findings of Mohamed et al. (2024) are 
in line with the some of the IS method results shown in these tables. 
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Table 4: Overall Performance of IS and Win-IS approaches 

Returns 

IS approach 
Original Returns 

Win-IS approach 
Winsorized Returns 

IIS 
(Outliers) 

SIS 
(Breaks) 

TIS 
(Trend 
Breaks) 

BIC 
Win-IIS 

(Outliers) 
Win-SIS 
(Breaks) 

Win-TIS 
(Trend 
Breaks) 

BIC 

BTC 25 12 5 -3.88 0 16 3 -3.89 
LCT 28 11 2 -3.24 0 29 3 -3.26 
ETH 13 10 8 -3.33 0 12 0 -3.34 
USDT 28 8 5 -8.79 32 17 23 -8.91 
XRP 26 11 9 -3.19 17 20 15 -3.24 

Table 4 compares the overall performance of both IS and Win-IS approaches with 
3 estimators for each. On all coins except USDT, the Win-IIS reduced number of 
outliers to zero in the cases of BTC, LTC, ETH and XRP while increased slightly from 
28 to 32 in USDT. Win-SIS revealed more breaks in each coin than SIS. The Win-TIS 
technique identified fewer trend breaks than TIS tests for BTC, LTC, and ETH, but 
more trend breaks in USDT and XRP. Overall, the developed Win-IS reduced the 
number of outliers and trend breaks while revealed hidden breaks. Hence, the Win-IS 
approach enabled detecting hidden important breaks, trend breaks and outliers 
(see Table 8). Digital markets perform differently, and BTC, LTC, and ETH appear to 
behave similarly, as do USDT and XRP.  

The comparison of the two approaches IS vs Win-IS is based on Bayesian 
Information Criteria (BIC). The selection is based on the lowest BIC criterion values. 
Table 4 shows that the Win-IS technique had the lowest BIC values in all comparisons, 
indicating that it outperformed the IS approach. As a result, including the winsorization 
strategy into the IS approach improved its effectiveness. This also emphasizes how 
significant the newly detected breaks and trend breaks were and how the existence of 
outliers could obscure them if not handled carefully (masking effect).  

Table 5: IIS and Win-IIS Results (Outliers) 

Series Alpha Panel A: IIS results (Outlier) Total 

BTC 0.0003   1/13/2015(-),1/14/2015(-), 1/15/2015(+), 8/18/2015(-), 1/15/2016(-), 1/11/2017(-), 
7/17/2017(+), 7/20/2017(+), 9/14/2017(-), 9/15/2017(+), 12/06/2017(+), 
12/07/2017(+), 1/16/2018(-), 2/05/2018(-), 4/02/2019(+), 6/27/2019(-), 7/16/2019(-), 
10/25/2019(+), 3/12/2020(-), 3/19/2020(+), 1/21/2021(-), 2/08/2021(+),  
5/12/2021(-),5/19/2021(-), 6/13/2022(-) 

25 

ETH 0.0005 12/22/2017(-), 9/05/2018(-), 10/11/2018(-), 9/24/2019(-), 3/08/2020(-), 3/12/2020(-), 
3/13/2020(+), 3/19/2020(+), 1/03/2021(+), 1/21/2021(-), 5/19/2021(-), 5/24/2021(+), 
6/21/2021(-) 

13 
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Table 5: IIS and Win-IIS Results (Outliers)  (cont.) 

Series Alpha Panel A: IIS results (Outlier) Total 

LTC 0.0003 1/03/2015(-), 1/14/2015(-), 5/22/2015(+), 6/16/2015(+), 7/10/2015(-), 6/22/2016(-), 
12/23/2016(+), 3/30/2017(+), 4/05/2017(+), 5/03/2017(+), 5/23/2017(+),  
9/14/2017(-), 12/08/2017(+), 12/09/2017(+), 12/11/2017(+), 12/12/2017(+), 
1/16/2018(-), 2/14/2018(+), 2/08/2019(+), 4/02/2019(+), 3/12/2020(-), 1/11/2021(-) , 
5/12/2021(-), 5/19/2021(-), 5/24/2021(+), 6/21/2021(-), 9/07/2021(-), 6/30/2023(+) 

28 

USDT 0.0005 11/30/2017(+), 12/07/2017(+), 12/08/2017(-), 12/12/2017(+), 12/13/2017(-), 
12/14/2017(-), 12/24/2017(-), 12/30/2017(+), 1/16/2018(+), 1/17/2018(-),  
1/19/2018(-), 2/08/2018(+), 3/24/2018(+), 11/14/2018(-), 11/15/2018(+), 
11/23/2018(-), 12/08/2018(+), 6/28/2019(+), 3/12/2020(+), 3/13/2020(-),  
3/17/2020(-), 3/19/2020(+), 3/27/2020(+),3/28/2020(-), 5/06/2020(+), 5/07/2020(-), 
7/03/2020(-), 8/14/2020(-) 

28 

XRP 0.0005 12/12/2017(+), 12/13/2017(+), 12/14/2017(+), 12/21/2017(+), 12/29/2017(+), 
1/03/2018(+), 1/08/2018(-), 1/16/2018(-), 8/17/2018(+), 9/20/2018(+),9/21/2018(+), 
5/14/2019(+),3/12/2020(-),11/21/2020(+), 11/23/2020(+), 12/23/2020(-), 
12/24/2020(+), 1/07/2021(+), 1/30/2021(+), 2/01/2021(-), 4/10/2021(+), 
4/26/2021(+), 5/19/2021(-), 5/24/2021(+), 5/11/2022(-), 3/21/2023(+) 

26 

Series Alpha Panel B: WIN-IIS results (Outlier) Total 

BTC 0.0003   No  0 

ETH 0.0005 No  0 

LTC 0.0003 No  0 

USDT 0.0005 11/30/2017(+), 12/08/2017(-), 12/12/2017(+), 12/13/2017(-), 12/14/2017(-), 
1/14/2018(+), 1/16/2018(+), 1/19/2018(-), 2/05/2018(-), 2/08/2018(+), 2/09/2018(-), 
3/19/2018(-), 3/24/2018(+), 4/25/2018(-), 11/23/2018(-), 11/28/2018(+),  
3/29/2019(-), 4/25/2019(-), 5/19/2019(+), 6/28/2019(+), 7/16/2019(-), 8/06/2019(-), 
11/25/2019(-), 12/18/2019(+), 3/13/2020(-), 3/27/2020(+), 3/28/2020(-), 
5/06/2020(+), 5/07/2020(-), 7/02/2020(+), 7/03/2020(-), 8/14/2020(-) 

32 

XRP 0.0005 12/12/2017(+), 12/13/2017(+), 12/14/2017(+), 12/21/2017(+), 12/29/2017(+), 
1/03/2018(+), 8/17/2018(+), 11/21/2020(+), 11/23/2020(+), 12/24/2020(+), 
4/10/2021(+),4/13/2021(+), 4/26/2021(+), 5/24/2021(+), 2/07/2022(+), 9/22/2022(+), 
3/21/2023(+) 

17 

Table 6: SIS and Win-SIS Results (Breaks) 

Series Alpha Panel A: SIS results (Breaks) Total 

BTC 0.0003   11/02/2015(+), 11/04/2015(-), 6/21/2016(-), 6/23/2016(+), 1/05/2017(-), 
1/07/2017(+), 12/07/2017(-), 12/17/2017(-), 11/19/2018(-), 11/21/2018(+), 
11/08/2022(-), 11/10/2022(+) 

12 

ETH 0.0005 12/11/2017(+), 12/13/2017(-), 2/06/2018(+), 11/19/2018(-), 11/21/2018(+), 
5/21/2021(-), 6/10/2022(-) ,6/14/2022(+), 11/08/2022(-), 11/10/2022(+) 

10 

LTC 0.0003 1/24/2015(+), 1/26/2015(-), 7/05/2015(+), 5/03/2017(+), 5/08/2017(-), 5/25/2017(-), 
5/27/2017(+), 6/16/2017(+), 6/18/2017(-), 5/21/2021(-), 5/25/2021(+) 

11 
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Table 6: SIS and Win-SIS Results (Breaks)  (cont.) 

Series Alpha Panel A: SIS results (Breaks) Total 

USDT 0.0005 12/24/2017(-), 2/05/2018(-), 2/06/2018(+), 2/07/2018(-), 2/10/2018(+), 11/19/2018(-), 
11/21/2018(+), 11/24/2018(-) 

8 

XRP 0.0005 1/08/2018(-), 1/17/2018(+), 1/19/2018(-), 2/11/2018(-), 11/24/2020(+), 4/07/2021(-), 
4/08/2021(+), 4/14/2021(-), 5/25/2021(+), 6/21/2021(-), 6/23/2021(+) 

11 

Series Alpha Panel B: WIN-SIS results (Breaks) Total 

BTC 0.0003   1/13/2015(-), 1/15/2015(+), 11/02/2015(+), 11/04/2015(-), 6/21/2016(-), 6/23/2016(+), 
1/05/2017(-), 1/07/2017(+), 3/16/2017(-), 3/19/2017(+), 11/19/2018(-), 11/21/2018(+), 
12/24/2020(+), 1/09/2021(-), 11/08/2022(-), 11/10/2022(+) 

16 

ETH 0.0005 1/29/2018(-), 2/06/2018(+), 11/19/2018(-), 11/21/2018(+), 12/17/2018(+), 
12/25/2018(-), 9/02/2020(-), 9/06/2020(+), 6/10/2022(-), 6/19/2022(+), 11/08/2022(-), 
11/10/2022(+) 

12 

LTC 0.0003 1/24/2015(+), 1/26/2015(-), 7/10/2015(-), 7/13/2015(-), 7/17/2015(+), 3/30/2017(+), 
4/06/2017(-), 4/20/2017(+), 5/10/2017(-), 5/25/2017(-), 5/27/2017(+), 6/16/2017(+), 
6/18/2017(-),7/02/2017(+), 7/05/2017(-), 8/27/2017(+), 9/02/2017(-), 12/08/2017(+), 
12/13/2017(-),4/02/2019(+), 4/04/2019(-), 12/16/2020(+), 12/20/2020(-), 
5/21/2021(+), 5/24/2021(+), 11/08/2021(+), 11/10/2021(+), 11/08/2022(-), 
11/10/2022(+) 

29 

USDT 0.0005 12/09/2017(-), 12/21/2017(+), 12/24/2017(-), 12/31/2017(-), 1/18/2018(+), 
2/07/2018(-), 3/25/2018(+), 11/15/2018(+), 11/19/2018(-), 11/21/2018(+), 
11/23/2018(-), 12/09/2018(-), 12/30/2018(-), 1/01/2019(+), 3/20/2020(-), 
8/12/2020(+), 8/15/2020(-) 

17 

XRP 0.0005 1/08/2018(-), 1/17/2018(+), 1/19/2018(-), 2/11/2018(-), 4/18/2018(+), 4/21/2018(-), 
9/18/2018(+), 9/22/2018(-), 5/16/2019(-), 11/25/2020(-), 12/25/2020(+), 
1/06/2021(+), 1/08/2021(-), 2/01/2021(-), 4/07/2021(-), 5/21/2021(-), 5/25/2021(+), 
8/15/2021(-), 11/08/2022(-), 11/10/2022(+) 

20 

Table 7: TIS and Win-TIS Results (Trend Breaks) 

Series Alpha Panel A: TIS results (Trend Breaks) Total 

BTC 0.0003   7/13/2017(-), 7/15/2017(+), 7/17/2017(-), 12/06/2017(+), 12/23/2017(-) 5 

ETH 0.0005 1/14/2018(-), 1/16/2018(+), 1/20/2018(-), 1/21/2018(+), 1/27/2018(-), 2/06/2018(+), 
5/21/2021(+), 5/25/2021(-) 

8 

LTC 0.0003 7/12/2015(-), 7/13/2015 (+) 2 

USDT 0.0005 12/20/2017(+), 12/24/2017(-), 1/18/2018(-), 1/30/2018(+), 2/03/2018(-) 5 

XRP 0.0005 2/05/2018(+), 2/09/2018(-), 11/23/2020(-), 11/26/2020(+), 11/27/2020(-), 
4/03/2021(+), 4/05/2021(-), 5/20/2021(-), 5/25/2021(+) 

9 

  Panel B: WIN-TIS results (Trend Breaks)  

BTC 0.0003   12/16/2017(-), 12/22/2017(+), 12/23/2017(-)  3 

ETH 0.0005 No  0 

LTC 0.0003 6/24/2015(+), 7/10/2015(+), 7/12/2015(-) 3 
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Table 7: TIS and Win-TIS Results (Trend Breaks)  (cont.) 

Series Alpha Panel B: WIN-TIS results (Trend Breaks)  

USDT 0.0005 12/02/2017(+), 12/14/2017(-), 12/20/2017(+), 1/03/2018(-), 1/04/2018(+), 1/06/2018(-
), 1/30/2018(+), 2/10/2018(-), 3/18/2018(+), 3/19/2018(-), 3/25/2018(+), 11/12/2018(-
), 11/15/2018(+), 12/05/2018(+), 12/09/2018(-), 11/21/2019(+), 11/23/2019(-), 
11/26/2019(+), 3/08/2020(-), 3/09/2020(+) , 3/13/2020(-), 3/17/2020(+), 3/20/2020(-) 

23 

XRP 0.0005 2/05/2018(+), 2/09/2018(-), 5/12/2019(+), 5/14/2019(-), 11/26/2020(+),  
11/27/2020(-), 12/15/2020(+), 12/16/2020(-), 12/25/2020(+), 1/28/2021(+),  
1/30/2021(-), 4/03/2021(+), 4/08/2021(-), 8/08/2021(+), 8/15/2021(-) 

15 

4.2.2. Improvements of the Detectability IS Approach  

In Tables 5,6, and 7 we presented the dates of the detected breaks, trend breaks, and 
outliers in the five cryptocurrencies. The results show that new breaks, trend breaks, 
and outliers were revealed after extreme observations are lessened by the winsorization 
approach. As discussed, this become evidence that some outliers mask some breaks or 
trend breaks. Table 8 show the overall number of new breaks, trend breaks, and outliers 
emerged together with those repeated.  

Table 8: Win-IS performance and discovery 

Series 

Win-IIS Win-SIS Win-TIS 

Total Repeated 
Outliers 

New 
Outliers 

Repeated 
Breaks 

New 
Breaks 

Repeated 
Trend 
Breaks 

New 
Trend 
Breaks 

BTCDW 0 0 10 6 1 2 19 
ETHDW 0 0 6 6 0 0 12 
LTCDW 0 0 6 23 1 2 32 
USDTDW 20 12 3 14 2 21 72 
XRPDW 14 3 5 15 6 9 52 
Total 34 15 30 64 10 34 187 

 
Table 8 shows that, in contrast to those detected by IIS alone, Win-IIS did not find 

any new or recurring outliers in BTC, ETH, or LTC. Furthermore, Win-IIS identified 
three new outliers in XRP and 12 new outliers in USDT, whereas 14 and 20 outliers, 
respectively, repeated. Win-SIS discovered 94 breaks across the five markets, 30 of 
which were repeated as SIS detected, and revealed 64 new breaks. Win-TIS, on the other 
hand, revealed 44 trend breaks across five markets, 10 of which were previously spotted 
by TIS and 34 of which were new. Table 8 displays the distribution of 94 breaks and 
44 trend breaks among the five markets. Additional details about the overall outcomes 
shown in Table 8 are provided in Tables 9–12. These details include the type of date 
(original value or winsored value), the type of estimator captured (Win-IIS, Win-SIS, 
and Win-TIS), and the status of each date (repeated, new, or changed to another). 
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By comparing and classifying the data into recurrent and emerging changes, these 
tables also demonstrate the presence of the masking effect. 

Table 9: BTCDW and ETHDW: Emerging and Repeated Patterns Detected by Win-IS  

No. 
Win-IS Performance in BTCDW Win-IS Performance in ETHDW 

Date Type Estimator Status Date Type Estimator Status 

1. 1/13/2015 Winsored Win-SIS IIS→Win-SIS 1/29/2018 Origin Win-SIS New 
2. 1/15/2015 Winsored Win-SIS IIS→Win-SIS 2/6/2018 Origin Win-SIS Repeated 
3. 11/2/2015 Winsored Win-SIS Repeated 11/19/2018 Winsored Win-SIS Repeated 
4. 11/4/2015 Origin Win-SIS Repeated 11/21/2018 Origin Win-SIS Repeated 
5. 6/21/2016 Origin Win-SIS Repeated 12/17/2018 Origin Win-SIS New 
6. 6/23/2016 Origin Win-SIS Repeated 12/25/2018 Origin Win-SIS New 
7. 1/5/2017 Origin Win-SIS Repeated 9/2/2020 Origin Win-SIS New 
8. 1/7/2017 Origin Win-SIS Repeated 9/6/2020 Origin Win-SIS New 
9. 3/16/2017 Origin Win-SIS New 6/10/2022 Origin Win-SIS Repeated 

10. 3/19/2017 Origin Win-SIS New 6/19/2022 Origin Win-SIS New 
11. 11/19/2018 Winsored Win-SIS Repeated 11/8/2022 Winsored Win-SIS Repeated 
12. 11/21/2018 Origin Win-SIS Repeated 11/10/2022 Winsored Win-SIS Repeated 
13. 12/24/2020 Origin Win-SIS New     
14. 1/9/2021 Origin Win-SIS New     
15. 11/8/2022 Origin Win-SIS Repeated     
16. 11/10/2022 Origin Win-SIS Repeated     
17. 12/16/2017 Origin Win-TIS New     
18. 12/22/2017 Winsored Win-TIS New     
19. 12/23/2017 Origin Win-TIS Repeated     

 
Table 10: LTCDW: Emerging and Repeated Patterns Detected by Win-IS  

Win-IS Performance in LTCDW 

No. Date Type Estimator Status No. Date Type Estimator Status 

1. 1/24/2015 Winsor Win-SIS Repeated 21. 4/4/2019 Origin Win-SIS New 
2. 1/26/2015 Origin Win-SIS Repeated 22. 12/16/2020 Origin Win-SIS New 
3. 7/10/2015 Winsor Win-SIS IIS→Win-SIS 23. 12/20/2020 Origin Win-SIS New 
4. 7/13/2015 Origin Win-SIS TIS→Win-SIS 24. 5/21/2021 Winsor Win-SIS New 
5. 7/17/2015 Origin Win-SIS New 25. 5/24/2021 Winsor Win-SIS IIS→Win-SIS 
6. 3/30/2017 Winsor Win-SIS IIS→Win-SIS 26. 11/8/2021 Origin Win-SIS New 
7. 4/6/2017 Origin Win-SIS New 27. 11/10/2021 Origin Win-SIS New 
8. 4/20/2017 Origin Win-SIS New 28. 11/8/2022 Winsor Win-SIS New 
9. 5/10/2017 Origin Win-SIS New 29. 11/10/2022 Winsor Win-SIS New 

10. 5/25/2017 Origin Win-SIS Repeated 30. 6/24/2015 Origin Win-TIS New 
11. 5/27/2017 Origin Win-SIS Repeated 31. 7/10/2015 Winsor Win-TIS IIS→Win-TIS 
12. 6/16/2017 Origin Win-SIS Repeated 32. 7/12/2015 Winsor Win-TIS Repeated 
13. 6/18/2017 Origin Win-SIS Repeated      
14. 7/2/2017 Origin Win-SIS New      
15. 7/5/2017 Origin Win-SIS New      
16. 8/27/2017 Origin Win-SIS New      
17. 9/2/2017 Origin Win-SIS New      
18. 12/8/2017 Winsor Win-SIS IIS→Win-SIS      
19. 12/13/2017 Origin Win-SIS New      
20. 4/2/2019 Winsor Win-SIS IIS→Win-SIS      
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Table 11:  USDTDW: Emerging and Repeated Patterns Detected by Win-IS  

Win-IS Performance in USDTW 

No. Date Type Estimator Status No. Date Type Estimator Status 

1. 11/30/2017 Winsor Win-IIS Repeated 37. 1/18/2018 Origin Win-SIS New 
2. 12/8/2017 Origin Win-IIS Repeated 38. 2/7/2018 Origin Win-SIS New 
3. 12/12/2017 Winsor Win-IIS Repeated 39. 3/25/2018 Origin Win-SIS New 
4. 12/13/2017 Winsor Win-IIS Repeated 40. 11/15/2018 Winsor Win-SIS IIS→Win-SIS 
5. 12/14/2017 Winsor Win-IIS Repeated 41. 11/19/2018 Origin Win-SIS Repeated 
6. 1/14/2018 Winsor Win-IIS New 42. 11/21/2018 Winsor Win-SIS Repeated 
7. 1/16/2018 Winsor Win-IIS Repeated 43. 11/23/2018 Winsor Win-SIS IIS→Win-SIS 
8. 1/19/2018 Winsor Win-IIS Repeated 44. 12/9/2018 Origin Win-SIS New 
9. 2/5/2018 Winsor Win-IIS SIS→Win-IIS 45. 12/30/2018 Origin Win-SIS New 

10. 2/8/2018 Winsor Win-IIS Repeated 46. 1/1/2019 Origin Win-SIS New 
11. 2/9/2018 Winsor Win-IIS Repeated 47. 3/20/2020 Origin Win-SIS New 
12. 3/19/2018 Winsor Win-IIS Repeated 48. 8/12/2020 Origin Win-SIS New 
13. 3/24/2018 Winsor Win-IIS Repeated 49. 8/15/2020 Origin Win-SIS New 
14. 4/25/2018 Winsor Win-IIS New 50. 12/2/2017 Origin Win-TIS New 
15. 11/23/2018 Winsor Win-IIS Repeated 51. 12/14/2017 Winsor Win-TIS IIS→Win-TIS 
16. 11/28/2018 Winsor Win-IIS New 52. 12/20/2017 Origin Win-TIS Repeated 
17. 3/29/2019 Origin Win-IIS New 53. 1/3/2018 Origin Win-TIS New 
18. 4/25/2019 Origin Win-IIS New 54. 1/4/2018 Origin Win-TIS New 
19. 5/19/2019 Winsor Win-IIS New 55. 1/6/2018 Origin Win-TIS New 
20. 6/28/2019 Winsor Win-IIS Repeated 56. 1/30/2018 Origin Win-TIS Repeated 
21. 7/16/2019 Origin Win-IIS New 57. 2/10/2018 Origin Win-TIS SIS→Win-TIS 
22. 8/6/2019 Origin Win-IIS New 58. 3/18/2018 Origin Win-TIS New 
23. 11/25/2019 Winsor Win-IIS New 59. 3/19/2018 Winsor Win-TIS New 
24. 12/18/2019 Origin Win-IIS New 60. 3/25/2018 Origin Win-TIS New 
25. 3/13/2020 Winsor Win-IIS Repeated 61. 11/12/2018 Origin Win-TIS New 
26. 3/27/2020 Winsor Win-IIS Repeated 62. 11/15/2018 Winsor Win-TIS IIS→Win-TIS 
27. 3/28/2020 Winsor Win-IIS Repeated 63. 12/5/2018 Origin Win-TIS New 
28. 5/6/2020 Origin Win-IIS Repeated 64. 12/9/2018 Origin Win-TIS New 
29. 5/7/2020 Winsor Win-IIS Repeated 65. 11/21/2019 Origin Win-TIS New 
30. 7/2/2020 Winsor Win-IIS New 66. 11/23/2019 Origin Win-TIS New 
31. 7/3/2020 Winsor Win-IIS Repeated 67. 11/26/2019 Origin Win-TIS New 
32. 8/14/2020 Winsor Win-IIS Repeated 68. 3/8/2020 Origin Win-TIS New 
33. 12/9/2017 Origin Win-SIS New 69. 3/9/2020 Origin Win-TIS New 
34. 12/21/2017 Origin Win-SIS New 70. 3/13/2020 Winsor Win-TIS IIS→Win-TIS 
35. 12/24/2017 Winsor Win-SIS Repeated 71. 3/17/2020 Winsor Win-TIS IIS→Win-TIS 
36. 12/31/2017 Origin Win-SIS New 72. 3/20/2020 Origin Win-TIS New 

Repeated breaks, trend breaks, and outliers as shown in Tables 9-12 signify their 
importance and persistence despite certain observations being weighted down. The 
appearance of new outliers, breaks, and trend breaks suggests that they were important 
and if extreme values are not winsored, they will be buried. The Win-IS technique also 
enabled to redetect some of the treated data, as shown in Tables 9–12. Table 9 
demonstrates, for instance, that four of the winsored extreme values in BTC appear as 
breaks and one as a trend break, whereas three winsored observations were classified as 
breaks in ETH. Tables 10–12 demonstrate that for the remaining coins, a portion of the 
winsorized observations is identified as either outliers, trend breaks, or breaks. Some of 
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the winsored observations in these tables shift to either break or trend break, indicating 
that they remain noteworthy. It also shows that Win-IS can reveal previously unseen 
data points with possibly unique characteristics or behaviors. This emphasizes the need 
of using sophisticated techniques, such as Win-IS, to improve the detection sensitivity 
of IS approaches and acquire a more thorough understanding of the changing dynamics 
inside market data. 

Table 12: XRPDW: Emerging and Repeated Patterns Detected by Win-IS approach  

Win-IS Performance in XRPTW 

No. Date Type Estimator Status No. Date Type Estimator Status 

1. 12/12/2017 Winsor Win-IIS Repeated 27. 11/25/2020 Origin Win-SIS New 
2. 12/13/2017 Winsor Win-IIS Repeated 28. 12/25/2020 Origin Win-SIS New 
3. 12/14/2017 Winsor Win-IIS Repeated 29. 1/6/2021 Origin Win-SIS New 
4. 12/21/2017 Winsor Win-IIS Repeated 30. 1/8/2021 Origin Win-SIS New 
5. 12/29/2017 Winsor Win-IIS Repeated 31. 2/1/2021 Winsor Win-SIS IIS→Win-SIS 
6. 1/3/2018 Winsor Win-IIS Repeated 32. 4/7/2021 Winsor Win-SIS Repeated 
7. 8/17/2018 Winsor Win-IIS Repeated 33. 5/21/2021 Winsor Win-SIS New 
8. 11/21/2020 Winsor Win-IIS Repeated 34. 5/25/2021 Origin Win-SIS TIS→Win-SIS 
9. 11/23/2020 Winsor Win-IIS Repeated 35. 8/15/2021 Origin Win-SIS New 

10. 12/24/2020 Winsor Win-IIS Repeated 36. 11/8/2022 Origin Win-SIS New 
11. 4/10/2021 Winsor Win-IIS Repeated 37. 11/10/2022 Origin Win-SIS New 
12. 4/13/2021 Origin Win-IIS New 38. 2/5/2018 Winsor Win-TIS Repeated 
13. 4/26/2021 Winsor Win-IIS Repeated 39. 2/9/2018 Origin Win-TIS Repeated 
14. 5/24/2021 Winsor Win-IIS Repeated 40. 5/12/2019 Origin Win-TIS New 
15. 2/7/2022 Origin Win-IIS New 41. 5/14/2019 Winsor Win-TIS Repeated 
16. 9/22/2022 Origin Win-IIS New 42. 11/26/2020 Winsor Win-TIS Repeated 
17. 3/21/2023 Winsor Win-IIS Repeated 43. 11/27/2020 Origin Win-TIS Repeated 
18. 1/8/2018 Winsor Win-SIS Repeated 44. 12/15/2020 Origin Win-TIS New 
19. 1/17/2018 Origin Win-SIS Repeated 45. 12/16/2020 Origin Win-TIS New 
20. 1/19/2018 Origin Win-SIS Repeated 46. 12/25/2020 Origin Win-TIS New 
21. 2/11/2018 Origin Win-SIS Repeated 47. 1/28/2021 Origin Win-TIS New 
22. 4/18/2018 Origin Win-SIS New 48. 1/30/2021 Winsor Win-TIS IIS→Win-TIS 
23. 4/21/2018 Origin Win-SIS New 49. 4/3/2021 Origin Win-TIS Repeated 
24. 9/18/2018 Origin Win-SIS New 50. 4/8/2021 Origin Win-TIS New 
25. 9/22/2018 Origin Win-SIS New 51. 8/8/2021 Origin Win-TIS New 
26. 5/16/2019 Origin Win-SIS New 52. 8/15/2021 Origin Win-TIS New 

 
Overall, the paper firstly detected breaks, trend breaks, and outliers using the IS 

approach in each coin concurrently. Secondly, we show that extreme values in the data 
may hide some significant changes due to the simultaneous execution of the three 
estimators of IS and due to the highly fluctuated data, by undertaking a strategy to 
lessen only 1% of the extreme observations in each using the winsorization approach. 
Thirdly, as discussed in the results, the Win-IS approach enabled to reveal new breaks, 
trend breaks, and outliers after extreme value were treated. The BIC value led to the 
decision that Win-IS results outperform the IS results. The p-values of the hypothesis 
also reveal significance of the new results revealed. Win-IS estimators also repeated 
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some of the observations as identified by IS estimators.  Therefore, we emphasize that 
excessive values can make it difficult for statistical change tests to accurately detect 
where the breaks and trend breaks occur. This highlights the necessity of developing 
precise hybrid methodologies that might assist the existing tests in obtaining reliable 
results. 

Finally, results from Tables 5-7 implies that the market returns encountered both 
upward and downward movements on different occasions which suggests that the coin 
market encountered phases of instability and unpredictability. Most outliers and breaks 
detected fall in the years 2017, 2018, 2020, and 2021. 2018 witnessed a total of  
100 breaks, trend breaks, and outliers. This was followed by 88 in 2017, 59 in 2021, and 
57 in 2020. These shifts can be caused by a variety of factors, including economic events, 
political developments, and investor sentiment. Specifically, in 2017, BTC achieved an 
all-time high of $20,000 and saw a rise in interest; in 2018, it marked crypto winter; and 
in 2020, it saw the Covid-19 epidemic. 

5. Conclusions 

This article improves the detectability of the IS approach by combining it with the 
winsorization strategy and hence proposes a technique known as Win-IS. The 
performance of Win-IS is then empirically compared to IS in five cryptocurrency 
markets. The study identified and dated outliers, breaks, and trend breaks in each 
market using both IS and Win-IS estimators. The Win-IS strategy outperformed the IS 
technique, as demonstrated by BIC scores. Furthermore, the Win-IS technique reduced 
severe outliers in four coins while revealing new outliers, breaks, and trend breaks, 
some of which were duplicated from the IS results. The repeated outliers, breaks, and 
trend breaks show their importance in this market because they remained constant in 
both winsored and original returns. The new findings demonstrate that if extreme 
values are not addressed, they will not be discovered. This highlights the importance of 
thoroughly evaluating the data before using any detection strategy, as some outliers 
disguise potential breaks. Subsequent research efforts may focus on adapting and 
expanding this hybrid methodology, as well as its relevance to other financial markets. 
Other methods can be compared to ours as well. The study concentrated on five digital 
currencies and only winsorized their first and 99th percentiles.  

Although the suggested technique was first used for cryptocurrency datasets, 
it could have broad relevance in fields including technology research, financial markets, 
and economic forecasts. Additionally, the work tackles the problem of severe outliers 
by enhancing detectability of IS technique using Winsorization, which successfully 
handled tail outliers. Without making any assumptions beforehand, the enhanced IS 
technique is reliable in identifying outliers, trend breaks, and structural breaks, 
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guaranteeing thorough analysis across datasets. The study also emphasizes how the 
Win-IS and IS technique may concurrently capture outliers, trend breaks, and breaks. 
Lastly, the technique is resilient under fat-tailed distributions, even if the underlying 
data-generating mechanism assumes near-normal behavior. Future research might go 
deeper into these areas to improve the technique's resilience and usefulness. 
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 Reliability properties and applications of proportional
reversed hazards in reversed relevation transform

M. Dileepkumar1, R. Anand2, P. G Sankaran3

Abstract

The concept of reversed relevation transform was introduced by Di Crescenzo and Toomaj 
(2015). In this article, we study important reliability properties of the reversed relevation 
transform under the proportional reversed hazards assumption. The results of research on 
information measures are presented. Various ageing concepts and stochastic orders are 
discussed. A new flexible generalisation of the Fréchet distribution is introduced using the 
proposed transformation, and reliability properties and applications are discussed.
Key words: reversed relevation transform, proportional reversed hazards model, informa-
tion measures, ageing properties, stochastic orders, quantile function.

1. Introduction

Let X denote lifetime of a component with cumulative distribution function (CDF) FX (·).
Suppose we randomly inspect the status of the component and let Y denote the random
inspection time with CDF FY (·). Then the distribution function of the random variable
X [Y ], which denotes the total time of X given that it is less than the random inspection time
Y (i.e. X |X ≤ Y ) is given by

FX [Y ](x) = FY (x)+FX (x)
∞∫

x

1
FX (t)

dFY (t), x ≥ 0. (1.1)

Di Crescenzo and Toomaj (2015) called (1.1) the reversed relevation transform of X
and Y . This can be viewed as a dual concept of the well-known relevation transform
introduced and studied by Krakowski (1973). When X and Y are identically distributed
(i.e. FY (x) = FX (x)), then (1.1) becomes

FX [Y ](x) = FX (x)(1− logFX (x)). (1.2)

Di Crescenzo and Toomaj (2015) studied various properties of a sequence of random
variables formed by the repeated application of the reversed relevation transform. Kayal
(2016) introduced a generalization of the cumulative entropy (Di Crescenzo and Longobardi
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(2009)) using the idea of the reversed relevation transform. Some results connecting
n-fold reversed relevation transform and generalized cumulative residual entropy (GCRE)
(Psarrakos and Navarro (2013)) were given by Di Crescenzo and Toomaj (2017). A past
inaccuracy measure based on the reversed relevation transform was studied by Di Crescenzo
et al. (2018).

Let fX (x) denote the density function and F̄X (x) = 1 − FX (x) represent the survival
function of a random variable X . Then the hazard rate of X , defined as hX (x) =

fX (x)
F̄X (x)

gives the instantaneous rate of failure at any given time of the object under study. Another
measure of peculiar interest is the reversed hazard rate, which is defined as λX (x) =

fX (x)
FX (x)

.
In the context of lifetime studies, the reversed hazard rate has a crucial role when time
elapsed since failure is a quantity of interest in order to predict the actual time of failure.
Various properties and applications of the reversed hazard rate can be seen in Block et al.
(1998), Chandra and Roy (2001), Gupta and Nanda (2001), Finkelstein (2002) and Chechile
(2011). In a parallel system of independent and identically distributed components, we can
see that the reversed hazard rate of the system lifetime is proportional to the reversed hazard
rate of the lifetime of each component. Lehmann (1953) introduced the concept of the
proportional reversed hazards model (PRHM) in contrast to the well-known proportional
hazards model (PHM), which is commonly used in reliability theory and survival analysis.
Let λX (·) and λY (·) be the reversed hazard rates of X and Y respectively. Then Y is said to
be the PRHM of X with proportionality constant θ if

λY (x) = θλX (x), θ > 0. (1.3)

An equivalent form of (1.3) is

FY (x) = (FX (x))
θ , θ > 0. (1.4)

PRHM can accommodate non-monotonic hazard rates even though the baseline hazard
rate is monotonic. Mudholkar and Srivastava (1993), Mudholkar et al. (1995), Mudholkar
and Hutson (1996), Gupta et al. (1998), Gupta and Kundu (1999, 2001, 2002, 2007),
Sarhan and Kundu (2009), Mahmoud and Alam (2010), Popović et al. (2022) and several
other authors have studied the importance of PRHM model in various lifetime contexts.
Moreover, certain characterization results, ageing properties and stochastic orders of the
PRHM can be seen in Di Crescenzo (2000), Gupta and Wu (2001), Kundu and Gupta (2004),
Gupta and Kundu (2007) and Shojaee and Babanezhad (2023). Under the assumption of
PRHM between X and Y , we call the transform (1.1) as the proportional reversed hazards in
the reversed relevation transform (PRHRRT). The aim of the present paper is to uncover
special properties and applications of PRHRRT in reliability context. Throughout the
paper, the terms increasing and decreasing are used in a wide sense, that is, a function g is
increasing (decreasing) if g(x)≤ (≥)g(y) for all 0 < x < y. Whenever we use a derivative,
an expectation, or a conditional random variable, we are tacitly assuming that it exists.

The remainder of this article is organized as follows. In Section 2, the concept of
PRHRRT model is introduced and its basic structural properties are studied. Various
reliability properties and certain interesting results based on information measures are
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discussed in Section 3. Ageing properties and stochastic orders of PRHRRT are studied
in Sections 4 and 5 respectively. In Section 6, we introduce a new generalization of the
Fréchet distribution using the concept of PRHRRT and present its distributional properties
and applications. Finally, Section 7 provides major conclusions of the study.

2. Proportional reversed hazards in reversed relevation transform

Let X and Y be two non-negative random variables with absolutely continuous CDFs
FX (·) and FY (·) respectively. Suppose Y is the PRHM of X , as defined in (1.4). Then the
reversed relevation random variable X [Y ] has the distribution function of the form

FX [Y ](x) = (FX (x))
θ +FX (x)

∞∫
x

1
FX (t)

d (FX (t))
θ , x ≥ 0, θ > 0. (2.1)

Di Crescenzo and Toomaj (2015) have showed that the reversed relevation transform is
commutative under the assumption of PRHM (i.e. X [Y ] d

=Y [X ]). When θ = 1, (2.1) reduces
to (1.2) and hence in the present study we assume that θ ̸= 1. We now establish an identity
connecting the distribution functions of X [Y ] and the baseline random variable X .

Proposition 2.1. Let X and Y be two non-negative random variables with absolutely
continuous CDFs FX (x) and FY (x) respectively. Then Y is the PRHM of X if and only
if FX [Y ](x) satisfies

FX [Y ](x) =
θFX (x)− (FX (x))

θ

θ −1
, θ > 0. (2.2)

Proof. Let Y be the PRHM of X . Then from Di Crescenzo and Toomaj (2015) (Proposition
2), the identity (2.2) follows. Now, to prove the converse part, assume that

FY (x)+FX (x)
∫

∞

x

1
FX (t)

dFY (t) =
θFX (x)− (FX (x))

θ

θ −1
.

Rearranging and taking the first derivative with respect to x on both sides gives

− fY (x)
FX (x)

=
1

(θ −1)2 (FX (x))
2

[
(θ −1)FX (x)

(
θ fX (x)−θ (FX (x))

θ−1 fX (x)−

(θ −1) fY (x)
)
−
(

θFX (x)− (FX (x))
θ − (θ −1)FY (x)

)
(θ −1) fX (x)

]
.

Upon simplification, we get

fX (x)(FX (x))
θ

(FX (x))
2 =

fX (x)FY (x)

(FX (x))
2 =⇒ FY (x) = (FX (x))

θ , for all x ≥ 0, θ > 0.

This completes the proof.
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Remark 2.1. The CDF of X [Y ] given in (2.2) can be represented in a mixture form as

FX [Y ](x) = φFX (x)+(1−φ)(FX (x))
θ = φFX (x)+(1−φ)FY (x), (2.3)

where φ = θ

θ−1 and one of the weights is negative depending on the value of φ .

Let fX [Y ](x) denote the density function of the random variable X [Y ]. Then from (2.2),
we get

fX [Y ](x) = fX (x)
(

θ

θ −1

(
1− (FX (x))

θ−1
))

, (2.4)

where fX (x) is the density function of X . An equivalent representation of (2.2) in terms of
the survival function of X , Y and X [Y ] denoted respectively by F̄X (·), F̄Y (·) and F̄X [Y ](·) is
as follows:

F̄X [Y ](x) =
θ F̄X (x)− F̄Y (x)

θ −1
. (2.5)

Now, the expected value of X [Y ] can be evaluated as follows:

E(X [Y ]) =
∫

∞

0
F̄X [Y ](x)dx =

1
θ −1

∫
∞

0

(
θ F̄X (x)− (F̄X (x))

θ
)

dx

=
1

θ −1

∫
∞

0

(
FX (x)+θ F̄X (x)−θ F̄X (x)− (FX (x))

θ
)

dx

= E(X)+TX (θ), (2.6)

where TX (θ) =
1

θ−1
∫

∞

0

(
FX (x)− (FX (x))

θ
)

dx, θ > 0, θ ̸= 1 is the cumulative Tsallis past
entropy (CTE), introduced and studied by Calì et al. (2017). From (2.6), the CTE of X can
be evaluated as

TX (θ) = E(X)−E(X [Y ]), (2.7)

The identity (2.7) can be used for constructing simple non-parametric estimator for
TX (θ) by using the estimators of E(X) and E(X [Y ]).

In reliability theory, PHM models plays a vital role in the comparison of the lifetime of two
components. The random variables X and Y satisfy PHM if

hY (x) = θhX (x), θ > 0, (2.8)

where hY (x) =
fY (x)
F̄Y (x)

and hX (x) =
fX (x)
F̄X (x)

are the hazard rates of X and Y respectively. An

equivalent representation of (2.8) is Ḡ(x) = (F̄(x))θ , θ > 0. For more details on PHM, one
could refer to Kalbfleisch and Prentice (2002) and Lawless (2003). When Y is the PRHM
of X with proportionality constant θ , the CDF of X [Y ] has the form (2.2). Now, in the next
proposition, for θ = 2, we provide an interesting characterization of PRHRRT.

Proposition 2.2. Let X and Y be two lifetime random variables. Then, Y is the PRHM of
X with proportionality constant θ = 2 if and only if X [Y ] is the PHM of X with the same
proportionality constant.
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Proof. Suppose FY (x) = (FX (x))
2. Then from (2.2), we have

FX [Y ](x) = 2FX (x)− (FX (x))
2 ⇐⇒ F̄X [Y ](x) = 1−2FX (x)+(FX (x))

2 ⇐⇒ F̄X [Y ](x) = (F̄X (x))
2 .

Thus, X [Y ] is the PHM of X with proportionality constant 2, which completes the proof.

Remark 2.2. Suppose that the family of distributions of X is invariant under PHM (i.e. X
and the corresponding PHM random variable belongs to the same family of distributions)
and Y is the PRHM of X with proportionality constant θ = 2. Then X is invariant under
PRHRRT. For example, under the aforementioned setup, X is exponential with mean λ if
and only if X [Y ] is exponential with mean λ

2 .

The concept of odds ratio is well known in epidemiological research, serving as
a measure of the approximate relative risk of an event, like disease or death, with or without
a specific factor. Now, if we define X as an individual’s lifespan, extending the event to
encompass ‘failure occurring by time x’ for all x > 0, the odds function φX (·), of X can be
represented as follows:

φX (x) =
P(X > x)
P(X ≤ x)

=
F̄X (x)
FX (x)

.

Note that the odds function is a decreasing function of x. For more details on properties
and applications of odds functions, one could refer to Bennett (1983), Zimmer et al. (1998),
Navarro et al. (2008), Khorashadizadeh et al. (2013), and the references therein.

Proposition 2.3. Let φX (x), φY (x) and φX [Y ](x) denote the odds functions of X , Y and X [Y ]
respectively. Then Y is the PRHRRT of X if and only if

φX [Y ](x) =
θ φX (x)−φY (x)(FX (x))

θ−1

θ − (FX (x))
θ−1 . (2.9)

Proof. Under the assumption of PRHM, we have

φX [Y ](x) =
F̄X [Y ](x)
FX [Y ](x)

=
θ F̄X (x)− (1− (FX (x))

θ )

θFX (x)− (FX (x))
θ

⇐⇒ φX [Y ](x) =
θ φX (x)−φY (x)(FX (x))

θ−1

θ − (FX (x))
θ−1 ,

where φY (x) =
1−(FX (x))

θ

(FX (x))
θ

= F̄Y (x)
FY (x)

.

3. Reliability properties

The hazard rate of the random variable X [Y ] under the assumption of PRHM has the
form

hX [Y ](x) =
fX [Y ](x)

1−FX [Y ](x)
= hX (x)

θ(1−FX (x))
(

1− (FX (x))
θ−1

)
θ(1−FX (x))−

(
1− (FX (x))

θ
)

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= hX (x)

 1− FY (x)
FX (x)

1− F̄Y (x)
θ F̄X (x)

 , (3.1)

where hX (x) is the hazard rate of X.

Let mX [Y ](x) denote the mean residual life of the random variable X [Y ], defined by

mX [Y ](x) =
1

F̄X [Y ](x)

∫
∞

x
F̄X [Y ](t) dt, x > 0. (3.2)

On integrating (2.5) over the interval (x,∞), we get∫
∞

x
F̄X [Y ](t) dt =

θ

θ −1

∫
∞

x
F̄X (t) dt − 1

θ −1

∫
∞

x
F̄Y (t) dt, x > 0. (3.3)

This gives

mX [Y ](x)F̄X [Y ](x) =
θ

θ −1
mX (x)F̄X (x)−

1
θ −1

mY (x)F̄Y (x)

=⇒ mX [Y ](x) =
θ mX (x)F̄X (x)−mY (x)F̄Y (x)

θ F̄X (x)− F̄Y (x)
, (3.4)

where mX (x) and mY (x) are the mean residual life functions of X and Y respectively.

The mean inactivity time of X [Y ] has the form

µX [Y ](x) =
1

FX [Y ](x)

∫ x

0
FX [Y ](t) dt =

θ µX (x)− (FX (x))
θ−1

µY (x)

θ − (FX (x))
θ−1 , (3.5)

where µX (x) and µY (x) are the mean inactivity times of X and Y respectively.

Glaser’s function of a random variable X with density function fX (x) is defined as
ηX (x) = − f ′X (x)

fX (x)
(Glaser (1980)), where prime denotes the first derivative. It is used as

an alternative for the hazard rate in lifetime studies. Under the PRHM assumption between
X and Y , the Glaser’s function of X [Y ] satisfies the identity

ηX [Y ](x) = ηX (x)

 (FX (x))
θ
(
(θ −1)(FX (x))

2
)
− (FX (x))

2 f ′X (x)

FX (x) fX (x) f ′X (x)
(

FX (x)− (FX (x))
θ
)

 . (3.6)

The reversed hazard rate of X [Y ] is given by

λX [Y ](x) =
fX [Y ](x)
FX [Y ](x)

= θλX (x)
(

FX (x)−FY (x)
θFX (x)−FY (x)

)
(3.7)

= λY (x)
(

FX (x)−FY (x)
θFX (x)−FY (x)

)
.
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The identities (2.5), (3.1), (3.4), (3.5), (3.6) and (3.7) are useful for obtaining the
aforementioned reliability measures of X [Y ] from those of the baseline random variables
X and Y . Moreover, we can make use of these identities to establish various ageing and
ordering properties of X [Y ] without knowing the distribution of X [Y ].

3.1. Distorted representation

A distortion function, q(u), is a non-decreasing function from [0,1] to [0,1], such that
q(0) = 0 and q(1) = 1. Suppose that X and Y are two random variables with survival
functions F̄X (x) and F̄Y (x) respectively. Then Y is said to be the distorted random variable of
X if F̄Y (x) = q(F̄X (x)), where q(u) is a distortion function. Denneberg (1990) introduced the
concept of distortion functions, and later it gained wide popularity in the areas of actuarial
science, insurance, economics, and risk analysis. The importance of distorted random
variables in reliability studies has been pointed out by various researchers, such as Wang
(1996), Sordo and Suárez-Llorens (2011), Navarro et al. (2013, 2014, 2016), Sordo et al.
(2015) and Navarro (2022).

Proposition 3.1. If Y is the PRHM of X , then X [Y ] is a distorted random variable of X with
distortion function

q(u) =
1

θ −1
(θu− (1− (1−u)θ )). (3.8)

Proof. Since Y is the PRHM of X , from (2.5), the survival function F̄X [Y ](x) can be
expressed as

F̄X [Y ](x) = q(F̄X (x)), where q(u) =
1

θ −1
(θu− (1− (1−u)θ )), u ∈ [0,1].

We can easily verify that q(u) given in (3.8) is a distortion function. Thus, X [Y ] is
a distorted random variable of X with distortion function q(u).

Note that the distortion function given in (3.8) is a convex function. Expressing X [Y ]
as a distorted random variable of X will be useful in studying the preservation of various
ageing properties from X to X [Y ] and establishing stochastic order relations between X and
X [Y ]. We consider this in Sections 4 and 5.

4. Ageing properties

In this section, we discuss some of the ageing properties of X [Y ] in connection with the
baseline random variable X . Let X be a lifetime random variable with CDF FX (x), density
function fX (x), survival function F̄X (x), hazard rate hX (x) and reversed hazard rate λX (x).
We consider the following ageing properties;

(i) X is said to have an increasing (decreasing) hazard rate (i.e. IHR (DHR)) if the hazard
rate hX (x) is increasing (decreasing).

(ii) X is said to have an increasing (decreasing) hazard rate average (i.e. IHRA (DHRA))
if 1

x
∫ x

0 hX (u)du is increasing (decreasing).
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(iii) X is new better (worse) than used (i.e. NBU (NWU)) if F̄X (x+ t)≤ (≥) F̄X (x)F̄X (t),
for all x, t > 0.

(iv) X is new better (worse) than used in hazard rate (i.e. NBUHR (NWUHR)) if
hX (0)≤ (≥)hX (x), for all x > 0.

(v) X is said to have an increasing (decreasing) reversed hazard rate (i.e. IRHR (DRHR))
if λX (x) is increasing (decreasing).

(vi) X is said to have an increasing (decreasing) likelihood ratio (i.e. ILR (DLR)) if
log fX (x) is concave (convex).

For more details on ageing properties and their applications, one may refer to Barlow
and Proschan (1975), Lai and Xie (2006), Navarro (2022) and Breneman et al. (2022).
In the context of coherent systems having independent and identical components, Navarro et
al. (2014) showed that the system lifetime S is a distorted random variable of the component
lifetime X with distortion function, say q(u). Since X [Y ] is a distorted random variable of
X , in the next proposition we present conditions for the preservation of reliability classes
under the formation of PRHRRT by adopting results from Navarro et al. (2014).

Proposition 4.1. Let X and Y be two lifetime random variables, with CDFs FX (x) and FY (x)
respectively. Let X [Y ] be the reversed relevation of X and Y . Assume that Y is the PRHM
of X . Then we have the following;

(i) For θ ≥ 2, X is IHR =⇒ X [Y ] is IHR.

(ii) For 0 < θ ≤ 2, X is DHR =⇒ X [Y ] is DHR.

(iii) For θ > 0, X is DRHR =⇒ X [Y ] is DRHR.

(iv) For 0 < θ ≤ 2, X is DLR =⇒ X [Y ] is DLR.

(v) For θ > 0, X is NWU =⇒ X [Y ] is NWU.

(vi) For θ > 0, X is DHRA =⇒ X [Y ] is DHRA.

Proof. Consider the PRHRRT model given in (2.2). From (3.8), we have the distortion
function connecting X and X [Y ] as q(u) = (1−u)θ+θu−1

θ−1 , u ∈ [0,1]. By recalling the results

from Navarro et al. (2014) in the context of coherent systems, we have, if τ(u) = uq′(u)
q(u)

is decreasing (increasing) in (0,1) then the IHR (DHR) property will be preserved with
respect to the distortion function q(u). Thus, for proving (i) and (ii), we have to examine

the monotonicity of τ(u) = uq′(u)
q(u) =

u(θ−θ (1−u)θ−1)
(1−u)θ+θ u−1 . For this, we have

τ
′(u) =

θ

(
u
((
(θ −1)2u−2

)
(1−u)θ −u+2

)
−
(
(1−u)θ −1

)2
)

(u−1)2 ((1−u)θ +θu−1)2 . (4.1)
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The denominator of (4.1) is always non-negative, and by analyzing the numerator, we
observe that the right-hand side is strictly positive for 0 < θ < 2, strictly negative for θ > 2
and zero for θ = 2. This completes the proof for (i) and (ii).
Again, from Navarro et al. (2014), we have the result that, if k(u)= uq′(1−u)

1−q(1−u) is decreasing in

(0,1) then the DRHR property will be preserved from X to X [Y ]. We have k(u)= uq′(1−u)
1−q(1−u) =

θ (uθ−u)
uθ−θ u . On differentiating k(u) with respect to u, we get

k′(u) =− (θ −1)2θuθ

(uθ −θu)2 ≤ 0, for all θ > 0 and u ∈ (0,1).

Thus, k(u) is decreasing in u and hence the proof of (iii) follows.

Let l(u) = uq′′(u)
q′(u) =− (θ−1)u(1−u)θ−1

(1−u)θ+u−1 . From (3.8) we have

l′(u) =−
(θ −1)(1−u)θ−2

(
(1−u)θ +u(θ −θu+u)−1

)
((1−u)θ +u−1)2 ,

which is non-negative when 0 < θ ≤ 2 for all u ∈ (0,1). Now, from Navarro et al. (2014)
(Proposition 2.2), proof of (iv) follows.

It is easy to verify that the distortion function q(u) is super-multiplicative (i.e. q(u v)≥
q(u) q(v), for all 0 ≤ u, v ≤ 1). This inequality with Proposition 2.7 of Navarro et al. (2014)
completes the proof of (v).

Similarly q(u) satisfies the inequality q(ua)≥ (q(u))a for 0 < a < 1. Now, proof of (vi)
follows from Navarro et al. (2014) (Proposition 2.8).

Example 4.1. Let X be a random variable having a Burr type-XII distribution, with CDF
FX (x) = 1−

( 1
1+x

)c
, x > 0, c > 0. Then the hazard rate of X is hX (x) = c

1+x , which is
decreasing for all parameter values. Suppose Y is the PRHM of X , then the hazard rate of
X [Y ] has the form

hX [Y ](x) =
c θ

( 1
x+1

)c+1
((

1−
( 1

x+1

)c
)θ

+
( 1

x+1

)c −1
)

(( 1
x+1

)c −1
)(

θ
( 1

x+1

)c
+
(

1−
( 1

x+1

)c
)θ

−1
) .

Figure 1(a) illustrate the preservation of DHR property when 0 < θ ≤ 2. For θ > 2,
DHR property will not be preserved as shown in Figure 1(b). Observe that X [Y ] has DHR
and Upside-down Bathtub (UBT) shaped hazard rates for various parameter combinations
while the baseline is always DHR.
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(a) θ = 0.5 and c = 10 (b) θ = 5 and c = 10

Figure 1: Plots of hX [Y ](x) for various parameter combinations.

5. Stochastic orders

Stochastic orders are used to compare the characteristics of two lifetime random
variables. This section aims to provide different stochastic order relations between X and
X [Y ]. Let X and Y be two continuous lifetime random variables, with CDFs FX (x) and FY (x)
respectively. Let fX (x) and fY (x) be the corresponding density functions. Then we have the
following:

(i) X is smaller than Y in usual stochastic order, denoted by X ≤st Y if and only if F̄X (x)≤
F̄Y (x) for all x.

(ii) X is smaller than Y in hazard rate order, denoted by X ≤hr Y if and only if F̄Y (x)
F̄X (x)

is
increasing in x.

(iii) X is smaller than Y in likelihood ratio order, denoted by X ≤lr Y if and only if fY (x)
fX (x)

is increasing in the set of union of their supports.

(iv) X is smaller than Y in increasing convex order, denoted by X ≤icx Y if and only if∫
∞

x F̄X (t) dt ≤
∫

∞

x F̄Y (t) dt for all x.

(v) X is smaller than Y in convex ordering, denoted by X ≤c Y if F−1
Y (FX (x)) is convex.

More properties and applications of stochastic orders can be seen in Shaked and
Shanthikumar (2007), Belzunce et al. (2016) and Kochar (2022). Di Crescenzo and Toomaj
(2015) showed that X [Y ] ≤st X . In the coming propositions, we establish interesting order
properties between X [Y ], X and Y under the PRHM assumption between X and Y .

Proposition 5.1. Let Y be the PRHM of X and X [Y ] is the corresponding reversed relevation
random variable. Then X [Y ]≤lr min{X , Y}

Proof. It is enough to show that X [Y ] ≤lr X and X [Y ] ≤lr Y . For this, note that X [Y ]
and X can be represented as distorted forms of X with respective distortion functions
q1(u) = 1

θ−1 (θu− (1− (1−u)θ )) and q2(u) = u. By recalling the results from Navarro et
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al. (2013) in the context of stochastic orders between two coherent systems having identical
components, we have

X [Y ]≤lr (≥lr)X if and only if
q′1(u)
q′2(u)

is increasing (decreasing) in u ∈ (0,1). (5.1)

Note that

d
du

(
q′1(u)
q′2(u)

)
=

d
du

(
θ −θ(1−u)θ−1

θ −1

)
= θ(1−u)θ−2 > 0, for all θ > 0 and u ∈ (0,1).

Thus, q′1(u)
q′2(u)

is increasing in u ∈ (0,1) and thus from (5.1), we have X [Y ]≤lr X .

In similar lines, we can form X [Y ] and Y by distorting Y using the distortion functions

r1(u) =
θ

(
1−(1−u)

1
θ

)
−u

θ−1 and r2(u) = u respectively. This gives

r′1(u)
r′2(u)

=
(1−u)

1
θ
−1 −1

θ −1
.

Note that d
du

(
r′1(u)
r′2(u)

)
= (1−u)

1
θ
−2

θ
> 0, for all θ > 0 and u∈ (0,1). The proof thus follows

from (5.1). Now, since X [Y ]≤lr X and X [Y ]≤lr Y , from Shaked and Shanthikumar (2007),
we get X [Y ]≤lr min{X , Y}. This completes the proof.

From Shaked and Shanthikumar (2007) and Proposition (5.1), we have the following
implications.

X [Y ]≤lr min{X , Y} =⇒ X [Y ]≤hr min{X , Y} =⇒ X [Y ]≤st min{X , Y}.

Proposition 5.2. Let X1 and X2 be two lifetime random variables with distribution functions
F1(x) and F2(x) respectively. Suppose Y1 and Y2 are the PRHM of X1 and X2 respectively
with the same proportionality constant. Then the following properties hold:

(i) If X1 ≤st X2, then X1[Y1]≤st X2[Y2].

(ii) If X1 ≤hr X2, then X1[Y1]≤hr X2[Y2].

(iii) If X1 ≤icx X2, then X1[Y1]≤icx X2[Y2].

(iv) If X1 ≤lr X2, then X1[Y1]≤lr X2[Y2], for θ > 2.

(v) If X1 ≤rhr X2, then X1[Y1]≤rhr X2[Y2].

Proof. The proof of (i) is intuitive from equation (2.2).
To prove (ii), we need to show that u q′(u)

q(u) is decreasing in u. We have

d
du

(
uq′(u)
q(u)

)
=

θ

(
u
((
(θ −1)2u−2

)
(1−u)θ −u+2

)
−
(
(1−u)θ −1

)2
)

(u−1)2 ((1−u)θ +θu−1)2 ≤ 0,
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for all θ > 0, where q(u) is the distortion function defined in (3.8). Then from Navarro et
al. (2013) (Theorem 2.6), result (ii) follows.
Similarly (iii) follows from Navarro et al. (2013) (Theorem 2.6), since q(u) is a convex
function in (0,1).

Again, from Navarro et al. (2013) we have the result that if u q′′(u)
q′(u) is non-negative and

decreasing in u, then result (iv) holds. Now,

d
du

(
u q′′(u)
q′(u)

)
=−

(θ −1)(1−u)θ−2
(
(1−u)θ +u(θ −θu+u)−1

)
((1−u)θ +u−1)2 ≤ 0,

for all θ ≥ 2. Then from Navarro et al. (2013) (Theorem 2.6), result (iv) follows.
Similarly, to prove (v), we use the result from Navarro et al. (2013) that, if (1−u) q′(u)

1−q(u) is
increasing in u, then result (v) holds. Note that

d
du

(
(1−u) q′(u)

1−q(u)

)
=

θ
(
(1−u)θ +u−1

)
(1−u)θ +θ(u−1)

> 0, for all θ > 0.

Then from Navarro et al. (2013) (Theorem 2.6), result (v) follows.

Proposition 5.3. Let X and Y be two lifetime random variables with distribution functions
FX (x) and FY (x) respectively. If Y is the PRHM of X , then:

(i) X [Y ]≤c X for θ ≥ 2.

(ii) X ≤c X [Y ] for 0 < θ ≤ 2.

Proof. Sengupta and Deshpande (1994) showed that, for two non-negative random variables
X and Y with hazard rates hX (x) and hY (x) respectively, X ≤c Y if and only if hX (x)

hY (x)
is non-

decreasing in x, provided hY (x) ̸= 0. To prove (i), we consider the function s1(x) :

s1(x) =
hX [Y ](x)
hX (x)

=
θ(FX (x)−1)

(
FX (x)− (FX (x))

θ
)

FX (x)
(

θFX (x)− (FX (x))
θ −θ +1

) .
On differentiating with respect to x, we get

d
dx

(s1(x)) =
θ
(
−
(
(θ −1)2(FX (x))2 −2(θ −2)θFX (x)+(θ −1)2)(FX (x))θ +FX (x)2θ +(FX (x))2) fX (x)

(FX (x))2
(
(FX (x))θ −θFX (x)+θ −1

)2 ,

which is non-negative for θ ≥ 2. Thus, X [Y ]≤c X for θ ≥ 2.
Similarly, to prove (ii) we analyze the monotonicity of the function s2(x) defined by

s2(x) =
hX (x)

hX [Y ](x)
=

F(x)
(
−F(x)θ +θF(x)−θ −1

)
θ(F(x)−1)(F(x)−F(x)θ )

.

On differentiating with respect to x, we get

d
dx

(s2(x)) =

(
(θ −1)(F(x)−1)((θ −1)F(x)−θ −1)F(x)θ −F(x)2θ +F(x)2)F ′(x)

θ(F(x)−1)2
(
F(x)−F(x)θ

)2 ,
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which is non-negative for 0 < θ ≤ 2. Thus, X ≤c X [Y ] for 0 < θ ≤ 2.

6. Applications

In this section, we propose a generalization of the Fréchet distribution using the idea of
PRHRRT. The Fréchet distribution is one of the well-known extreme value model. Extreme
value theory is used to estimate the probability of extreme events and to develop strategies to
reduce their effects. The classical theory of extremes deals with the distributional properties
of the statistics Mn = max(X1, . . . ,Xn) and mn = min(X1, . . . ,Xn) of i.i.d random variables
X1, . . . ,Xn. Gnedenko(1943) showed that the asymptotic distribution of Mn will be one
of the three types of extreme value distributions. Type-I extreme value distribution is the
Gumbel distribution, Type-II is the Fréchet or inverse Weibull distribution and Type-III is
the reverse Weibull distribution. We have seen in Section 4 that PRHRRT can be used
for constructing new lifetime models having more flexible hazard rates. We now assume
the Fréchet distribution for the baseline random variable X and study various reliability
properties of X [Y ]. The two parameter Fréchet distribution has CDF

FX (x) = e−( σ
x )

α

, x > 0, σ > 0, α > 0.

Then the distribution function of the corresponding PRHRRT random variable Z = X [Y ]
is obtained as

TZ(x) =
θ e−( σ

x )
α −

(
e−( σ

x )
α
)θ

θ −1
, x > 0, σ , α > 0, θ > 0. (6.1)

We denote the model (6.1) as the PRHRR-F distribution. The rth raw moment of
PRHRR-F denoted by µ ′

r is of the form

µ
′
r =

σ r
(

θ −θ
r
α

)
Γ
(
1− r

α

)
θ −1

, α > r, r = 0,1,2, . . . . (6.2)

The moment generating function of Z is obtained as

MZ(t) =
∞

∑
r=0

µ
′
r

tr

r!
, α > r.

hazard rate of Z has the form

hZ(x) =−
α θ

(
σ

x

)α

((
e−(

σ
x )

α
)θ−1

−1
)

xe(
σ
x )

α
(

θ +
(

e−(
σ
x )

α
)θ

−1
)
−θ x

.

From Figure 2, we can observe that hZ(x) incorporates IHR, DHR and upside-down
bathtub shapes for various parameter combinations.
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The estimation of unknown parameters of PRHRR-F (σ , α , θ ) distribution has been
carried out using the method of maximum likelihood. The log-likelihood function of the
PRHRR-F for a given sample x1, . . . ,xn of size n is

logL(σ ,α,θ |x1, . . . ,xn) =
n

∑
i=1

log

α θ e−
(

σ
xi

)
α
(

σ

xi

)
α

((
e−

(
σ
xi

)
α
)

θ−1 −1
)

(1−θ)xi

 .

The maximum likelihood estimators (MLE) (λ̂ , α̂ and θ̂ ) can be obtained by solving
the equations ∂ logL

∂σ
= 0, ∂ logL

∂α
= 0 and ∂ logL

∂θ
= 0 simultaneously. Since it is difficult

to find a solution for this non-linear system of equations analytically, we have employed
the Newton-Raphson iterative method to get a solution numerically. We have

√
n(Θ̂−Θ)

follows multivariate normal distribution with zero mean and variance-covariance matrix
I−1(Θ), where Θ = (σ , α, θ) and I(Θ) denotes the Fisher information matrix. From this,
the two-sided 100(1−α)% confidence interval for the parameters can be obtained as

θ̂i ± zα/2

√
I−1
ii (Θ)

n
, (6.3)

where zα/2 is the α/2th percentile of the standard normal distribution and I−1
ii (Θ) is the ith

diagonal element of I−1(Θ), i = 1, . . . ,n. When I(Θ) cannot be evaluated analytically, an
efficient alternative is the observed Fisher information (OFI) introduced by Cox and Hinkley
(1974).

(a) σ = 5, α = 0.5 and θ = 2.5 (b) σ = 0.5, α = 5 and θ = 3

(c) σ = 0.2, α = 3 and θ = 4 (d) σ = 0.01, α = 0.01 and θ = 1.5

Figure 2: Plots of hZ(x) for various parameter combinations.
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(a) PRHRR-F distribution (b) Other competing models

Figure 3: Histogram and Density plots for the first data set.

Table 1: Estimates, K-S statistics and p-values for the first data set.

Distributions Estimates K-S Statistics p-value

PRHRR-F (σ ,α,θ ) σ̂ = 1.7527 α̂ = 3.6595 θ̂ = 0.9995 0.0683 0.9114
GF (λ ,α,β ) λ̂ = 1.6737 α̂ = 5.4376 β̂ = 0.3948 0.0772 0.8185
MOF (α,β ,λ ) α̂ = 1.4559 β̂ = 5.2227 λ̂ = 0.0023 0.0813 0.7686
EF (α,β ,λ ) α̂ = 1.7936 β̂ = 2.3223 λ̂ = 0.3016 0.1739 0.0389
WF (α,β ,λ ) α̂ = 1.6248 β̂ = 5.9372 λ̂ = 0.3750 0.1659 0.0551
Fréchet (σ ,α) σ̂ = 1.4108 α̂ = 5.4377 0.0772 0.8185

To show the applicability of the proposed model in situations other than reliability
context, we next consider data that were reported in Hand et al. (1994). The data represents
prices of 31 different children’s wooden toys on sale in a Suffolk craft shop in April 1991.
To show the efficiency of the proposed model over other competing alternatives, we carry
out the K-S goodness of fit test. Maximum likelihood estimates and goodness of fit test
results of the proposed model and other competing alternatives are listed in Table 2.

From Table 2 it is clear that, for the second data set, the PRHRR-F model outperforms
other competing alternatives. The standard errors of σ̂ , α̂ and θ̂ are 0.0868, 0.0372 and
2.7654 respectively. The 95% confidence intervals for the model parameters σ , α and θ are
(1.9347, 2.2751), (1.0177, 1.1636) and (6.6134, 17.4540) respectively. Figure 4 displays
the observed histogram and fitted density functions. Q-Q plot is given in Figure 5(b). These
two plots ensures the adequacy of the proposed model for the data.
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(a) PRHRR-F distribution (b) Other competing models

Figure 4: Histogram and Density plots for the second data set.

Table 2: Estimates, K-S statistics and p-values for the second data set.

Distributions Estimates K-S Statistics p-value

PRHRR-F (σ ,α,θ ) σ̂ = 2.1045 α̂ = 1.0906 θ̂ = 12.0434 0.0821 0.9851
GF (λ ,α,β ) λ̂ = 1.2321 α̂ = 1.2147 β̂ = 1.6709 0.0980 0.9271
MOF (α,β ,λ ) α̂ = 1.6728 β̂ = 0.8776 λ̂ = 6.4507 0.1014 0.9074
EF (α,β ,λ ) α̂ = 2.6055×10−14 β̂ = 0.9559 λ̂ = 3.9062 0.1392 0.5848
WF (α,β ,λ ) α̂ = 2.7451 β̂ = 1.0389 λ̂ = 0.7502 0.1000 0.9156
Fréchet (σ ,α) σ̂ = 1.8802 α̂ = 1.2148 0.0979 0.9271

(a) First data set (b) Second data set

Figure 5: Q-Q plots.

7. Conclusions

In this paper, we have presented the proportional reversed hazards in the reversed
relevation transform as a special case of the reversed relevation transform. Its reliability
properties and results based on entropy measures were discussed in detail. The ageing
and stochastic ordering properties of the model were derived. Finally, we introduced the
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PRHRR-F (σ , α, θ) model, studied its important characteristics and illustrated its practical
applicability with the help of two real-life data sets.
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Abstract

One of the most significant disruptive events of the 21st century was the COVID-19 epi-
demic, which was first detected in China in 2019 and quickly spread around the world. While
waiting for the development of the vaccine, governments used a variety of strategies to coun-
teract the effects of the pandemic: from simple personal hygiene advice to the introduction
of strict lockdowns. In this paper, the confirmed cases of COVID-19 fatalities (count data
and having zero inflation) due to COVID-19 in Nigeria modeled using univariate time se-
ries models. To describe the attributes of COVID-19 fatalities in Nigeria with zero inflation,
the autoregressive integrated moving average (ARIMA), zero-inflated poison autoregressive
(ZIPAR), and zero-inflated negative binomial autoregressive (ZINBAR) models were used.
Our findings indicate that ZINBAR(1) having the lowest root mean square error (RMSE),
the Akaike information criterion (AIC), and the Bayesian information criterion (BIC) out-
performs the other two models: Hence, the ZINBAR(1) performs better than the ZIPAR(1)
(this is in aggrement with the work of Tawiah et al. (2021)) and the ARIMA(0,1,1). This
demonstrates and emphasised the fact that for count time series data, count time series mod-
els should be used. Hence, the ZINBAR(1) can be use to predict and forecast COVID-19
in Nigeria.

Key words: ARIMA, Covid-19, Nigeria, Modeling, ZINBAR, ZINPAR.

1. Introduction

The novel coronavirus 2019 (COVID-19) has been a deadly killer since 2019 and through-
out the year 2020, until researchers came up with some remedy to reduce the spread.
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In December 2019, Wuhan, Hubei Province, China, experienced the outbreak of COVID-
19, a brand-new coronavirus illness (Li et al., 2020). China is resolved to effectively stop
the spread of the disease, and on January 20, 2020, the National Health Commission of
the People’s Republic of China unveiled the most comprehensive prevention and control
measures against pneumonia (Team, 2020; Kucharski et al., 2020).

For public health, pandemic preparedness, and healthcare systems, this virus poses a sig-
nificant problem. The extremely contagious SARS-CoV-2 coronavirus causes severe acute
respiratory illness (Organization et al., 2020). By coming into direct touch with contami-
nated surfaces and breathing in respiratory droplets from sick people, COVID-19 is passed
from one person to another (Bai et al., 2020). Right now, COVID-19 cannot be prevented or
treated by a vaccine or antiviral medication that has received approval (Tang et al., 2020).

Governments have been putting in place various control measures to effectively stop the
spread of COVID-19, including strict, mandatory lockdowns and encouraging (and in some
cases strictly enforcing) other measures like people keeping a minimum distance between
themselves (social distancing), avoiding crowded events, imposing a maximum number of
people in any gathering (religious and social), and the use of face masks while in public
(Dunford et al., 2020).

There are numerous epidemic models that use mathematics to describe how infectious
illnesses spread. Estimating the spread of illnesses and the number of affected people is the
primary function of modeling, which enables prudent government to develop a workable
strategy. Statistical models enable the evaluation of a number of "what-if" scenarios, which
can provide significant insight for decision-makers in public health.

A few mathematical models that attempt to capture the dynamics of COVID-19’s and
other diseases evolution can be found in the literature (Roosa et al., 2020). In an effort to
create and evaluate shortterm projections of the total number of reported cases, these were
validated with outbreaks of diseases other than COVID-19.

Recently, a multi-criteria decision-analysis techniques based Fuzzy TOPSIS have been
employed in assessing the disruptions caused by the COVID-19 pandemic in different sec-
tors of the world economy. The study combined two MCDA tools (best-worst and fuzzy-
TOPSIS) and considered Supply Chain disruptions in particular, ranking the most affected
industries (Ali et al., 2023).

Across the globe and indeed in Africa, there have been several statistical models of
COVID-19 data aimed at studying, learning and understanding the dynamics of the pan-
demic. The work of Sam (2020) which compared COVID-19 data from the African region
to other regions of the world. Shoko and Njuho (2023) used ARIMA model for predicting
the spread of COVID-19 in Southern Africa (South Africa, Zambia and Namibia). A short-
term ARIMA model for predicting mortality due to COVID-19 was developed by Chaurasia
and Pal (2020). They used the model (ARIMA) to forecast mortality rate. Many other au-
thors studied COVID-19 using different forms of ARIMA models. These includes but are
not limited to Alabdulrazzaq et al. (2021), who used the Kuwait COVID-19 data to test
the accuracy of the ARIMA model in predictions. The result confirmed the applicability of
the ARIMA model. Ribeiro et al. (2020) applied machine learning and ARIMA to forecast
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COVID-19 cases in the Brazilian context; Yang et al. (2020) employed a similar ARIMA
model for COVID-19 cases prediction in Italy. Lukman et al. (2020), Khan and Gupta
(2020), Poleneni et al. (2021), Abdelaziz et al. (2020), Nguyen et al. (2020), Somyanon-
thanakul et al. (2022), Zhihao et al. (2021), Malki et al. (2021), ArunKumar et al. (2021)
and Sah et al. (2022) demonstrated the usage of ARIMA in COVID-19 with different case
studies. However, it is observed that ARIMA cannot fit COVID-19 data correctly, because
they are count data. Therefore, it gives the basis for further investigating the most suitable
model for the pandemic.

In Nigeria, Busari and Samson (2022) studied the dynamics of the COVID-19 pandemic
using ARIMA model and other machine learning models, and the results showed that Fine
Tree, one of the Machine Learning models, outpreformed ARIMA model. Ibrahim and
Oladipo (2020) used only two months dataset to forecast Nigerian COVID-19 spread us-
ing ARIMA (1,1,0) model. Similarly, Samson et al. (2020) applied ARIMA models on
the COVID-19 confirmed cases and selected the ARIMA (2,1,0) as the best fit model for
prediction. Olarenwaju and Harrison (2020) applied ARIMA and Artificial Neural Net-
works to COVID-19 data of some selected states in Nigeria for prediction. Adesina et
al. (2020) demonstrated that ARFIMA model outperformed ARIMA model for modeling
and prediction of confirmed cases of COVID-19 in Nigeria. Lukman et al. (2020) eval-
uated COVID-19 prevalence for 4 countries (South Africa, Nigeria, Ghana and Egypt) in
Africa using ARIMA models. The ARIMA(0,2,3), ARIMA(0,1,1), ARIMA(3,1,0) and
ARIMA(0,1,2) models were selected as the optimal models for these countries, respec-
tively. Didi et al. (2021) modeled daily COVID-19 confirmed and fatality cases in Nigeria
considering ARIMA models. Ortese et al. (2021) explored the ARIMA family of models
to assess the infection rate of COVID-19 in Nigeria, and selected ARIMA (0,1,1) as the
best model. Aronu et al. (2021) Argawu (2021); Agboola et al. (2021); Suleiman and
Sani (2021); Li et al. (2022); Nwafor et al. (2022); Adams and Somto (2022); Inegbe-
dion (2023); Oduntan and Ajayi (2023) displayed the application of ARIMA models for the
same COVID-19 data in Nigeria considering different cases. However, the present study
used count time series models (ZIBAR and ZIPAR) in comparison with ARIMA model as
in the literature. The study showed that for count time series data (Nigeria COVID-19 data),
count time series models should be used.

Odekina et al. (2022) modeled the 3rd wave of COVID-19 in Nigeria using Vector
Autoregressive (VAR) model, where a steady rise in fatality cases was observed but a small
decrease in the number new cases was recorded.

The problem with most of the reviewed literature, the data generated at the instance
of COVID-19 pandemic (be it confirmed cases, recovered cases or fatality) are count data.
Consequently, such family of Time Series models (such as ARIMA) would not be able to
adequately model such data. This is in agreement with Busari and Samson (2022).
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The aim of this study is to create a Time Series model that captures the features of
COVID-19 data in Nigeria, so that, such a model can be used for prediction and forecasting.
Hence, we specifically considered, the number of fatalities due to COVID-19 in Nigeria,
which are count data and have zero inflation.

2. Materials and Methods

2.1. Materials

In this paper, the whole country (Nigeria) was considered as a study area. Figure 1 shows
the map of Nigeria and the COVID-19 outbreak status across the States of the federation.
States (Lagos, Oyo, Rivers, Kaduna) and the Federal Capital Territory (FCT) with dark
green coloration had above 10,000 confirmed cases of COVID-19, while Kogi State had
between 1 to 100 confirmed cases of COVID-19 during the period under review.

The Gender-Age distribution is presented in Figure 2, the number of confirmed cases
and fatalities (death) among males was higher as compared to females in the country. More
fatalities were recorded among both males and females of group 45 - 49 and older.

Figure 1: Distribution of cumulative cases of COVID-19 across the six Geo-political zones
of the Federation as of epi weeks 17-18, 2022. Source: NCDC COVID-19 situation report
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Figure 2: Gender and age distribution of confirmed cases and fatalities of COVID-19 (week
10, 2020 - week 18, 2022). Source: NCDC COVID-19 situation report

2.2. Methods

The fatalities recorded in Nigeria as a result of COVID-19 infections, as observed are
discrete count time series data, having zero inflation. The Zero-Inflated Poisson Autoregres-
sive (ZINPAR) and Zero- Inflated Negative Binomial Autoregressive (ZINBAR) models of
Yang (2012), and later used by Tawiah et al. (2021) for modeling COVID-19 deaths in
Ghana was used as reviewed and discussed in the next section.

Confirmed cases of COVID-19 infections and COVID-19 fatalities in Nigeria were the
two series used for the period under review, from 27th February, 2020 to 3rd April, 2022.

2.2.1 Time Series Models

There are several univariate multivariate time series models and their applications in
the literature, for example; Abiodun et al. (2019), Kumar and Susan (2020), Ogbuagada et
al. (2022), Yang (2012), Yang et al. (2013), Tawiah et al. (2021), Chyon et al. (2022),
Ogbuagada et al. (2022), amongst many others.

Let the two series {Ct}T
t=1 and {Ft}T

t=1 denote confirmed cases and fatalities of COVID-
19 in Nigeria, respectively. The univariate time series models adapted in this paper are
reviewed below.

Autoregressive Integrated Moving Average (ARIMA) Model

The ARIMA(p,d,q) model is a combination of two time series models: Autoregressive
(AR(p)) model with order p and the Moving Average (MA(q)) model of order q, d is the
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order of differencing, and I represents integration (Kumar and Susan, 2020).

ct = α +
p

∑
i=1

φict−i + vt +
q

∑
j=1

θ jvt− j (1)

where ct−1,ct−2, . . . ,ct−p are the past values of confirmed cases of COVID-19 in Nige-
ria and vt ,vt−1,vt−2, . . . ,vt−q are error terms, and vt ∼ N(0,σ2).

Zero-Inflated Poisson Autoregressive (ZINPAR) Model

Let {Ft}T
t=1 denote COVID-19 fatalities in Nigeria as mentioned earlier. {Ft}T

t=1 is
discrete count data and Ft ∼ ZIP(λt ,θt) where λt is the intensity parameter of the Poisson
distribution and θt is the Zero-Inflation (ZI) parameter.

The ZIPAR model is given by

P( ft | ft−1 = j) =

θt +(1−θt)exp(−λt), i f j = 0

(1−θt)
λ

j
t exp(−λt )

j! , i f j = 1,2,3, . . .
(2)

the λt parameter is given as

lnλt = XT
t−1β (3)

and θt , the ZI is defined as

ln
(

θt

1−θt

)
= ZT

t−1γ (4)

where β = (β1, ...,βp)
T and γ = (γ1, ...,γp)

T are the regression coefficients for the log-
linear part in equation (3) and logistic part in equation (4) respectively.

The conditional mean and variance ZIPAR are given by

E(Ft | ft−1) = λt(1−θt) (5)

and
Var(Ft | ft−1) = (1−θt)(1+λtθt)λt (6)

Zero-Inflated Negative Binomial Autoregressive (ZINBAR) Model

Over-dispersion, which is a situation where by the variance is greater than the mean
(Var(Ft | ft−1) > E(Ft | ft−1)) can be easily taken care of by ZIPAR and ZINBAR (Tawiah et
al., 2021).
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The pdf of ZINBAR is given by

hP( ft | ft−1 = j) =

θt +(1−θt)
(

bt
bt+λt

)bt
, i f j = 0

(1−θt)
Γ(bt+ ft )
Γ(bt ) ft !

(
bt

bt+λt

)bt(
λt

bt+λt

) ft
, i f j = 1,2,3, . . .

(7)
where λt and θt are as given in equations (3) and (4) respectively.

lnbt = ST
t−1α (8)

The dispersion parameter is as defined in equation (8), where α = (α1, . . . ,αp)
T are the

regression coefficients and St−1 = (St−1,1, . . . ,St−p,p)
T is a vector of past input variables.

Similarly, the expectation and variance of ZINBAR are not different from that of ZIPAR,
given in equations (5) and (6) respectively.

2.3. Model Selection Criteria

In decision-making analysis, the same problem can be addressed using a variety of mod-
els statistically. However, probability distributions can be applied to the data for best-fitting,
and the suitable distribution can be chosen. The optimum model for a specific data set can
be determined for this purpose using the Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC) techniques. According to [?], any statistical model that con-
forms to a specific statistical distribution can have the quality of its fit evaluated using the
AIC, whereas the BIC is a criterion for selecting a model from a finite set, with the low-
est BIC model being chosen as the top choice. Additionally, the processes might aid in
confirming the outcome. The AIC and BIC are calculated as

AIC = 2k−2log lik (9)

and
BIC = k logn−2log lik (10)

where log lik is the maximized value of the likelihood function, n is the sample size and k
the number of parameters in the model under consideration. The distribution that has the
lowest AIC and BIC values is regarded as having the best fit to the given data set.

2.3.1 Measure of model performance

Measures such as Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
Root Mean Square Error (RMSE), amongst others, are used to assess the performance of
models. The RMSE was used in this paper, defined as

RMSE =

√
1
N

N

∑
i=1

( fi − f̂i)2 (11)
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where fi is the actual value of COVID-19 fatalities in Nigeria and f̂i represents the predicted
values of COVID-19 fatalities.

3. Analysis, Results and Discussion

This section discusses the results related to confirmed and fatality cases due to COVID-
19, emphasis is placed on fatalities (which is the focused of this study).
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Figure 3: Plots of confirmed cases and fatalities due to COVID-19 in Nigeria

The trend of confirmed cases of COVID-19 and deaths as a result of COVID-19 in
Nigeria as can be observed closely in Figures 3, with upwards and downwards movements
in both cases (plots of confirmed cases and fatalities). Surges in fatalities can be seen as
infection rate increases, a fall in infection rate is closely followed by a decline deaths as a
result of COVID-19 in Nigeria in the period under study (February 27th, 2020, when the
first COVID-19 case was confirmed in Nigeria (NCDC, 2020) to April 3rd, 2022).

Augmented Dickey-Fuller (ADF) Test of stationarity for the two series (confirmed cases
of COVID-19 and fatalities) gave P-values of 0.1064 and 0.05515 respectively, which were
greater than the 0.05 level of significance. This implied that the two series were not sta-
tionary respectively. Data (the two times series) were differenced once before fitting the
ARIMA model. Plots of the two differenced series are illustrated in Figures 4 and 5, which
clearly shows that the two series are stationary. This is also confirmed by the ADF test, that
the two times series are stationary (P-values less than 0.05). That is, the P-values are 0.01
respectively for both the series.
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Figure 5: Differenced series of fatality
cases due to COVID-19

3.1. Deaths Due to COVID-19 in Nigeria

The histogram in Figure 6 shows that there is a higher proportion of zeros (i.e., no
fatalities) on such days in the period under study, that is, from 27th February, 2020 to 3rd

April, 2022.

This is an obvious indication that there is zero inflation in the data. Although the number
of new cases is still increasing and consequently the number of recorded deaths, it is im-
portant to investigate the daily death reports in order to determine if the large percentage of
COVID-19 patients in Nigeria have become resistant to the disease outbreak or have reacted
favorably to the treatment regimens administered to them at COVID-19 treatment facilities
(Tawiah et al., 2021).

Three different models were used in order to have a model that best describe the at-
tributes of fatalities as result of COVID-19 in Nigeria: Autoregressive Integrated Moving
Average (ARIMA), Zero-inflated Poison Autoregressive (ZIPAR) model, and Zero-inflated
Negative Binomial Autoregressive (ZINBAR) model.

Figures 7, 8, and 9 are the plots of the actual fatalities due to COVID-19 in Nigeria
and the predicted fatalities using the ARIMA, ZIPAR, and ZINBAR respectively. Looking
at the plots closely, one can observe that the three models considered performs well, but
ZINBAR(1) (in Figure 9) with the lowest RMSE (2.920087) as shown in Table 1, AIC
(3451.719), and BIC (3475.568) in Table 2 outperformed the other two models. Hence,
the Zero Inflated Negative Binomial Autoregressive model performs better than the Zero
Inflated Poisson Autoregressive model and the Autoregressive Integrated Moving Average,
that is, the ARIMA(0,1,1) model.
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Figure 8: Actual versus predicted of fatalities due to COVID-19 in Nigeria using zero-
inflated Poisson model

Figure 9: Actual versus predicted number of fatalities due to COVID-19 in Nigeria using
zero-inflated negative binomial model
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Table 1: The RMSE of the models for COVID-19 deaths cases in Nigeria

Model RMSE Rank
ZIPAR 3.98998 2nd

ZINBAR 2.920087 1st

ARIMA(0,1,1) 4.418348 3rd

Table 2: The AIC and BIC of the models for COVID-19 deaths cases in Nigeria

Model AIC BIC Rank
ZIPAR 4488.022 4507.101 2nd

ZINBAR 3451.719 3475.568 1st

ARIMA(0,1,1) 4954.88 4964.42 3rd

4. Conclusion

COVID-19 halted many socio-economic activities in Nigeria, just like it did in other
parts of the world. The two series, namely confirmed cases and COVID-19 fatalities (which
have many zeros) were modeled, infection cases rose dramatically with death count. But
gradually, fatalities were reduced even in the midst of continual daily infections, which was
also result of some stringent COVID-19 safety measures adopted by the country through the
Nigerian Center for Disease Control (NCDC).

The method used in this study is applicable to COVID-19 data as evident from the
literature. In fact, most of the reviewed works employed existing time series models, most
of which are of the ARIMA family. However, in this work it is argued that COVID-19 death
cases are count data, hence, the use of ARIMA models is inappropriate.

We have demonstrated in this study that using Autoregressive Integrated Moving Aver-
age (for instance, in the context of Nigeria ARIMA) is not adequate. This was shown by
fitting three univariate Time Series models for the over-dispersed zero inflated COVID-19
fatalities series, where the ZINBAR(1) performed better than the other two models, which
can be used for prediction and forecasting purposes.
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Optimal sample size in a triangular model
for sensitive questions

Stanisław Jaworski1

Abstract

The estimation of the fraction of a population with a stigmatizing characteristic is the issue 
that this study attempts to address. In this paper the nonrandomized response model pro-
posed by Tian et al. (2007) is considered. The exact confidence interval (CI) for this fraction 
is constructed. The optimal sample size for obtaining the CI of a given length is also derived. 
In order to estimate the proportion of the population with a stigmatizing characteristic, we 
explore the nonrandomized response model proposed by Tian et al. (2007). The prevalent 
approach to constructing a CI involves applying the Central Limit Theorem. Unfortunately, 
such CIs fail to consistently maintain the prescribed confidence level, contradicting the Ney-
man (1934) definition o f C Is. I n t his p aper, w e p resent t he c onstruction o f a n e xact CIs 
for this proportion, ensuring adherence to the designated confidence l evel. T he l ength of 
the proposed CI depends on both the given probability of a positive response to a neutral 
question and the sample size. For these CIs, the probability of a positive response to a neu-
tral question is established in relation to the provided limit on the privacy protection of the 
interviewee. Additionally, we derive the optimal sample size for obtaining a CI of a given 
length.

Key words: sensitive questions, nonrandomized response model, exact confidence interval.

1. Introduction

In surveys aiming to estimate the proportion of individuals with a stigmatizing character-
istic, respondents often hesitate to provide truthful responses when directly questioned. To
address this challenge, various methods of indirect questioning have been developed to safe-
guard privacy and encourage the disclosure of sensitive information. The initial approach
to obscuring answers to sensitive questions was proposed by Warner (1965). This method
involves the randomization of responses, with the interviewee determining the randomized
answer, and the interviewer remaining unaware of the actual response to the sensitive ques-
tion. Over time, Warner’s model has been extended in different ways by researchers such
as Horvitz et al. (1967), Greenberg et al. (1969), Raghavarao (1978), Franklin (1989), and
Kuk (1990). Collectively, Warner’s model and its extensions fall under the category of
randomized response techniques, which necessitate the use of a randomization device.

Tian et al. (2007) and Yu et al. (2008) introduced two innovative techniques for address-
ing sensitive questions in population surveys: the triangular model and the crosswise model.
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Both models involve asking two questions simultaneously – one sensitive and one neutral.
A key advantage of these methods is that they do not require a randomization device, unlike
earlier approaches. The triangular and crosswise models, along with the parallel model in-
troduced by Tian (2014), belong to the same class of non-randomized models. The issue of
determining the optimal sample size for these models has been examined by Liu and Tian
(2014) and Yu et al. (2008).

An essential aspect of the sample survey design is determining the number of respon-
dents. Tian et al. (2011) explored sample size determination for the non-randomized tri-
angular model when dealing with sensitive questions in surveys. Their approach involved
precision and power analyses for one-sided and two-sided tests, examining the hypothesis
H0 : π = π0, where π represents the population proportion with the sensitive characteristic,
and π0 is a pre-specified reference value. The sample size determination was guided by
controlling the type I and II error rates of the tests. However, the resulting solution depends
on both the pre-specified reference value π0 and the true unknown value of π , making it
challenging to apply directly in practical situations.

Qiu et al. (2014) also examined sample size determination for the triangular model, de-
riving formulas for estimating the parameter π . Unlike Tian et al. (2011), they explicitly
incorporated an assurance probability of achieving the pre-specified precision into the for-
mulas. However, these formulas still depend on the unknown value of π and are based on
asymptotic confidence intervals, which do not maintain the nominal confidence level.

In this study, we present an alternative approach to determining the optimal sample
size for the non-randomized triangular model. This approach was originally introduced by
Jaworski and Zieliński (2023) for the non-randomized crosswise model. Their method si-
multaneously considers both the confidence interval length and the protection of respondent
privacy.

In Section 2, we revisit the construction of asymptotic confidence intervals for π and
elucidate the process of constructing an exact confidence interval for this parameter. Section
3 introduces the methodology for sample size selection, taking into account the privacy of
the interviewee. Section 4 delves into various aspects of the numerical determination of the
optimal sample size. Concluding remarks are provided in Section 5.

2. Confidence interval in Triangular Model

Let Y be a binary variable, where {Y = 1} indicates the occurrence of drawing a person
with a stigmatizing trait, and {Y = 0} is the complement to {Y = 1}. Our focus is on
estimating the proportion (denoted by π = P{Y = 1}) of individuals with the stigmatizing
trait and constructing a confidence interval for π . The challenge we encounter is that the
random variable Y is not reliably observable. Therefore, we observe another variable Z,
contingent on respondents’ answers to two questions. The relationship between Z and the
two questions is specified by the assumed model.

In the triangular model, respondents are simultaneously presented with two indepen-
dent questions–one neutral and one sensitive. They are instructed to report 0 only if the
answers to both questions are not positive (NO). Thus, the observable variable in this model
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is denoted as Z, where

Z =

{
0, if both answers are NO,

1, otherwise.
(1)

In the triangular model the probability q of answering YES to neutral question is assumed
to be known. Therefore

Z =

{
0, with probability (1−π)(1−q),

1, with probability π +(1−π)q.
(2)

Let us denote the probability π +(1−π)q by ρ . Hence, in the triangular model

π =
ρ −q
1−q

. (3)

Let Z1,Z2, . . . ,Zn be a sample. Maximum likelihood estimator (MLE) of ρ is ρ̂ =

1
n ∑

n
i=1 Zi. Therefore, π̂q =

ρ̂ −q
1−q

is a natural estimator of π . However, the MLE of π

has the form
π̂ = max

{
0,πq

}
. (4)

Yu et al. (2008) proved that the estimators π̂ and π̂q are asymptotically equivalent. When
n → ∞, the central limit theorem implies that π̂q is asymptotically normal. Hence, the
following δ100% Wald confidence interval of π can be constructed:

π̂q ± z 1−δ
2

√
v(π̂q) (5)

where zν denotes the upper ν−th quantile of the standard normal variable and v(π̂q) =

ρ̂(1− ρ̂)/[(n−1)(1−q)2].

It is also possible to construct δ100% Wilson (score) confidence interval of π:π ∈ ⟨0,1⟩ : (π̂q −π)2 ≤
z2

1−δ
2

Var(ρ̂)

(1−q)2

 , (6)

where Var(ρ̂) =
(
π +(1−π)q

)
(1−π)(1−q)/n.

The Wald and Wilson confidence intervals are known to deviate from the prescribed
confidence level, making them imprecise. In contrast, the Clopper-Pearson method (Clop-
per and Pearson (1934)) can be employed to construct an exact confidence interval for π .
Notably, since π is a linear and increasing function of ρ , the resulting exact confidence in-
terval for π is

(πL(π̂),πR(π̂)) =

(
max

{
0,

ρL(ρ̂)−q
1−q

}
,

ρR(ρ̂)−q
1−q

)
(7)
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where (ρL(ρ̂),ρR(ρ̂)) is a Clopper-Pearson exact confidence interval of ρ , that is

ρL(ρ̂) =

0 dla ρ̂ = 0,

B−1
(

n−nρ̂ +1,nρ̂; 1+δ

2

)
dla ρ̂ > 0,

(8)

ρU (ρ̂) =

1 for ρ̂ = 1,

B−1
(

n−nρ̂,nρ̂ +1; 1−δ

2

)
for ρ̂ < 1,

(9)

where B−1(a,b; ·) denotes the inverse of CDF of the Beta distribution with parameters (a,b).
Note, that it is enough to use the B−1(·, ·; ·) function for setting the exact confidence interval.

3. Optimal sample size

Let us consider the length l(π̂;q,n) of the exact confidence interval. For the nρ̂ observed
YES answers to the questionnaire we have

l(π̂;q,n) = πR(π̂)−πL(π̂), where π̂ = max
{

0,
ρ̂ −q
1−q

}
. (10)

The length of the confidence interval is a random variable concerning π̂ , contingent on
q and n. We explore two approaches to minimize the length of the CI:

1. Minimizing expected length: Find minimal sample size n such that the expected
length of the confidence interval does not exceed a predetermined value.

2. Almost sure minimizing: Find minimal sample size n such that there is a high prob-
ability that the length of the confidence interval does not exceed a predetermined
value.

The solution of these approaches is influenced by the probability of a positive answer to
the neutral question. Thus, a rational criterion for the optimal selection of this probability
needs to be formulated. Denoting the optimally selected q, dependent on the sample size n,
as qe(n) and qd(n) in the first and second approaches, respectively. Let Π and Q represent
acceptable sets for π and q, respectively. In the absence of prior knowledge about π and
reasonable restrictions for q, the sets are Π = (0,1) and Q = ⟨0,1).

Optimal q in the first approach. Let X denote the sample space of π̂ . The problem
may be written in the following way:

qe(n) = argmin
q∈Q

sup
π∈Π

EC(π)
π l(π̂;q,n), (11)

where EC(π)
π l(π̂;q,n) = ∑x∈C(π) l(x;q,n)Pπ{π̂ = x} represents the expected length of the

CI covering estimated value of π . Here, the set C(π) = {x ∈ X : πL(x) < π < πR(x)}
comprises the values of the variable π̂ for which the CI covers π .
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Optimal q in the second approach. The problem may be written in the following way:

qd(n) = argmax
q∈Q

inf
π∈Π

PC(π)
π {l(π̂;q,n)≤ d} , (12)

where δ ·PC(π)
π {l(π̂,q,n)≤ d}= ∑x∈C(π) Pπ{π̂ = x}1(l(x,q,n)≤ d) represents the proba-

bility that the length of the CI covering the estimated value of π does not exceed the given
value d. The function 1(p) is equal to one if the logical value of p is true and zero otherwise.

In the case of Q = ⟨0,1), the minimal length concerning q is achieved when q = 0,
equivalent to not asking the neutral question. However, such a questionnaire (without
a neutral question) fails to ensure the privacy of respondents. Therefore, it is reasonable
to impose a constraint on the probability q, considering the desired level of protection.

Tan et al. (2009) introduced the concept of the degree of privacy protection through the
probabilities

Pπ {Y = 1|Z = 1} and Pπ {Y = 1|Z = 0} . (13)

These probabilities are connected with the safety of the interviewee of non-discovering
her/his positive answer to the sensitive question. These probabilities should be small enough
so that they do not exceed the given value γ ∈ (0,1). The researcher can set this value ac-
cording to the requirements of the conducted survey. In the triangular model, the aforemen-
tioned probabilities are as follows:

Pπ {Y = 1|Z = 1}= π

π +(1−π)q
,

Pπ {Y = 1|Z = 0}= 0.
(14)

The relationship between the probability Pπ {Y = 1|Z = 1} and q is illustrated in Figure 1.

0.2 0.4 0.6 0.8 1

π

1

q

π

π+(1−π)q

Figure 1: Privacy protection versus q.

We are interested in q < 1 such that

π

π +(1−π)q
≤ γ for π ∈ Π. (15)

Simple algebra yields the following condition for q:

q(π;γ)≤ q < 1 for π ∈ Π, (16)



226 S. Jaworski: Optimal sample size in a triangular model ...

where q(π;γ) = π(1−γ)
γ(1−π) increases with respect to π . Since q(γ,γ) = 1, the condition (16)

holds if and only if γ > π . This implies that the maximal privacy protection (i.e. the min-
imal γ to be chosen) is restricted by the percentage of the population that has committed
socially stigmatizing characteristic. Consequently, the problem of minimizing the length,
assuming π ≤ π0 for a given ∈ (0,1), is well defined for q ∈ ⟨q(π0;γ),1). In the following
discussion, we assume that Π = (0,π0⟩ and Q = ⟨q(π0;γ),1), where γ > π0. The value
π0 reflects our prior knowledge about π , indicating that we know the percentage of people
bearing a stigmatizing characteristic is less than π0. The inequalities (15) and (16) lead us
to the conclusion that without this knowledge, determining the appropriate value for γ is
not feasible. Note that both Π and Q do not depend on the sample size n. Therefore, the
length of the CI can be minimized by selecting an appropriate sample size. Let d ∈ (0,1)
be a given number. Our goal is to determine the sample size that yields a CI with a length
not exceeding d. Specifically, we are interested in a CI covering the estimated value of π .
We can define two approaches to address this problem.

Optimal sample size in the first approach. Identify minimal n such that

EC(π)
π l(π,qe(n),n)≤ d for all π ∈ Π. (17)

Optimal sample size in the second approach. Identify minimal n such that

PC(π)
π {l(π,qd(n),n)≤ d} ≥ 1−λ for given 1−λ and all π ∈ Π. (18)

In the first approach, our objective is to ensure that the average length of the CI cover-
ing the estimated value of π is less than a given d. In the second approach, our goal is to
ensure that the length of at least (1−λ )% of the CIs covering the estimated π is less than
the specified d. It is important to note that we have a minimum of δ% of intervals cover-
ing the unknown parameter π , and for an infinitely large sample size n, the defined value
PC(π)

π {l(π̂,q,n)≤ d} is equal to one.
The approaches to determining the optimal sample size were initially introduced for the

non-randomized crosswise model by Jaworski and Zieliński (2023).

4. Numerical consideration

Let us assume that π < 0.5 and the confidence level is set at δ = 0.95. Moving on
to the first approach, an analysis of EC(π)

π l(π̂,q,n) reveals (refer to Figure 2) that for each
π < 0.5 and n it increases with q. Consequently, it can be inferred that qe(n) = q(π0,γ)

for any γ ∈ (0,0.5⟩. In the triangular model, q(π0,γ) decreases with γ . Hence, our interest
lies in identifying the smallest and acceptable value of γ . However, it is crucial to note that
the measure of privacy protection revealed by the triangular model cannot be zero. Hence,
opting for γ = 0.5 appears reasonable. In this scenario, the probability that the respondent
belongs to a sensitive group is 50%, thereby mitigating the legal risks associated with the
respondent’s answers in the survey.
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Figure 2: Expected length versus π ∈ (0,γ = 0.5) with respect to q under the condition
that π is covered by the CI.

The expected length EC(π)
π l(π̂,q,n) is not monotonic with π for every q. Let us define

πmax(n;π0) = argsup
π∈Π

EC(π)
π l(π,q(π0,0.5),n). (19)

It is depicted in Figure 3 that if π0 ≤ 0.25 then πmax(n;π0) = π0 otherwise it is a de-
creasing function of sample size n (with the accuracy implied by the discreteness of the
distribution of the observed variable). This knowledge of πmax can be helpful in the opti-
mal sample size numerical finding in the approach. In Table 1 some exemplary of optimal
sample sizes are given for confidence level δ = 0.95 and privacy protection level γ = 0.5.
The optimal sample size is increasing with π0. Larger values of π0 correspond to higher
uncertainty about parameter π . Therefore, the optimal sample sizes are smaller for smaller
values of π0.
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Figure 3: πmax(n) = argsupπ∈Π EC(π)
π l(π,q(π0,0.5),n) versus sample size n
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Consider the case for d = 0.06. The optimal sample size is equal to 822 when π0 = 0.1
and is about 8 times greater for π0 = 0.4. This means that the costs of conducting a survey
are much higher for the latter case. Recall that when we conduct a survey by asking the
sensitive question directly with no additional neutral question, the length of the CI for π is
equal approximately to 0.06 when sample size n = 1000. This remark enable us to conclude
that without additional knowledge about the scope of π we will incur much higher research
costs with an appropriately secured level of privacy.

Table 1: The smallest n that supπ∈Π EC(π)
π l(π,q(π0,γ),n)≤ d.

π0 q(π0,γ) d = 0.05 d = 0.06
0.1 0.11 1171 822
0.2 0.25 2422 1693
0.3 0.43 4146 2893
0.4 0.67 8120 5646

Note: q(π0,γ) =
π0

1−π0
for γ = 0.5

Now, let us consider the second approach. The probability PC(π)
π {l(π,q,n)≤ d} de-

creases with q, and this dependency is illustrated in Figures 4, 5 and 6. When comparing
Figures 4 and 5, we observe that the monotonicity of PC(π)

π {l(π,q,n)≤ d} concerning π de-
pends on the sample size n. It is noteworthy that the lines in Figures 4, 5 and 6 exhibit some
lack of smoothness due to the discreteness of the observed variable, albeit small enough to
explore the optimal sample size at q = q(π0,γ). In Table 2, we provide some exemples of
optimal sample sizes.
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0.00

0.50

1.00 q = 0.37
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q = 0.4

Figure 4: The probability as a function of π , with respect to q under the condition that π is
covered by the CI. Here, n = 4000.
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Figure 5: The probability as a function of π , with respect to q under the condition that π is
covered by the CI. Here, n = 1359.



STATISTICS IN TRANSITION new series, March 2025 229

0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.50

1.00 q = 0.667
q = 0.669
q = 0.671
q = 0.673
q = 0.675

Figure 6: The probability as a function of π , with respect to q under the condition that π is
covered by the CI. Here, n = 12243.

Please note that the optimal sample size exhibits a modest variation when λ is set to
0.01 compared to 0.05, with the maximum observed difference being 13 (refer to Table 2).
However, noteworthy disparities arise in relation to π0, contingent upon the prior knowledge
of the true value of the π parameter. Increased uncertainty regarding π results in a higher
optimal sample size requirement. For instance, when π = 0.4, the optimal sample size is
approximately nine times greater than that for π = 0.4.

Table 2: The smallest n that infπ∈Π PC(π)
π {l(π,q(π0;γ),n)≤ d} ≥ 1−λ .

d = 0.05 d = 0.06

π0 q(π0,γ) λ = 0.01 λ = 0.05 λ = 0.01 λ = 0.05
0.1 0.11 1376 1359 973 960
0.2 0.25 2708 2702 1891 1886
0.3 0.43 4774 4774 3324 3324
0.4 0.67 12250 12243 8499 8494

Note: q(π0,γ) =
π0

1−π0
for γ = 0.5

5. Conclusions

The paper introduces a novel CI for the fraction of sensitive questions in the triangular
model. Unlike the widely used asymptotic CI, the new approach maintains the prescribed
confidence level, which is consistent with Neyman’s (1934) definition of CIs.

Addressing a crucial practical concern, we derived the minimum sample size satisfy-
ing two criteria: average length and almost sure length. To obtain these sample sizes, we
impose restrictions on privacy protection, specifically the probability of discovering a YES
answer to the sensitive question. This probability should be sufficiently small to ensure the
interviewee’s comfort in answering the questionnaire. Additionally, we limit our analysis
to rare phenomena, focusing on sensitive questions with a small (predefined) probability of
a positive answer.

It is crucial to emphasize that we refrain from comparing the length of our CI with
asymptotic versions. Asymptotic CIs are inherently shorter because they lack the capability
to uphold a specified confidence level, leading to a real probability of coverage that is less
than the designated confidence level. Consequently, the comparison of lengths is devoid
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of meaningful insights. Our CI is characterized by its ease of calculation; even a standard
spreadsheet application can efficiently compute the quantiles of the Beta distribution. While
asymptotic CIs based on normal approximation served a purpose in times when computers
were not readily available, we advocate for the practical application of our CI in contempo-
rary scenarios.

The provided numerical examples demonstrate that incorporating prior knowledge of
the true value of π enables a reduction in the minimum sample size necessary to achieve
the desired estimation precision. In the absence of this knowledge, the optimal sample size
may inflate by more than eight times, posing an unfavorable scenario given the associated
research costs.
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