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On survival estimation of Lomax distribution under
adaptive progressive type-II censoring
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Abstract

The main objective of the research described in the article is to study the maximum like-
lihood (ML) estimation and the Bayesian approach for parameter estimation of the Lomax 
distribution. Additionally, the study aims to determine the approximate intervals for the 
parameters and the survival function based on adaptive progressive type-II censored data. 
The ML estimators of the probability distribution’s parameters were calculated using the 
Newton-Raphson method, while the delta method was utilised to compute the approximate 
confidence intervals for the survival function. The Bayesian approach was also used to 
estimate the unknown parameters and survival function. This was achieved through the con-
struction of Bayesian estimators under an informative and non-informative prior based on 
the squared error loss function (SELF) and approximate credible intervals. The Markov 
Chain Monte Carlo (MCMC) method was employed for this purpose. A Monte Carlo anal-
ysis was conducted to test the efficiency of the proposed method in various situations based 
on different criteria such as mean-squared error, bias, coverage probability, and expected 
length-estimated criteria. The results indicate that the Bayesian approach out-performs the 
likelihood method in estimating the Lomax model parameters. Finally, the study includes an 
application of these methods to real data.

Key words: Lomax distribution, maximum likelihood (ML); bayesian estimation; adaptive
progressive type-II censoring scheme; squared error loss function (SELF).

1. Introduction

The Lomax distribution is a probability distribution that is widely used in reliability and
survival analysis. The distribution is named after K. S. Lomax (1954), who first introduced
it in 1954. It is a parametric distribution that is used to model the lifetime of products or sys-
tems, and it has several applications in engineering, medical sciences, and social sciences.
The Lomax distribution is also known as the Pareto Type II distribution. The PDF of the
Lomax distribution with shape parameter β and scale parameter θ is given by

f (x;β ,θ) = θβ (1+θx)−(β+1);x,β > 0,θ > 0

.

and the corresponding Cumulative Distribution Function (CDF) and Survival Function is
given as

F(x;β ,θ) = 1− (1+θx)−β ;x,β ,θ > 0 (2)
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S(t;β ,θ) = (1+θ t)−β ; t,β ,θ > 0 (3)
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Figure 1: PDF of Lomax distribution for different values of parameters
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Figure 2: CDF of Lomax distribution for different values of parameters



STATISTICS IN TRANSITION new series, March 2025 53

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

S
(t

)
theta=1,beta=2

theta=2,beta=2

theta=4,beta=1

theta=6,beta=1

Figure 3: Survival Function of Lomax distribution for different values of parameters

The two-parameter Lomax distribution model, traditionally characterized by its shape
parameter β and scale parameter θ , can be generalized to include the effect of explanatory
variables. In this generalized model, the scale parameter θ is expressed as a function of
the covariates through a log-linear relationship. This allows the model to account for the
influence of various factors (denoted by Z) on the scale parameter, thereby providing a more
flexible and comprehensive framework for modeling data that may be influenced by multiple
explanatory variables. When incorporating explanatory variables Z, we often model β or
θ (or both) as functions of Z, similar to the approaches used by Altun (2021) and Khan
and Khan (2020). These authors demonstrated that using such link functions provides a
flexible alternative to models like gamma regression, allowing for more nuanced analysis by
accounting for the effects of various control variables on the distribution’s parameters. Both
MLE and Bayesian Estimation allows for the inclusion of explanatory variables by modeling
the parameters of the Lomax distribution as functions of these variables. This generalization
enhances the model’s applicability in fields like survival analysis and reliability engineering,
where understanding the impact of multiple covariates is crucial.

Balkema and de Haan (1974) has used this distribution for reliability and life testing
experiment. Hassan and Al-Ghamdi (2009) studied the optimum step stress accelerated life
testing for the Lomax distribution using maximum likelihood procedure. In many real-life
situations, the lifetime of a product or system is subject to progressive type-II censoring. In
such cases, the lifetime of a unit is only observed up to a certain point, and then it is cen-
sored. Adaptive progressive type-II censoring is a type of censoring where the sample size
changes based on the current state of the experiment. This type of censoring is commonly
used in reliability testing and is considered more efficient than traditional censoring meth-
ods. In some experiments, it may not be possible to observe the lifetime of all experimental
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units within the available time. In such cases, censoring is used to reduce the duration and
costs associated with the experiment. The two most common censoring schemes are type-I
and type-II censoring, which end the experiment at a predetermined time or after a speci-
fied number of failures, respectively. However, these schemes lack the flexibility to remove
units at points other than the end of the experiment. To address this, a progressive type-II
censoring scheme was introduced in real-life tests, and a more flexible scheme called the
type-II hybrid progressive censoring was proposed. An adaptive type-II progressive censor-
ing scheme that combines type-I and type-II progressive censoring was also proposed for
real-life studies. In a reliability experiment with n identical, independent units, the values
of m and n are predetermined and before the experiment begins, a progressive censoring
scheme R = (R1, ...,Rm) is given. It is possible that the experimental total time may exceed
the pre-fixed time T. J denotes the observed failure times before the predetermined time T,
i.e. XJ:m:n < T < XJ+1:m:n,J = 0,1, ...,m whereXJ:m:n, T < XJ+1:m:n,J = 0,1, ...,m where
X0:m:n = 0 and Xm+1:m:n = ∞. When the experiment’s total time exceeds the ideal test time
T, the scheme sets RJ+1 = ... = Rm−1 = 0 and Rm = n−m−∑

m
i=J Ri. This allows the ex-

periment to end as soon as possible, with no survival units removed except at the time of
the mth failure. There have been several studies on the Lomax distribution under different
types of censoring. Cramer and Schmiedt (2011) has considered progressively type-II cen-
sored competing risks data from the Lomax distribution and discuss the applicability of the
model in the presence of censoring schemes. In recent years, the Adaptive IIPH censoring
scheme has been studied by a vast number of authors, including Cui et al. (2019), who
discussed the problem of estimating the Weibull distribution parameters in a constant-stress
accelerated life test. Sewailem and Baklizi (2019) provided inference for the log-logistic
distribution based on an adaptive progressive type-II censoring scheme. Ye et al. (2014)
estimated the parameters of the extreme value distribution using the maximum likelihood
technique (MLE). Helu and Samawi (2021) studied Statistical analysis based on adaptive
progressive hybrid censored data from the Lomax distribution. Helu (2022) discussed Adap-
tive Type-II Hybrid Progressive Schemes Based on Maximum Product of Spacings for Pa-
rameter Estimation of Kumaraswamy Distribution. Nassr et al. (2021) studied statistical
inference for the extended Weibull distribution based on adaptive type-II progressive hybrid
censored competing risks data. Chen and Gui (2020) discussed the problem of estimating
the parameters of the bathtub-shaped failure rate function. Panahi et al. (2021) derived
the maximum likelihood and Bayes estimates for the Burr Type-III distribution. Kohansal
and Shoaee (2021) studied the statistical inferences for a multicomponent stress-strength
reliability model. Okasha et al. (2021) discussed Reliability Estimation of the Lomax Dis-
tribution under Adaptive Type-I Progressive Hybrid Censoring Scheme. The purpose of this
study is to explore and investigate the Lomax distribution under adaptive progressive type-II
censoring. Specifically, this study aims to estimate the parameters and survival function of
the Lomax distribution based on the adaptive progressive type-II censored data.
The structure of the article is as follows: Section 1 provides an introduction, outlining the re-
search problem and objectives. Section 2 focuses on estimating the parameters and survival
function using Maximum Likelihood Estimation (MLE). Section 3 presents the confidence
intervals for the parameters and survival function. Section 4 presents the Bayesian estima-
tors for the parameters and survival function based on SELF. To assess the performance of
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the estimators, a simulation study is conducted in Section 5 and the estimators are compared
using the R software. Section 6 presents the analysis of a real-life dataset to demonstrate the
practical application of the proposed estimators. Finally, in Section 7, the article concludes
by summarizing the key findings and implications of the study.

2. Maximum Likelihood Estimation

Suppose that XR
1:m:n,X

R
2:m:n, ...X

R
m:m:n is an adaptive progressive type-II censored sample

of size m from a sample of size n with censoring scheme R = (R1,R2, ...,Rm) taken from
distribution having f(x) as the PDF and F(x) as the CDF, and XJ:m:n is the last observed
failure before T which is prefixed best testing time. The observed values of an adaptive type-
II progressively censored sample are represented by x = xR

1:m:n,x
R
2:m:n, ...x

R
m:m:n (simplified as

x = x1,x2, ...xm in later equations). On this basis, the corresponding likelihood function is
given by

L(xR
1:m:n,x

R
2:m:n, ...,x

R
m:m:n) = DJ

m

∏
i=1

f (xi:m:n)

[ J

∏
i=1

(1−F(xi:m:n))

]Ri
[
(1−F(xm:m:n))

]RJ

(4)

DJ = ∏
m
i=1[n− i+1−∑

max(i−1,J)
k=1 Rk] and RJ = n−m−∑

J
i=i Ri.

The Likelihood function for xR
1:m:n,x

R
2:m:n, ...,x

R
m:m:nbased on the Lomax distribution is

written as

L(β ,θ ;x) = DJ

m

∏
i=1

[
θβ (1+θxi)

−(β+1)
][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]RJ

(5)

Further, the log-likelihood function can be written as

lnL(β ,θ ;x) = m ln(θ)+m ln(β )− (β +1)
m

∑
i=1

ln(1+θxi)−β

J

∑
i=1

Ri ln(1+θxi)

−βRJ ln(1+θxm) (6)

Then, take the partial derivative of the log-likelihood function, and obtain the likelihood
equations as:

∂ lnL(β ,θ ;x)
∂θ

=
m
θ
− (β +1)

m

∑
i=1

xi

1+θxi
−β

J

∑
i=1

Rixi

1+θxi
−βRJ

xm

1+θxm
= 0 (7)

∂ lnL(β ,θ ;x)
∂β

=
m
β
−

m

∑
i=1

ln(1+θxi)−
J

∑
i=1

Ri ln(1+θxi)−RJ(1+θxm) = 0 (8)

Equations (7) and (8) cannot be solved for β and θ explicitly. So, these equations
required numerical solving.

The ML estimator for the survival function by using the invariance property of ML
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estimator is as follows:
ˆS(t) = (1+ θ̂ t)−β̂ (9)

3. Asymptotic Confidence Intervals

The Fisher information matrix was discussed by Aldrich (1997) and the consequently
observed Fisher information matrix of the parameters β and θ for large n, is given as fol-
lows:

I(β̂ , θ̂) =

− ∂ 2lnL(β ,θ ;x)
∂β 2 − ∂ 2lnL(β ,θ ;x)

∂β∂θ

− ∂ 2lnL(β ,θ ;x)
∂θ∂β

− ∂ 2lnL(β ,θ ;x)
∂θ 2


β̂ ,θ̂

(10)

where
∂ 2lnL(β ,θ ;x)

∂β 2 =− m
β 2

∂ 2lnL(β ,θ ;x)
∂θ 2 =− m

θ 2 +(β +1)
m

∑
i=1

x2
i

(1+θxi)2 +β

J

∑
i=1

Rix2
i

(1+θx2
i )

+βRJ
x2

m

(1+θxm)2

∂ 2lnL(β ,θ ;x)
∂θ∂β

=−
m

∑
i=1

xi

(1+θxi)
−

J

∑
i=1

Rixi

(1+θxi)
−RJ

xm

(1+θxm)

∂ 2lnL(β ,θ ;x)
∂β∂θ

=−
m

∑
i=1

xi

(1+θxi)
−

J

∑
i=1

Rixi

(1+θxi)
−RJ

xm

(1+θxm)

It is difficult to find the expected Fisher information analytically. Therefore, by using
the concept of large sample theory and the variance covariance matrix, which is the inverse
of the observed Fisher information matrix I−1(β̂ , θ̂), the approximate 100(1−α) normal
confidence intervals for the parameters β and θ are given respectively as(

β̂ − z α
2

√
var(β̂ ), β̂ + z α

2

√
var(β̂ )

)
(11)

(
θ̂ − z α

2

√
var(θ̂), θ̂ + z α

2

√
var(θ̂)

)
(12)

where z α
2

is the percentile of the standard normal distribution N(0,1) with right-tail probabil-
ity α

2 . In addition, the Delta method (Greene, 2010), is applied to evaluate the approximate
confidence intervals for the survival functions S(t). This is a natural way for calculating
the confidence interval for the functions of the ML estimators, in which these functions are
intractable to calculating the variance analytically. Then, we create linear approximations
of this survival function and then calculate the variance of linear approximation as follows:

C =
(

∂S(t)
∂β

∂S(t)
∂θ

)
(13)

where
∂S(t)
∂β

=−(1+θ t)−β . ln(1+θ t) (14)
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∂S(t)
∂θ

=−β t(1+θ t)(−β−1) (15)

The approximate estimate of the variance of S(t) is given by the following:

var ˆ(S(t)) =
[
Ct I−1(β ,θ)C

]
β̂ ,θ̂

Then, the approximate confidence interval for S(t) is as follows:(
ˆS(t)− z α

2

√
var ˆ(S(t)), ˆS(t)+ z α

2

√
var ˆ(S(t))

)
(16)

where z α
2

is the upper (α

2 )
th quantile of the standardized normal distribution.

4. Bayesian Estimation

Bayesian estimation is a statistical method for estimating the parameters of a probabil-
ity distribution based on prior knowledge and observed data. In this approach, the unknown
parameters are treated as random variables with their own prior probability distributions,
and the observed data are used to update these prior distributions to obtain a posterior dis-
tribution that reflects both the prior information and the new evidence provided by the data.
It includes the ability to incorporate prior knowledge into the analysis, the flexibility to han-
dle complex models and data structures, and the ability to quantify uncertainty in a more
intuitive way than traditional frequentist methods. In this paper, the Bayes estimates under
the Squared Error Loss Function (SELF) are constructed for the unknown parameters (θ ,β )
and for the survival function. The corresponding credible intervals for these quantities are
calculated. It is supposed that the unknown parameters β and θ are independent and follow
the gamma distributions as

π(β ) ∝ β
a1−1e−b1β ;a1,b1 > 0

π(θ) ∝ θ
a2−1e−b2θ ;a2,b2 > 0

Thus, the joint prior distribution becomes

π(β ,θ) ∝ β
a1−1

θ
a2−1e−(b1β+b2θ) (17)

The non-informative priors for both parameters β and θ are considered to be π1(θ) ∝ 1
and π2(β |θ) ∝

1
β

. When π1(θ) is multiplied by the π2(β |θ), corresponding prior density

of β and θ is given by π(β ,θ) = π1(θ)∗π2(β |θ); Clearly, π(β ,θ) ∝
1
β

. Subsequently, the
general form of the posterior density is proportional to the likelihood function time of the
prior density function, as follows:

p(β ,θ |x) ∝ (likelihood × prior)
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And the corresponding joint posterior conditional density function with informative pri-
ors is

p(β ,θ |x) ∝

[ m

∏
i=1

θβ (1+θxi)
−(β+1)

][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]n−m−∑
J
i=i Ri

×β
a1−1

θ
a2−1e−(b1β+b2θ) (18)

The corresponding joint posterior conditional density function with non-informative pri-
ors is

p(β ,θ |x) ∝

[ m

∏
i=1

θβ (1+θxi)
−(β+1)

][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]n−m−∑
J
i=i Ri

× 1
β

(19)

Hence, the Bayes estimates of any function of θ and β such as g(β ,θ), based on SELF
is obtained as

ĝ(β ,θ) = Eβ ,θ |xĝ(β ,θ) =
∫

∞

0
∫

∞

0 ĝ(β ,θ)L(β ,θ |x)×π(β ,θ)dβdθ∫
∞

0
∫

∞

0 L(β ,θ |x)×π(β ,θ)dβdθ
(20)

Clearly, calculating the Bayes estimators using (18), (19) and (20) analytically is unattain-
able. As a result, we advocate employing the MCMC technique to obtain the Bayes esti-
mates of θ and β and the associated credible intervals. The Metropolis-Hastings algorithm
is a Markov chain Monte Carlo (MCMC) method for sampling from a probability distribu-
tion that is difficult to sample directly. It is a general algorithm that can be used to sample
from any distribution, as long as the distribution can be evaluated up to a constant propor-
tionality factor. The algorithm works by defining a proposal distribution, which is used to
generate a candidate sample from the current state of the chain. The candidate sample is
then accepted or rejected based on the probability of moving from the current state to the
candidate state, as determined by a Metropolis-Hastings acceptance probability. To apply
the MCMC technique, we should first derive the full conditional distributions of β and θ as
follows:

h(β |θ ,x) ∝ β
m+a1−1eb1β

m

∏
i=1

[
(1+θxi)

−(β+1)
][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]RJ

(21)

h(θ |β ,x) ∝ θ
m+a2−1eb2θ

m

∏
i=1

[
(1+θxi)

−(β+1)
][ J

∏
i=1

(1+θxi)
−β

]Ri
[
(1+θxm)

−β

]RJ

(22)

To involve the MH sampling, we assume the normal distribution as the proposal dis-
tribution to acquire the Bayesian estimates and to obtain the credible intervals. Here, we
simulate samples from the full conditional posterior distribution and the proposal proceeds
by proposing a joint move on (θ , β ). The Metropolis-Hasting algorithm is illustrated below.

1) Initialize j=0, θ ( j) = 1.5, β ( j) = 1
2) j=1
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3) Generate θ and β using normal candidate distribution.

4) Compute the acceptance probability s= min
(

1, p(θ∗|data)
p(θ j−1|data)

f (θ j−1|θ∗)
f (θ∗|θ j−1)

)
5) Draw u from a uniform (0,1) density.
6) If u ≤ r; set θ j= θ ∗ and otherwise θ j= θ j−1

8) Increment j and repeat steps 3 to 6 for N = 11,000 times.
9) Approximate Bayes estimates of θ and β using MCMC samples based on the SELF as
θ̂B = 1

N−M ∑
N
i=M+1 θ (i) and β̂B = 1

N−M ∑
N
i=M+1 β (i) where M is burn-in.

10) An approximate Bayesian estimates of the S(t), based on the SELF, can be found as
Ŝ(t)B = 1

N−M ∑
N
i=M+1 S(i)(t)

11) Compute the credible intervals of θ and β , order θM+1,θM+2...,θN and βM+1,βM+2...,βN

as θ1,θ2...,θN−M and βM,βM...,βN−M Then, the 100(1−α)% symmetric credible intervals

of θ and β constructed as
(

θ((N−M)( α
2 ))

,θ((N−M)(1− α
2 ))

)
and

(
β((N−M)( α

2 ))
,β((N−M)(1− α

2 ))

)
.

12) Compute the credible intervals of S(t) order SM+1(t),SM+2(t)...,SN(t) as S1(t)< S2(t)<
... < SN−M(t)Then, the 100(1−α)% symmetric credible intervals of θ and β constructed

as
(

S((N−M)( α
2 ))

(t),S((N−M)(1− α
2 ))

(t)
)

.

5. Simulation Study

In this section, Monte Carlo simulations are performed to know the performance of the
proposed estimators developed in the previous sections of the parameters, the survival func-
tion based on an adaptive progressive type-II censoring scheme. The process of generating
an adaptive progressive type-II censored sample with a pre-determined number of n and m
and the progressive censoring schemes with given values of the ideal censoring time T from
the Lomax distribution is described below using the procedure described by Balakrishnan
and Sandhu (1995) and by Ng et al. (2009). The steps are as follows:
1) Define the values of n, m, θ , β , T and R = (R1,R2...Rm).
2) Simulate m random variables from uniform (0,1) as W1,W2...Wm.

3) Set Vi =W
1

(i+Rm+Rm−1+...+Rm−i+1)
i for i=1,2,...m.

4) Set Ui =VmVm−1...Vm−i+1, for i=1,2,...m. Then, U1,U2, ...Um, is the m progressive type-II
observed sample from the Uniform (0,1) distribution.
5) Set xi = F−1(Ui) for i=1,2,... m, where F−1(Ui)represent the quantile function of the
Lomax distribution. Thus, x1,x2, ...,xm, is the needed progressive type-II observed sample
from the specified distribution F(.) by using the inverse transformation method.
6) Identify the value of J, where xJ:m:n < T < xJ+1:m:n, discard the sample x j+2:m:n, ...,xm:m:n.
7) Simulate the first m -J -1 order statistics from a truncated distribution considered as

f (x)
[1− f (xJ+1:m:n)]

with sample size
(

n−∑
j
i=1 Ri − J−1

)
as x j+2:m:n,x j+3:m:n, ...,xm:m:n.

Hence, a simulation study was executed using the ideal total test time T=1. To generate
the data, we supposed that the initial true values of the parameters θ and β were (1.5, 1),
we used the values of t= 0.5, 1, the corresponding values of the survival function are S(t)
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are 0.5714 and 0.4 respectively. For prior information, the hyperparameters (a1 = 1,b1 =

0,a2 = 0,b2 = 1) were considered. To find the Bayesian estimates and the 95% Bayes
intervals for the unknown parameters, we simulate 10,000 MCMC values from the target
distribution using the Metropolis–Hastings algorithm.

Table 1: Average Estimate(AE), Bias, MSE, AL and CP of scale(θ ) and shape(β ) Parame-
ters Based on T=1

(n,m) CS MLE Bayes Informative Bayes Non-Informative

(50,20) (20,019) θ β θ β θ β

AE 1.7038 1.1901 1.3942 0.9590 1.3112 1.0904
Bias 0.2038 0.1901 0.1058 0.0410 0.1888 0.1090
MSE 1.5171 1.5063 0.8998 0.9327 1.527 0.7821

CI (-0.7851,0.9574) (0.12011,1.2738) (0.6177,1.7736) (0.5848,1.6417) (0.5283,1.6523) (0.6384,1.7601)
AL 1.7426 1.15374 1.1559 1.0569 1.1239 1.1216
CP 0.912 0.905 0.925 0.965 0.901 0.945
AE (25,110,05) 1.5862 0.9441 1.4156 1.1901 1.2270 1.1964
Bias 0.0862 -0.0558 -0.0843 0.1905 -0.2729 -0.1964
MSE 1.4522 1.1055 0.9428 0.7291 1.4048 0.9706

CI (-0.9843,0.7409) (-0.0415,1.2507) (0.7000,1.7187) (0.6674,1.6002) (0.5484,1.6839) (0.5979,1.7106)
AL 1.7252 1.2922 1.0186 1.0328 1.1355 1.1127
CP 0.930 0.935 0.920 0.95 0.93 0.985
AE (120) 1.7997 0.9693 1.3257 0.8897 1.4754 1.1809
Bias 0.2997 0.0306 -0.1742 -0.1102 -0.0245 0.1809
MSE 1.6223 1.3605 1.0921 0.7793 0.5040 0.3043

CI (-0.8943,0.9702) (0.1150,1.2709) (0.6177,1.7736) (0.5848,1.6417) (0.6042,1.7491) (0.5964,1.7373)
AL 1.8646 1.1558 1.1216 1.0895 1.4493 1.1409
CP 0.919 0.925 0.905 0.975 0.91 0.97

(70,30) (30,029)
AE 1.3252 1.0809 1.7165 1.0109 1.7409 0.8815
Bias 0.1748 -0.0809 0.2165 0.0109 0.2409 -0.1184
MSE 1.1773 1.1999 0.7331 0.5108 0.9231 0.4391

CI (-0.7000,1.0940) (-0.0109,1.4870) (0.5838,1.7535) (0.6278,1.7433) (0.5589,1.6820) (0.5800,1.6676)
AL 1.7241 1.1980 1.0696 1.0154 1.1031 1.0875
CP 0.92 0.95 0.915 0.965 0.915 0.975
AE (220,110,010) 1.4701 1.0816 1.4667 1.0401 1.5763 0.9887
Bias -0.0298 0.0816 -0.0332 0.0401 0.0763 -0.0112
MSE 1.1836 1.0439 0.0520 0.0190 0.9508 0.3430

CI (-0.8295,0.9942) (-0.1112,1.3783) (0.6065,1.7594) (0.5945,1.6390) (0.5847,1.7599) (0.5972,1.6978)
AL 1.5238 1.1896 1.0052 1.0044 1.0752 1.1006
CP 0.915 0.945 0.910 0.945 0.91 0.97
AE (130) 1.7147 0.9441 1.3224 1.0036 1.4864 1.0687
Bias 0.2147 -0.0558 -0.1775 0.0036 -0.0135 0.0687
MSE 1.5038 0.9678 0.8607 0.5595 0.2036 0.0937

CI (-0.9605,0.7143) (-0.0223,1.3828) (0.6742,1.7820) (0.6395,1.6097) (0.6317,1.7392) (0.6522,1.7104)
AL 1.6749 1.2052 1.1078 0.9002 1.1074 1.0582
CP 0.922 0.910 0.91 0.945 0.905 0.95

(90,40) (40,039)
AE 1.3552 1.0911 1.4690 1.0950 1.2791 0.8908
Bias -0.1448 0.0911 -0.0309 0.0950 -0.2208 0.1092
MSE 0.8560 0.8938 0.6611 0.5093 0.7338 0.3827

CI (-0.4553,1.3351) (0.1222,1.8344) (0.5587,1.6813) (0.6407,1.7708) (0.6552,1.7481) (0.6160,1.5899)
AL 1.6905 1.0122 1.0226 1.0250 1.0929 1.1138
CP 0.91 0.93 0.90 0.95 0.925 0.975
AE (220,110,010) 1.4701 1.2008 1.4767 1.0201 1.3709 1.0938
Bias -0.0298 0.2008 -0.0233 0.0201 -0.1290 -0.0938
MSE 0.7395 0.8214 0.0420 0.0160 0.4358 0.2306

CI (-0.1921,1.3903) (0.7361,1.8359) (0.5741,1.7177) (0.5033,1.5436) (0.5534,1.7066) (0.5505,1.5849)
AL 1.4824 0.9370 0.9836 0.9943 1.0031 1.0344
CP 0.905 0.925 0.90 0.94 0.93 0.955
AE (140) 1.6753 1.0246 1.2259 1.2099 1.6934 1.0161
Bias 0.1752 0.0246 -0.2640 0.2099 0.1934 0.0161
MSE 0.8927 0.7349 0.8419 0.5322 0.1945 0.0083

CI (-0.7775,0.8605) (-0.0972,1.4627) (0.6231,1.7030) (0.6549,1.7312) (0.6401,1.7281) (0.6157,1.6686)
AL 1.6381 1.0599 1.0798 1.0062 1.0880 1.0528
CP 0.910 0.930 0.905 0.955 0.90 0.97
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Table 2: Average Estimate(AE), Bias, MSE, AL and CP of S(t), t=0.5, 1 Parameters Based
on T=1

(n,m) CS MLE Bayes Informative Bayes Non-Informative

(50,20) (20,019) S(0.5) S(1) S(0.5) S(1) S(0.5) S(1)
AE 0.7856 0.5863 0.5422 0.3675 0.6225 0.4614
Bias 0.2141 0.1863 -0.0292 -0.0325 0.0510 0.0614
MSE 0.1111 0.1259 0.0041 0.0.0046 0.0096 0.0141

CI (0.6302,0.9456) (0.4404,0.9110) (0.5164,0.5685) (0.3383,0.3977) (0.5277,0.7128) (0.3488,0.5709)
AL 0.3153 0.4705 0.0578 0.0671 0.1864 0.2221
CP 0.925 0.915 0.943 0.952 0.925 0.935
AE (25,110,05) 0.7694 0.5671 0.6107 0.4471 0.5889 0.4248
Bias 0.1980 0.1671 0.0392 0.0471 0.0175 0.0248
MSE 0.0953 0.0959 0.0711 0.0191 0.0252 0.0388

CI (0.6041,0.9072) (0.4250,0.8495) (0.5245,0.7034) (0.3447,0.5597) (0.5362,0.6298) (0.3587,0.4770)
AL 0.3030 0.4245 0.1788 0.2150 0.1936 0.2402
CP 0.915 0.92 0.935 0.94 0.93 0.905
AE (120) 0.7398 0.5418 0.6063 0.4414 0.6169 0.4584
Bias 0.1684 0.1418 0.0348 0.0413 0.0455 0.0584
MSE 0.1134 0.1022 0.0091 0.0121 0.0158 0.0238

CI (0.5214,0.7963) (0.4072,0.7662) (0.5217,0.7053) (0.3442,0.5647) (0.5699,0.8347) (0.3938,0.7460)
AL 0.2748 0.3589 0.1836 0.2205 0.2648 0.3481
CP 0.92 0.93 0.945 0.95 0.925 0.93

(70,30) (30,029)
AE 0.7514 0.5366 0.5422 0.3675 0.6231 0.4602
Bias 0.1799 0.1366 -0.0292 -0.0325 0.0517 0.0602
MSE 0.0820 0.0696 0.0041 0.0046 0.0094 0.0131

CI (0.5632,0.8759) (0.3614,0.7911) (0.5164,0.5685) (0.3383,0.3977) (0.5306,0.7171) (0.3519,0.5753)
AL 0.3127 0.4297 0.1751 0.2203 0.0521 0.0594
CP 0.925 0.93 0.955 0.95 0.91 0.935
AE (210,110,010) 0.7391 0.5236 0.6165 0.4537 0.6605 0.5134
Bias 0.1676 0.1238 0.0451 0.0537 0.0891 0.0113
MSE 0.0719 0.0537 0.0210 0.0172 0.0119 0.0166

CI (0.5537,0.8362) (0.3654,0.7352) (0.5211,0.7150) (0.3423,0.5731) (0.5533,0.7352) (0.3770,0.6174)
AL 0.2825 0.3697 0.1639 0.2008 0.1818 0.2103
CP 0.905 0.92 0.935 0.935 0.92 0.93
AE (130) 0.7391 0.5284 0.6136 0.4487 0.6824 0.5395
Bias 0.1667 0.1284 0.0422 0.0487 0.1110 0.1395
MSE 0.0796 0.0632 0.00811 0.0113 0.0126 0.0125

CI (0.5561,0.8299) (0.3806,0.7390) (0.5256,0.7040) (0.3466,0.5611) (0.5539,0.7685) (0.3776,0.6608)
AL 0.2738 0.3583 0.1784 0.2144 0.2145 0.2832
CP 0.93 0.89 0.94 0.945 0.93 0.915

(90,40) (40,039)
AE 0.7309 0.5086 0.5571 0.3832 0.6208 0.4587
Bias 0.1595 0.1086 -0.0144 -0.0167 0.0493 0.0587
MSE 0.0668 0.0424 0.0022 0.0027 0.0089 0.0126

CI (0.5400,0.8170) (0.3414,0.6989) (0.5279,0.5783) (0.3493,0.4082) (0.5240,0.7145) (0.3450,0.5729)
AL 0.2770 0.3574 0.1505 0.2079 0.0503 0.0589
CP 0.925 0.91 0.955 0.955 0.93 0.925
AE (220,110,010) 0.6809 0.4522 0.6362 0.4598 0.6183 0.4789
Bias 0.1094 0.0522 0.0648 0.0598 0.0468 0.0789
MSE 0.0539 0.0234 0.0115 0.0158 0.0116 0.0161

CI (0.4578,0.6991) (0.2710,0.5441) (0.2285,0.4721) (0.5274,0.7409) (0.3503,0.6116) (0.3354,0.6028)
AL 0.2413 0.2731 0.1234 0.1612 0.1589 0.1973
CP 0.91 0.92 0.95 0.94 0.93 0.935
AE (140) 0.7210 0.5043 0.6156 0.4543 0.7160 0.5792
Bias 0.1496 0.1043 0.0442 0.0543 0.1446 0.1792
MSE 0.0654 0.0407 0.0077 0.0101 0.0111 0.0118

CI (0.5654,0.8275) (0.3393,0.6841) (0.5191,0.6973) (0.3416,0.5519) (0.5463,0.6668) (0.3701,0.5263)
AL 0.2621 0.3448 0.1782 0.2103 0.1205 0.1562
CP 0.925 0.91 0.94 0.935 0.925 0.905
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We generated 10,000 MCMC samples and then discard the first 1000 random values.
Table 1 and 2 summarizes the ML estimators and the Bayes estimators for the parameters
θ ,β and S(t)) via the censored sample. Furthermore, from this table, it seems that the Bayes
estimates under the non-informative prior and the ML Estimator were close to each other.
The approximate 95% confidence intervals were computed together with the corresponding
length for each interval, as reported below in Table 1 and 2. From these tables, it was dis-
covered that the average length of the confidence interval and the credible interval decreased
as n and m increased. The coverage probabilities of the confidence intervals based on the
likelihood are close to the nominal level of 0.95 for θ and β , and S (t =0.5, 1) as n grew
larger, but failed to reach the desired level for small values of n. On the other hand, the
coverage probabilities of the credible intervals approached the nominal level of 0.95 for θ

and β and S (t =0.5, 1) in most cases.

6. Real Data Analysis

In this section, we consider a real life data to demonstrate the proposed method and
verify how our estimates work in practice. The dataset was initially considered by Chhikara
and Folks (1977). It represents the 46 repair times (in hours) for an airborne communication
transceiver. The ordered dataset is presented below:
————————————————————————————————————–
0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5,
1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8,
9.0, 10.3, 22.0, 24.5.
————————————————————————————————————–
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Figure 4: (a) ECDF plot for the dataset I (b) Q-Q plot for the dataset I
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Table 3: Adaptive Progressive Type-II censored sample for n=46, m=20

T=7.5, j=20 0.3,0.5,0.5,0.5,0.5,0.7,0.7,1.0,1.0,1.5,1.5,2.0,2.2,2.5,2.7,
3.3,4.5,4.7,5.4,7.0

T=2.0, j=11 0.2,0.3,0.5,0.5,0.6,0.7,1.0,1.0,1.0,1.3,1.5,2.0,2.2,2.7,4.0,
4.0,4.75.4,7.5,22.0.

In this illustration, the value of the Kolmogorov-Smirnov (K-S) distance and its corre-
sponding p-value for the dataset are 0.1272 and 0.4462 respectively. It indicates that the
dataset fits well through this distribution. This can further be seen through the visualization
of the empirical Cumulative Distribution Function (ECDF) plot, the quantile-quantile (Q-Q)
plot, as shown in Figure 4. The ML estimators for the unknown quantities are computed
for the complete sample (uncensored), i.e. n=m, (θ=0.1082 and β=3.5494) the dataset was
used to simulate an adaptive progressive type-II censored sample with m = 20 and with
two distinct values of ideal total test time T (2.0,7.5), as displayed in Table 3. For clarity
R = (5,05) is given as a short form of R = (5,0,0,0,0,0). Thus, the observed adaptive pro-
gressive type-II censored samples are shown below in Table 3, for two different values of T
and two distinct values of J. If J = 11 means that only 11 observed failures were observed
before time T = 2.0 and J = 20 means that all the observed failure times were observed
before time T = 7.5, then this implies that the experiment ended before time T. Table 4 and
5 represents the average estimates, CI and AL based on dataset I for the different values of
T and R.

Table 4: AE, CI, and AL of θ , β and S(t), t=0.5,1 Parameters Based on Real dataset I for
n=46, m=20, T=2.0, R=(20,019)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.5277 0.3698 0.9170 0.8549 0.9188 0.9241 0.4620 0.3765
(-0.1641,1.2197)(0.0620,0.6776)(0.7639,1.0700)(0.6097,1.1000)(0.0921,1.5362)(0.1335,1.7083)(0.1652,0.7379)(0.0970,0.6672)

1.3838 0.6156 0.3061 0.4903 1.4441 1.5747 0.5726 0.5701

Table 5: AE, CI, and AL of θ , β and S(t), t=0.5, 1 Parameters Based on Real dataset I for
n=46, m=20, T=7.5, R=(10,018,10)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.2651 1.0303 0.8796 0.7847 1.2675 0.9710 0.3795 0.2685
(-0.2903,0.8206)(-0.5284,1.2289)(0.4890,1.2701)(0.1478,1.4216)(0.1240.1.7566)(0.2088,1.5464)(0.2746,0.6518)(0.1441,0.5712)

1.1103 1.7573 0.0.7811 1.2738 1.6325 1.3375 0.3772 0.4271
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Dataset 2: The data represents the breakdown time of an insulating fluid between elec-
trodes at a voltage of 34 kV studied by Nelson (1982). The data are recorded as follows:
————————————————————————————————————–
0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16,4.85, 2.78, 4.67, 1.31,
12.06, 36.71, 72.89.
————————————————————————————————————–
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Figure 5: (a) ECDF plot for the dataset II (b) Q-Q plot for the dataset II

Table 6: Adaptive Progressive Type-II censored Sample for n=19 and m=10

T=7, j=5 0.19,0.96,4.15,4.85,6.50,8.01,31.75,32.52,33.91,36.71
T=37, j=10 0.19,1.31,2.78,3.16,4.15,4.85,6.50,32.52,33.91,36.71.

In this illustration, the Kolmogorov-Smirnov (K-S) distance and its corresponding p-
value for the dataset are 0.1479 and 0.7467 respectively. It indicates that the dataset fits
well through this distribution. This can further be seen through the visualization of the
empirical Cumulative Distribution Function (ECDF) plot, the quantile-quantile (Q-Q) plot
as shown in Figure 5. The ML estimators for the complete sample (uncensored), i.e. n=m,
(θ=0.0597 and β=2.0323) the dataset was used to simulate an adaptive progressive type-II
censored sample, as displayed in Table 6 with m = 10 and with two distinct values of ideal
total test time T (7,37). Thus, the observed adaptive progressive type-II censored samples
are shown below in Table 6, for two different numbers of T and two distinct numbers of J. If
J =5 means that only 5 observed failures were observed before time T = 7 and J = 10 means
that all the observed failure times were observed before time T = 37, then this implies that
the experiment ended before time T. Table 7 and 8 presents the values of AEs, CI and AL
based on dataset II for different values of T and R.
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Table 7: AE, CI, and AL of θ , β and S(t), t=0.5, 1 Parameters Based on Real dataset II for
n=19, m=10, T=37, R=(5,08,5)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.1331 0.5242 0.9667 0.9365 1.1017 1.0280 0.3675 0.2657
(-0.2363,0.5027)(-0.3422,1.3906)(0.8274,1.1061)(0.6795,1.1935)(0.1685.1.5000)(0.3529,1.5228)(0.2603,0.5294)(0.1824,0.4358)

1.3314 1.1698 0.2690 0.2534 0.5333 1.5530 0.4571 0.8790

Table 8: AE, CI, and AL of θ , β and S(t), t=0.5, 1 Parameters Based on Real dataset II for
n=19, m=10, T=7, R=(5,09)

MLE Bayesian
θ β S(0.5) S(1) θ β S(0.5) S(1)

0.4370 1.0630 0.9772 0.9554 1.2704 1.0935 0.3067 0.1783
(-0.2229,0.3103)(0.2969,1.2561)(0.7486,1.2058)(0.5160,1.3950)(0.9188.1.5265)(0.9053,1.7482)(0.9103,0.3543)(0.1115,0.2101)

0.5330 1.5530 0.4571 0.8790 0.6077 0.5428 0.1641 0.0985

7. Conclusion

In this study, the likelihood and Bayesian approaches were utilized to estimate the pa-
rameters of the Lomax distribution and survival function, under an adaptive progressive
type-II censored data. However, closed-form solutions for the ML estimators of the param-
eters and survival function were unavailable, which led to the use of the Newton-Raphson
numerical method for computation. Moreover, the study constructed asymptotic confidence
intervals for θ and β , and an approximate confidence interval for the reliability function
was obtained through the Delta method. The Bayesian approach used in the study em-
ployed both informative prior and non-informative prior. However, the Bayes estimates
under the squared error loss function could not be derived analytically. As a result, the
Metropolis-Hastings algorithm was utilized to generate 10,000 samples for estimation of
the two unknown parameters, and credible intervals were computed for these quantities, as
well as for the survival function. Furthermore, a simulation study was conducted to inves-
tigate the proposed methods for various sample sizes n, effective sample sizes m, and three
different progressive censoring schemes, replicated 2000 times. The study also evaluated
the proposed methods based on a real-life example. The estimators were observed to have
small biases in all situations, indicating approximate unbiasedness. The average length of
the estimators decreases with increase in the value of m and n. The MSEs of the estimators
decreases with increase in the sample size. Overall, the study suggests that the Bayesian
inference approach performs better than the classical approach. In the future endeavours,
one could explore these estimation techniques in the presence of explanatory variables and
develop more efficient computational algorithms to handle high-dimensional data and com-
plex models. Further studies might also investigate the application of these generalized
Lomax models in various domains, such as finance and biomedical sciences, to validate
their practical utility.
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