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From the Editor  

It is with great pleasure that we present our readers with the September issue 
consisting of 12 articles arranged in three sections: Original Research Papers, Conference 
Papers, and Research Communicates and Letters. Altogether 24 authors from a large set 
of countries – Australia, Poland, Jordan, India, Nigeria, Indonesia, and Italy – present 
results of their investigations in a wide spectrum of research areas. 

Original Research Papers 

The section of original research papers starts with the article by Ravi Dutta-Powell 
entitled The perils of premature evaluation: reassessing the application of Benford’s 
Law to the USA’s COVID-19 data. In follow-up of a review of earlier applications of 
Benford’s Law to the COVID-19 data in the United States – that claimed these data’s 
non-conformity with Benford's Law – more recent granular data are used to demon-
strate that this was likely due to the earlier data being unsuitable for such applications. 
It also demonstrates that the same dataset, analyzed in different ways, can show vastly 
different levels of conformity with Benford’s Law. Specifically, most US states show 
high degrees of conformity for the COVID-19 cases and cumulative deaths when the 
Robust Order of Magnitude (ROM) is over 3 and data at the county level is used to 
analyze state outcomes. Conversely, when the county data is aggregated to the state level 
and analyzed (i.e. case totals for all counties are summed to create a single state figure 
for each day of the pandemic), every state shows non-conformity.  

Leszek Morawski’s paper Education expansion and income inequality: evidence 
from Poland (2005–2019) shows that educational change reduced poverty and income 
inequality incidence and depth, and describes the consequences of this change using  
a microsimulation decomposition based on a tax-benefit microsimulation model. Using 
a microsimulation approach, the author estimates that the impact of the abovemen-
tioned educational change on changing material poverty risk corresponds to 40% of the 
policy effect associated with changes in tax and benefit rules. For the Gini index, the 
educational effect amounted to 91% of the policy effect. The results show that edu-
cational changes in Poland between 2005 and 2019 significantly  impacted income 
inequality and the risk of material poverty. 

In the article Area-biased one-parameter exponential distribution with financial 
applications Abdullah Hardan and Loai Alzoubi propose the area-biased one-
parameter linear exponential distribution the main properties of which – such as the 
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moments and the related measures, the harmonic mean and the mode – are derived 
and analyzed using the reliability analysis functions along with the pdfs of the 
minimum, maximum and the kth order statistics. Additionally, employed are the 
quantile function, the mean absolute deviations from the mean and the median jointly 
with the mean waiting and residual lifetime. A simulation study using the MLE, OLS, 
WLS, MPS, CVM and AD methods of estimating parameters is conducted showing that 
the estimators are unbiased and consistent. Three real financial data applications prove 
the goodness of fit for this distribution. They show that the suggested distribution fits 
the real data better than the competence distributions. 

The next paper, Bayesian estimation of two-parameter power Rayleigh 
distribution and its application by Mohd Irfan and Anup Kumar Sharma explores 
classical and Bayesian approaches to the estimation of unknown parameters and 
reliability functions for the power Rayleigh distribution. The maximum likelihood 
estimator (MLE) method is considered in classical estimation. The Bayesian estimation, 
on the other hand, uses several loss functions under informative and non-informative 
prior distributions, utilizing the Lindley technique and Markov Chain Monte Carlo 
(MCMC) method for Bayesian computations. Approximate confidence intervals are 
established based on the MLEs using the delta technique, while Bayes credible intervals 
are determined using the MCMC method. A simulation study is conducted to compare 
the performance of these methods in terms of biases and mean square errors, showing  
that Bayesian estimators outperform their classical counterparts. Additionally, two real 
datasets are presented for illustrative purposes. 

Krzysztof Brania’s and Henryk Gurgul’s article The impact of the COVID-19 
pandemic on forecast uncertainty of macroeconomic data releases focuses on the 
uncertainty associated with macroeconomic data forecasts measured by the surprise 
indicator (SI). Moreover, the authors examine whether the distribution of SI depends 
on the economy, category of indicator or time, considering pre-pandemic, pandemic 
and post-pandemic periods in the context of the COVID-19 crisis. The construction of 
a sentiment indicator that is intended to aggregate all information that is jointly 
released through macroeconomic indicators was also proposed, Macroeconomic data 
releases are very important benchmarks of the economy. Therefore, the vast majority 
of financial market analysts and traders closely monitor both the projected estimates 
and the intuitively more impactful actual values.  

The paper by Nureni Olawale Adeboye and Olumide Sunday Adesina discusses 
Bayesian and frequentist modelling of West African economic growth: a dynamic 
panel approach. As the empirical outcomes of previous studies examining the 
relationship between economic growth and socio-economic indicators have been 
inconclusive and contradictory the current research employed an alternative strategy. 
A dynamic panel model is estimated via three robust dynamic panel data estimators of 
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the generalized method of moment (GMM), frequentist instrumental variable (IV) and 
the Bayesian IV on real and simulated data. Various model performance criteria such 
as Wald statistics, leave-out-one cross-validation and the Pareto checks were used for 
validity verification. The results of the robust diagnostics checks and a model strength 
metric showed that the family of IV models outperformed the GMM. Thus, the estima-
tion provided by the Bayesian IV is upheld and recommended in modelling dynamic 
panel data as it provides robust estimates of the parameters of interest. 

In the work entitled Exploring the stochastic production frontier in the presence of 
outliers: a simulation study, Anik Djuraidah and Ismail Pranata present the results 
of a simulation conducted to compare five SPF models: Normal-half Normal, Normal-
Gamma, Normal-Weibull, Normal-Rayleigh, and Student’s-t-half Normal. Applying 
simulated data across nine scenarios with varying data amounts and outlier percent-
ages, the findings prove that the SPF Student’s t-half Normal model provides the most 
accurate prediction of technical efficiency. Using a heavy-tailed distribution, such as 
the Student's t distribution, for the disturbance component is more effective in handling 
outliers in the response variable than modifying the inefficiency of the component 
distribution. 

The paper by Alina Jędrzejczak, Małgorzata Misztal, and Dorota Pekasiewicz 
entitled Regional differentiation of income distributions in Poland examines the 
regional differences in the total income distribution in Poland. Both average income 
levels and income inequality and poverty parameters are included in the analyzes. The 
study, based on individual data from the Household Budget Survey, used parametric 
and non-parametric methods for estimating inequality and poverty measures, as well 
as cluster analysis methods. In the parametric approach, the empirical income distribu-
tions in Poland were approximated using the theoretical Dagum distribution. This 
enabled the segmentation of voivodships in terms of the estimated characteristics of the 
equivalent household income distribution. The results confirmed anticipations that 
income distributions in Poland differ significantly across regions. The obtained clusters 
allowed identifying groups of regions that may require separate social policies aimed at 
upholding  household income or at reducing income inequality. 

Błażej Suproń’s paper Modelling the asymmetric relationship between energy and 
CO2 emissions in the Visegrad group: empirical evidence from a panel NARDL 
approach presents an attempt to assess the impact of renewable energy consumption, 
non-renewable energy consumption and economic growth on the volume of carbon 
dioxide (CO2) emissions in the Visegrad countries between 1991 and 2021. Using 
a Nonlinear Autoregressive Distributed Lag (NARDL) model for panel data, the re-
search captures both long-term dependencies and short-term dynamics. The results 
show that a reduction in CO2 emissions yielded by a significant long-term decrease  
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in non-renewable energy consumption is proportionally larger than the increase in the 
emissions caused by the growth in the consumption of such energy. GDP growth in the 
V4 countries increases CO2 emissions, but GDP decline contributes significantly more 
to the reduction in emissions. On the contrary, renewable energy consumption consist-
ently reduces CO2 emissions over the long term, with no significant asymmetry de-
tected. In the short term, both economic growth and non-renewable energy consump-
tion increase CO2 emissions.  

Conference Papers 

XXXXII Multivariate Statistical Analysis 2024, Lodz, Poland 

Stefano Bonnini’s and Michela Borghesi’s paper entitled Multivariate two-
sample permutation test with directional alternative for categorical data presents  
a distribution-free test, based on the permutation approach, on treatment effects with 
a multivariate categorical response variable. It refers to a typical case-control 
biomedical study, performed to investigate the effect of the treatment called “assisted 
motor activity” (AMA) on the health of comorbid patients affected by “low back pain” 
(LBP), “hypertension” and “diabetes”. Specifically, the goal was to test whether the 
AMA determines an improvement in the functionality and the perceived health status 
of patients. Two independent samples (treated and control group) were compared 
according to 13 different binary or ordinal outcomes. The null hypothesis of the test  
assumes the equality in the distribution of the multivariate responses of the two groups, 
while under the alternative hypothesis, the health status of the treated patients is better. 
The approach proposed in this work is based on the Combined Permutation Test (CPT) 
method, which is suitable for analyzing multivariate categorical data in the presence of 
confounding factors. 

XV Scientific Conference MASEP 2024 – Measurement and Assessment  
of Social and Economic Phenomena, Warsaw, Poland 

Abu Feyo Bantu, Andrzej Kozyra, and Józef Wiora discuss Normality tests for 
transformed large measured data: a comprehensive analysis. The study emphasizes 
the importance of assessing and transforming large datasets, such as GNSS measure-
ments, to ensure normality for the validation of parametric statistical tests. The un-
transformed GNSS latitude data were identified as non-normal using various visual an 
statistical tests, including histograms, Q-Q plots, skewness, kurtosis, and Statistical 
tests: KS, AD, DA, SW, JB, CVM, Chi2, and LF. From among the transformation tech-
niques, the rank-based Inverse Normal Transformation (INT) shown relatively higher 
effectiveness in enhancing data normality, as validated by various testing methods. The 
efficiency of Statistical tests was assessed using ROC and AUC analysis, which success-
fully categorized untransformed data as non-normal and transformed data as normal. 
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These findings underscore the necessity of using tailored transformation methods  
in large-scale data applications, particularly in geospatial and industrial fields, to 
enhance the reliability and applicability of parametric statistical methods. 

Research Communicates and Letters 

Archana Panigrahi, Priyaranjan Dash, and Gopabandhu Mishra present  
A minimum variance unbiased estimator of finite population variance using 
auxiliary information. A class of estimators of finite population variance (S_y^2) using 
auxiliary information has been developed under simple random sampling without re-
placement (SRSWOR) scheme. An attempt has been made to derive the minimum var-
iance unbiased estimator of finite population variance from the proposed class of un-
biased estimators. The efficiency of the class of estimators under optimality is compared 
with the usual unbiased estimator, ratio type estimator, product type estimator, regres-
sion type estimator, exponential ratio type estimator, exponential product type estima-
tor, and ratio-in-regression estimator, both theoretically and empirically under general 
conditions and under bivariate normality. The proposed class of estimator performs 
better than these estimators under certain realistic conditions. The proposed class of 
estimators is generalized for the case of multi-auxiliary variables. 
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The perils of premature evaluation: reassessing the application  
of Benford’s Law to the USA’s COVID-19 data 

Ravi Dutta-Powell1 

Abstract 

This paper reviews earlier applications of Benford’s Law to the COVID-19 data in the United 
States that claimed these data’s non-conformity with Benford's Law, and uses later and more 
granular data to demonstrate that this was likely due to the earlier data being unsuitable for 
such applications. It also demonstrates that the same dataset, analyzed in different ways, can 
show vastly different levels of conformity with Benford’s Law. Specifically, most US states 
show high degrees of conformity for the COVID-19 cases and cumulative deaths when the 
Robust Order of Magnitude (ROM) is over 3 and data at the county level is used to analyze 
state outcomes. Conversely, when the county data is aggregated to the state level and 
analyzed (i.e. case totals for all counties are summed to create a single state figure for each 
day of the pandemic), every state shows non-conformity. Only new deaths showed the 
reverse pattern - this is likely because new deaths at the county level do not span sufficient 
orders of magnitude, and aggregation to the state level overcomes this. This suggests that 
some instances of non-conformity with Benford’s Law in the literature may be caused by its 
applications to inappropriate datasets or methodological issues. 

Key words: Benford’s Law, COVID-19 data. 

1.  Introduction 

Since 2020, the COVID-19 pandemic has impacted nearly every aspect of human 
existence, with over three quarters of a billion cases and over 7 million deaths reported 
to the World Health Organisation (World Health Organisation, 2024). COVID-19 data 
is key for understanding the pandemic, both in terms of measuring its impact but also 
in terms of developing strategies to mitigate its spread. However, since the early days of 
the pandemic, questions have been raised with respect to the quality of the data that is 
being reported (Campolieti, 2022; Sambridge & Jackson, 2020). There have been 
suggestions of undercounting and misreporting of data, which has persisted through to 
the present day (Neumayer & Plümper, 2022). One common tool used to identify 
potential anomalies is Benford’s Law (Benford, 1938; Nigrini, 2012), which posits that 
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the first digits of a sufficiently large and naturally generated dataset will conform to  
a particular frequency. 

Benford’s Law has previously been applied to the H1N1 influenza epidemic (Idrovo 
et al., 2011), and has seen renewed interest during the COVID-19 pandemic. Early 
analysis using Benford’s Law yielded mixed results – for example, some analysis 
suggested broad conformity (Sambridge & Jackson, 2020), whilst others highlighted 
nonconformity, but noted this was consistent across a range of countries, and did not 
necessarily suggest data manipulation (Koch & Okamura, 2020). Farhadi (2021) 
conducted an analysis  covering a period up to September 2020, and found that only 
a minority of countries adhered well to Benford’s Law, whilst Isea (2020) found that 
Italy, Portugal, Netherlands, United Kingdom, Denmark, Belgium and Chile all did not 
conform to Benford’s Law based on data up until April 2020. Campolieti (2022) found 
that nearly every US state up until June 2020, as well as New York City and the District 
of Columbia, deviated substantially from Benford’s Law with respect to new daily cases, 
although as will be demonstrated this is likely due to the data not providing 
a sufficiently large sample size and not covering sufficient orders of magnitude – two 
key prerequisites for conformity with Benford’s Law. Similarly, early data for countries 
in the European Union found a wide variance in conformity, with the perhaps 
counterintuitive result that countries with higher vaccination rates saw deviations from 
Benford’s law (Kolias, 2022). Neumayer and Plumper (2022) found that autocratic 
regimes appear to have lower COVID-19 mortality rates on the surface, but in fact an 
analysis of excess mortality suggests that this is largely due to data manipulation.  

Later work has shown more widespread conformity, as more data has emerged. 
Farhadi and Lahooti (2021) showed that as time had progressed, more countries 
showed greater conformity to Benford’s Law, and two years in most countries showed 
conformity with Benford’s Law (Farhadi & Lahooti, 2022a). Similarly, Campanelli 
(2023) found that a majority of countries showed conformity with Benford’s Law when 
using the Euclidean Distance statistic, with only a minority showing significant non-
conformity. Others have shown that conformity with Benford’s Law is often positively 
correlated with indices of development (Balashov et al., 2021), or with indices of 
democratic freedom (Kilani, 2021). In the US, research has suggested that partisan bias 
may have led to data manipulation and misreporting of data at the county level (Eutsler 
et al., 2023).  

In this paper, we review data for the United States of America (henceforth the US), 
covering the full period of the pandemic (January 2020 – March 2024), and revisit 
previous analyses. Section 2 below outlines the data sources used and the methodology, 
where we identify the key requirements of Benford’s Law and appropriate measures. 
Section 3 covers how this approach is then applied to the various sources of US data, 
where we identify potential shortcomings of previous applications. We also demon-
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strate multiple ways of analyzing the same dataset using Benford’s Law, and demon-
strate how different approaches can lead to radically different results. Section 4 provides 
a discussion of the results and our conclusions.  

2. Data and methods 

This paper uses two datasets to assess cases and deaths due to COVID-19 – the 
Centre for Disease Control’s (CDC) dataset on daily cases and deaths at a state level, 
and the New York Times (NYT) COVID-19 cases and deaths tracker, available at 
https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv. 
CDC data for the period 6 March 2020 to 5 August 2020 was originally used by 
Campolieti (2022), and a more recent update of the data has also been included. The 
New York Times data covers slightly over three years, and has been used by several 
authors more recently (Eutsler et al., 2023; Rocha Filho et al., 2023). The datasets differ 
in terms of their coverage and figures – the CDC has its own collection methods, 
provides only state level data, and provides data on new cases and deaths, whilst the 
New York Times sources data directly from states and counties, provides county level 
data, and provides the cumulative tally of cases and deaths. All data and analysis code 
is available at https://osf.io/j2s9d/.  

One potential shortcoming of cumulative data, particularly with respect to the 
spread of an infectious disease, is that the data can have “plateaus” where there are few 
new deaths or cases. The cumulative total can then be “stuck” in a particular numerical 
range, which may lead to certain leading digits being overrepresented and thus lead to 
nonconformity with Benford’s Law. An alternative to cumulative data is thus to 
generate daily changes, which may show greater conformity (daily change data can 
easily be calculated from cumulative data, and vice-versa).  Copies of the datasets used, 
and all analysis code, are available at https://osf.io/592bu/. 

To assess whether data complies with Benford’s Law, there are several criteria that 
must be met: the data should have a large sample size, cover several orders of 
magnitude, have a positively skewed distribution, and be the result of some natural or 
semi-random process (Goodman, 2016). The first two criteria are particularly notable, 
as whilst there is agreement on the overall principles, there are a range of definitions 
for acceptable thresholds. A common threshold for minimum sample size of 1,000 is 
often cited (Farhadi, 2021; Nigrini, 2012), but others have suggested lower thresholds 
of 500 (Cerqueti & Provenzano, 2023). Regardless, it is likely that there is no hard and 
fast rule, and that some smaller samples will show conformity whilst some other, larger 
samples will not. Similarly, there is no definitive answer for how many orders of 
magnitude (OOM) a dataset must span to ensure compliance, although it is generally 
agreed that there should be at least 3 (Farhadi & Lahooti, 2022b; Fewster, 2009; 
Kossovsky, 2021). Notably, Kossovsky (2021) suggests using the “Robust Order of 
Magnitude” (ROM), which has the advantage of excluding any outliers, and requiring 
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the ROM to exceed at least 3 to deem a dataset suitable for Benford analysis (though 
it may be possible to observe conformity at values below 3). The ROM is defined as:  

ROM = 𝐿𝑜𝑔ଵ଴ሺ𝑃ଽଽ% / 𝑃ଵ%ሻ 

where P99% and P1% represent the 99th percentile and 1st percentile of the data, 
respectively.  

There are a range of methods for assessing compliance with Benford’s Law, but 
research has identified issues with some. For example, some research has used Pearson’s 
𝑥2 test as a prominent method for evaluating the conformity of data with Benford’s Law 
(Campolieti, 2022). However, the 𝑥2 test is limited, in ways that are particularly 
problematic for use with data expected to conform with Benford’s Law – larger datasets 
are more likely to show conformity with Benford’s Law,  whereas the χ2 test is more 
likely to show non-conformity as the sample size increases, making it almost 
paradoxically unsuitable for evaluating conformity with Benford’s Law (Cerqueti & 
Lupi, 2023; Koch & Okamura, 2020; Kossovsky, 2021; Nigrini, 2012). Notably, the χ2 
test also typically has a minimum sample size requirement, with each potential “cell” 
(in this case, the 9 potential values for the frequency of each leading digit) required to 
have a value of 5 or more (McHugh, 2013). For a test of Benford’s Law, where there are 
9 potential cells, this implies a minimum sample size of 45. 

A more common alternative is the Mean Absolute Deviation or MAD (Kolias, 2022; 
Kossovsky, 2021; Nigrini, 2012), which is not sensitive to sample sizes, although recent 
research suggests that at very large sizes it can also have limitations (Cerqueti & Lupi, 
2023). Instead of significance testing, a series of thresholds have been to classify the 
levels of conformity: close conformity (MAD < 0.006), acceptable conformity (0.006 < 
MAD < 0.012), marginally acceptable conformity (0.012 < MAD < 0.015), and 
nonconformity (MAD > 0.015) (Nigrini, 2012). Note these are not the only thresholds 
for MAD – earlier research has used lower thresholds (Drake & Nigrini, 2000), however 
more recently the consensus in the literature has coalesced around the thresholds listed 
(see, for example, Campolieti, 2022; Cerqueti & Provenzano, 2023; Kolias, 2022, 
Kossovsky, 2021). As such, to ensure consistency with the broader literature and 
specific works cited, we used these thresholds.  MAD is defined as: 

MAD = ଵ
ଽ
∑ |𝐸𝑥 െ  𝑂𝑏𝑠|ଽ
௜ ୀ ଵ   

where Ex is the expected proportion for any given leading digit, and Obs is the actual 
observed proportion for that leading digit.  

More recently, the Sum of Squared Deviations (SSD) has emerged as a more scale-
agnostic alternative to MAD (Kossovsky, 2021). Compared to MAD, it also treats fewer, 
larger deviations from Benford’s Law more severely than several smaller deviations - 
the latter of which is much more likely to occur naturally due to random chance 
(Kossovsky, 2021). SSD is defined as  

SSD = ∑ ሺ𝐸𝑥 െ  𝑂𝑏𝑠ሻଶ  ൈ 10ସଽ
௜ ୀ ଵ      



STATISTICS IN TRANSITION new series, September 2025 

 

5

Hence this paper will apply both SSD and MAD, but with preference given to the 
findings of SSD, given its simplicity of not dividing deviations by the number of digits 
involved, especially in cases of a large base in a number system. Similarly, datasets will 
note whether they have sufficient sample size (𝑁 > 1,000), and have sufficient robust 
orders of magnitude (i.e. ROM > 3).  

3. Results 

3.1. Early analysis 

We first review the data on daily deaths at the state level in the US, initially analyzed 
in the early period of the COVID-19 pandemic (Campolieti, 2022) to evaluate whether 
it meets the minimum requirements for potential conformity with Benford’s Law. Table 
S1 in the supplementary materials provides a summary of each state, as well as 
Washington DC and New York City, along with brief summary statistics of the total 
sample, range, and OOM/ROM measures.  

Concerningly, none of the states even comes close to the minimum 𝑁 of 1,000 – 
every state has an 𝑁 < 150 (full details supplementary materials). In fact, 5 states have 
𝑁 < 45, making the use of 𝑥2 inappropriate. Similarly, no state has a ROM over 3 – only 
3 states exceed even a ROM of 2.5. In fact, several states have data that does not even 
cover a single order of magnitude. Thus, it is perhaps unsurprising that Campolieti 
(2022) previously found widespread nonconformity with Benford’s Law – in many 
cases, the data was such that it was not even mathematically possible for conformity to 
exist. It is noteworthy that other research around this time also found deviations from 
Benford’s Law in the US for some time periods (Koch & Okamura, 2020). 

3.2. Later data 

Subsequently, as the pandemic progressed, more data has become available. We 
now turn to an analysis of CDC data covering a longer period (until October 2022). For 
deaths, no states had a 𝑁 > 1,000 (although some came close, with over 𝑁 > 900), and 
no states had a ROM of over 3 - just three states and New York City had a ROM above 
even 2.5, making deaths likely unsuitable for Benford’s Law (see supplementary 
materials for full details).  

Similarly, no state had cases where 𝑁 > 1,000, but 22 had a ROM of over 3. Table 1 
shows a summary of the results, with full results for all states in the supplementary 
materials. For states with a ROM over 3, 12 showed nonconformity on MAD, but just 
two of them showed nonconformity on SSD. For the 30 states with a ROM below 3, the 
results were different – 5 states showed nonconformity on SSD and 18 states showed 
nonconformity on MAD. Of note, states that showed nonconformity on SSD were 
a subset of those who showed nonconformity on MAD.  
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Table 1:  Summary of results for states from CDC data (cases) 

Specification MAD SSD 

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 10 12 20 2 

ROM < 3 12 18 25 5 

Total 22 30 45 7 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data are contained in supple-
mentary materials.  

However, when combining all states and analyzing the US as a whole, leading to  
𝑁 = 42,889 and ROM = 3.879, the results show very close conformity with Benford’s 
Law (MAD = 0.002, SSD = 0.608). 

3.3. County level data     

Finally, we consider the NYT county-level data, covering a period up to March 
2023. This allows for data from each county in a state to be pooled together, resulting 
in substantially larger sample sizes for each state of well over 𝑁 > 1,000, with 𝑁 > 10,000 
for the vast majority of states. All states also have full coverage of first digits in the lowest 
order of magnitude, meaning that any non-conformity is not due to a lack of coverage 
of digits in the lowest order of magnitude (Goodman, 2023). The data is provided as  
a cumulative daily tally of all cases and deaths, by county.  

3.3.1. Couty level data – deaths 

Table 2:  Summary of results for states from NYT data (cumulative daily deaths, by county) 

Specification MAD SSD 

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 23 8 28 3 

ROM < 3 7 12 13 6 

Total 30 20 41 9 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

Table 2 summarizes the results for cumulative daily deaths by county, analyzed at 
the state level (i.e. each county’s daily figure is treated as a separate observation, and 
combined with other county-day observations within the state to create the total 
dataset). Thirty-one states show a ROM of over 3. Of these, just 3 states show noncon-
formity on SSD and MAD (Connecticut, Massachusetts and Hawaii), with 5 further 
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states (Nevada, Oregon, Louisiana, Ohio and Kansas) showing nonconformity on 
MAD only. Of note, Connecticut, Massachusetts, and Hawaii are the three smallest 
states by N in this group. 

For completeness, we also review the 19 states with a ROM below 3. Of these, 
6 show non-conformity on SSD and MAD, whilst a further 6 show nonconformity on 
MAD only. Notably, just one state (Kentucky) shows close conformity on MAD (none 
do so on SSD) - interestingly, it has the second highest N of this group.  

Notably, the US as a whole (𝑁 = 3,162,163, ROM = 3.436) shows strong conformity 
with Benford’s Law (MAD = 0.003, close conformity; SSD = 2.35, acceptable). 

Another option for analyzing this information is to aggregate the daily county-level 
observations into a single, state-level observation. That is, for each given date, we can 
sum all observations across every county in each state, to get a single figure for 
cumulative deaths by state. This does reduce the overall sample size for each state, but 
each state still has N > 1,000. Strikingly, every single state shows nonconformity on 
MAD and SSD using this analysis, suggesting that this approach may not be suitable. 
However, once again, the US as a whole (𝑁 = 54,976, ROM = 4.052) shows acceptable 
conformity (MAD = 0.0197, SSD = 16.97).  

Alternatively, instead of cumulative deaths, we can analyze new daily deaths, again 
using individual county-level and then aggregated state-level data. Perhaps 
unsurprisingly, county-level new death data does not show conformity for any states - 
this is to be expected, however, as despite most states have sizeable N, they all have 
limited ROMs. Not a single state had a ROM over 3 (few states even had a raw OOM of 
over 3), and several states barely covered even a single order of magnitude. Hence  
in this situation, it may be appropriate to aggregate county-level data to state level,  
as it will increase the ROM for most states, even though it will reduce the N 
substantially.  

Table 3:  Summary of results for states from New York Times data (new daily deaths, aggregated) 

Specification 
MAD SSD  

Conforming Nonconforming Conforming Nonconforming 

All states 28 22 44 6 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

Surprisingly, despite this leading to N < 1,000 for nearly every state, and no state 
having a ROM over 3, there was a moderate degree of conformity (Table 3). It should 
be noted that the ROMs for states were generally higher in aggregated new deaths 
scenario, as compared to county-level new deaths, which may have contributed to this 
result.  
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3.3.2. Cases 

For cumulative cases, all states have very high Ns and high ROMs. This analysis 
shows just 2 states with a non-conforming SSD for cases – Connecticut and Hawaii, 
although Delaware is also very close to the threshold (Table 4). Notably, these three 
states represent the three of the four smallest by N, suggesting that again a very large 
sample size can be required to find a high degree of compliance with Benford’s Law. 
Under MAD, these three states are also non-conforming, along with a further 8 - Rhode 
Island, New Hampshire, Vermont, Arizona, Massachusetts, Nevada, New Jersey, and 
Iowa. However, 10 of these states are in the bottom 11 by N, again suggesting that even 
large Ns may not always show conformity. The outlier is Iowa. One potential 
explanation for Iowa’s nonconformity is the fact that they are a particularly rural state, 
with a large number of sparsely populated counties. Hence, these individual counties 
are likely to have a large number of relatively small numbers of cases, leading to fairly 
stable cumulative case counts and potentially causing non-compliance with Benford's 
Law. 

Table 4:  Summary of results for states from New York Times data (cumulative daily cases, county-
level) 

Specification 
MAD SSD  

Conforming Nonconforming Conforming Nonconforming 

All states 39 11 48 2 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

As with cumulative deaths above, we also try aggregating cumulative case data at 
the county-level to generate daily state-level observations. Strikingly, once again every 
single state shows nonconformity, despite all states having N > 1,000 and ROM of well 
over 3 (most are well over 3.5). However, despite this, the US as a whole (𝑁 = 55,876, 
ROM = 5.82) shows acceptable conformity with Benford’s Law (MAD = 0.0063, SSD = 
6.244). 

Table 5:  Summary of results for states from NYT data (new daily cases, by county) 

Specification MAD SSD 

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 14 1 15 0 

ROM < 3 27 8 33 2 

Total 41 9 48 2 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  
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When considering new cases, 15 states have a ROM above 3, with all showing 
conformity on SSD and just one (Texas) showing nonconformity on MAD (Table 5). 
Even states with a ROM below 3 show fairly high levels of conformity - just two states 
show nonconformity on SSD, and 8 on MAD. And, as with other results, the US as  
a whole (𝑁 = 1,764,406, ROM = 2.914) shows acceptable conformity (MAD = 0.0105. 
SSD = 19.39).  

Finally, new cases can also be aggregated at the state level. In line with most of the 
other results, states generally have greater nonconformity when considering aggregated 
data, as compared to when county-level data remains disaggregated (Table 6).  

Table 6:  Summary of results for states from NYT data (new cases, aggregated) 

Specification MAD SSD 

Subset Conforming Nonconforming Conforming Nonconforming 

ROM > 3 15 17 32 2 

ROM < 3 11 7 16 2 

Total 26 24 48 2 

MAD nonconformity: MAD > 0.015. SSD nonconformity: SSD > 100. Full data is contained in supple-
mentary materials.  

4.  Discussion and Conclusion 

The results of this work show how different views of the same data can lead to very 
different results, and the importance of selecting an appropriate sample for analysis of 
conformity with Benford’s Law. Based on the results, it seems that if data is available at 
different levels (e.g., state and national, or state and county), then the level of data below 
the level of interest should be used if it provides sufficient orders of magnitude (ideally 
3, but it is possible to show conformity below this). That is, state level data should be 
used to calculate national level results, and county level data should be used to calculate 
state level results. Data should not be aggregated and summed together to a higher level 
(for example, summing daily county-level observations to get a single state level 
observation for each day), unless absolutely necessary. In general, when each county-
day observation was treated as its own datapoint, most states showed more conformity 
with Benford’s Law. In contrast, when observations for counties were summed each day 
to produce a single, aggregated daily figure for states, conformity was much lower. 
Perhaps most strikingly, cumulative deaths and cumulative cases saw the majority of 
states showing conformity when using county-level data, but literally every state 
showed nonconformity on both cases and deaths when analyzing aggregate data 
(despite the US as a whole also showing conformity).  

However, there was one exception to this, namely the NYT data on new deaths.  
In this case, county level data does not cover sufficient orders of magnitude – as such, 
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aggregating several observations together can make sense and may in fact be necessary. 
When county-day observations for new deaths (which spanned fewer orders of 
magnitude than new cases, or cumulative cases/deaths) were treated as individual data 
points, no state showed conformity. This was expected, as no state had a ROM of over 
3 and in fact several had a ROM below 1. However, when new deaths per county were 
summed to provide a single, daily state figure, many states actually showed some degree 
of conformity, despite nearly every state having N < 1,000 and ROM < 3.  

Overall, this highlights the importance of large sample sizes and orders of 
magnitude, particularly the ROM measure. Some datasets with very large Ns (e.g., new 
daily deaths at the county level) but low orders of magnitude show high nonconformity, 
whilst others with high ROMs but relatively lower Ns (e.g., cumulative cases, aggregated 
to the state level) also showed nonconformity. Whilst there were some cases where 
despite a low ROM and a low N, some states did show conformity with Benford’s Law, 
these were in the minority. Indeed, just because some data with low N and limited ROM 
complies with Benford’s Law does not mean that we should expect all data to comply 
(Goodman, 2023). Of note, whenever states were divided into groups based on a ROM 
above or below 3, there was typically greater conformity in the group with ROMs above 
3, suggesting that the thresholds for N and ROM, whilst important, are more in the 
nature of guidelines than hard and fast rules.  

This highlights the importance of a comparative approach, using multiple, similar 
datasets to test conformity, and using the most appropriate level of analysis where 
multiple levels are available.  The results of this work confirm more recent work that 
has found broad conformity with Benford’s Law for the US as a whole and for most 
states (Rocha Filho et al., 2023). It fits with the broader trend of early indications of 
non-conformity, but later data showing clear conformity (Farhadi & Lahooti, 2021, 
2022a). It reinforces the need to ensure that data has the potential to actually be 
compliant with Benford’s Law, before testing for compliance (Ausloos et al., 2021), and 
indeed helps to identify why earlier analysis was more prone to finding deviations from 
Benford’s Law. It can be tempting to try and find sources of non-compliance, and forget 
the underlying prerequisites of Benford’s Law. It is likely that a thorough review of 
previous work of Benford’s Law, particularly from early in the COVID-19 pandemic 
but potentially in a range of fields, would likely find many such examples of its 
application to datasets that were not at all suitable, resulting in spurious claims of 
nonconformity. 
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Education expansion and income inequality: evidence
from Poland (2005–2019)

Leszek Morawski1

Abstract

In Poland, between 2005 and 2019, the share of the employed with tertiary education among 
men increased by about 10 percentage points and among women by about 18 percentage 
points. We study the impact of this change on relative income poverty and income inequal-
ity using a microsimulation decomposition based on a tax-benefit microsimulation model. 
We show that the educational change reduced poverty and income inequality incidence 
and depth. Using a microsimulation approach, we estimate that the impact of the above-
mentioned educational change on the changing material poverty risk corresponds to 40%
of the policy effect associated with changes in tax and benefit regulations. For the Gini 
index, the educational effect amounted to 91% of the policy effect. The results show that 
educational changes in Poland between 2005 and 2019 have significantly reduced income 
inequality and the risk of material poverty.

Key words: relative income poverty, income inequality, tertiary education, tax and 
benefit regulations, Poland.

1. Introduction

Between 2005 and 2019, Poland experienced an almost uninterrupted period of eco-
nomic growth, with GDP per capita increasing by 76% and the employment rate rising from
52.8% to 68.2%. According to PHBS (Polish Household Budget Survey), among men, the
percentage of employees with a college degree increased from 15.8% in 2005 to 26.0% in
2019. Among women, the change was from 26.7% to 44.7%. At the same time, the shares
of employees with at most basic vocational education declined - among men from nearly
50% to 39%, and among women from 28.1% to 17.1%. During this period, income inequal-
ity, as measured by the Gini coefficient, decreased from 33.3% in 2006 to 28.5% in 2019
and relative income poverty from 19.1% to 15.4% 2. Such large changes in the educational
structure of the labor force should be reflected in changes in income inequality and the risk
of material poverty. The analysis of changes in income inequality in the context of educa-
tional changes has a long tradition in economics, dating back to Kuznets, Becker, or Spence.
While there is consensus that better education and greater accessibility promote economic
development and improve the general standard of living of the population, there is no una-
nimity on the relationship between change in the educational structure of employment and
disposable income disparities.

1Faculty of Economic Sciences, University of Warsaw, Poland. E-mail: l.morawski@uw.edu.pl. ORCID:
https://orcid.org/000-0000-0003-3464-3963.

2Values based on EU-SILC variables ilc_li02 and ilc_di12 from the EUROSTAT database.

© L. Morawski. Article available under the CC BY-SA 4.0 licence
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In this study, using a microsimulation approach, we examine the consequences of an
increase in the share of workers with higher education on changes in income inequality and
material poverty risk. The analysis presented looks at changes in Poland between 2005 and
2019, a time of rapid economic growth, significant educational expansion, and favorable
changes in inequality and income poverty. This paper aims to contribute to the ongoing
debate on the relationship between educational expansion and income inequality.

In what follows, we use the tax-benefit microsimulation approach to analyze the contri-
bution of educational expansion among the employed to changes in income inequality and
material poverty. Such an approach has been successfully applied in the previous policy im-
pact studies (Figari et al. 2015). In this paper we use the decomposition method developed
in Bargain and Callan (2010). We are extending it by combining it with the reweighting
method of DiNardo et al. (2006). We compare the inequalities in the data with those we
would have observed if the educational structure of the labor force and the conditional prob-
ability of employment had remained unchanged from 2005 to 2019. We analyze the changes
in the values of the income inequality indices and material poverty indicators, isolating the
direct contribution of changes in tax and benefit (Bargain et al. 2017, Figari et al. 2015).

We describe changes in income inequality using the Gini index and two alternative mea-
sures: the Theil index and the Atkinson index. The analysis uses individual and household
microdata from the 2005 and 2019 Household Budget Surveys (PHBS). Each survey covers
about 100,000 individuals in 30,000 households each year. We show that expanding edu-
cation has contributed to reducing material poverty and income inequality over the period
considered. The magnitude of the educational effect was about 40% of the direct policy
effect for relative monetary poverty and was comparable to it when the Gini coefficient
measured income inequality.

In the following sections, we present a literature review and background information on
changes in the structure of education and their impact on the distribution of gross wages.
We also summarize changes in tax and benefit systems. The following section presents the
method and the data. Finally, we present the results, interpretations, and conclusions.

2. Literature

The role of education in economic development is deeply rooted in several theoretical
frameworks. Whether we refer to growth theory, human capital theory, or signaling theory,
we will generally conclude that the expansion of education has a positive impact on indi-
vidual income and the average income of society. It is much more difficult to predict the
impact of changes in the structure of education, for example when the proportion of people
with tertiary education increases, on inequality and income poverty.

2.1. Theoretical Perspectives

The work of Kuznets (1955), who suggested that income inequality initially increases
as economies grow and eventually decreases, provides the first insight into the relationship
between educational changes and changes in income inequality. According to Knight and
Sabot (1983), the education expansion has two conflicting effects: the composition effect
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and the compression effect. The composition effect prevalent in the first phase of develop-
ment increases inequalities because there is then a strong demand for skilled workers with
a relatively small supply of them. However, after reaching a certain threshold, the increased
supply of skilled workers decreases the wage premium for higher-skill workers and thus
lowers income inequality; this is the compression effect. The relative strength of these ef-
fects explains the directions of change in inequality postulated by Kuznets. Overall, even
though initial education expansion is associated with increasing inequality, eventually, it
will lead to lower inequality.

This prediction about the long-run relationship is entirely consistent with the postulates
of human capital theory, as formulated by Becker (1964). According to this theory in the
long term, broader access to education leads to a more equal income distribution by reduc-
ing the wage premium for higher education. Schultz (1961), using his modernization theory,
was less optimistic. He agreed that education enables structural transformation by reallocat-
ing labor from low-productivity to high-productivity sectors. According to him education
development promotes economic growth and provides an opportunity to reduce inequality,
but only if it provides opportunities to acquire new valuable skills. Inequality can persist or
worsen if the supply of educated workers does not match the demand in the labor market.

Signaling theory, introduced by Spence (1973), offers another explanation for why ed-
ucational expansion does not necessarily cause a decline in income inequality. The theory
posits that employers interpret educational attainment as a signal of certain desirable traits,
such as intelligence, diligence, and ability to complete tasks. This signaling mechanism
influences hiring decisions, wage offers, and career progression. In societies with limited
access to education, higher education serves as a distinctive signal for a relatively small
group, allowing them to command higher wages and enjoy significant income advantages.
However, as education becomes more accessible and a larger share of the population pursues
higher qualifications, the signaling value of a degree declines, and the wage premium asso-
ciated with higher education declines. This phenomenon is known as credential inflation.
The predictions of signaling theory are less optimistic than those previously cited. Accord-
ing to it, the expansion of education has a somewhat ambiguous effect on income inequality,
and its direction depends largely on the dynamics of the labor market. As higher education
becomes more widespread, inequality could persist or worsen if employers tighten qualifi-
cation requirements, limiting access to good jobs for people from low-income households.

Each of the three main theories provides support for the expectation that an increase in
the share of highly educated people will reduce income inequality in the long term. At the
same time, each approach recognizes that in the short term, such a change may be associated
with an increase in income inequality.

2.2. Empirical Evidence

The ambiguity of the empirical research results is not surprising in the context of diverse
theoretical conclusions. However, results showing decreasing inequality when the average
level of education increases outweigh those showing the opposite conclusion. Early studies
by Knight and Sabot (1983) and Ram (1984) confirmed the Kuznets hypothesis for develop-
ing countries. Similar results were obtained by Rehme (2007). Abdullah et al. (2015), using
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a meta-regression analysis, found that education reduces top earners’ income share and in-
creases bottom earners’ share. Hovhannisyan et al. (2019), who analyzed the relationship
between education and income inequality in 38 countries (developed and developing) from
1990 to 2014, found that higher educational attainment was consistently associated with
lower income inequality. Countries with higher enrollment rates (e.g. Sweden and Finland)
exhibited lower Gini coefficients than countries with lower enrollment rates (e.g. Zambia
and Guatemala). Lee and Lee (2018), using panel data analysis, studied 95 countries from
1980 to 2015. They confirmed that expanding educational attainment helps reduce edu-
cational inequality, which diminishes income inequality. However, Samano-Robles (2018)
received ambiguous results for 18 Latin American countries between 2000 and 2010. They
found an increase in income inequality in six countries and a decrease in four countries.
Makhlouf and Lalley (2023) challenged the wisdom that education expansion reduces in-
come inequality. This study provides insights into the dynamic relationship between these
variables using the autoregressive distributed lag (ARDL) model to explore the short- and
long-term effects of education inequality on income inequality, incorporating structural
transformation as a mediating factor. It examines the relationship between education ex-
pansion, income inequality, and structural transformation in 20 OECD countries from 1870
to 2016. It found that expanding education has no immediate effect on reducing income
inequality and that in the long run, a negative relationship emerges. The authors justify
these results by claiming that education expansion accelerates the shift of workers from
low-wage, low-inequality sectors like agriculture to high-wage, high-inequality sectors like
services and industry. According to them, the proliferation of education leads to credential
inflation, where more individuals compete for the same set of high-paying jobs. This re-
sults in lower relative returns for many educated people while preserving high returns for
elite disciplines, further widening inequality. Their results align with Kuznet’s theory and
Schultz’s modernization theory. Also, unevenly distributed gains from the education ex-
pansion due to credential inflation and the unequal returns to education across sectors are
consistent with the signaling theory.

Research on the effects of changing the educational structure is much rarer. Abdullah
et al. (2015) found that secondary schooling has a more substantial effect on income in-
equality than primary schooling, although this finding is not always robust. Hershbein et
al. (2020), observed that an increase in tertiary education levels in the United States signif-
icantly improved the income situation of lower-income earners, thereby reducing poverty
and narrowing income gaps. According to Sianesi and Reenen (2003), the impact of the
endowments associated with different levels of education (primary, secondary, and tertiary)
on income inequality seems to depend on the country’s development level. Tasseva (2021)
considered the impact of education expansion on income inequality in Great Britain from
2001 to 2017. She found that the expansion of education increased household incomes.
However, the benefits were disproportionately larger at the top of the income distribution,
contributing to widening income inequality, particularly in the pre-crisis (2001–2007) and
post-crisis (2011–2017) periods. The primary reason was unequal access to quality edu-
cation and disparities in labor market opportunities for high-skilled jobs. The decrease in
inequality due to the compression effect of education was small.
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3. Background information

The empirical analysis in this study covers the years 2005-2019, during which the global
economic downturn following the 2008 financial crisis occurred. Before the crisis, in 2007,
the GDP growth rate was close to 7%. In the following years, the rate gradually declined,
reaching almost zero in 2013. After 2013, the GDP growth rate started an upward trend,
reaching 6% in 2018. In line with this trend, the unemployment rate declined from 18%
in 2005 to below 8% in 2008 and remained around 10% between 2009 and 2013. After
that, the unemployment rate gradually decreased, reaching around 5% in 2019. During the
economic slowdown, the consolidated gross debt of the general government increased to
55.1% of GDP in 2011, and it dropped to 45.7% of GDP in 2019. The general government
deficit increased to 5.0% in 2011, and it was 0.7% in 2019. Although the Polish economy
did not fall into recession, the ability to finance new social transfers was significantly re-
duced between June 2009 and June 2015, when Poland was subject to the EU’s Excessive
Deficit Procedure (EDP). It made the Ministry of Finance reluctant to accept any changes
that lead to higher social spending (Szarfenberg 2023). Despite this, income inequality and
the risk of relative income poverty did not increase during this period. The Gini coefficient
for disposable income changed from 31.4 in 2006 to 30.2 in 2019, and the risk of income
poverty decreased from 17.3% in 2006 to 13.0% in 2019. Between 2009 and 2013, income
inequality, as measured by the Gini coefficient, remained virtually unchanged. The value
of this coefficient in 2009 was 31.1, and in 2013 it was 30.7. The risk of material poverty
decreased slightly then - from 17.1% to 16.2% (Główny Urząd Statystyczny 2022, 2020).

The changes in the macroeconomic situation, income inequality, and material poverty
risk were accompanied by a systematic improvement in the educational structure. In 2005,
16.8% of people aged 25-64 completed tertiary education; by 2019, this share risen to
32.4%. For those aged 25-34, the share increased from 25.4% to 44.6%, with the change for
women from 30.5% to 54.5% and for men from 20.5% to 37.1% (OECD 2021). According
to the PHBS, the proportion of employed males with tertiary education changed from 15.8%
in 2005 to 26.0% in 2019, while the corresponding change among women was from 26.7%
to 44.7%.

Table 1: Employment according to formal education level (Poland, 2005-2019) (%)

Males Females

2005 2011 2019 2005 2011 2019

Higher 15.80 20.5 26.0 26.7 35.8 44.7
Secondary 33.40 32.8 35.2 45.2 38.2 35.6
Vocational 40.90 37.9 33.1 20.9 19.8 16.4
Primary 9.90 8.8 5.7 7.2 6.2 3.3

100.00 100 100 100 100 100

Source: own calculations using PHBS.
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The LFS (Labor Force Survey) reveals a very similar pattern. The data indicates that
17.6% of employed men had a tertiary education in 2006 and 28.1% in 2019. Among
women, the share increased from 28.1% to 46.6% (Kowalik and Magda 2021).

The tax and benefit system in 2019 was significantly different from that in 2005 (Myck
and Najsztub 2016, Morawski and Brzeziński 2023). Table 2 summarizes the fundamental
policy changes between 2005 and 2019, while Figure 2 illustrates the differences in budget
constraints for selected types of families. The budget constraint shows the relationship
between gross income from fixed-term employment and disposable income. The constraints
were derived using the SIMPL microsimulation model for Poland (Bargain et al. 2007,
Myck and Najsztub 2015, Myck et al. 2015, Haan et al. 2008).

Table 2: Main policy changes in the tax-benefit system in Poland, 2005–2019
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policy changes between 2005 and 2019, while Figure 2 illustrates the differences in budget
constraints for selected types of families. The budget constraint shows the relationship
between gross income from fixed-term employment and disposable income. The constraints
were derived using the SIMPL microsimulation model for Poland (Bargain et al. 2007,
Myck and Najsztub 2015, Myck et al. 2015, Haan et al. 2008).

Table 2: Main policy changes in the tax-benefit system in Poland, 2005–2019

Tax-benefit policy Policy description

SSC • Reduction of the employee disability social security contribution rate by 2 percentage
points from 6.5% to 5.0% (July 2007).
• Further reduction of employee disability social security contribution rate to 1.5% and
a reduction of the employer rate to 4.5% (January 2008)
• Raising the employer disability social security contribution rate by 2.0% to 6.5%
(2012)
• Introduction of new social security contribution for farmers owning from 50 ha to 300
ha (2012)
• Introduction of small health insurance for farmers with farms above 6 ha (2010)

PIT
• Introduction of non-refundable child tax credit; increase in the credit amount from
PLN 120 (USD 43) per child to PLN 1145.08 (USD 410) (January–October 2007)
• Personal income tax schedule with three tax rates (19%, 30%, 40%) was replaced with
a schedule with two rates (18%, 32%) (2009)
• Making the child tax credit partially refundable and increasing the amounts for the
third and any subsequent child (2014)
• Lowering tax rate from 18% to 17%, the introduction of a 0% tax rate for people
under 26, a higher universal tax credit for low-income taxpayers and a lower credit for
high-income taxpayers

FA
• the amount of family allowance started to depend on the age of children; before that, it
depended only on the number of children in a family, resulting in a significant increase
in the amount of the allowance (September 2006)
• Introduction of a universal one-off childbirth allowance in the amount of PLN 1000
(USD 357)
• Introduction of a taper rate ("złotówka za złotówkę) for the family allowance and a
longer maternity allowance (2015)
• Introduction of parental benefit (PLN 500; USD 178) for second and subsequent chil-
dren in a family and means-tested for the first child in a family (2016)
• Introduction of a parental benefit (PLN 1000; USD 357) for non-working parents of
the newly born child (2015)
• Introduction of a school starter kid program, PLN 300 yearly per child attending school
(2018)
• making parental benefit universal (2019)
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Figure 1: Budget constraints for selected families (Poland 2005 and 2019)
Source: SIMPL model.

The tax and benefit system changes between 2005 and 2019 benefited most households.
Childless singles earning less than 10% of the average wage were a particular case where the
changes reduced their income. Within this group, the most significant benefit of 5% went to
those earning more than the national average wage. The regulatory changes were income-
neutral for most single people without children and childless couples. The exception was
couples on very low incomes who benefited from an increase in the universal tax credit. The
changes were very beneficial for families with children. The most significant gains went to
lone parents and parents on low working incomes. However, high- and even very-high-
income couples also benefited. For example, the income of a couple with two children and
a working partner at the average wage was almost 40% higher in 2019 than in 2005. For
such families, but with a salary twice the average, the income was 26% higher.

4. Method and data

Bargain and Callan (2010) used the results from a tax-benefit microsimulation model to
assess the impact of tax and benefit law changes on the distribution of household disposable
income. Below, we outline that method.

Let It denote the value of an inequality or poverty index calculated for the income distri-
bution dt . In the microsimulation approach to tax-benefit analysis, we assume that income
values are generated by a tax-benefit function dt(pt ,yt), where pt is a vector of monetary
parameters embedded in tax-benefit regulations, and yt represents the data required for sim-
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ulating taxes and benefits. The data matrix yt typically contains values for market and
replacement incomes (e.g., wages, pensions, disability benefits, survivors’ benefits, and so-
cial pensions) as well as variables describing the members of households (e.g., age, gender,
education, marital status, and health).

A tax-benefit microsimulation model allows us to decompose changes in the value of the
index ∆I into two components: the direct effect of regulatory changes and the effect of other
changes, such as changes in pre-tax incomes and household characteristics. We present this
decomposition as follows:

∆I0,1 = ∆Iπ
0,1 +∆IO

0,1 (1)

where

• ∆I0,1 is the change in the value of the index between the initial period 0 and the final
period 1,

• ∆Iπ
0,1 is the direct contribution of regulatory changes introduced during this time,

• ∆IO
0,1 accounts for the contribution of other changes.

Bargain and Callan proposed to measure the policy effect as follows:

∆Iπ
0,1 =

1
2

[
I[d1(p1,y1)]− I[d0(α p0,y1)]

]
+

1
2

[
I[d1(p1,αy0)]− I[d0(α p0,αy0)]

]
(2)

where d0(.) and d1(.) are the tax-benefit functions for the initial and final periods, re-
spectively. The policy effect is the average marginal effect of implementing legal changes,
assuming data distribution from the initial and final periods.

The choice of the index α is significant, as it defines the distribution-neutral scenario for
which the policy effect equals zero. We adopt changes in the average wage in the economy
so that indexing mechanisms other than wage indexing are treated as policies. For instance,
price indexing based on the Consumer Price Index (CPI) applied to family benefits is seen
as a policy choice. The applied indexing does not alter the value of ∆I if the tax-benefit
system is linearly homogeneous and I is independent of scale. As we demonstrate below,
both conditions hold in our case.

The contribution of other factors, i.e., those unrelated to regulatory changes in benefits
and taxes accounted for in the microsimulation model is similarly defined:

∆Iπ
0,1 =

1
2

[
I[d0(α p0,y1)]− I[d0(α p0,αy0)]

]
+

1
2

[
I[d1(p1,y1)]− I[d1(p1,αy0)]

]
=

1
2

O(p0)+
1
2

O(p1)

(3)

The education level of individuals is one of the variables in the data matrix yi. Using
the microsimulation model, we extract from the ∆Iπ

0,1 two effects related to changes in the
educational structure, which operate by affecting the distribution of gross wages. The first
is the direct composition effect of an increased share of individuals with higher education.
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The second is the effect on the change in employment rates by having people with higher
education have a lower probability of not working. We reweight datasets to identify effects
using the DFL method. For the first effect, we used three distributions of gross wages.

• The observed distribution of gross wages for 2019, reflecting the educational structure
edu1 and other wage determinants X1. The data set is then y1(edu1,X1).

• A counterfactual distribution of wages in 2019, assuming the educational structure
and other wage determinants were as they were in 2005. The data set is then y1(edu0,X0)

• A counterfactual distribution of wages in 2019, assuming the educational structure
was as in 2019 but other wage determinants were as in 2005. The data set is then
y1(edu1,X0)

To identify the second effect, we used two counterfactual distribution: a) y1(edu0,X0;e1),
in which employment probabilities conditional on education were as in 2019, b) y1(edu0,X0;e0)

with employment probabilities as in 2005. The extended decomposition using these addi-
tional distributions is:

O(p1) = I [d1(p1,y1)]− I [d1(p1,αy0)]

= I [d1 (p1,y1(edu1,X1))]− I [d1 (p1,y1(edu1,X0))]

+ I [d1 (p1,y1(edu1,X0))]− I [d1 (p1,y1(edu0,X0))]

+ I [d1 (p1,y1(edu0,X0;e1))]− I [d1 (p1,y1(edu0,X0;e0))]

+ I [d1 (p1,y1(edu0,X0;e0))]− I [d1 (p1,αy0(edu0,X0;e0))]

= X(p1)+ edu(p1)+ emp(p1)+ res(p1)

(4)

The first difference measures the effect of changes in non-educational determinants of
wages acting by changing the distribution of gross wages. The second difference is the
changes in the education structure, which changed the distribution of gross wages (the com-
position effect). The third is the effect of a change in the structure of education on the
probability of employment (the employment effect). The last term is the residual term or
the new other effect. The decomposition of the second component of the standard other
effect is:

O(p0) = I [d0(α p0,y1)]− I [d0(α p0,αy0)]

= I [d0 (α p0,y1(edu1,X1))]− I [d0 (α p0,y1(edu1,X0))]

+ I [d0 (α p0,y1(edu1,X0))]− I [d0 (α p0,y1(edu0,X0))]

+ I [d0 (α p0,y1(edu0,X0;e1))]− I [d0 (α p0,y1(edu0,X0;e0))]

+ I [d0 (α p0,y1 (edu0,X0;e0))]− I [d0 (α p0,αy0 (edu0,X0;e0))]

= X(p0)+ edu(p0)+ emp(p0)+ res(p0)

(5)

As Figure 2 shows, changes in the educational composition of employed have reduced
the share of low wages and increased the importance of wages at the top of the distribu-
tion. We expect that changes in the gross wage distribution will affect the distribution of
disposable income and the values of the income inequality and poverty indices.
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Figure 2: Actual and counterfactual wage distributions for 2019
Source: SIMPL model.
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Figure 3: Actual and counterfactual wage distributions for 2019
Source: SIMPL model.

We use the SIMPL tax and benefit microsimulation model to simulate counterfactual
income distributions (Bargain et al. 2007, Myck et al. 2015, Haan et al. 2008). The model
contains a computer code describing the tax and benefit rules, and the database was cre-
ated using the PHBS datasets. The PHBS is an annual survey of about 30,000 households
and over 100,000 individuals. We used more than 107,000 observations for 2005 and almost
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94,000 for 2019. We used simulated equivalised disposable income, so the number of obser-
vations with negative or zero income is negligible. In 2005, three people had zero income,
and 343 had negative income. The corresponding figures for 2019 are 93 and 373. The sur-
vey collects detailed information on individual income from work (permanent employment,
temporary employment, and self-employment) and replacement income (pensions, early re-
tirement benefits, disability benefits, unemployment benefits, and maternity pay). Family
and household income, such as investment income, property income, survivors’ pensions,
private transfers, housing benefits, and social assistance, are also included in the data. We
use the exact definition of disposable income as in the PHBS. Disposable income is net
income from work, family benefits, carer’s allowance, housing benefits, and cash social as-
sistance.

Table 3 provides information on the characteristics of the most important variables in the
data matrices. Changes in the values of these variables and changes in the value of pre-tax
income are the causes of the other effect.

Over several years, the distributions of these characteristics are reasonably stable. How-
ever, some changes between 2005 and 2019 could affect the values of the poverty and in-
equality statistics. Firstly, the proportion of people living in large towns and villages has
increased over the period while the proportion of people living in medium-sized towns (200
000 to 500 000 inhabitants) and small towns (20 000 to 100 000 inhabitants) has decreased.
Secondly, we see an increase in the proportion of people over 55 and a decrease in the group
under 35. Remarkably, there is an increase in the share of the over-65s, accompanied by an
increase in the number of households living on pensions. The effect of the aging process
is an increase in the proportion of marriages in which both people had retirement incomes
and a decline in the importance of families with children. In this study, we are interested
in the consequences of the change seen in Table 3 relating to the change in the educational
structure. In the data used for the study, the share of people with tertiary education increased
from 10% to almost 21% between 2005 and 2019, which, as we have already shown, was
accompanied by a significant increase in the importance of people with tertiary education
among the working population.

We use a standard at-the-risk poverty rate index with a poverty line of 60 percent of
median equivalised disposable income to measure relative monetary poverty. We apply
the modified OECD equivalence scale. An analysis of the depth of poverty supplements
the incidence analysis. Following the suggestion of Jenkins (2009), we use a portfolio of
distribution-sensitive indices since any index of income inequality incorporates value judg-
ments about the relative importance of changes in different parts of the distribution. For
example, the Gini index is more sensitive to changes in the middle of the distribution than
other inequality measures. It is unreasonable to expect a single numerical index, such as
the Gini, to capture the whole distribution in all respects. Therefore, in addition to the Gini
index, we use the Theil index, the mean logarithmic deviation (MLD), and the Atkinson
index. The Theil index and the MLD belong to the class of generalized inequality indices
based on ’entropy,’ which measures the deviation from perfect equality. Any index in this
class is defined by the parameter describing the sensitivity to changes in a given part of the
income distribution. The higher the parameter’s value, the more sensitive the index is to
changes in the upper tail of the income distribution. We use two values - 0 for the mean log
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Table 3: Changes to the input data (%)

Variable 2005 2019

Female 52.32 53.25
Town size (thousand)
500- 10.44 11.36
200-500 8.96 7.68
100-200 7.03 6.70
20-100 18.42 15.60
<20 11.16 10.28
Village 43.99 48.37
Education
Higher 10.23 20.98
Secondary 30.89 32.07
Vocational 26.78 26.80
Primary/none 32.10 20.15
Age
0-19 28.29 22.46
20-24 8.25 4.41
25-34 13.05 11.67
35-44 12.69 13.91
45-54 16.49 12.13
55-64 10.39 14.83
65-74 6.93 13.40
75+ 3.91 7.19
Family type
Single without children 12.62 14.05
Single parent 7.46 6.54
Childless couple 13.30 15.43
Couple with a child 54.61 40.99
Single pensioner 5.90 9.87
Pensioner couple 6.10 13.14

Source: own calculations using PHBS.

deviation and 1 for the Theil index. The value judgment is directly included in the Atkinson
index via the inequality aversion parameter in the utility function. A higher value of this
parameter gives higher weight to changes in the low-income part of the distribution in social
welfare. We consider three values for the aversion parameter: 0.5, 1, and 2.

5. Results

The relative income poverty decreased by 5 percentage points, from 17.05 % in 2005
to 12.02% in 2019, and the poverty gap decreased from 4.59 to 3.72. Both changes were
statistically significant at the 5% level.
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Table 4: Poverty and inequality, Poland 2005-2019

95% CI 95% CI
index 2005 LB UB 2019 LB UB

Poverty
FGT 0 17.05 16.94 17.15 12.02 11.94 12.11 decrease
FGT 1 4.59 4.55 4.63 3.72 3.69 3.76 decrease

Gini 32.09 31.98 32.21 30.56 30.27 30.85 decrease
Theil 0 17.87 17.74 18.01 17.80 17.43 18.17 no change
Theil 1 19.73 19.44 20.02 26.41 25.30 27.52 increase
Atkinson (0.5) 8.83 8.75 8.90 9.63 9.38 9.87 increase
Atkinson (1.0) 16.37 16.24 16.49 16.31 16.00 16.62 no change
Atkinson (2.0) 32.67 32.36 32.97 33.14 32.36 33.91 no change

N 93674 107124
zero income 3 93
negative income 343 373

Source: own calculations using SIMPL.

A decrease of 1.5 percentage points in the Gini index indicates a decrease in income
inequality. This change is statistically significant. Changes in the Theil index with a param-
eter of 1 and the Atkinson index with a parameter of 0.5 indicate a statistically significant
increase in inequality. The values of the other indices have fallen, suggesting a reduction in
inequality. However, at the 5% significance level, the differences are not statistically signif-
icant.

A situation in which the value of the Theil 1 index has increased while the value of the
Theil 0 index has not changed indicates interesting pattern of changes in income distribu-
tion. The increase in the Theil 1 index means that inequality between high-income earners
and the rest of the population has increased. This can be explained by a relatively more
significant increase in the income of the richest people in the rest of the population or an
increase in the concentration of income among the richest. At the same time, the stable
value of the Theil 0 index indicates that inequality at the bottom of the income distribution
has remained stable. A higher value of A(0.5) means that income inequality among high
earners has widened. This is exactly what we have learned from the Theil 1 index. A slight
decrease in A(1) shows a small reduction in inequality across the entire income distribution.
This is consistent with changes in the Gini index. An increasing value of A(2) indicates
that the poorest workers have fallen further behind relative to the rest of the population.
Combining these changes with changes in Theil 0, a picture emerges in which inequality at
the bottom of the distribution decreases, but at the same time the distance of these people
from the wealthy increases. A detailed analysis of the possible reasons for that situation
is not the subject of this paper. However, it is worth noting that the results confirm earlier
findings about increasing polarisation of income accompanying a decreasing value of the
Gini coefficient (Panek 2017).
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The results confirm favorable changes in the distribution of disposable income between
2005 and 2019 in Poland - relative poverty risk decreased and income inequality fell, as
measured by the change in the value of the Gini index. However, from a welfare perspective,
beneficial change in income inequality may be questioned if we attribute more importance
to changes between the top and the rest of the income distribution.

Table 5 presents the main results of the extended decomposition analysis. The low
homogeneity coefficients confirm that indexing the data and monetary parameters, i.e., ex-
pressing 2005 disposable income in 2019 values, did not affect the decomposition results.

Table 5: Decomposition of poverty and inequality indices

index change homo policy other: X edu emp residual

FGT 0 -5.06 0.01 -3.35 -1.71 0.86 -0.92 -0.41 -1.24
FGT 1 -0.87 0.00 -1.23 0.36 0.27 -0.29 -0.15 0.53

Gini -1.54 0.00 -1.57 0.03 0.75 -0.93 -0.49 0.70
Theil 0 -0.001 0.000 -0.022 0.022 0.009 -0.013 -0.006 0.032
Theil 1 0.067 0.000 -0.024 0.091 0.016 -0.040 -0.013 0.127
Atkinson (0.5) 0.008 0.000 -0.010 0.018 0.005 -0.009 -0.004 0.025
Atkinson (1.0) -0.001 0.000 -0.019 0.018 0.008 -0.011 -0.005 0.027
Atkinson (2.0) 0.005 0.000 -0.070 0.074 0.016 -0.015 -0.008 0.081

Source: own calculations using SIMPL.

The standard approach results are in line with earlier literature (Myck and Najsztub
2016, Morawski and Brzeziński 2023). Changes in taxes and benefits contributed to a re-
duction in relative poverty and income inequality, regardless of the measure used in the
study. The contributions of other changes were negative, except for poverty incidence. The
distributional consequences of economic growth and socio-economic change between 2005
and 2019 were negative. The improvements in inequality indicators observed in the data
were due to changes in taxes and benefits. The policy effect was more substantial for its
impact on poverty than inequality, which correctly reflects the objectives of social policy.

The new results are the values of the education effects (‘edu’ and ‘emp’ columns) and
the relationship of these values to the policy effect (‘policy’ column). In the extended de-
composition, the residual part corresponds to the part of the other effect in the standard de-
composition that is not related to the educational change. Presumably, the changes that have
the most tremendous significance in the residual factor are demographic changes resulting
from the aging process. As Table 3 shows, there were visible changes in the structure of
family types and the growth of households living on pensions from 2005 to 2019. Changes
in income from agriculture and self-employment may also have significantly shaped this
effect.
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5.1. Relative monetary poverty

Combining the two educational effects, we obtain that they contributed to a 1.3 percent-
age point reduction in the relative risk of income poverty, which corresponded to 39.7% of
the policy effect. The contribution of the composition effect, related to the change in the
educational structure, was 27.5%, and the employment effect accounted for 12.2% of the
policy effect. We see the positive impact of changes in education on the depth of poverty,
too. In this case, the total education effect was 35.9% of the policy effect, of which 23.6%
was the contribution of the composition effect, and 12.4% was the contribution of the em-
ployment effect.

5.2. Income inequality

The standard two-component decomposition into the policy effect and the other effect
revealed the dominant importance of policy changes in explaining the decline in the Gini
coefficient. Other changes did not play a significant role according to that approach. An
additional decomposition disclosed that the insignificance of the other effect was due to the
offsetting effects of changes in the sub-components. We found that the changes in edu-
cation structure reduced income inequality by 1.42 percentage points, which corresponded
to 90.4% of the policy effect. At the same time, changes in other wage determinants con-
tributed to increased income inequality by 0.75 percentage points.

We see a reduction in inequality among high-income earners and among low-income
earners while looking at the effect of education from the perspective of the Theil index.
Conclusions based on the Atkinson are fully consistent showing a positive effect for the
educational change. A larger decrease in the A(2) index than in the A(0.5) index indicates
that the effect of education has more strongly reduced inequality at the lower end of the
distribution. This suggests that those at the bottom of the income distribution benefited the
most from the educational change. It cannot be excluded that changes in the minimum wage
may have contributed to this. This conjecture seems worthy of particular interest in future
research. It is interesting to compare the magnitude of the education effect for the differen-
tiation measures against the policy effect. For the Theil 1 index, the index has a value of
2.21 and for the Theil 0 index a value of 0.86. This means that for those at the top of the
income distribution, the educational change was relatively more important, than for people
at the bottom of the distribution. The same conclusion is obtained for the Atkinson index,
where for A(0.5) we have 1.3 and for A(2) 0.33.

The results concerning the effect of education are considerably more optimistic than the
observations relating to overall changes in income distribution. Looking at changes in the
overall distribution, we saw signs of increasing polarisation with generally decreasing in-
equality. In the case of the educational change, we have a strong basis for claiming that it
has contributed to a decrease in inequality in all segments of the distribution.

6. Conclusion

Using the capabilities of a microsimulation approach, we looked at the consequences
of the increase in the share of workers with higher education in the workforce in Poland in



30 L. Morawski: Education expansion and income inequality...

2005-2019. We compared the effect of changes in the educational structure of employees
with the effect of changes in tax and benefit policy. We found that a 10 percentage point
increase in the share of employed men with tertiary education and an 18 percentage point
increase in the share of employed women with tertiary education led to:

1. a reduction in the risk of poverty equivalent to 40% of the effect of changes in tax-
benefit policy effect,

2. a reduction of income inequality, the size of which, relative to the policy effect, de-
pends on the weight given to changes in different parts of the income distribution.
The size of the education effect ranged from 32.9% of the policy effect in the case of
the Atkinson(2) effect to 220.8% in the case of the Theil 1 index.

3. We confirmed earlier findings about the generally increasing polarisation of income
while showing that changes in the structure of education have contributed to its re-
duction.

The results underscore the potentially positive externalities of changing the educational
structure. The scale of the structural educational effect justifies considering education pol-
icy as an important social investment having positive externalities on income distribution.

Our findings imply social policy recommendations at times when the educational struc-
ture is improving dynamically. First, it seems reasonable to consider medium- and long-
term consequences for changes in income inequality and relative material poverty when
assessing the effects of regulations on changes in educational policy. Second, a social pol-
icy should address disparities at the lower end of the income distribution by investing in skill
development for low-educated workers and improving wage conditions in low-paying sec-
tors. Policies such as vocational training, skills development, or minimum wage increases
should be considered. Expanding access to higher education for underprivileged groups
can also help reduce the disparities observed in lower-income segments. Without such in-
terventions, the growing gap between the poorest and the rest could undermine social and
economic cohesion.

The analysis presented here exploits the advantages of using tax-benefit microsimula-
tion modeling to analyze income distribution changes. In addition to its undoubted advan-
tages, the method also has its limitations. First, accounting for macroeconomic changes is
possible but requires a more elaborate model combining the microsimulation part with the
macroeconomic model Peichl (2009), Bourguignon and Spadaro (2006). In the case of this
analysis, macroeconomic changes (e.g., due to the global financial crisis) were reflected in
income before taxes included in the input data. Second, we made a simplifying assumption
of no change in the returns to education over the studied period, focusing only on the effect
of changes in the education structure. In the future, it will be worthwhile to expand the
analysis to include effects related to changes in the value of returns to education.
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6.1. Citations

Refer to the literature using Harvard convention, as exemplified by the following articles
of Gamrot (2012, 2013), a proceedings paper of Kennickell (1997) or a book of Särndal,
Swensson and Wretman (1992).

6.2. Formulae

Expressions should not exceed the text width and may be entered as follows:

V (t̂) = ∑
i, j∈U

y̌iy̌ j∆i j (6)

V̂ (t̂) = ∑
i, j∈s

y̌iy̌ j
∆i j

πi j
(7)

6.3. Tables

An example table:
Table 1: Some nicely looking numbers

U W X Y Z
1001 1002 1003 1004 1005
1006 1007 1008 1009 1000
1001 1002 1003 1004 1005
1006 1007 1008 1009 1000

7. The second section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean fauci-
bus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper
nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci dignissim rutrum.

8. Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
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Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean fauci-
bus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper
nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis
quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Acknowledgements

Thanks to anyone for support, funding and such may be included in the non-numbered
Acknowledgements section.

References

Abdullah, A., Doucouliagos, H.and Manning, E., (2015). Does education reduce income in-
equality? A meta-regression analysis. Journal of Economic Surveys, 29, pp. 301–316.

Bargain, O., Callan, T., (2010). Analysing the effects of tax-benefit reforms on income
distribution: a decomposition approach. The Journal of Economic Inequality, 8,
pp. 1–21.

Bargain, O., Callan, T., Doorley, K. and Keane, C., (2017). Changes in income distribu-
tions and the role of tax-benefit policy during the great recession: An international
perspective. Fiscal Studies, 38, pp. 559–585.

Bargain, O., Morawski, L., Myck, M. and Socha, M., (2007). As SIMPL as that: introduc-
ing a tax-benefit microsimulation model for Poland. IZA Discussion Papers (2988) .

Becker, G. S., (1964). Human capital, New York: Columbia University.

Bourguignon, F., Spadaro, A., (2006). Microsimulation as a tool for evaluating redistribu-
tion policies. Journal of Economic Inequality, 4(1), pp. 77–106.

DiNardo, J., Fortin, N. M. and Thomas, L., (2006). Labor market institutions and the dis-
tribution of wages, 1973-1992: A semiparametric approach. Econometrica, 64(5), pp.
1001–1044.

Figari, F., Paulus, A. and Sutherland, H., (2015). Microsimulation and policy analysis,
in B. Atkinson, A. and F. Bourguignon, eds, Handbook of Income Distribution, Else-
vier, pp. 2141–2221.



STATISTICS IN TRANSITION new series, September 2025 33
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Area-biased one-parameter exponential distribution with
financial applications
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Abstract

Area-biased distributions are special cases of size-biased distributions. We have used the idea of 
area-biased distributions in this paper to propose a generalisation of a one-parameter linear exponen-
tial distribution. The concept is called the area-biased one-parameter linear exponential distribution. 
Its various characteristics are deduced and thoroughly explored. Some numerical studies are imple-
mented which demonstrate that the distribution is skewed to the right with heavier tail than the normal 
distribution. The mean waiting and residual life time are also studied. Six methods of estimation are 
employed to estimate the parameters distribution. A simulation study is conducted which shows that 
the estimators are approximately unbiased and consistent. Three financial real data sets are applied. 
They represent the earning per share in the financial, industry and service sectors at the Amman Stock 
Exchange. The study shows that the suggested distribution has the best fit for these data sets compared 
to some competence distributions.

Key words: one-parameter linear exponential distribution, area-biased, methods of estimation, earn-
ing per share.

1. Introduction

In statistics, modelling lifetime data is an important issue in many fields, including
biomedical sciences, economics, finance, engineering, and many others. A lot of contin-
uous distributions have been introduced for modelling such data, because they can tend to
be more efficient than the base distributions. Many methods have been used to propose new
models such as the combination of two or more distributions.

Weighted distributions, involving a variety of sampling surveys, have been widely ap-
plied to model data in nature, offering more insights and adequacy in the modelling. The
theory of weighted distributions ensures a collective access to the problems of model specifi-
cation and data interpretation. It provides a procedure for fitting models to unknown weight
functions when samples can be taken from both the original distribution and the developed
distribution. They take into account the method of ascertainment by adjusting the probabili-
ties of the actual occurrence of events in order to arrive at a specification of the probabilities
of those events as observed and recorded.
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The idea of weighted distributions was initially introduced by Fisher (1934) and de-
veloped by Rao (1965). Recently, this concept has been employed in a lot of researches
related to reliability, ecology, family data analysis, bio-medicine, and some other fields for
the improved performance of appropriate statistical models. It is defined by

fw(x) =
w(x) f (x)
E(w(x))

, x > 0, (1)

where w(x) is a non-negative weight function.

Let X be a random variable with probability density function (pdf) f (x), then the size-
biased distribution can be produced by using the weight function w(x) = Xm. It was first
studied by Patil and Ord (1976). For m = 2, we get the area-biased distribution, which was
first employed by Cox (1968) and Zelen (1974). Thus, the resulting pdf takes the form of

f1(x) =
x2 f (x)
E(X2)

. (2)

Area-biased distributions, as mentioned above, are special types of weighted distribu-
tions. In recent times, many authors have been interested in studying these types of distri-
butions, such as Sharma et al. (2018) who introduced the length- and area-biased Maxwell
distribution. Al-Omari et al. (2019a) suggested the power length-biased Suja distribution
as a new extension of the length-biased Suja distributions. Saghir et. al. (2017) studied a
new class of Maxwell length-biased distributions. Shen et al. (2009) used semi-parametric
transformations to model the length-biased data. Al-Omari and Alanzi (2021) suggested
and studied the properties of the one-parameter inverse length-biased Maxwell distribution.
Das and Roy (2011) suggested the length-biased form of the weighted Weibull distribution.
The weighted distributions based on the mixture of two distributions based on weights p1

and p2, with p1+ p2 = 1 are used by many authors, such as: Alzoubi et al. (2022), Benrabia
and Alzoubi (2022a), Benrabia and Alzoubi (2022b) and Alzoubi et al. (2022).

In this paper, we propose a new distribution. This distribution is applied to financial
data extracted from the Amman Stock Exchange (ASE). We have used Earnings per share
(EPS) data to compare the suggested distribution with other distributions. EPS is one way of
measuring a company’s success. An increase in the EPS indicates higher investor prosperity
(Ferniawan et al. 2024). Some researchers concluded that EPS has a significant and positive
impact on company value (Kristanti et al. 2024), others indicated a substantial and positive
impact of EPS on the stock prices (Taubah et al. 2024 and Dang et al., 2024). The ASE was
established in March 1999 as a non-profit independent institution, authorised to function
as a regulated market for trading securities in Jordan. ASE aims to operate, manage and
develop the operations and activities of security, commodity, and derivatives markets inside
and outside of Jordan. It seeks to provide a strong and secure environment to ensure the
interaction of supply and demand forces for trading in proper and fair trading practices. It
also aims to raise the awareness and knowledge of investing in the financial markets and
defining the services provided by the ASE (ASE, 2023).



STATISTICS IN TRANSITION new series, September 2025 37

2. One-parameter linear-exponential distribution

Ghitany et al. (2008) introduced a single parameter distribution called the Lindley dis-
tribution. The pdf of this distribution is given by

fl(x) =
θ 2(1+ x)e−θx

1+θ
; x > 0, θ > 0. (3)

Sah (2021) proposed the one-parameter linear-exponential distribution (OPLED). Its pdf
and second moment are defined as

fo(x) =
θ 2(θ 2 + x)e−θx

1+θ 3 ; x > 0, θ > 0 (4)

E
(
X2) =

2(θ 3 +3)
θ 2(1+θ 3)

. (5)

3. Area-biased one-parameter linear-exponential distribution

This section introduces the new proposed distribution, the area-biased one-parameter
exponential distribution (ABOPLED). The pdf of this distribution is defined using (2), (4)
and (5):

f (x) =
θ 4x2

(
x+θ 2

)
e−θx

2θ 3 +6
; x > 0, θ > 0. (6)

The cumulative distribution function (CDF) of ABOPLED is defined as:

F(x) =
∫ x

0

θ 4u2
(
u+θ 2

)
e−θu

2θ 3 +6
du

= 1−
(
θ 3x3 +

(
θ 5 +3θ 2

)
x2 +

(
2θ 4 +6θ

)
x+2θ 3 +6

)
e−θx

2θ 3 +6

= 1−
(

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx. (7)

F(x) satisfies the conditions of the CDF, since (1) F(x) is right-continuous. (2) limx−→0

F(x) = 0, and (3) limx−→∞ F(x) = 1
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Figure 1: The pdf and CDF of ABOPLED for different values of θ .
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Figures 1a and 1b show the pdf and CDF plots of ABOPLED for θ values of 1.5-
9.5(step(1)). Figure 1a shows that the peak of the distribution gets sharper for smaller
values of θ . Figure 1b shows that the CDF reaches 1 faster for larger values of θ .

4. Moments and related measures of the ABOPLED

The moment generating function along with the moments and related measures of the
ABOPLED and some tables of the mean, standard deviation, coefficient of skewness, excess
kurtosis, and coefficient of variation for certain values of the parameter will be derived in
this section.

4.1. Moments

Theorem 1 . Let X be a random variable following the ABOPLED. The rth moment of X is

E(X r) =

(
(r+3)!+θ 3(r+2)!

)
2θ r(2θ 3 +6)

, r = 1,2, .... (8)

Proof 1 The rth moment can be found as

E(X r) =
∫

∞

0
xr f (x)dx =

∫
∞

0

θ 4xr+2
(
x+θ 2

)
e−θx

2θ 3 +6
dx

=
θ 4

2θ 3 +6

∫
∞

0
xr+2 (x+θ

2)e−θxdx =

(
(r+3)!+θ 3(r+2)!

)
2θ r(2θ 3 +6)

.

Thus, the first four moments can be calculated by substituting r with 1, 2, 3 and 4 in (8).
Hence, we have

µ = E(X) =

(
12+3θ 3

)
θ(θ 3 +3)

, (9)

E(X2) =

(
60+12θ 3

)
θ 2(θ 3 +3)

, (10)

E(X3) =

(
360+60θ 3

)
θ 3(θ 3 +3)

, (11)

E(X4) =

(
2520+360θ 3

)
θ 4(θ 3 +3)

. (12)

4.2. Related measures

From (9), and (10), the variance (σ2) and the standard deviation (σ) are as follows:
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σ
2 = E(X2)−µ

2 =

(
60+12θ 3

)
θ 2(θ 3 +3)

−

((
12+3θ 3

)
θ(θ 3 +3)

)2

=
3(θ 3 +2)(θ 3 +6)

θ 2 (θ 3 +3)2

σ =

√
3(θ 3 +2)(θ 3 +6)

θ (θ 3 +3)
. (13)

The coefficient of variation (CV) is defined using (9) and (13) as:

CV =

√
3(θ 3 +2)(θ 3 +6)
(12+3θ 3)

. (14)

The skewness (Sk) is defined using (9), (10), (11) and (13) as:

Sk(X) =
E(X3)−3µE(X2)+2µ3

σ3 =
6
(
θ 9 +12θ 6 +36θ 3 +36

)(√
3(θ 3 +2)(θ 3 +6)

)3 . (15)

Au et al. (2015) defined the excess kurtosis (eKur) as: eKur(X) = Kur(X)− 3. Thus,
for ABOPLED it is defined using (9), (10), (11), (12) and (13) as:

eKur(X) =
E(X4)−4µE(X3)+6µ2E(X2)−3µ4

σ4 −3

=

(
5θ 12 +80θ 9 +408θ 6 +864θ 3 +648

)
((θ 3 +2)(θ 3 +6))2 −3. (16)

Table 1: Related moments measures for ABOPLED for different values of θ

θ µ σ Sk eKur CV θ µ σ Sk eKur CV
1.25 2.8845 1.5686 1.045 1.614 54.3793 4.50 0.6737 0.3889 1.154 1.9966 57.7223
1.50 2.3137 1.2858 1.0738 1.7005 55.5715 4.75 0.6373 0.3679 1.1542 1.9975 57.7257
1.75 1.9194 1.0825 1.0991 1.7846 56.4014 5.00 0.6047 0.3491 1.1543 1.9981 57.7281
2.00 1.6364 0.9315 1.1181 1.8527 56.9275 5.25 0.5753 0.3321 1.1544 1.9986 57.7298
2.25 1.426 0.8163 1.1311 1.9019 57.2455 5.50 0.5487 0.3168 1.1545 1.9989 57.731
2.50 1.2644 0.7262 1.1395 1.9354 57.4344 5.75 0.5244 0.3028 1.1545 1.9992 57.732
2.75 1.1368 0.6542 1.1448 1.9574 57.5469 6.00 0.5023 0.29 1.1546 1.9994 57.7326
3.00 1.0333 0.5954 1.1482 1.9716 57.6147 6.25 0.4819 0.2782 1.1546 1.9995 57.7332
3.25 0.9478 0.5465 1.1504 1.9809 57.6564 6.50 0.4632 0.2674 1.1546 1.9996 57.7335
3.50 0.8758 0.5052 1.1518 1.9869 57.6825 6.75 0.4459 0.2574 1.1546 1.9997 57.7338
3.75 0.8144 0.4699 1.1527 1.9909 57.6991 7.00 0.4298 0.2481 1.1546 1.9997 57.7341
4.00 0.7612 0.4393 1.1533 1.9936 57.71 7.25 0.4149 0.2395 1.1547 1.9998 57.7342
4.25 0.7147 0.4125 1.1537 1.9954 57.7173 7.50 0.4009 0.2315 1.1547 1.9998 57.7344

Table 1 shows the mean, standard deviation, skewness, excess kurtosis, and coefficient
of variation of the ABOPLED distribution for θ values of 0.25-7.5 (step 0.25). The dis-
tribution is right-skewed and the table makes this clear regardless of the values of θ as all
skewness values are positive. The tails of the proposed distribution are heavier than the tails
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of the normal distribution, which is demonstrated by the fact that all excess kurtosis values
are positive. Furthermore, Table 1 shows how the mean and standard deviation increases as
the value of α increases and how they decrease as θ increases. The coefficient of variation
increases as the values of θ increase.

4.3. Moment generating function

Another way of deriving the moments is called the moment generating function (MGF).
It is defined by the theorem described below.

Theorem 2 Assume that random variable X follows the ABOPLED, then the moment gen-
erating function of X is given by

MX (t) =
θ 4
(
θ 2 (θ − t)+3

)
(θ − t)4 (θ 3 +3)

, θ > t. (17)

Proof 2

MX (t) =
∫

∞

0
etx f (x)dx =

∫
∞

0
etx θ 4x2

(
x+θ 2

)
e−θx

2θ 3 +6
dx =

θ 4
(
θ 2 (θ − t)+3

)
(θ − t)4 (θ 3 +3)

The rth derivative of MX (t) at t = 0 gives the rth central moment of random variable X ,
i.e. M(r)(0) = E(X r).

4.4. Mode

The mode is the most frequent value that occurs in data (Manikandan, 2011). When
data occur equally, then there is no mode. On the other hand, some data sets can have
more than one mode. This happens when the data set has two or more values of an equal
frequency which is greater than that of any other value in its neighbourhood. The mode
of the ABOPLED is given by equating the derivative of the pdf (6), or equivalently the
logarithm of the pdf, with respect to x to zero. Thus, from (6), we have:

f ′(x) =
θ 4

2θ 3 +6
(
−θ
(
x3 +θ

2x2)+ (3x2 +2θ
2x
))

e−θx. (18)

When equating (18) to 0, we receive

0 = −θx3 +(3−θ
3)x2 +2θ

2x

x =
θ 3 −3−

√
θ 6 +2θ 3 +9

−2θ
. (19)

Hence, we have one mode only assured by the plot of (19) in Figure 2f. Figure 2f shows
the plot of Equation (19). It indicates that the equation has only one solution regardless of
the value of θ .
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5. Reliability analysis of the ABOPLED

This section introduces the reliability, hazard rate, cumulative hazard rate, reversed haz-
ard rate, and odds rate functions for the ABOPLED, as well as an explanation of their shapes
for various values of the distribution parameters.

The reliability function of the ABOPLED can be calculated using (7):

R(t) = 1−F(t) =

(
θ 3t3 +

(
θ 5 +3θ 2

)
t2 +

(
2θ 4 +6θ

)
t +2θ 3 +6

)
e−θ t

2θ 3 +6
. (20)

The hazard rate function of ABOPLED, is defined using (6) and (20):

h(t) =
f (t)

1−F(t)
=

θ 4t2
(
t +θ 2

)
(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)

.

Using (20), the cumulative hazard rate function of is defined as:

H(t) =−ln(R(t)) = −ln

((
θ 3t3 +

(
θ 5 +3θ 2

)
t2 +

(
2θ 4 +6θ

)
t +2θ 3 +6

)
e−θ t

2θ 3 +6

)
.

The reversed hazard rate function is defined using (6), and (7):

RH(t) =
f (t)
F(t)

=
θ 4t2

(
t +θ 2

)
e−θ t

2θ 3 +6− ((θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t)
.

The odds rate function is defined using (7), and (20):

O(t) =
F(t)

1−F(t)
=

2θ 3 +6−
((

θ 3t3 +
(
θ 5 +3θ 2

)
t2 +

(
2θ 4 +6θ

)
t +2θ 3 +6

)
e−θ t

)
((θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t)

.

Figure 2 shows the reliability analysis functions of ABOPLED for θ values of 1.5-
9.5 (step1). Figure 2a shows the plot of the reliability function. Figure 2b represents the
plot of the hazard rate function. The reversed hazard rate function is presented in Figure
2c. Whereas the cumulative hazard rate function is presented in Figure 2d. The odds rate
function plot is shown in Figure 2e.

6. Some structural and statistical properties

6.1. Order statistics

Let X(1),X(2), · · · ,X(n) be the order statistics of the random sample X1,X2, · · · ,Xn ob-
tained from ABOPLED, then the pdf of the kth order statistics is:

f(k)(x) =
n!

(k−1)!(n− k)!
[F(x)]k−1[1−F(x)]n−k f (x)
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=
n!

(k−1)!(n− k)!

(
1−
(

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)k−1

×
((

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)n−k
[

θ 4x2
(
x+θ 2

)
e−θx

2θ 3 +6

]
. (21)

The minimum and maximum order statistics of ABOPLED can be found by replacing
k = 1 and k = n, respectively, in (21). As a result, we obtain what follows:
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(c) The reversed hazard rate function.
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Figure 2: Reliability analysis functions of ABOPLED for different θ values and the plot of
(19).

f(1)(x) = n
((

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)n−1
[

θ 4x2
(
x+θ 2

)
e−θx

2θ 3 +6

]
(22)

f(n)(x) = n
(

1−
(

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)n−1
[

θ 4x2
(
x+θ 2

)
e−θx

2θ 3 +6

]
.(23)
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6.2. Quartiles

Quartiles are special cases of quantiles. The first quartile (Q1) corresponds to 25%
of the values that are below a specific value in the distribution, while the second quartile
(Q2) corresponds to 50% of the values that are below a specific value in the distribution.
It represents the median of the distribution. The third quartile (Q3) corresponds to 75% of
the values that are below a specific value in the distribution. The quantile function can be
obtained by finding the inverse of (7), so it can be obtained as:

q = F(xq) = 1−
(
θ 3x3

q +
(
θ 5 +3θ 2

)
x2

q +
(
2θ 4 +6θ

)
xq +2θ 3 +6

)
e−θxq

2θ 3 +6

1−q =

(
θ 3x3

q +
(
θ 5 +3θ 2

)
x2

q +
(
2θ 4 +6θ

)
xq +2θ 3 +6

)
e−θxq

2θ 3 +6
, (24)

where q is a random variable following the uniform distribution, i.e. q ∈ (0,1). For q = 0.5,
we obtain the median of the distribution. Equation (24) does not have an explicit solution.
Figure 3 shows the plot of this equation for θ = 1.5 and q values of 0.05, 0.1, 0.25, 0.4, 0.5,
0.6, 0.75, 0.8 and 0.95. It shows that (3b) it has exactly one solution.
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Figure 3: The pdf of order statistics for θ =2.5 and n = 10 and the quantile function when
θ =2.5.

6.3. Mean waiting time

Significantly, the mean waiting time is the measure used to verify the effectiveness of the
service. The form, which is most effective in decreasing waiting time, can be determined by
comparing many different services patterns. Pollaczek (1957) introduced a formula for the
mean waiting time in a G/G/1 queue. Rosenberg (1968) introduced the mean waiting time to
measure the effectiveness of the service because it is the easiest property of the waiting time
distribution to calculate. Otsuka et al. (2010) proposed a theoretical analysis of the mean
waiting time for message delivery in lattice ad hoc networks. Romero-Silva and Hurtado
(2017) studied the difference in mean waiting times between two classes of customers in a
single-server FIFO queue. For the ABOPLED, the mean waiting time can be written as:
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mw(t) =
1

F(t)

∫ t

0
F(x)dx

=

( ((
2θ 4 +6θ

)
t −6θ 3 −24

)
eθ t +θ 3t3 +

(
θ 5 +6θ 2

)
t2

+
(
4θ 4 +18θ

)
t +6θ 3 +24

)
θ (2θ 3 +6− (θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6))

. (25)

6.4. Mean residual life time

Several studies have attempted to find substitutes that do not depend on the entire right
tail of the pdf, such as mean residual lifetime and median residual life, and the correspond-
ing residual life quantiles. Several studies have addressed this issue. First, Schmittlein and
Morrison (1981) introduced the median residual lifetime and characterisation theorem along
with its application. Joe and Proschan (1984a) and Joe and Proschan (1984b) examined the
comparison of two life distributions based on their percentile residual life functions. Lillo
(2005) studied the median residual lifetime and its properties. Jeong et al. (2008) investi-
gated the nonparametric inference on median residual life function. Recently, Zamanzade
et al. (2024) analysed the estimation of the mean residual life based on ranked set sampling.
For the ABOPLED, the mean residual lifetime can be written as"

MR(t) =
1

F(t)

∫
∞

t
F(x)dx =

2θ 3 +6
(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t

×
∫

∞

t

(
θ 3x3 +

(
θ 5 +3θ 2

)
x2 +

(
2θ 4 +6θ

)
x+2θ 3 +6

)
e−θx

2θ 3 +6
dx

=
2θ 3 +6

(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t

×
(
θ 2t3 +(θ(θ 3 +6)t2 +(4θ 3 +18)t +6θ 2 + 24

θ

)
e−θ t

2θ 3 +6

=

(
θ 2t3 +(θ(θ 3 +6)t2 +(4θ 3 +18)t +6θ 2 + 24

θ

)
(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)

. (26)

6.5. Entropy

Olbryś and Ostrowski (2021) introduced introduced a new procedure for the measure-
ment of stock market depth and market liquidity. An algorithm inferring the initiator of a
trade supports the proposed Shannon entropy-based market depth indicator. The findings of
the empirical experiments for real high-frequency data specify that this new entropy-based
method can be considered as a good market depth and liquidity proxy with an intuitive base
for both theoretical and the empirical analyses in financial markets. In this section, we have
derived the theoretical entropies with some numerical results.
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The Shannon (Shannon, 1948) (Sρ ), Rényi (Rρ ) (Rényi, 1961) and Tsallis (Tρ ) (Tsallis,
1988) entropies of the ABOPLED are defined as:

Sρ = −
∫

∞

0
f (x) log( f (x))dx

= −
∫

∞

0

(
(θ 4)(θ 2 + x)x2

(2θ 3 +6)
e−θx

)
log
(
(θ 4)(θ 2 + x)x2

(2θ 3 +6)
e−θx

)
dx (27)

Rρ =
1

1−ρ
log
(∫

∞

0
( f (x))ρ dx

)
, ρ > 0, ρ ̸= 0

=
1

1−ρ
log

(∫
∞

0

(
(θ 4)(θ 2 + x)x2

(2θ 3 +6)
e−θx

)ρ

dx

)

=
1

1−ρ
log

((
(θ 4)

(2θ 3 +6)

)ρ ∫
∞

0

ρ

∑
k=0

(
ρ

k

)
θ

2kx3ρ−ke−ρθxdx

)

=
1

1−ρ
log

((
(θ 4)

(2θ 3 +6)

)ρ ρ

∑
k=0

(
ρ

k

)
(3ρ − k)!

ρ3ρ−k+1θ 3ρ+k+1

)
(28)

Tρ =
1

ρ −1

(
1−

∫
∞

0
( f (x))ρ dx

)
, ρ > 0, ρ ̸= 0

=
1

ρ −1

(
1−

((
(θ 4)

(2θ 3 +6)

)ρ ρ

∑
k=0

(
ρ

k

)
(3ρ − k)!

ρ3ρ−k+1θ 3ρ+k+1

))
. (29)

Table 2 shows the numerical results for Shannon, Rényi and Tsallis entropies for ABO-
PLED using different values of θ of 0.05-4.25 (step(0.1)) when ρ = 5. It also shows the
mean waiting time and the mean residual life time. The table clarifies that as the values of
θ increase, all entropy values decrease. It shows the values of the mean waiting time and
the mean residual life time for the same values of θ . The mean waiting time values rise as
the values of θ grow. On the other hand, the values of the mean residual life time decrease
as the values of θ increase.

Table 2: Numerical results for Shannon, Rényi and Tsallis entropies, the mean waiting time
and mean residual life time for ABOPLED using different θ values with ρ=5.

θ Sρ Rρ Tρ mw MR θ Sρ Rρ Tρ mw MR
0.05 3.477 4.704 0.250 0.010 71.213 2.25 1.099 0.771 0.239 1.081 0.653
0.25 3.410 3.089 0.250 0.054 15.729 2.45 1.003 0.674 0.233 1.300 0.569
0.45 2.822 2.501 0.250 0.101 8.374 2.65 0.916 0.586 0.226 1.540 0.503
0.65 2.453 2.132 0.250 0.154 5.384 2.85 0.836 0.506 0.217 1.792 0.451
0.85 2.180 1.860 0.250 0.214 3.701 3.05 0.763 0.432 0.206 2.050 0.409
1.05 1.958 1.639 0.250 0.283 2.630 3.25 0.695 0.364 0.192 2.308 0.374
1.25 1.769 1.449 0.249 0.365 1.924 3.45 0.631 0.300 0.175 2.563 0.345
1.45 1.603 1.281 0.249 0.462 1.454 3.65 0.572 0.241 0.155 2.813 0.320
1.65 1.455 1.132 0.247 0.579 1.138 3.85 0.516 0.185 0.131 3.058 0.299
1.85 1.323 0.998 0.245 0.719 0.920 4.05 0.463 0.132 0.102 3.299 0.281
2.05 1.205 0.878 0.243 0.886 0.766 4.25 0.413 0.082 0.070 3.535 0.264
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7. Parameters estimation

7.1. Maximum likelihood method

Let X1,X2, · · · ,Xn be a random sample from ABOPLED, where x1,x2, · · · ,xn are the
observed values of the random sample. The likelihood function is:

L =
n

∏
i=1

[
θ 4x2

i
(
xi +θ 2

)
e−θxi

2θ 3 +6

]
=

[
θ 4

2θ 3 +6

]n
(

n

∏
i=1

x2
i

)(
n

∏
i=1

(xi +θ
2)

)(
e−θ ∑

n
i=0 xi

)
Thus, the log-likelihood function is:

ℓ = ln(L) = 4nln(θ)−nln(2θ
3 +6)+

n

∑
i=0

ln
(
x2

i
)
+

n

∑
i=0

ln
(
(xi +θ

2)
)
−θ

n

∑
i=0

xi (30)

With respect to θ , we receive

∂ℓ

∂θ
=

4n
θ

− 6nθ 2

2θ 3 +6
+

n

∑
i=1

2θ

xi +θ 2 −
n

∑
i=0

xi.

Nonlinear equation ∂ℓ
∂θ

= 0 can be solved numerically as there is no explicit solution,
and the maximum likelihood estimate (MLE) of θ is this solution.

7.2. Least square methods

This subsection describes the least squares methods for estimating the ABOPLED pa-
rameters. These methods were summarised by Swain et al. (1988) as follows: Let X(1),X(2),

· · · ,X(n) be the order statistics of random sample X1,X2, · · · ,Xn obtained from ABOPLED
with the observed ordered values of x(1),x(2), · · · ,x(n). The ordinary least squares (OLS)
method is defined as:

ROLS =
n

∑
i=1

[
F(x(i))−

i
n+1

]2

=
n

∑
i=1

[
n+1− i

n+1
−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i)

]2

. (31)

Thus, the OLS estimator of θ is the solution of ∂ROLS
∂θ

= 0.
The weighted least squares (WLS) estimate can be determined as:

WWLS =
n

∑
i=1

(n+1)2(n+2)
i(n+1− i)

[
1−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i) − i

n+1

]2

. (32)

Again, the WLS estimators of θ is the solution of ∂WWLS
∂θ

= 0.
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7.3. Maximum product spacings method

The maximum product of spacings (MPS) (Cheng and Amin, 1983) estimator, θ̂MPS, of
θ can be obtained using

NL(α,β |x) =
1

n+1

n+1

∑
i=1

ln

[
F(x(i);α,β )−F(x(i−1);α,β )

]

=
1

n+1

n+1

∑
i=1

ln

[[
1−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i)

]

−

[
1−

(
θ 3x3

(i−1)

2θ 3 +6
+

θ 2x2
(i−1)

2
+θx(i−1)+1

)
e−θx(i−1)

]]
. (33)

θ̂MPS can be obtained by solving nonlinear equation ∂NL(θ |x)
∂θ

= 0 with respect to θ

parameter.

7.4. Cramer-Von Mises and Anderson-Darling methods

The Cramer-Von Mises (CV M) method (Cramér, 1928 and Von Mises, 1928) for esti-
mating ABOPLED parameters is defined as:

CV M =
1

12n
+

n

∑
i=1

[
F(x(i),θ)−

2i−1
2n

]2

=
1

12n
+

n

∑
i=1

[
1−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i) − 2i−1

2n

]2

. (34)

The estimator is the solution of the following system of nonlinear equation ∂CV M
∂θ

= 0.

The Anderson-Darling (AD) estimators (Anderson, 1962) of θ can be obtained as:

AD =−n− 1
n

n

∑
i=1

(2i−1)
{

ln[F(x(i);α,βθ)]+ lnF(x(n+1−i);α,β )
}

=−n−
n

∑
i=1

(2i−1)
n

 ln
(

1−
(

θ 3x3
(i)

2θ 3+6 +
θ 2x2

(i)
2 +θx(i)+1

)
e−θx(i)

)
+ln

((
θ 3x3

(n+1−i)
2θ 3+6 +

θ 2x2
(n+1−i)
2 +θx(n+1−i)+1

)
e−θx(n+1−i)

)
 . (35)

The AD estimator of θ is the solution of the non-linear equation ∂AD
∂θ

= 0.

The estimator presented in this section will be estimated using a simulation study in the
next part of the article.
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8. Simulation study

A simulation study is conducted to examine the efficiency of the estimators used and
the precision of the methods applied to estimate the ABOPLED parameters is discussed in
Section 7.

The following algorithm is used to estimate the distribution parameters:

• A Monte Carlo simulation study is carried out using different sample sizes: n = 30,
50, 100, 200, 300 and 500 to assess the performance of the ABOPLED via the R
package (R Core Team, 2021)

• 1,000 samples are simulated using the true parameters values θ =2.

• The MLE, OLS, WLS, MPS, CVM and AD estimators are obtained through the non-
linear equations by maximising or minimising Equations (30), (31), (32), (33), (34),
(35), respectively, as required by the method with respect to θ .

• The AB and MSEs of all estimates are calculated.

• For each sample, the estimates of the parameter θ , MSE and the bias are obtained.
Then, we calculate the AB and the MSE as follows: AB(θ̂)= 1

N ∑
N
i=1(θ̂ −θ), MSE =

1
N ∑

N
i=1(θ̂ −θ)2. The results of this simulation are summarised in Table 3.

Table 3 shows the estimate of θ and its AB and MSE. It shows that these values de-
crease as the sample size increases, indicating that the estimate behaves consistently for θ̂ ,
therefore it is unbiased and consistent. Based on AB and MSE, we recommend using the
MLE method to estimate the parameter.

Table 3: AB and MSE for estimated ABOPLED parameters

Method n θ̂ AB MSE Method n θ̂ AB MSE
MLE

30

2.0047 0.0047 0.0035 MLE

200

2.0017 0.0017 0.0006
OLS 2.1161 0.1161 0.2267 OLS 2.0621 0.0621 0.0313
WLS 2.0868 0.0868 0.2594 WLS 2.0186 0.0186 0.0305
CVM 2.2910 0.2910 0.3560 CVM 2.0310 0.0310 0.0860
MPS 2.4773 0.4773 0.7012 MPS 2.1164 0.1164 0.3551
AD 2.1014 0.1014 0.3807 AD 2.0301 0.0301 0.0860
MLE

50

2.0025 0.0025 0.0021 MLE

300

2.0016 0.0016 0.0003
OLS 2.0852 0.0852 0.1282 OLS 2.0577 0.0577 0.0222
WLS 2.0489 0.0489 0.1364 WLS 2.0145 0.0145 0.0207
CVM 2.0516 0.0516 0.2017 CVM 2.0305 0.0305 0.0746
MPS 2.2317 0.2317 0.5507 MPS 2.1148 0.1148 0.3138
AD 2.0516 0.0516 0.2017 AD 2.0250 0.0250 0.0746
MLE

100

2.0022 0.0022 0.0010 MLE

500

2.0008 0.0008 0.0002
OLS 2.0750 0.0750 0.0612 OLS 2.0568 0.0568 0.0137
WLS 2.0363 0.0363 0.0641 WLS 2.0134 0.0134 0.0113
CVM 2.0442 0.0442 0.1297 CVM 2.0299 0.0299 0.0660
MPS 2.1517 0.1517 0.5069 MPS 2.1066 0.1066 0.3011
AD 2.0452 0.0452 0.2017 AD 2.0130 0.0130 0.0660
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9. Real data applications

This section compares the proposed distribution’s goodness of fit to a few other existing
distributions in order to demonstrate its flexibility based on three financial real data sets.

The data were collected from companies listed at the ASE. The sample selection criteria
depended on data availability for three years: 2021, 2022, 2023. The population comprised
of all companies listed at the ASE, i.e. a total of 203 companies, the final sample consisted
of 92 companies, excluding those suspended from trading, with incomplete data and those
that incurred losses during the study periods. The total number of observations of EPS and
ROE was 273 each.

Earnings per share is the amount of income earned on a share of common stock during
an accounting period. It is calculated by dividing the profit or the loss attributable to or-
dinary equity holders of the parent entity (the numerator) by the weighted average number
of ordinary shares outstanding (the denominator) during the period (IAS, 2023). The ratio
indicated the company’s ability to produce a profit for common shareholders. It is widely
used by analysts and other external users of financial statements, as well as by management.

The following distributions are used for this comparison:

• Gharaibeh distribution (Gharaibeh, 2021):

f (x) =
θ 6

120(θ 6 +θ 4 +θ 2 +1)

(
x5 +20x3 +120x+120θ

)
e−θx; x > 0, θ > 0;

• Exponential distribution (Exp) (Kingman, 1982):

f (x) = αe−θx, x > 0, θ > 0;

• Lindley distribution (Ghitany et al., 2008):

f (x) =
θ 2(1+ x)e−θx

1+θ
; x > 0,θ > 0;

• Length bias Benrabia distribution (LBBD) (Almakhareez and Alzoubi, 2024a):

fl(x;α,β ) =
β (αΓ(α −1)βx+β α xα−1)e−βx

(α −β +αβ )Γ(α −1)
, x > 0, α > 1, β > 0;

• Area bias Benrabia distribution (ABBD) (Almakhareez and Alzoubi, 2024b):

fa(x;α,β ) =
(αΓ(α −1)β 3x2 +β α+2xα)e−βx

(α2β −αβ +2α)Γ(α −1)
; x, β > 0, α > 1;
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• Karam distribution (Gharaibeh and Sahtout, 2022):

f (x) =
θ 6
(
x5 + x4 + x2 +1

)
θ 5 +2θ 3 +24θ +120

e−θx; x > 0; θ > 0;

• OPLED (See (4));

• size-biased Ishita distribution (SBID) (Al-Omari et al., 2019b):

fs(x) =
θ 4

θ 3 +6
x(θ + x2)e−θx, x > 0, θ > 0.

Tables 4-6 show the data sets used in this section. They show the financial ratios per
year for financial, industry and service sectors during the 2021–2023 period.

Table 4: Dataset I: EPS for the financial sector during the 2021–2023 period

Company Name Financial Ratios/Year
2023 2022 2021

JORDAN ISLAMIC BANK 0.31151 0.30555 0.29529
SAFWA ISLAMIC BANK 0.1751 0.15112 0.1406
ISLAMIC INTERNATIONAL ARAB BANK 0.35326 0.35497 0.4
JORDAN KUWAIT BANK 0.39405 0.12455 0.05159
JORDAN COMMERCIAL BANK 0.09571 0.0945 0.05837
THE HOUSING BANK FOR TRADE AND FINANCE 0.43406 0.41111 0.33531
ARAB JORDAN INVESTMENT BANK 0.12384 0.12039 0.11394
BANK AL ETIHAD 0.23569 0.21455 0.20312
ARAB BANKING CORPORATION /(JORDAN) 0.04546 0.06063 0.08729
INVEST BANK 0.24629 0.19826 0.17812
CAPITAL BANK OF JORDAN 0.27317 0.33007 0.39407
CAIRO AMMAN BANK 0.18571 0.18218 0.17263
BANK OF JORDAN 0.22012 0.2007 0.18004
JORDAN AHLI BANK 0.09266 0.08422 0.07092
ARAB BANK 0.58648 0.51113 0.2436
MIDDLE EAST INSURANCE 0.03929 0.10864 0.07403
AL-NISR AL-ARABI INSURANCE 0.63802 0.231 0.29263
JORDAN INSURANCE 0.06033 0.00036 0.02921
DELTA INSURANCE 0.10801 0.0777 0.01752
JERUSALEM INSURANCE 0.18775 0.20698 0.16436
THE UNITED INSURANCE 0.21804 0.1675 0.16527
GULF INSURANCE GROUP/ JORDAN 0.36495 0.28091 0.25762
NATIONAL INSURANCE 0.16729 0.13781 0.11505
EURO ARAB INSURANCE GROUP 0.19688 0.19041 0.11778
THE MEDITERRANEAN & GULF INSURANCE COMPANY-
JORDAN P.L.C

0.0208 0.03486 0.00737

FIRST INSURANCE 0.10379 0.07202 0.07
THE ISLAMIC INSURANCE 0.11616 0.11066 0.13
AL-AMAL FINANCIAL INVESTMENTS 0.01476 0.02963 0.09023
BABELON INVESTMENTS 0.07179 0.0246 0.00509
DARAT JORDAN HOLDINGS 0.04654 0.01134 0.10751
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FIRST FINANCE 0.03256 0.04269 0.02772
INMA INVESTMENT AND FINANCIAL ADVANCES 0.03367 0.04155 0.02566
JORDAN LOAN GUARANTEE CORPORATION 0.06282 0.03956 0.03886
JORDAN MORTGAGE REFINANCE 0.3677 0.35538 0.43181
JORDANIAN MANAGEMENT AND CONSULTING COMPANY 0.29049 0.17916 0.19246
AD-DULAYL INDUSTRIAL PARK & REAL ESTATE COMPANY
P.L.C

0.06236 0.05714 0.04944

AL-TAJAMOUAT FOR TOURISTIC PROJECTS CO PLC 0.02698 0.02374 0.00992
AMAD INVESTMENT & REAL ESTATE DEVELOPMENT 0.00437 0.07656 0.01058
CONTEMPRO FOR HOUSING PROJECTS 0.00308 0.01992 0.0209
JORDAN MASAKEN FOR LAND & INDUSTRIAL DEVELOP-
MENT PROJECTS

0.0148 0.00919 0.00289

NOOR CAPITAL MARKTS FOR DIVERSIFIED INVESTMENTS 0.12639 0.19163 0.317
THE PROFESSIONAL COMPANY FOR REAL ESTATE INVEST-
MENT AND HOUSING

0.02423 0.0337 0.02976

THE REAL ESTATE & INVESTMENT PORTFOLIO CO. 0.00286 0.05566 0.02754
NOOR ASSETS MANAGEMENT AND LEASING CO. 0.2158 0.13914 0.12803

Table 5: Dataset II: EPS for the industry sector during the 2021–2023 period

Company Name Financial Ratios/Year
2023 2022 2021

THE INDUSTRIAL COMMERCIAL & AGRICULTURAL 0.05789 0.03362 0.06274
THE ARAB PESTICIDES & VETERINARY DRUGS MFG. CO. 0.27107 0.26055 0.23649
JORDAN CHEMICAL INDUSTRIES 0.02470 0.14547 0.05689
UNITED CABLE INDUSTRIES 0.02930 0.01857 0.01208
READY MIX CONCRTE AND CONSTRUCTION SUPPLIES 0.17116 0.07234 0.02440
ARABIAN STEEL PIPES MANUFACTURING 0.13898 0.09263 0.06792
AL-QUDS READY MIX 0.15671 0.01634 0.02434
ASSAS FOR CONCRETE PRODUCTS CO. LTD 0.05061 0.07530 0.04958
JORDAN DAIRY 0.16668 0.05058 0.08475
GENERAL INVESTMENT 0.21088 0.24084 0.20878
UNIVERSAL MODERN INDUSTRIES 0.07028 0.11759 0.13885
NUTRI DAR 0.00842 0.04065 0.02242
JORDAN VEGETABLE OIL INDUSTRIES 0.35863 0.25515 0.25914
SINIORA FOOD INDUSTRIES PLC 0.15817 0.19213 0.27924
ARAB ALUMINIUM INDUSTRY /ARAL 0.00100 0.06988 0.12114
JORDAN PHOSPHATE MINES 1.80000 8.67159 4.05965
NORTHERN CEMENT CO. 0.07000 0.11382 0.13499
THE ARAB POTASH 3.51000 7.21611 2.60108
INVESTMENTS & INTEGRATED INDUSTRIES CO. PLC (HOLD-
ING CO)

0.04000 0.03953 0.01875

DAR AL DAWA DEVELOPMENT & INVESTMENT 0.09033 0.06637 0.03005
HAYAT PHARMACEUTICAL INDUSTRIES CO. 0.24502 0.37144 0.38339
PHILADELPHIA PHARMACEEUTICALS 0.10763 0.09348 0.05470
THE JORDAN WORSTED MILLS 0.12776 0.14262 0.09987
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Table 6: Dataset III: EPS for the service sector during the 2021–2023 period

Company Name Financial Ratios/Year
2023 2022 2021

BINDAR TRADING & INVESTMENT 0.262608 0.40806 0.170304
COMPREHENSIVE LEASING COMPANY 0.243656 0.22314 0.388221
JORDAN INTERNATIONAL TRADING CENTER 0.07173 0.093165 0.057167
JORDAN TRADE FACILITIES 0.374112 0.242446 0.238253
JORDANIAN DUTY FREE SHOPS 0.336582 0.375173 0.00718
AL-ISRA FOR EDUCATION AND INVESTMENT 0.205352 0.332692 0.263241
AL-ZARQA EDUCATIONAL & INVESTMENT 0.046396 0.039709 0.033073
PETRA EDUCATION COMPANY 0.140622 0.167452 0.230803
PHILADELPHIA INTERNATIONAL EDUCATIONAL INVEST-
MENT

0.11588 0.005117 0.019367

THE ARAB INTERNATIONL FOR EDUCATION & INVEST-
MENT

0.118594 0.056378 0.108322

JORDAN PETROLEUM REFINERY 1.226189 0.961974 0.520464
AFAQ FOR ENERGY CO. P.L.C 4.914741 3.491291 0.211068
NATIONAL PETROULEUM 2.495661 5.240506 0.378521
THE CONSULTANT & INVESTMENT GROUP 0.041827 0.044151 0.041361
ARAB INTERNATIONAL HOTELS 0.026987 0.008047 0.004793
AL-FARIS NATIONAL COMPANY FOR INVESTMENT & EX-
PORT

0.009391 0.0315 0.044468

JORDAN TELECOM 0.243991 0.234832 0.13933
JORDAN NATIONAL SHIPPING LINES 0.078482 0.257447 0.193284
SALAM INTERNATIONL TRANSPORT & TRADING 0.013732 0.117071 0.076555
TRUST INTERNATIONAL TRANSPORT 0.080481 0.007918 0.013924
IRBID DISTRICT ELECTRICITY 0.657753 2.070165 0.690224
JORDAN ELECTRIC POWER 0.187703 0.170691 0.114224
ELECTRICITY DISTRIBUTION 0.507459 1.578454 0.618777
CENTRAL ELECTRICITY GENERATING 4.424406 0.822969 0.398052

Table 7 shows the summary of the three data sets used in this study.

Table 7: Summary of the datasets

Dataset Min. 1st Qu Median Mean 3rd Qu Max.

I 0.00036 0.03950 0.11449 0.14826 0.20887 0.63802

II 0.00100 0.05058 0.09987 0.51149 0.21088 8.67159

III 0.004793 0.053883 0.190493 0.538412 0.380946 5.240506

Tables 8 - 10 show that the suggested distribution has the lowest values of −ln(L), AIC,
CAIC, BIC, HQIC and KS with the highest p-value. Therefore, the suggested distribution is
preferred over the competence distributions. The 95% CIs of the parameter θ are calculated
in these tables.
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Table 8: Application I

Distribution −ln(L) AIC CAIC BIC HQIC KS p-value parameter Estimate SE 95%CI

Gharaibeh 268.9182 498.5167 498.6809 504.66 501 0.79057 2.23E-05 θ 1.40952 0.07806 1.256519 1.562515

ABOPLED 214.7046 247.6625 247.8083 249.848 248.5 0.108 0.5671 θ 2.45937 0.148823 2.16768 2.751065

Karam 220.2601 254.0115 254.1574 256.197 254.8 0.1224 0.409 θ 0.926 0.162 0.60848 1.24352

OPLED 240.4058 246.3666 248.4974 250.326 249.1 0.19233 0.043 θ 0.0924 0.009725 0.07334 0.111461

Exponential 254.1606 412.3661 412.4869 415.313 413.5 0.523845 0.000126 θ 0.20058 0.027815 0.146062 0.255096

Lindley 283.1807 493.5926 493.9845 499.837 496 0.835538 2.99E-07 θ 0.89039 0.055254 0.782089 0.998684

ABBD 339.3911 546.5599 546.8783 551.633 548.5 0.952397 2.42E-12
α 1.32772 0.131967 1.069067 1.586376

β 0.59652 0.047479 0.503466 0.689583

LBBD 292.5332 519.4088 519.8325 526.16 522 0.42493 4.91E-09
α 13.4936 1.916729 9.736853 17.25043

β 0.79805 0.093192 0.615392 0.980704

SBID 342.8647 555.0833 555.1819 557.489 556 0.910601 1.46E-12 θ 0.8271 0.215 0.405702 1.248502

Table 9: Application II

Distribution −ln(L) AIC CAIC BIC HQIC KS p-value parameter Estimate SE 95%CI

Gharaibeh 131.4238 264.8477 264.9074 267.0818 265.734 0.40153 4.35E-10 θ 1.100993 0.062543 0.978409 1.223577

ABOPLED 629.0371 1262.074 1262.198 1267.284 1264.183 0.095631 0.3198 θ 0.129883 0.011658 0.107032 0.152733

Karam 91.09243 184.1849 184.2446 186.419 185.0712 0.26513 0.000123 θ 1.97627 0.106528 1.767475 2.185065

OPLED 89.82951 181.659 181.7187 183.8931 182.5454 0.28699 2.32E-05 θ 1.408618 0.078005 1.255727 1.561509

Exponential 130.9789 263.9578 264.0175 266.1919 264.8441 0.4477 1.94E-12 θ 0.407271 0.049029 0.311173 0.503368

Lindley 119.311 240.622 240.6817 242.8561 241.5083 0.40044 4.90E-10 θ 0.653587 0.049124 0.557304 0.74987

ABBD 396.0404 796.0808 796.2547 800.6341 797.8935 0.15922 0.05196
α 4.546753 1.956473 0.712066 8.38144

β 0.032501 0.001715 0.02914 0.035863

LBBD 116.3911 234.7822 234.9201 236.2161 235.2496 0.14041 0.1951
α 2.444609 1.21023 0.072558 4.816659

β 0.008821 0.000642 0.007563 0.010078

SBID 96.31876 194.6375 194.6972 196.8716 195.5239 0.29669 1.06E-05 θ 1.353036 0.072632 1.210677 1.495395

Table 10: Application III

Distribution −ln(L) AIC CAIC BIC HQIC KS p-value parameter Estimate SE 95%CI

Gharaibeh 190.437 382.016 382.04 383.505 382.619 0.15386 1.76E-02 θ 0.53498 0.13245 0.27537 0.79458

ABOPLED 63.473 127.746 127.771 128.788 128.168 0.04221 0.6136 θ 0.40425 0.05325 0.29988 0.50862

Karam 268.019 537.53 537.56 539.474 538.317 0.2158 0.000123 θ 0.59548 0.16864 0.26495 0.92602

OPLED 333.624 669.248 669.289 671.854 670.303 0.92175 < 2.2E −16 θ 0.63064 0.15134 0.33401 0.92727

Exponential 243.719 488.92 488.95 490.85 489.701 0.17301 5.02E-03 θ 0.10125 0.04523 0.0126 0.1899

Lindley 74.541 149.55 149.56 150.159 149.797 0.06768 0.5881 θ 0.18657 0.06413 0.06089 0.31226

ABBD 321.539 647.077 647.201 652.287 649.186 0.44059 < 2.2E −16
α 4.87299 0.75101 3.401 6.34498

β 0.41435 0.05011 0.31614 0.51256

LBBD 144.212 290.243 290.299 292.611 291.201 0.12309 9.66E-02
α 3.95669 1.67379 0.67606 7.23733

β 0.23114 0.03585 0.16087 0.3014

SBID 188.221 377.572 377.595 379.046 378.169 0.15845 1.32E-02 θ 0.40413 0.13112 0.14713 0.66112
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10. Conclusions

In this paper, we propose the area-biased one-parameter linear exponential distribution.
The main properties of this distribution are derived such as the moments and the related
measures, the harmonic mean and the mode. The reliability analysis functions are derived
along with the pdfs of the minimum, maximum and the kth order statistics; additionally, the
quantile function; additionally, the mean absolute deviations from the mean and the median
jointly with the mean waiting and residual lifetime. A simulation study using the MLE,
OLS, WLS, MPS, CVM and AD methods of estimating parameters is conducted showing
that the estimators are unbiased and consistent. Three real financial data applications prove
the goodness of fit for this distribution. They show that the suggested distribution fits the
real data better than the competence distributions.
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Bayesian estimation of two-parameter
power Rayleigh distribution and its application

Mohd Irfan1, Anup Kumar Sharma2

Abstract

This paper explores classical and Bayesian approaches to the estimation of unknown param-
eters and reliability functions for the power Rayleigh distribution. The maximum likelihood 
estimator (MLE) method is considered in classical estimation. The Bayesian estimation, on 
the other hand uses several loss functions under informative and non-informative prior dis-
tributions, utilizing the Lindley technique and Markov chain Monte Carlo (MCMC) meth-
ods for Bayesian computations. Approximate confidence i ntervals a re e stablished based 
on the MLEs using the delta technique, while Bayes credible intervals are determined us-
ing the MCMC method. A simulation study is conducted to compare the performance of 
these methods in terms of biases and mean square errors, revealing that Bayesian estima-
tors outperform their classical counterparts. Additionally, two real datasets are presented for 
illustrative purposes.

Key words: Power Rayleigh distribution, delta method, Lindley approximation, Metropolis-
Hasting algorithm, highest posterior density credible intervals, Monte Carlo simulation, cov-
erage probability, goodness of fit.

1. Introduction

Parameter estimation is a fundamental aspect of statistics, playing a crucial role in vari-
ous statistical analyses and decision-making processes. Estimating parameters in statistical 
distributions involves two primary methodologies: frequentist and Bayesian. In the fre-
quentist paradigm, estimates are derived from observed data, treating parameters as fixed 
but unknown values. A common technique within this framework is maximum likelihood 
estimation (MLE), where parameter values are selected to maximize the likelihood function. 
In contrast, the Bayesian approach treats parameters as random variables with associated 
probability distributions, acknowledging the inherent uncertainty. Bayesian parameter esti-
mation combines prior beliefs about parameters with observed data using Bayes’ theorem, 
resulting in a posterior distribution that reflects updated knowledge. While the Bayesian 
approach provides a systematic means to incorporate prior information and adapt beliefs 
as more data becomes available, it necessitates specifying a prior distribution, introducing 
subjectivity that may impact results. Several authors have used different lifetime models to
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study parametric inference under frequentist and Bayesian approaches. For example, Soli-
man (2000), Shuo-Jye-Wu et al. (2006), Soliman and Al-Aboud (2008), Dey (2009), Khan
et al. (2010), Ahmad et al. (2013), Asgharzadeh and Azizpour (2016), Ghazal and Hasabal-
lah (2017), Talukdar (2019), Yilmaz and Kara (2022), Irfan and Sharma (2023), and Irfan
and Sharma (2024) have considered different distributions for parameter estimation under
classical and Bayesian approaches. Some of them also discussed life testing and reliability
estimates under various loss functions.

The Rayleigh distribution, a statistical model, stands out for its unique application in
representing the magnitudes of vector components featuring random amplitudes. Named
after the British scientist Lord Rayleigh, this distribution finds widespread use in diverse
domains like wireless communication, radar systems, and image processing. The Rayleigh
distribution is a crucial model used in reliability theory, survival analysis, physical sciences,
medical imaging, and various branches of engineering. This study focuses on the power
Rayleigh distribution (PRD). PRD is the extension of the Rayleigh distribution and was
introduced by Bhatt and Ahmad (2020). They also studied some exciting properties like
moment-generating function, hazard rate, mean residual life, order statistics, quantiles, etc.
PRD offers flexibility for modelling the real-life dataset with a long-tailed, right-skewed
curve. Due to the wide practical utility of the PRD, various scholars have studied it for
different purposes. For example, Mahmoud et al. (2020) discussed the lifetime performance
index of PRD under progressive first failure censored data. Kilany et al. (2023) obtained the
classical estimates for PRD under a complete sample with COVID-19 application. Migdadi
et al. (2023) derived the Bayes estimates of the parameters of PRD under adaptive type II
progressive censored sample. Migdadi et al. (2023) discussed the optimal design for the
PRD under censored sample for the k-level step-stress accelerated life test. Further, Migdadi
et al. (2023) obtained the Bayesian and classical estimates of PRD under joint progressive
censoring scheme.

This study estimates the parameters and reliability characteristics of PRD using max-
imum likelihood and derives approximate confidence intervals (ACIs) via the Fisher in-
formation matrix. In the Bayesian framework, Bayes estimators under SELF, GELF, and
LLF are computed using informative and non-informative priors. Since closed-form solu-
tions are unavailable, we use MCMC and Lindley approximation methods, with Bayesian
credible intervals (BCIs) obtained via the Metropolis-Hastings algorithm. A Monte Carlo
simulation evaluates the methods, and two real datasets illustrate their application.

The novelty of this paper comes from the fact that no previous study has been found on
the reliability and parameter estimation for PRD in the Bayesian context.

The rest of the paper is structured as follows: Section 2 provides an overview of the
power Rayleigh distribution. Section 3 discusses the frequentist method for estimating un-
known parameters. Section 4 focuses on obtaining Bayes estimators for the unknown model
parameters, employing Lindley’s method, and reliability estimation through different loss
functions. Additionally, Section 4 incorporates MCMC methods. Section 5 presents a sim-
ulation study to assess the performance of the estimators in terms of biases and mean square
errors (MSE). Section 6 applies two real datasets for practical demonstration and applica-
tion purposes. Section 7 concludes the work with some suggestions for future research in
this field.
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2. Power Rayleigh Distribution

Let Y be a random variable that follows Rayleigh distribution with parameter ν whose
cumulative distribution function (CDF) and probability distribution function (PDF) are, re-
spectively, given by

F(y) = 1− exp
(
− y2

2ν2

)
;y > 0,ν > 0, (1)

and

f (y) =
y

ν2 exp
(
− y2

2ν2

)
;y > 0,ν > 0. (2)

Now, the transformation X = Y
1
τ will follow power Rayleigh distribution (PRD) with

parameter ν and τ be obtained as

F(x) = p(X ≤ x)

= p(xτ). (3)

Using equations (1), (2), and (3), the cumulative distribution function (CDF) and prob-
ability distribution function (PDF) of PRD are, respectively, given as

F(x) = 1− exp
(
− x2τ

2ν2

)
,x > 0,ν ,τ > 0, (4)

and

f (x) =
τ

ν2 x2τ−1exp
(
− x2τ

2ν2

)
,x > 0,ν ,τ > 0, (5)

where ν and τ are scale and shape parameters of PRD, respectively.

Remark: If τ = 1 then the equation (4) is reduced to the cumulative distribution function
of the Rayleigh distribution.

The survival and hazard rate function of PRD are, respectively, given by

R(t) = exp
(
− t2τ

2ν2

)
; t > 0, (6)

and
H(t) =

τ

ν2 t2τ−1; t > 0. (7)

The plots of the hazard rate function for some values of the parameter are depicted
in Figure 1.
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Figure 1: The Hazard rate function fo PRD.

3. Frequentist Approach

In this section, we will obtain PRD’s unknown model parameters and survival func-
tions using the maximum likelihood estimation (MLE) method. We will also establish the
approximate confidence intervals for the parameters and any functions of them.

3.1. Maximum likelihood estimation

Let x1,x2, ...,xn be a random sample drawn from the PRD with PDF (5). Therefore, the
likelihood function, L(ν ,τ|x), is the joint density of the random sample, x1,x2, ...,xn, and is
given by

L(τ,ν |x) =
n

∏
i=1

[
τ

ν2 x2τ−1
i exp

(
− x2τ

2ν2

)]
. (8)

On simplifying, we get

L(τ,ν |x) =
(

τ

ν2

)n n

∏
i=1

x2τ−1
i exp

(
−∑

n
i=1 x2τ

i
2ν2

)
. (9)

On taking the logarithm of equation (9), the log-likelihood function can be expressed as
follows:

l(τ,ν |x) = n log(τ)−2n log(ν)+(2τ −1)
n

∑
i=1

log(xi)−
∑

n
i=1 x2τ

i
2ν2 . (10)

Now, differentiating equation (10) with respect to τ and ν and equating the resulting
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terms to zero, the normalizing equations are given as

∂ l
∂τ

=
n
τ
+2

n

∑
i=1

log(xi)−
∑

n
i=1 x2τ

i log(xi)

ν2 = 0, (11)

and

∂ l
∂ν

=−2n
ν

+
∑

n
i=1 x2τ

i
ν3 = 0. (12)

Let τ̂ and ν̂ represent MLEs of τ and ν , respectively. Then τ̂ is obtained by solving
the nonlinear equation (11) using Newton-Rapson iterative procedures. Thereafter, ν̂ can
be obtained by substituting τ̂ into equation (12) and solving the resulting expression as
follows:

ν̂ =

(
∑

n
i=1 x2τ̂

i
2n

) 1
2

. (13)

Using invariance property of the MLE the R(t), say R̂(t), can be written as

R̂(t) = exp
(
− t2τ̂

2ν̂2

)
. (14)

3.2. Approximate confidence intervals

Since all the second-order partial derivatives exist in their domain. Therefore, the inter-
val estimates for the parameters τ and ν are derived using the Fisher information matrix as
follows:

I(τ,ν) =−E
[

Iττ Iτν

Iντ Iνν

]
, (15)

where Iττ =
∂ 2l
∂τ2 =− n

τ2 −
2∑

n
i=1 x2τ

i (log(xi))
2

ν2 ,

Iτν = Iντ =
∂ 2l

∂τ∂ν
= ∂ 2l

∂ν∂τ
= 2

ν3 ∑
n
i=1 x2τ

i log(xi), and Iνν = 2n
ν2 − 3

ν4 ∑
n
i=1 x2τ

i .

From (15), it is observed that the exact solution of expectation is tedious to evaluate.
Therefore, approximate variance and covariance matrix I−1(τ̂, ν̂) is given by

I−1(τ̂, ν̂) =

[
−Iττ −Iτν

−Iντ −Iνν

]−1

(τ̂,ν̂)

. (16)

According to Gomez-Deniz (2010), the MLE vector (τ̂, ν̂)T is consistent and asymptot-
ically normally distributed as follows:

√
n
[
(τ̂, ν̂)T − (τ,ν)T ]→ N(0, I−1(τ,ν)).
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The 100(1−ξ )% confidence intervals τ and ν can be approximated by τ̂ ±Z ξ

2

√
var(τ̂)

and ν̂ ±Z ξ

2

√
var(ν̂), respectively, where the diagonal elements of I−1(τ,ν) represent the

variance of parameters of τ and ν while the off-diagonal elements represent the covariance
between τ and ν , and Z ξ

2
is the (1− ξ

2 ) quantile of the standard normal distribution.

To derive the confidence intervals for R(t), we must know their variance, and for this
the delta method is adapted to obtain the variances of R(t). For more details about the
delta method, one may refer to W. H. Greene (2003). Utilising the delta technique, the
approximate variance of R̂(t) (at their MLEs τ̂ and ν̂) can be expressed as follows:

var(R̂(t)) =
[
∇R̂(t)

]T I−1(τ̂, ν̂)[∇R̂(t)], (17)

where T is stands for transpose operator and ∇R̂(t) is the gradient of reliability function,
respectively, with respect to τ and ν , i.e.,

[∇R(t)]T =

[
∂R(t)

∂τ
,

∂R(t)
∂ν

]
(τ̂,ν̂)

. (18)

From equation (6) the derivative of R(t) with respect to τ and ν is obtained as follows:

∂R(t)
∂τ

=− t2τ

ν2 log(t) exp
(
− t2τ

2ν2

)
,

∂R(t)
∂ν

=
t2τ

ν3 exp(− t2τ

2ν2 ).

Therefore, the 100(1−ξ )% confidence intervals for R(t) can be derived as follows:

R̂(t)±Z ξ

2

√
var(R̂(t)).

4. Bayesian inference

In this section, we will consider the Bayesian estimation method to estimate the param-
eters and any parametric function of PRD based on the complete sample.

4.1. Loss functions

In Bayesian estimation, the loss function quantifies the cost of estimation errors, guid-
ing decision-making to minimize expected loss by balancing precision and bias. Common
loss functions include SELF (symmetric), GELF, and LINEX (asymmetric). Let φ̃ be an
estimator of φ . The SELF, GELF, and LLF are defined as follows:

LSE(φ , φ̃) = (φ − φ̃)2, (19)

LGE(φ , φ̃) =

(
φ̃

φ

)q

−q log
(

φ̃

φ

)
−1,q ̸= 0, (20)

and
LLI(φ , φ̃) = e−q(φ−φ̃)− p(φ − φ̃)−1,q ̸= 0. (21)
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4.2. Prior distribution

In Bayesian analysis, the prior represents initial beliefs about parameters before data
integration. Selecting priors is critical but lacks a fixed rule. Here, a non-informative prior
is assumed for τ , and a conjugate prior for ν , defined as:

π1(τ) =
1
τ

; τ > 0,

and

π2(ν) =
1

νa+1 exp
(
− b

2ν2

)
; a,b > 0,

where a > 0 and b > 0 are hyperparameters. The joint prior distribution for τ and ν is given
as:

π(τ,ν) =
1

τνa+1 exp
(
− b

2ν2

)
; τ > 0,ν ,a,b > 0. (22)

4.3. Posterior analysis

The posterior density function of τ and ν is obtained by combining equation (9) and
(22), which is written as follows:

π(τ,ν |x) = K−1 τn−1

ν2n+a+1

n

∏
i=1

x2τ−1
i exp

(
−

b+∑
n
i=1 x2τ

i
2ν2

)
, (23)

where K =
∫

∞

0
∫

∞

0
τn−1

ν2n+a+1 ∏
n
i=1 x2τ−1exp

(
− b+∑

n
i=1 x2τ

i
2ν2

)
dτdν , is called the normalising con-

stant. Equation (23) cannot be converted analytically due to the complex form of the likeli-
hood function. In order to derive the Bayes estimates, the Lindley approximation technique
is used for further analysis.

4.4. Lindley’s method

Let u(τ,ν) be the function of τ and ν , then by using the equation (23), the expected
value of u(τ,ν) is given by:

E(u(τ,ν |x)) =
∫

τ

∫
ν

u(τ,ν)el(τ,ν |x)+η(τ,ν)dτdν∫
τ

∫
ν

el(τ,ν |x)+η(τ,ν)dτdν
.

The Bayes estimator u(τ,ν) is the solution of the above equation. Unfortunately, it is
very hard to obtain the Bayes estimator analytically due to its dependence on the ratio of
two integrals. To overcome this difficulty, the Lindley’s technique introduced by Lindley’s
1980, is used. Let the I be the approximate value of E(u(τ,ν |x)) then
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I(x) = û(τ,ν)+0.5(ûττ σ̂ττ + ûνν σ̂νν)+ ûτν σ̂τν + ûτ(σ̂ττ η̂τ + σ̂ντ η̂ν)+

ûν(σ̂τν η̂τ + σ̂νν η̂ν)+0.5l̂τττ(ûτ σ̂
2
ττ + ûν σ̂ττ σ̂τν)+0.5l̂ττν(

3ûτ σ̂ττ σ̂τν + ûν(σ̂ττ σ̂νν +2σ̂
2
τν)
)
+0.5l̂τνν

(
ûτ(σ̂ττ σ̂νν +2σ̂

2
τν)

+3ûν σ̂τν σ̂νν)+0.5l̂ννν(ûτ σ̂τν σ̂ττ + ûν σ̂
2
νν), (24)

where û(τ,ν) is the function of τ and ν evaluated at τ̂ and ν̂ and σi j is the (i, j)th element
of matrix [−l̂i j]

−1; i, j = 1,2.
The other notation is interpreted with the following definition, such that:

ûτ =
∂u
∂τ

, ûν = ∂u
∂ν

, ûντ = ûτν = ∂ 2u
∂ν∂τ

, η̂ν = ∂ logπ(τ,ν)
∂ν

, η̂τ =
∂ logπ(τ,ν)

∂τ
, l̂ν = ∂ l

∂ν
, l̂τ = ∂ l

∂τ

l̂ντ = l̂τν = ∂ 2l
∂ντ

, l̂νν = ∂ 2l
∂ν2 , l̂ττ =

∂ 2l
∂τ2 , l̂ννν = ∂ 3l

∂ν3 , l̂τττ =
∂ 3l
∂τ3 , l̂νντ =

∂ 3l
∂ν2∂τ

, and l̂νττ =
∂ 3l

∂ντ2 .

The Bayes estimates of τ , ν , and S(t) under the SELF, GELF, and LLF are obtained in
the following subsections.

4.4.1 Bayesian estimation under SELF

One of the very popular symmetric loss function is SELF, which was first addressed by
Legendre (1805), which endows equal weight for overestimation and underestimation.

The Bayes estimate (BE) of parameter τ under SELF is found as follows:

τ̂BS = E(τ|x) =

∫
∞

0
∫

∞

0 τn 1
ν2n+a+1 ∏

n
i x2τ−1

i exp
(

b+∑
n
i x2τ

i
2ν2

)
dτdν∫

∞

0
∫

∞

0 τn−1 1
ν2n+a+1 ∏

n
i x2τ−1

i exp
(

b+∑
n
i x2τ

i
2ν2

)
dτdν

. (25)

If u(τ,ν) = τ , then uτ = 1, uνν = uν = uττ = uντ = uτν = 0. Then the BE of τ is written
as follows:

τ̂BS =τ̂ +(η̂τ σ̂ττ + η̂ν σ̂ντ)+0.5
[
L̂τττ σ̂

2
ττ +3L̂ττν σ̂τν σ̂ττ + L̂τνν(σ̂νν σ̂ττ +2σ̂

2
τν)

+L̂ννν σ̂τν σ̂νν

]
. (26)

The Bayes estimate (BE) of parameter ν under SELF is found as follows:

ν̂BS = E(ν |x) =

∫
∞

0
∫

∞

0 τn−1 1
ν2n+a ∏

n
i x2τ−1

i exp
(

b+∑
n
i x2τ

i
2ν2

)
dτdν∫

∞

0
∫

∞

0 τn−1 1
ν2n+a+1 ∏

n
i x2τ−1

i exp
(

b+∑
n
i x2τ

i
2ν2

)
dτdν

.

If u(τ,ν) = ν then uν = 1, uνν = uτ = uττ = uντ = uτν = 0.
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Thus, the BE of ν under SELF is obtained as follows:

ν̂BS =ν̂ +(η̂ν σ̂νν + η̂τ σ̂τν)+0.5
[
L̂τττ σ̂ττ σ̂τν +3L̂τνν σ̂νν σ̂τν

+L̂ττν(σ̂νν σ̂ττ +2σ̂
2
τν)+ L̂ννν σ̂

2
νν

]
. (27)

If u(τ,ν) = exp
(
− t2τ

2ν2

)
then uν = t2τ

ν3 exp
(
− t2τ

2ν2

)
,

uνν =− 3t2τ

ν4 exp
(
− t2τ

2ν2

)
+
(

t2τ

ν3

)2
exp
(
− t2τ

2ν2

)
,

uτ =− t2τ log(t)
2ν2 exp

(
− t2τ

2ν2

)
, uττ =− 2t2τ (log(t))2

ν2 exp
(
− t2τ

2ν2

)
+
(

2t2τ log(t)
ν2

)2
exp
(
− t2τ

2ν2

)
,

and uντ = uτν = t2τ log(t)
ν3 exp

(
− t2τ

2ν2

)
− t4τ log(t)

ν5 exp
(
− t2τ

2ν2

)
.

Then BE of the survival function under SELF is given by:

R̂BS(t) = R̂+0.5(ûττ σ̂ττ + ûνν σ̂νν)+ ûτν σ̂τν + ûτ(σ̂ττ η̂τ + σ̂ντ η̂ν)+

ûν(σ̂τν η̂τ + σ̂νν η̂ν)+0.5L̂τττ(ûτ σ̂
2
ττ + ûν σ̂ττ σ̂τν)+0.5L̂ττν(

3ûτ σ̂ττ σ̂τν + ûν(σ̂ττ σ̂νν +2σ̂
2
τν)
)
+0.5L̂τνν

(
ûτ(σ̂ττ σ̂νν +2σ̂

2
τν)

+3ûν σ̂τν σ̂νν)+0.5L̂τττ(ûτ σ̂τν σ̂ττ + ûν σ̂
2
νν). (28)

4.4.2 Bayesian estimation under GELF

GELF is an asymmetric loss function and it was proposed by Calabria and Pulcini
(1994). BE of τ under this loss function is derived as follows:

τ̂BG = [E(τ−q|x)]−
1
q ; q ̸= 0. (29)

If u(τ,ν) = τ−q then uτ =−qτ−(q+1), uττ = q(q+1)τ−(q+2), uτ = uνν = uτν = uντ =

0.

Then using equation (24) we have

E(τ−q|x) = τ̂
−q +0.5ûττ σ̂ττ + ûτ(σ̂ττ η̂τ + σ̂ντ η̂ν)+0.5L̂τττ ûτ σ̂

2
ττ

+1.5L̂ττν ûτ σ̂ττ σ̂τν +0.5L̂τνν

(
ûτ(σ̂ττ σ̂νν +2σ̂

2
τν)
)
+0.5L̂ννν ûτ σ̂τν σ̂νν .

If u(τ,ν) = ν−q, uν =−qν−(q+1), uνν = q(q+1)ν−(q+2), uτ = uττ = uτν = uντ = 0.
Then the BE of ν under GELF is obtained as:

ν̂BG = [E(ν−q|x)]−
1
q ; q ̸= 0, (30)

where

E(ν−q|x) = ν̂
−q +0.5ûνν σ̂νν + ûν(σ̂νν η̂ν + σ̂τν η̂τ)+0.5L̂τττ ûν σ̂τν σ̂ττ

+1.5L̂τνν ûν σ̂νν σ̂τν +0.5L̂ττν

(
ûν(σ̂ττ σ̂νν +2σ̂

2
τν)
)
+0.5L̂ννν ûν σ̂

2
νν .
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If u(τ,ν) = exp
(

qt2τ

2ν2

)
, uν =− qt2τ

ν3 exp
(

qt2τ

2ν2

)
,

uνν = 3qt2τ

ν4 exp
(

qt2τ

2ν2

)
+
(

qt2τ

ν3

)2
exp
(

qt2τ

2ν2

)
,uτ =

qt2τ log(t)
2ν2 exp

(
qt2τ

ν2

)
,

uττ =
2qt2τ (log(t))2

ν2 exp
(

qt2τ

2ν2

)
+
(

qt2τ log(t)
ν2

)2
exp
(

qt2τ

2ν2

)
,

uντ = uτν =− 2qt2τ log(t)
ν3 exp

(
qt2τ

2ν2

)
− q2t4τ log(t)

ν5 exp
(

qt2τ

2ν2

)
.

Then, BE of R(t) under GELF is obtained as

R̂(t)BG = [E(R(t)−q|x)]−
1
q ; q ̸= 0, (31)

where

E(R(t)−q|x) = R̂(t)−q +0.5ûττ σ̂ττ + ûτ(σ̂ττ η̂τ + σ̂ντ η̂ν)+

0.5L̂τττ ûτ σ̂
2
ττ +1.5L̂ττν ûτ σ̂ττ σ̂τν +0.5L̂τνν

(
ûτ(σ̂ττ σ̂νν +2σ̂

2
τν)
)

+0.5L̂ννν ûτ σ̂τν σ̂νν .

4.4.3 Bayesian estimation under LLF

LLF is an asymmetric loss function that proposed by Klebanov (1972) and later used by
Varian (1975).

If u(τ,ν) = exp(−qτ), uτ = −q exp(−qτ), uττ = q2 exp(−qτ), uν = uνν = uτν =

uντ = 0. Then, BE of τ under LLF is obtained as:

τ̂BL =−1
q

ln E(exp(−qτ)|x)); q ̸= 0, (32)

where

E(exp(−qτ)|x) = exp(−qτ̂)+0.5ûττ σ̂ττ + ûτ(σ̂ττ η̂τ + σ̂ντ η̂ν)+0.5L̂τττ ûτ σ̂
2
ττ

+1.5L̂ττν ûτ σ̂ττ σ̂τν +0.5L̂τνν

(
ûτ(σ̂ττ σ̂νν +2σ̂

2
τν)
)

+0.5L̂ννν ûτ σ̂τν σ̂ττ .

If u(τ,ν) = exp(−qν), uν = −q exp(−qν), uνν = q2 exp(−qν), uτ = uττ = uτν =

uντ = 0. Then

ν̂BL =−1
q

ln E(exp(−qν)|x); q ̸= 0, (33)

where

E(exp(−qν)|x) = exp(−qν̂)+0.5ûνν σ̂νν + ûν(σ̂νν η̂ν + σ̂τν η̂τ)+0.5L̂τττ ûν σ̂τν σ̂ττ

+1.5L̂τνν ûν σ̂ττ σ̂τν +0.5L̂ττν

(
ûν(σ̂ττ σ̂νν +2σ̂

2
τν)
)
+0.5L̂ννν ûν σ̂

2
νν .
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If u(τ,ν) = exp
(
−q exp

(
− t2τ

2ν2

))
, uν =− qt2τ

ν3 exp

[
−

{(
q exp

(
− t2τ

2ν2

))
+ t2τ

2ν2

}]
,

uνν =
qt2τ

ν3 exp

[
−

{(
q exp

(
− t2τ

2ν2

))
+

t2τ

2ν2

}]
{

3
ν
+q
(

exp
(
− t2τ

2ν2

)
+

t2τ

2ν2

)(
qexp(− t2τ

2ν2 )
t2τ

ν3 − t2τ

ν3

)}
, (34)

uτ =
qt2τ log(t)

2ν2 exp

[
−

{(
q exp

(
− t2τ

2ν2

))
+ t2τ

2ν2

}]
,

uττ =
qt2τ (log(t))2

ν2 exp

[
−

{(
q exp

(
− t2τ

2ν2

))
+ t2τ

2ν2

}]{
2+ qt2τ

ν2

(
exp(

(
− t2τ

ν2

)
−1
)}

,

and

uντ = uτν =− exp

[
−

{(
q exp

(
− t2τ

2ν2

))
+

t2τ

2ν2

}]
{

2qt2τ log(t)
ν3 − qt2τ log(t)

ν2

(
qt2τ

ν3 exp
(
− t2τ

2ν2

)
− t2τ

ν3

)}
. (35)

BE of R(t) under LLF is given by

R̂(t)BL =−1
q

ln (E(exp(−q R(t))|x)) ; q ̸= 0, (36)

where

E(exp(−qR(t))|x) = R̂(t)−q +0.5ûττ σ̂ττ + ûτ(σ̂ττ η̂τ + σ̂ντ η̂ν)+0.5L̂τττ ûτ σ̂
2
ττ

+1.5L̂ττν ûτ σ̂ττ σ̂τν +0.5L̂τνν

(
ûτ(σ̂ττ σ̂νν +2σ̂

2
τν)
)

+0.5L̂ννν ûτ σ̂τν σ̂νν .

Using Lindley’s approximation, the Bayes estimates of the parameters τ , ν , and R(t)
are derived, but the highest posterior density (HPD) credible interval is not possible to be
constructed. Therefore, the Metropolis-Hasting (M-H) algorithm is introduced to compute
the Bayes estimates as well as HPD credible intervals.

4.4.4 Metropolis-Hastings (M-H) Algorithm

The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) technique
used for sampling from complex probability distributions. It operates by iteratively propos-
ing candidate states, evaluating their acceptance probability based on a defined proposal
distribution and target distribution, and accepting or rejecting them accordingly. The al-
gorithm addresses challenges in sampling from distributions that are difficult to directly
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sample from by introducing a transition probability function. For more about the M-H al-
gorithm one may refers to Metropolis et al. (1953) and Hastings (1970). Using the M-H
algorithm, the conditional posterior density function of parameters τ and ν are given by

π1(τ|ν ,x) ∝ τ
n−1

n

∏
i=1

x2τ−1
i exp

(
−∑

n
i=1 x2τ

i
2ν2

)
, (37)

and

π2(ν |τ,x) ∝
1

ν2n+a+1 exp
(
−

b+∑
n
i=1 x2τ

i
2ν2

)
. (38)

respectively. Since the conditional posterior distributions of the parameters τ and ν in the
equations (35) and (36) are unknown. Therefore, we can use M-H algorithm with normal
proposal distribution to generate the posterior sample from (35) and (36) respectively. The
M-H algorithm consists of the following steps:

Step 1: Set j = 1 and start with initial values τ(0) = τ̂ and ν(0) = ν̂ .
Step 2: Use the M-H algorithm steps to generate posterior samples for τ( j) and ν( j) from the
conditional distributions π1(τ

( j−1)|ν( j−1),x) and π2(ν
( j−1)|τ( j−1),x) using normal proposal

distributions N(τ( j−1),var(τ)) and N(ν( j−1),var(ν)) respectively.
Step 3: Set j = j+1.
Step 4: Replicate steps 2-3 N times to extract samples φ ( j) = (τ( j),ν( j),R( j)(t)) for j =
1,2, ...,N.
Step 5: The Bayes estimates of the parameters τ , ν , and R(t) under SELF, GELF, and LLF
can be obtained from the following expressions:

φ̂BS =
1

N −M

N

∑
j=M+1

φ
( j), (39)

φ̂BG =

(
1

N −M

N

∑
j=M+1

(φ ( j))−q

)− 1
q

, (40)

φ̂BL =−1
q

ln

(
1

N −M

N

∑
j=M+1

exp(−qφ
( j))

)
, (41)

where M is the burn in period of the Markov chain.

Step 6: To construct the HPD credible interval of φ = (τ,ν ,R(t)) order the MCMC sample
of φ , where φ ( j) = (τ( j),ν( j),R( j)(t)), j = 1,2, ...,N, for sufficiently large N, then for arbi-
trary, 0< ξ < 1 the 100(1−ξ )% credible interval φ can be obtained as (φ [k],φ [k+N−(ξ N+1)),
where k = 1,2, ..., [Nξ ]. Therefore, the 100(1− ξ )% credible interval can be constructed
based on the condition given below:

(φ [k∗+N−(ξ N+1)− τ̂
[k∗]]) = minNξ

k=1 (φ
[k+N−(ξ N+1)−φ

[k]]). (42)

where [z] denotes the greatest integer less or equal to z.
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5. Simulation Study

We conduct an extensive Monte Carlo simulation study to assess the relative precision
of the proposed estimates. We generate 104 samples from PRD with parameters τ and
ν for each combination of different parameter values and sample size. Here, we choose
the parameters as τ = 0.5,1,2, β = 1,1.5,1.5 and the corresponding values of R(t) at t =
0.5,1.50,1.25 are 0.7788, 0.6065, and 0.5813, and sample sizes as n = 20,40,60,80,100.
The MLEs and Bayes estimates using Lindley and MCMC techniques are applied to sim-
ulate the data. In the Bayes estimates, we consider the non-informative prior for scale
parameter τ and informative gamma prior for shape parameter τ . In addition, the values of
hyper-parameters a = 2,3 and b = 2,2 are chosen such that the prior mean is equal to the
true value of the parameter. Moreover, the Bayes estimates are obtained using SELF, GELF,
and LINEX loss functions. For GELF and LLF, the constant q is taken to be -0.5 and 0.5,
respectively. The evaluation of the estimates has been conducted with consideration given
to the following standpoint:

• Average absolute bias (AAB): Let ψ and ψ̂ denote the actual and predicted value of
the parameters, and N represent the total number of replications. Then the average
absolute value is defined as follows:

AAB =
1
N

N

∑
i=1

|ψi − ψ̂i|.

A smaller AAB value suggests the experimental data exhibits higher accuracy with
the predictive model.

• Mean squared error (MSE): The MSE is defined as follows:

MSE =
1
N

N

∑
i=1

(ψi − ψ̂)2.

The smaller value signifies superior performance of the estimates.

• Average length (AL): AL of the interval estimates at a significance level of ξ has
been assessed. A shorter length indicates superior performance in the estimation of
intervals.

• Coverage probability (CP): The probability of containing the actual parameter val-
ues within the estimated interval ranges.

The average absolute bias (AAB) and mean square error (MSE) of τ , ν and R(t) are
presented in Tables 1, 3, and 5, respectively. Moreover, the associated 95% approximate
confidence and HPD credible intervals are also obtained and listed in Tables 2, 4, and 6,
respectively. The following interpretations can be obtained from these Tables:
(i) Tables 1, 3, and 5 show that as the sample size n increases, the average absolute bias
(AAB) and mean square error (MSE) of all estimates decrease as expected. This suggests
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that all the estimators are asymptotically efficient.
(ii) The performance of the Bayes estimates is better than the classical approach in terms of
AAB and MSE.
(iii) In Bayesian estimation, the MCMC approach provides superior outcomes to the Lind-
ley approximation techniques regarding AAB and MSE. Comparing all the estimators, the
following mathematical relation can be obtained:

AABMLE > AABLindley > AABMCMC,

and

MSEMLE > MSELindley > MSEMCMC.

(iv) Concerning the loss functions, GELF (q = 0.5) under the MCMC approach is a better
choice for the parameters τ and ν and LLF (q = −0.5) is better for the reliability function
in terms of AAB and MSE.
(v) In Tables 2, 4, and 6, the highest posterior density (HPD) credible interval is shorter
than the approximate confidence intervals (ACIs) in terms of the average length of confi-
dence/credible intervals.
(vi) The coverage probability (CP) of HPD credible interval is higher than the approximate
confidence intervals.

Table 1: Simulation results for classical and Bayes estimator of parameters τ = 0.5, ν = 1 and
R(0.5) = 0.7788 with biases (first row) and MSEs (second row)

Lindley MCMC
n MLE SELF GELF LLF SELF GELF LLF

q = -0.5 q = 0.5 q =-0.5 q = 0.5 q = -0.5 q =0.5 q = -0.5 q = 0.5

τ 0.0769 0.0740 0.0730 0.0722 0.0750 0.0792 0.0737 0.0728 0.0713 0.0745 0.0729
0.0114 0.0110 0.0102 0.0106 0.0108 0.0109 0.0103 0.0100 0.0095 0.0105 0.0100

ν

20

0.1371 0.1281 0.1288 0.1258 0.1312 0.1295 0.1266 0.1244 0.1207 0.1302 0.1234
0.0355 0.0326 0.0312 0.0288 0.0330 0.0300 0.0317 0.0303 0.0277 0.0344 0.0295

R(t) 0.0610 0.0542 0.0550 0.0560 0.0541 0.0552 0.0538 0.0542 0.0553 0.0536 0.0541
0.0058 0.0046 0.0048 0.0049 0.0046 0.0048 0.0046 0.0046 0.0048 0.0045 0.0046

τ 0.0551 0.0544 0.0538 0.0534 0.0540 0.0539 0.0534 0.0529 0.0522 0.0537 0.0530
0.0052 0.0047 0.0048 0.0047 0.0050 0.0049 0.0049 0.0048 0.0046 0.0049 0.0048

ν

40

0.0870 0.0851 0.0846 0.0822 0.0859 0.0849 0.0844 0.0835 0.0819 0.0856 0.0832
0.0127 0.0120 0.0118 0.0118 0.0127 0.0120 0.0120 0.0117 0.0112 0.0123 0.0116

R(t) 0.0434 0.0417 0.0416 0.0410 0.0414 0.0412 0.0403 0.0404 0.0407 0.0402 0.0403
0.0029 0.0027 0.0027 0.0028 0.0027 0.0027 0.0026 0.0026 0.0026 0.0025 0.0026

τ 0.0422 0.0419 0.0418 0.0410 0.0417 0.0416 0.0413 0.0411 0.0408 0.0415 0.0411
0.0030 0.0029 0.0029 0.0028 0.0029 0.0029 0.0029 0.0028 0.0028 0.0029 0.0029

ν

60

0.0721 0.0711 0.0710 0.0712 0.0718 0.0704 0.0710 0.0705 0.0696 0.0717 0.0704
0.0088 0.0086 0.0085 0.0084 0.0088 0.0085 0.0086 0.0084 0.0082 0.0088 0.0084

R(t) 0.0350 0.0339 0.0338 0.0336 0.0339 0.0337 0.0335 0.0335 0.0338 0.0334 0.0335
0.0019 0.0019 0.0019 0.0019 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0018

τ 0.0360 0.0358 0.0356 0.0359 0.0360 0.0357 0.0355 0.0354 0.0352 0.0356 0.0354
0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0020 0.0020 0.0021 0.0021

ν

80

0.0057 0.0057 0.0055 0.0055 0.0057 0.0055 0.0056 0.0055 0.0054 0.0056 0.0055
0.0298 0.0288 0.0285 0.0290 0.0289 0.0290 0.0287 0.0287 0.0289 0.0286 0.0287

R(t) 0.0298 0.0290 0.0290 0.0289 0.0289 0.0288 0.0287 0.0287 0.0289 0.0286 0.0287
0.0014 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

τ 0.0331 0.0329 0.0326 0.0326 0.0329 0.0328 0.0326 0.0326 0.0324 0.0327 0.0326
0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0017 0.0018 0.0018

ν

100

0.0554 0.0551 0.0550 0.0544 0.0549 0.0549 0.0543 0.0541 0.0536 0.0546 0.0540
0.0050 0.0050 0.0048 0.0048 0.0049 0.0048 0.0048 0.0048 0.0047 0.0049 0.0048

R(t) 0.0277 0.0271 0.0266 0.0269 0.0268 0.0268 0.0266 0.0266 0.0267 0.0266 0.0266
0.0012 0.0012 0.0012 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
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Table 2: The 95% confidence interval and HPD credible interval for parameters τ = 0.5, ν = 1 and
R(0.5) = 0.7788

Parameters n ACI CPs HPD CPs
τ 0.3679 0.9410 0.3350 0.9450
ν

20
0.6281 0.9390 0.5652 0.9460

R(0.5) 0.2849 0.9010 0.2460 0.9220
τ 0.2527 0.9430 0.2368 0.9550
ν

40
0.4243 0.9370 0.3957 0.9450

R(0.5) 0.2051 0.9280 0.1864 0.9340
τ 0.2030 0.9510 0.1916 0.9410
ν

60
0.3466 0.9510 0.3277 0.9350

R(0.5) 0.1677 0.9220 0.1557 0.9250
τ 0.1742 0.9470 0.1652 0.9560
ν

60
0.2950 0.9540 0.2790 0.9670

R(0.5) 0.1464 0.9500 0.1365 0.9520
τ 0.1560 0.9370 0.1479 0.9380
ν

100
0.2638 0.9440 0.2497 0.9580

R(0.5) 0.1309 0.9430 0.1226 0.9530

Table 3: Simulation results for classical and Bayes estimator of parameters τ = 1, ν = 1.5 and
R(1.5) = 0.6065 with biases (first row) and MSEs (second row)

Lindley MCMC
n MLE SELF GELF LLF SELF GELF LLF

q = -0.5 q = 0.5 q = -0.5 q = 0.5 q = -0.5 q = 0.5 q = -0.5 q = 0.5

τ 0.1616 0.1430 0.1428 0.1442 0.1456 0.1425 0.1362 0.1362 0.1370 0.1376 0.1352
0.0477 0.0322 0.0312 0.0311 0.0319 0.0305 0.0303 0.0300 0.0297 0.0312 0.0295

ν

20

0.2942 0.2433 0.2372 0.2352 0.2525 0.2388 0.2329 0.2291 0.2240 0.2462 0.2232
0.1850 0.1083 0.1032 0.0874 0.1163 0.0879 0.0989 0.0936 0.0852 0.1177 0.0864

R(1.5) 0.0748 0.0686 0.0690 0.0722 0.0674 0.0681 0.0671 0.0684 0.0713 0.0666 0.0676
0.0087 0.0073 0.0074 0.0082 0.0073 0.0074 0.0073 0.0075 0.0081 0.0072 0.0074

τ 0.1054 0.0982 0.0982 0.0986 0.0990 0.0971 0.0968 0.0968 0.0970 0.0973 0.0964
0.0185 0.0156 0.0154 0.0157 0.0152 0.0151 0.0145 0.0145 0.0144 0.0148 0.0144

ν

40

0.1879 0.1754 0.1747 0.1745 0.1785 0.1737 0.1673 0.1659 0.1638 0.1715 0.1639
0.0618 0.0485 0.0472 0.0451 0.0502 0.0448 0.0463 0.0452 0.0434 0.0494 0.0439

R(1.5) 0.0528 0.0504 0.0512 0.0519 0.0507 0.0506 0.0498 0.0503 0.0513 0.0496 0.0500
0.0044 0.0041 0.0041 0.0043 0.0040 0.0042 0.0040 0.0041 0.0043 0.0040 0.0040

τ 0.0850 0.0811 0.0811 0.0813 0.0818 0.0812 0.0808 0.0808 0.0808 0.0811 0.0805
0.0123 0.0111 0.0114 0.0116 0.0112 0.0113 0.0106 0.0105 0.0104 0.0107 0.0104

ν

60

0.1478 0.1409 0.1407 0.1405 0.1484 0.1481 0.1388 0.1380 0.1366 0.1413 0.1368
0.0384 0.0348 0.0332 0.0322 0.0350 0.0332 0.0326 0.0319 0.0308 0.0342 0.0312

R(1.5) 0.0416 0.0412 0.0414 0.0420 0.0419 0.0420 0.0407 0.0410 0.0416 0.0406 0.0408
0.0027 0.0026 0.0027 0.0027 0.0026 0.0026 0.0026 0.0026 0.0027 0.0026 0.0026

τ 0.0722 0.0698 0.0694 0.0694 0.0698 0.0698 0.0688 0.0687 0.0688 0.0690 0.0686
0.0083 0.0076 0.0076 0.0076 0.0076 0.0076 0.0075 0.0074 0.0074 0.0075 0.0074

ν

80

0.1244 0.1252 0.1236 0.1197 0.1188 0.1199 0.1187 0.1182 0.1174 0.1202 0.1175
0.0259 0.0238 0.0235 0.0229 0.0240 0.0232 0.0228 0.0225 0.0220 0.0236 0.0222

R(1.5) 0.0357 0.0354 0.0354 0.0356 0.0351 0.0352 0.0350 0.0352 0.0356 0.0349 0.0351
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019 0.0020 0.0020 0.0019 0.0019

τ 0.0622 0.0615 0.0614 0.0616 0.0619 0.0620 0.0608 0.0608 0.0609 0.0609 0.0607
0.0063 0.0059 0.0059 0.0059 0.0060 0.0059 0.0059 0.0059 0.0059 0.0059 0.0058

ν

100

0.1111 0.1096 0.1089 0.1090 0.1098 0.1097 0.1081 0.1079 0.1077 0.1089 0.1075
0.0208 0.0191 0.0194 0.0193 0.0194 0.0193 0.0190 0.0188 0.0185 0.0195 0.0186

R(1.5) 0.0325 0.0325 0.0324 0.0325 0.0323 0.0324 0.0324 0.0325 0.0329 0.0323 0.0325
0.0017 0.0016 0.0016 0.0017 0.0017 0.0016 0.0016 0.0016 0.0017 0.0016 0.0016
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Table 4: The average lengths of 95% confidence intervals and coverage probability for parameters
τ = 1, ν = 1.5 and R(1.5) = 0.6065

Parameters n ACI CPs HPD CPs
τ 0.7401 0.9400 0.6385 0.9460
ν

20
1.403 0.949 1.109 0.9150

R(0.5) 0.3441 0.9150 0.3094 0.9270
τ 0.5027 0.9560 0.4550 0.9580
ν

40
0.9016 0.9390 0.7859 0.9470

R(0.5) 0.2464 0.9260 0.2277 0.9330
τ 0.4067 0.9380 0.3759 0.9130
ν

60
0.7220 0.9560 0.6534 0.9220

R(0.5) 0.2020 0.9480 0.1897 0.9420
τ 0.3483 0.9590 0.3238 0.9460
ν

60
0.6164 0.9530 0.5636 0.9540

R(0.5) 0.1752 0.9420 0.1647 0.9310
τ 0.3107 0.9520 0.2909 0.9570
ν

100
0.5452 0.9560 0.5026 0.9580

R(0.5) 0.1570 0.9460 0.1482 0.9530

Table 5: Simulation results for classical and Bayes estimator of parameters τ = 2, ν = 1.5 and
R(1.25) = 0.5813 with biases (first row) and MSEs (second row)

Lindley MCMC
n MLE SELF GELF LLF SELF GELF LLF

q = -0.5 q = 0.5 q = -0.5 q = 0.5 q = -0.5 q = 0.5 q = -0.5 q = 0.5

τ 0.3327 0.2815 0.2822 0.2826 0.2889 0.2807 0.2679 0.2672 0.2674 0.2756 0.2628
0.2065 0.1430 0.1419 0.1329 0.1494 0.1436 0.1239 0.1217 0.1187 0.1348 0.1158

ν

20

0.2989 0.2417 0.2403 0.2377 0.2499 0.2381 0.2275 0.2224 0.2143 0.2442 0.2153
0.1896 0.1093 0.1023 0.0911 0.1384 0.0923 0.0992 0.0922 0.0813 0.1288 0.0824

R(1.25) 0.0748 0.0667 0.0671 0.0670 0.0665 0.0672 0.0648 0.0658 0.0688 0.0645 0.0651
0.0087 0.0070 0.0073 0.0080 0.0070 0.0071 0.0068 0.0071 0.0080 0.0068 0.0069

τ 0.2126 0.2078 0.2060 0.2066 0.2080 0.2023 0.1935 0.1933 0.1934 0.1959 0.1918
0.0752 0.0611 0.0606 0.0606 0.0622 0.0599 0.0590 0.0586 0.0581 0.0612 0.0574

ν

40

0.1917 0.1888 0.1756 0.1758 0.1871 0.1781 0.1709 0.1695 0.1674 0.1754 0.1674
0.0665 0.0514 0.0495 0.0480 0.0542 0.0480 0.0494 0.0479 0.0456 0.0533 0.0462

R(1.25) 0.0537 0.0521 0.0525 0.0536 0.0517 0.0521 0.0510 0.0515 0.0526 0.0509 0.0512
0.0045 0.0041 0.0043 0.0043 0.0042 0.0042 0.0040 0.0041 0.0043 0.0040 0.0041

τ 0.1648 0.1671 0.1671 0.1689 0.1683 0.1695 0.1690 0.1575 0.1581 0.1582 0.1570
0.0443 0.0411 0.0409 0.0411 0.0406 0.0396 0.0390 0.0390 0.0390 0.0396 0.0386

ν

60

0.1444 0.1390 0.1389 0.1393 0.1399 0.1381 0.1366 0.1361 0.1358 0.1382 0.1353
0.0358 0.0324 0.0321 0.0302 0.0324 0.0304 0.0314 0.0301 0.0294 0.0316 0.0296

R(1.25) 0.0427 0.0424 0.0426 0.0422 0.0420 0.0423 0.0421 0.0405 0.0412 0.0409 0.0412
0.0029 0.0028 0.0028 0.0029 0.0028 0.0028 0.0027 0.0028 0.0028 0.0027 0.0027

τ 0.1509 0.1430 0.1427 0.1425 0.1442 0.1420 0.1334 0.1326 0.1324 0.1348 0.1321
0.0366 0.0330 0.0328 0.0326 0.0336 0.0325 0.0319 0.0317 0.0316 0.0316 0.0314

ν

80

0.1309 0.1236 0.1228 0.1213 0.1257 0.1219 0.1040 0.1130 0.1152 0.1159 0.1128
0.0281 0.0249 0.0245 0.0238 0.0258 0.0241 0.0229 0.0238 0.0228 0.0238 0.0220

R(1.25) 0.0372 0.0360 0.0361 0.0363 0.0359 0.0360 0.0350 0.0350 0.0351 0.0340 0.0349
0.0021 0.0020 0.0020 0.0021 0.0020 0.0020 0.0019 0.0019 0.0019 0.0019 0.0019

τ 0.1302 0.1259 0.1259 0.1260 0.1265 0.1255 0.1157 0.1144 0.1170 0.1163 0.1098
0.0269 0.0248 0.0247 0.0247 0.0251 0.0245 0.0235 0.0237 0.0238 0.0243 0.0235

ν

100

0.1117 0.1074 0.1069 0.1060 0.1087 0.1063 0.0974 0.0968 0.0961 0.0984 0.0961
0.0204 0.0185 0.0183 0.0179 0.0190 0.0180 0.0174 0.0173 0.0180 0.0179 0.0171

R(1.25) 0.0319 0.0312 0.0313 0.0315 0.0312 0.0312 0.0305 0.0304 0.0304 0.0299 0.0305
0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015 0.0015 0.0016
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Table 6: The average lengths of 95% confidence intervals and coverage probability for the
parameters τ = 2, ν = 1.5 and R(1.25) = 0.5813

Parameters n ACI CPs HPD CPs
τ 1.498 0.939 1.337 0.948
ν

20
1.431 0.956 1.165 0.9560

R(1.25) 0.3471 0.9210 0.3195 0.9410
τ 1.0089 0.9540 0.9824 0.9590
ν

40
0.9134 0.9470 0.8443 0.9450

R(1.25) 0.2483 0.9290 0.2414 0.9440
τ 0.8065 0.9540 0.7753 0.9580
ν

60
0.7117 0.9460 0.6901 0.9400

R(1.25) 0.2038 0.9430 0.2035 0.9450
τ 0.6999 0.9480 0.6439 0.9480
ν

80
0.6212 0.9510 0.5988 0.9550

R(1.25) 0.1766 0.9420 0.1835 0.9460
τ 0.6219 0.9470 0.5914 0.9540
ν

100
0.5483 0.9540 0.5846 0.9530

R(1.25) 0.1582 0.9490 0.1494 0.9550

6. Application

In this section, we employ two real datasets to demonstrate the process of calculating
estimators for the unknown model parameters.

Dataset I

The dataset considered by Bing Long (2023) represents the failure time of the mechan-
ical components. To check whether dataset I better fits the considered model or not, we
utilized different goodness of fit criteria, namely the Akaike information criterion (AIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), cor-
rected Akaike information criterion (AICC). In addition, K-S distance and p-value are ob-
tained and listed in Table 7. Afterwards, MLEs of the parameters τ and ν are completed
and presented in Table 7. For comparison purposes, we have considered different lifetime
models such as the Rayleigh distribution (RD), Exponentiated Rayleigh distribution (ERD),
Weibull Rayleigh distribution (WRD), and Transmuted Rayleigh distribution (TRD), and
fitted them to the empirical dataset depicted in Figure 2. It has been observed that the PRD
is a good fit for dataset I in comparison with other lifetime models. The estimated values of
τ , ν and R(t) under frequentist and Bayesian approaches for the real dataset I are listed in
Table 8. The interval estimates are also derived and presented in Table 9.
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Table 7: Goodness of fit measures and MLEs for the dataset I

Model τ̂ ν̂ -2 log(l) AIC BIC HQIC AICC K-S p-value
PRD 1.2089 1.1055 48.55 52.55 55.35 53.45 52.99 0.07901 0.985
RD - 0.9897 50.23 52.23 53.63 52.67 52.37 0.09540 0.924

ERD 1.4863 0.6511 48.02 52.02 54.82 52.91 52.46 0.07908 0.984
WRD 0.8641 0.6840 48.09 52.09 54.89 52.99 52.54 0.38940 0.00013
TRD 0.85215 -0.68747 48.85 52.85 55.65 53.74 53.29 0.08019 0.982

Figure 2: The estimated density and fitted plot of PRD and different lifetime models for
dataset I.

Table 8: Estimated values of τ , ν and R(0.5) based on the real dataset I

Lindley MCMC

MLE SELF GELF LLF SELF GELF LLF

q = -0.5 q = 0.5 q =-0.5 q = 0.5 q = -0.5 q =0.5 q = -0.5 q = 0.5

τ 1.2089 1.0817 1.0437 1.1832 1.0807 1.0709 1.2052 1.1988 1.1861 1.2131 1.1975

ν 1.1055 1.2123 1.2083 1.2176 1.1125 1.1074 1.1321 1.1269 1.1169 1.1384 1.12616

R(0.5) 0.9263 0.9110 0.9106 0.9102 0.9126 0.9106 0.9211 0.9207 0.9201 0.9214 0.9208

Table 9: The 95% ACI and HPD credible intervals of the parameters τ , ν and R(t) based on the
real dataset I

Parameters ACI HPD

τ (0.8785,1.5394) (0.8824,1.5346)

ν (0.8220,1.3889) (0.8718,1.3112)

R(0.5) (0.8624,0.9901) (0.8603,0.9787)
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Dataset II

Dataset II represents the breaking stress of carbon fibers of 50 mm length (GPa) that has
been analyzed by Al-Aqtash et al. (2014). Later on, Bhat and Ahmad (2020) considered the
same dataset and demonstrated that PRD best fit to dataset II based on the different good-
ness of fit tests and various graphs. The MLEs and BEs of the parameters τ , ν , and R(t)
at t = 2 are presented in Table 10. For BEs, 5000 MCMC samples are generated, and the
first 500 samples are discarded to avoid the initial guess. Note that non-informative prior
information is considered because no prior information is available in this experiment. It
has been observed that the MLEs and BEs estimates are pretty close to each other. The 95%
ACI/HPD credible intervals are constructed and listed in Table 11. It can be seen that HPD
credible intervals are more faithful than ACI.

Table 10: Estimated values of τ , ν and R(2) based on the real dataset II

Lindley MCMC

MLE SELF GELF LLF SELF GELF LLF

q = -0.5 q = 0.5 q =-0.5 q = 0.5 q = -0.5 q =0.5 q = -0.5 q = 0.5

τ 1.721 1.694 1.684 1.751 1.726 1.725 1.749 1.743 1.733 1.757 1.740

ν 4.850 5.043 4.956 5.369 4.864 4.802 5.258 5.179 5.027 5.736 4.887

R(2) 0.7939 0.7976 0.7939 0.7967 7698 0.7667 0.8010 0.8004 0.7993 0.8015 0.8006

Table 11: The 95% ACI and HPD credible intervals for the parameters τ , ν and R(2) based
on the dataset II

Parameters ACI HPD

τ (1.3965, 2.0445) (1.5514, 1.8801)

ν (2.8181, 6.8833) (3.6821, 5.9394)

R(2) (0.6813, 0.8872) (0.7115, 0.8611)

7. Conclusions

This paper explores frequentist and Bayesian inference for the parameters and reliability
estimation of the power Rayleigh distribution using a complete sample. The maximum like-
lihood estimates and approximate confidence intervals of the parameters have been com-
puted using iterative procedures via the “nleqslv" package. Further, two approximation
techniques have been considered: the Lindley and M-H algorithm for Bayesian compu-
tation under various loss functions. The performance of all estimators has been assessed
through a Monte Carlo simulation study. The simulation experiment demonstrates that the
Bayes approach dominates the frequentist approach based on absolute bias and mean square
error. When comparing the Lindley and MCMC methods, the MCMC approach is more ef-
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ficient than the Lindley technique. Moreover, the performance of the GELF and LINEX loss
functions is better for the parameters and survival function in all cases, respectively. Finally,
the Bayesian MCMC approach is recommended. In future studies, the scope of this study
could be extended to hierarchical and empirical Bayesian estimation methods, especially
for censored data and record values.
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The impact of the COVID-19 pandemic
on forecast uncertainty of macroeconomic data releases

Krzysztof Brania1, Henryk Gurgul2

Abstract

Macroeconomic data releases are very important benchmarks of the economy. Therefore,
the vast majority of financial market analysts and traders closely monitor both the projected
estimates and, the intuitively more impactful actual values. In this research, we focus on the
uncertainty associated with macroeconomic data forecasts measured by the surprise indicator
(SI). Moreover, we examine whether the distribution of SI depends on the economy, category
of indicator or time, considering pre-pandemic, pandemic and post-pandemic periods in the
context of the COVID-19 crisis. We also propose the construction of a sentiment indicator
that is intended to aggregate all information that is jointly released through macroeconomic
indicators.

Key words: macroeconomic, data, release, uncertainty, surprise, sentiment, indicator, fore-
cast, actual

1. Introduction

In contemporary economics the performance of stock exchanges or exchange rates has 
an essential impact on the real economy, while data on the real economy impacts stock 
exchanges and exchange rates. The ultimate direction of interaction depends on the size of 
the economy that is the source of the data. Therefore, we can expect that the most influential 
macroeconomic data comes from the US. It is clear that due to globalization not only the
US stock exchanges, but also other stock exchanges can be impacted by both domestic and 
the US macroeconomic data. Macroeconomic news announcements are the most important 
risk factors for financial markets. This is the case because the state of the economy reflected 
in these announcements is one of the main sources of risk. Moreover, this source of risk 
cannot be accounted for as a diversifiable risk.

Our extended study comprises macroeconomic data of selected economies and takes 
into account a number of announced macroeconomic indicators and their relations to the 
median of the forecasted values of these indicators and risk given by the standard deviation 
of forecasts. The study uses intraday data. It is clear that if the median of forecasts is not in
line with the actual value of an announced macroeconomic indicator (i.e. its expected value
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significantly differs from the actual value) the reaction of various markets to this announce-
ment may be stronger.

This paper is organized as follows:

– In Section 2 we present an overview of the selected literature concerning the im-
pact of macroeconomic announcements on the financial markets. Most of the results
overviewed in this section are based on event study methodology. The second pos-
sible approach refers to the simple notion, which is not widespread in the financial
literature, namely the macroeconomic surprise indicator. We reviewed two recent
studies which used the definition of this indicator.

– Section 3 explains the underlying macroeconomic data examined in this research.

– Section 4 contains the results of the empirical studies.

– In Section 5 we propose an aggregate index that could be used as a proxy of domestic
market sentiment.

– Section 6 contains the final remarks, conclusions and potential fields for further re-
search.

The macroeconomic data used in the study are from the United States of America, the
United Kingdom, China, the Eurozone, Germany, Japan and Poland.

The next section provides a short (selected) literature overview of the importance of
macroeconomic news announcements.

2. Literature overview

Macroeconomic data announcements have a great impact on the treasury bond market,
stock markets, exchange rates, interest rates and other economic variables.

News on macroeconomic data from different countries plays a particularly important
role for stock markets. In this short overview we will concentrate on the literature concern-
ing this issue, especially the importance of the US macroeconomic data announcements.
The empirical results presented in the contributions listed below were mostly calculated
by means of event study methods. There is a much lower number of contributions which
referred to the surprise variable. If the data released correspond precisely to the expected
value, this variable defined below will be equal to zero. At the end of this section we review
two recent papers using surprise variables in order to quantify the impact of macroeconomic
surprises on different economic variables such as equity prices or the exchange rates of dif-
ferent currencies.

Taking into account the role of the US economy throughout the world, information con-
cerning its condition is of great interest in the economic literature. The effects of main
US macroeconomic news announcements on stock prices have been checked for markets
at different stages of development: developed stock markets (Andersen et al. (2007), Boyd
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et al. (2005), Harju & Hussain (2011), Li & Hu (1998), Pearce & Roley (1983), Nikki-
nen & Sahlström (2004), Schwert (1981)), as well as emerging markets, e.g. in Central
and Eastern Europe (see Gurgul et al. (2012), Gurgul et al. (2013), Gurgul & Wójtowicz
(2014), Gurgul & Wójtowicz (2015), Hanousek et al. (2009)). In their well-known and fre-
quently cited contribution Nikkinen & Sahlström (2004) examine the impact of the US and
domestic macroeconomic news on the German and Finnish markets. They discovered the
dominant role of macroeconomic information from the US. According to the authors, the
impact of announcements from the US on the volatility of both markets under consideration
was stronger than the effect of domestic information. This investigation was continued by
Nikkinen et al. (2006). The contributors examined the impact of the US macroeconomic
news announcements on a broad group of 35 stock markets around the world. Among the
stock markets under study there were some developed and emerging markets in Europe.
The study concludes that unexpected macroeconomic news from the US economy affects
volatility on developed stock markets in Europe and Asia. However, volatility on emerging
European markets (including Poland) did not react to unexpected announcements of Amer-
ican macroeconomic data. This demonstrated the main difference between developed and
emerging European markets with respect to the impact of information coming from the US.
Quite different results were presented by Gurgul et al. (2012). They detected a significant
reaction of the daily returns of the main Warsaw stock index WIG20 to unexpected news
about inflation and industrial production in the United States. The basic difference between
these results may follow from an analysis of data from different periods. Nikkinen et al.
(2006) take into consideration returns from July 1995 to March 2002, i.e., from the initial
period of the development of WSE. The study by Gurgul et al. (2012) is based on more
recent data.

More precise results on the impact of the US macroeconomic news on European mar-
kets were obtained by applying intraday data. For example, Harju & Hussain (2011) use
5-minute returns to investigate the impact of US macroeconomic news announcements on
the British, French, German, and Swiss stock markets. They prove the significant and im-
mediate impact of such news on volatility and 5-minute returns on these markets. Similar
results are presented by Dimpfl (2011), who analyzes 1-minute DAX returns, and by Gur-
gul & Wójtowicz (2015), who analyze 5-minute ATX returns. Additionally, the study of
the changes in the strength of the reaction of ATX returns to US data announcements over
subsequent years presented by Gurgul & Wójtowicz (2015) leads to the conclusion that
investors on the Vienna Stock Exchange reacted most strongly during the global financial
crisis of 2007-2009.

An empirical analysis of the effect of macroeconomic news on intraday data has been
conducted for European emerging markets by Hanousek et al. (2009). The authors conclude
that the Czech and the Hungarian stock markets reacted to macroeconomic news from both
the US and EU. However WSE is affected only by announcements from the Eurozone. This
stream of research was continued by Hanousek & Kočenda (2011). They show that emerg-
ing stock markets in the CEE region are mainly sensitive to macroeconomic information
from the EU. Quite different results are presented in Gurgul & Wójtowicz (2014). They
detect that unexpected news from the US economy implies a significant and very strong
reaction of the WIG20 index as early as the first minute after the announcements. This
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extended analysis proves that the US macroeconomic announcements also significantly in-
fluence medium and small stock indices of the stock exchange in Warsaw. However, the
reaction is slower than in the case of the largest companies.

In our computations, we use the surprise index (SI). An analogous measure of uncer-
tainty is used in the contributions by Heinlein & Lepori (2022) and Jäggi et al. (2019). An
important difference is that our study (unlike the study below) is based on high frequency
data. Heinlein & Lepori (2022) investigated the response of the UK asset prices to a large
set of domestic scheduled, macroeconomic announcements using data at a daily frequency
from 1998 to 2017. Surprises about retail sales, claimant count rate, GDP, and industrial
production have the most prevalent effects across the four asset classes in their dataset.
A large number of macroeconomic announcements increase trading activity on the stock
market, whereas there is barely any (only minor) evidence that announcements (surprises)
affect the volatility of asset prices. Heinlein & Lepori (2022) also proved that the effects
of macroeconomic surprises depend not only upon the state of the economy but also on the
state of the stock market (bull vs bear).

The impact of macroeconomic surprises can be detected not only on the capital market,
since it has also important monetary implications. Jäggi et al. (2019) studied the reaction
of CHF and JPY to macroeconomic surprises and changes in a broader market environment
before and during the crisis using high-frequency data. The results published by the con-
tributors demonstrate that CHF and JPY are traditionally more sensitive to macroeconomic
surprises than other currencies. This reflects the fact that macroeconomic surprises have
an effect on uncertainty and risk aversion. Jäggi et al. (2019) stressed that this link was
further increased during the crisis. The authors underlined that it could not be broken by the
specific measures adopted by monetary authorities to limit the appreciation trend. In addi-
tion the contributors found some evidence that, during the crisis, CHF and JPY responded
more strongly to surprises generating an appreciation than to surprises leading to a depre-
ciation. Moreover, both currencies also systematically reacted to changes in the general
market environment. According to the authors, this result is resistant to the applications
of two measures of the market environment: VIX and a novel index based on Bloomberg
wires.

In the following section the datasets, including extensive intraday macroeconomic data
announcements for selected economic areas are presented.

3. Datasets

In the first part of this section we describe data from time period 2018 – 2023 given in
three subintervals, each of two years in length. In the second part we describe macroeco-
nomic data in detail.

We have decided to divide our macroeconomic data sample into three intervals:

• Pre-pandemic period (2018-2019);

• COVID-19 pandemic (2020-2021);

• Post-pandemic period (2022-2023).
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There are two main reasons that support this division. Firstly, we designed equally
long periods in order to have comparable number of observations in all three time intervals.
Secondly, we deem this partitioning as justified in the context of COVID-19 data.

The source of the macroeconomic data is Bloomberg Terminal, which allows profes-
sionals and researchers across multiple industries to access both real-time and historical
feeds across a wide range of categories.

Examples of fields that are available in the feed: Date, Time, Event, Period, Surv(M),
Actual, Prior, Revised, S, Ticker, Day, Surv(A), Surv(H), Surv(L), Freq., Ests., Std Dev,
Surprise, Category, Subcategory, R, First Rev., Last Rev., Country/Region.
For our research the quantitative metrics that help us to define the surprise index are the
most crucial ones:

Definition 1 For the given quantitative macroeconomic data release (at the time t0) we
define surprise index (SI) as follows:

SIt0 =
Surv(M)t0 −Actualt0

StdDevt0
, (1)

where Surv(M) is the median of survey forecasts referring to this particular macroeconomic
data release at the time t0, Actual is an immediate announcement of the indicator (not
including further updates) and StdDev is the standard deviation of forecasts.

Therefore, the surprise index is a simple metric that takes into account two dimensions
that we wished to capture:

• How far away from the market consensus the actual macroeconomic data release was;

• Uncertainty of market analysts forecasts.

Based on the construction of the surprise index as a ratio of the above factors, we deem
that it is indeed a good proxy of the importance of new information appearing on the market.
We assume that the efficient markets hypothesis is true, that new information should not be
included in the asset prices at the moment of release, but it is likely to impact them in the
very short run.

Another important metric that is leveraged in this study is the relevance factor. This is an
indicator ranging from 0 to 100 that aims to measure the importance of a particular macroe-
conomic indicator. This is approximately the ratio between the number of Bloomberg Ter-
minal’s users that have set up the alerts on the particular indicator to the total number of
users that have created at least one notification on their accounts.

The composition of the economies was due to a few reasons. Firstly, we have picked
the biggest economies in the world: the United States of America, China, Japan, Germany
and the United Kingdom. Moreover, Germany is the biggest European economy and the
largest trading partner of Poland. The Eurozone’s macroeconomic data is considered to be
important data as it is aggregated data across the countries that use euro as the official cur-
rency. It should be noted that euro is the most important foreign exchange reserve currency,
obviously after USD. We included Poland as a minor emerging market.
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All available macroeconomic data announcements were downloaded from the Bloomberg
Terminal. Then, we applied a few filters to facilitate later quantitative procedures:

• Filtering out events for which "Actual" value was empty or not available;

• Leaving out cases where "Surprise" value cannot be calculated (missing median or
standard deviation of forecasts);

• Omitting events for which the time was only approximate, i.e. the whole day instead
of exact time point during the day.

For instance, the US data was the richest dataset available amongst the economies con-
sidered. From the initial number of 10827 announcements (from 117 categories), 7273
(from 99 categories) remained after filtering.

In all economies under study there is no visible relationship between surprise and rel-
evance. This statement is supported by Pearson’s linear correlations and rank correlations
(Spearman’s and Kendall’s), which are very close to zero in all cases, as denoted in Table 1.

Table 1: Relationship between relevance and surprise of macroeconomic data releases
across economies – measured by correlation metrics

China Eurozone Germany Japan Poland UK USA
Pearson -0.0393 0.0177 -0.0336 0.0057 0.0231 0.0073 -0.0177
Spearman -0.0468 0.0269 -0.0329 0.0072 0.0158 0.0089 -0.0085
Kendall -0.0304 0.0179 -0.0219 0.005 0.0109 0.0061 -0.0058

Therefore, it seems as if the quality of analysts’ forecasts does not depend on the impor-
tance of the metric. It might be counter-intuitive as one might suspect that most important
releases receive much more attention from market participants than minor announcements.

It is also important to acknowledge that in order to measure the impact of macroeco-
nomic news announcements on any financial instruments, we have to consider only those
indicators that are released when the particular asset is tradeable. As one might expect, the
major factor that influences the time of day of the majority of releases is the economy’s time
zone – the scatterplot can clearly divide the data into visible clusters.

After the preliminary characteristics of the relationships between surprise and relevance
indicators for the selected macroeconomic releases, in the next section we will present the
empirical results of our computations and testing procedures.

4. Empirical results – single indicator level

We would like to begin with some simple exploratory data analysis. Standard descrip-
tive statistics are available from the authors upon request. These are, namely, minimum,
maximum, mean, skewness and kurtosis. They are calculated for surprise indicator values,
separately for each type of macroeconomic event, per the 2-year periods defined previously.

Then, we calculated the p-values of the Kruskal-Wallis and ANOVA tests for all the
economies examined. The order is as follows: Table 2 – Germany, Table 3 – China, Table 4
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– the Eurozone, Table 5 – Japan, Table 6 – Poland, Table 7 – the United Kingdom and
Tables 8, 9 – the United States. The significance level is set to 5% – all categories of
macroeconomic announcements that have at least one p-value smaller or equal than 5% are
marked in bold font.

Table 2: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for Germany

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
Budget Maastricht % of GDP 0.7408 0.952 0.6667 1 1 0.1675 1 0.7852
Capital Investment QoQ 0.1133 0.1432 0.6601 0.2827 0.087 0.2697 0.1713 0.056
CPI EU Harmonized MoM 0.1148 0.448 0.041 0.2055 0.7972 0.0136 0.0731 0.8507
CPI EU Harmonized YoY 0.2635 0.9008 0.0381 0.0744 0.7762 0.0154 0.03 0.9227
CPI MoM 0.6595 0.9492 0.3651 0.5885 0.9921 0.2924 0.3982 0.77
CPI YoY 0.606 0.9414 0.3074 0.4458 0.7204 0.2208 0.2737 0.5636
Current Account Balance 0.3833 0.4134 0.4726 0.14 0.3261 0.3612 0.1816 0.4626
Exports SA MoM 0.8164 0.9485 0.6794 0.686 0.9935 0.6141 0.8176 0.9913
Factory Orders MoM 0.3911 0.3689 0.2628 0.4426 0.6798 0.2589 0.4137 0.9129
Factory Orders WDA YoY 0.3775 0.2586 0.686 0.686 0.8982 0.2536 0.3372 0.6643
GDP NSA YoY 0.4667 0.7482 0.5055 0.5425 0.5425 0.2155 0.3469 0.3022
GDP SA QoQ 0.8432 0.4858 0.4056 0.6483 0.7673 0.1981 0.3762 0.8715
GDP WDA YoY 0.1785 0.1935 0.0873 0.4257 0.1553 0.022 0.1306 0.1683
GfK Consumer Confidence 0.6585 0.5697 0.8982 0.1307 0.6794 0.6998 0.2469 0.5011
Government Spending QoQ 0.2189 0.5031 0.5594 0.0948 0.1103 0.2778 0.2823 0.2112
IFO Business Climate 0.7614 0.7163 0.7067 0.4425 0.8728 0.5933 0.4683 0.868
IFO Current Assessment 0.9419 0.9531 0.9348 0.8983 0.5961 0.9184 0.9926 0.7517
IFO Expectations 0.4837 0.8513 0.7503 0.2628 0.4542 0.8069 0.249 0.7243
Import Price Index MoM 0.05 0.0826 0.0189 0.6985 0.2578 0.0161 0.5344 0.1593
Import Price Index YoY 0.0676 0.0884 0.0238 0.601 0.4224 0.0235 0.3967 0.2426
Imports SA MoM 0.7712 0.8501 0.9942 0.8938 0.449 0.8892 0.9041 0.491
Industrial Production SA MoM 0.4547 0.309 0.8822 0.4358 0.8938 0.8262 0.2756 0.5704
Industrial Production WDA YoY 0.4826 0.2985 0.6723 0.6725 0.4286 0.6435 0.3329 0.5971
PPI MoM 0.244 0.1273 0.2395 0.8982 0.4955 0.1177 0.9288 0.25
PPI YoY 0.1508 0.0957 0.4325 0.6044 0.117 0.1014 0.8236 0.1486
Private Consumption QoQ 0.6855 0.921 0.6601 0.9801 0.6224 0.391 0.6339 0.5674
Retail Sales MoM 0.2867 0.247 0.4294 0.686 0.2578 0.3847 0.531 0.1147
Retail Sales NSA YoY 0.8509 0.9403 1 0.8939 0.6804 0.9701 0.5545 0.3321
Trade Balance 0.5013 0.427 0.686 0.182 0.6539 0.7046 0.2291 0.7201
Unemployment Change (000’s) 0.0967 0.285 0.686 0.2537 0.137 0.6718 0.1703 0.0553
Unemployment Claims Rate SA 0.1953 0.2583 0.0484 0.4229 0.2183 0.6124 0.1053 0.2288
ZEW Survey Current Situation 0.7293 0.8761 0.6666 0.6727 1 0.771 0.5936 0.9956
ZEW Survey Expectations 0.7958 0.5245 0.686 0.8982 0.6804 0.6708 0.6834 0.4678

In the case of China we have only one significant indicator, for Eurozone – two, for
Germany – one, for Japan – four, for Poland – two, for the United Kingdom – eight and for
United States – eleven.

In the above-mentioned tables, we also report the p-values of the Kolmogorov-Smirnov
and Anderson-Darling tests for all the economies examined. The significance level is un-
changed (5%) – all categories of macroeconomic announcements that have at least one
p-value smaller or equal than 5% are marked in bold font.

Note that we have chosen the following notation:

• Tests referring to the comparison between pre-crisis and crisis periods are marked as
1;

• For periods before crisis and after crisis – 2;

• Crisis and post-crisis tests are denoted as 3.
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Table 3: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for China

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
1-Year Loan Prime Rate 0.5878 0.6106 0.0873 0.0666 0.9254 0.0427 0.0396 1
5-Year Loan Prime Rate 0.8926 0.8041 0.1538 0.287 0.272 0.031 0.2148 0.613
Aggregate Financing CNY 0.9 0.7601 0.6397 0.9239 0.4425 0.6253 0.9186 0.6507
CPI YoY 0.1365 0.1365 0.0968 0.0889 0.8719 0.3024 0.1779 0.792
Exports YoY 0.0856 0.2048 0.3008 0.7666 0.0778 0.1689 0.865 0.0324
Exports YoY CNY 0.1263 0.0903 0.2506 0.8531 0.2191 0.1114 0.8809 0.1502
Fixed Assets Ex Rural YTD YoY 0.8749 0.6077 0.6127 0.8604 0.3866 0.3711 0.6433 0.4125
Foreign Reserves 0.9834 0.9907 0.888 0.5607 0.8184 0.8334 0.6387 0.5699
GDP SA QoQ 0.4788 0.3813 0.9702 0.2124 0.6601 0.4656 0.1137 0.3893
GDP YoY 0.1621 0.2992 0.5594 0.2528 0.0145 0.5199 0.0911 0.0247
GDP YTD YoY 0.1996 0.2198 0.0482 0.6713 0.2827 0.0931 0.3892 0.3728
Imports YoY 0.4508 0.4035 0.5901 0.6274 0.5713 0.5152 0.619 0.1664
Imports YoY CNY 0.0724 0.1089 0.9692 0.1133 0.0273 0.9598 0.0743 0.0219
Industrial Production YoY 0.7127 0.9823 0.5623 0.1745 0.9813 0.3457 0.227 0.9522
Industrial Production YTD YoY 0.8952 0.5659 0.8316 1 0.8574 0.6018 0.9955 0.6266
Manufacturing PMI 0.8595 0.6377 0.686 0.9942 0.6726 0.339 0.7705 0.6659
Money Supply M0 YoY 0.2927 0.5252 0.2642 0.2181 0.72 0.3593 0.2091 0.7086
Money Supply M1 YoY 0.1802 0.0525 0.1364 0.6794 0.4402 0.0533 0.4108 0.2089
Money Supply M2 YoY 0.146 0.1251 0.4167 0.0477 0.6558 0.1661 0.0323 0.289
New Yuan Loans CNY 0.9633 0.8712 0.9935 0.658 0.4295 0.97 0.4766 0.2608
Non-manufacturing PMI 0.6472 0.7859 0.8882 0.6726 0.2628 0.7882 0.6756 0.2378
PPI YoY 0.0092 0.0068 0.0539 0.0529 0.0298 0.059 0.0262 0.0058
Retail Sales YoY 0.6713 0.8002 0.9813 0.3283 0.832 0.8232 0.3366 0.8429
Retail Sales YTD YoY 0.6002 0.4347 0.8236 0.3253 0.6179 0.908 0.2897 0.2842
Trade Balance 0.7331 0.79 0.56 0.9551 0.8248 0.5568 0.8711 0.7766
Trade Balance CNY 0.7304 0.6855 0.5304 0.7374 0.6558 0.6391 0.531 0.7091

Table 4: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for the Eurozone

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
Consumer Confidence 0.356 0.2166 0.0412 0.1364 0.6234 0.0326 0.1096 0.6587
CPI Core YoY 0.3232 0.4001 0.5148 0.273 0.7023 0.4285 0.1151 0.5524
CPI Estimate YoY 0.4883 0.4536 0.4845 0.0416 0.3923 0.1392 0.017 0.2995
CPI MoM 0.5966 0.325 0.2608 0.173 0.1884 0.2468 0.1322 0.386
CPI YoY 0.4897 0.2484 0.1019 0.2556 0.7387 0.3076 0.9699 0.4786
Economic Confidence 0.0018 0.002 0.0656 0.8893 0.0111 0.0069 0.7846 0.0009
GDP SA QoQ 0.5419 0.6523 0.1363 0.4346 0.9642 0.0461 0.3436 0.6967
GDP SA YoY 0.1522 0.5229 0.0271 0.8871 0.0372 0.0143 0.9997 0.0246
Govt Expend QoQ 0.6448 0.9218 0.2124 0.9879 0.8364 0.5281 0.7212 0.7675
Gross Fix Cap QoQ 0.767 0.4308 0.9801 0.5859 0.5859 0.7778 0.4691 0.5962
Household Cons QoQ 0.4605 0.9482 0.205 0.5998 0.9751 0.1572 0.3344 0.9836
Industrial Confidence 0.0035 0.0071 0.0037 0.6691 0.0042 0.0022 0.6116 0.001
Industrial Production SA MoM 0.519 0.4803 1 0.2466 0.2537 0.9955 0.3459 0.5772
Industrial Production WDA YoY 0.5595 0.4635 0.8815 0.429 0.2576 0.6258 0.4247 0.1352
M3 Money Supply YoY 0.1613 0.2062 0.6446 0.2271 0.1996 0.5606 0.1682 0.1329
PPI MoM 0.6791 0.5654 0.6255 0.3921 0.4041 0.6179 0.4767 0.4445
PPI YoY 0.5709 0.7642 0.8828 0.4295 0.4195 0.6146 0.632 0.5074
Retail Sales MoM 0.1917 0.4482 0.4358 0.124 0.2531 0.532 0.0628 0.1248
Retail Sales YoY 0.5641 0.6399 0.4296 0.6794 0.1362 0.6528 0.8087 0.2143
Sentix Investor Confidence 0.555 0.5496 0.2527 0.8982 0.6795 0.2302 0.7289 0.5174
Services Confidence 0.4949 0.475 0.4425 0.6794 0.6798 0.4758 0.7335 0.5508
Trade Balance SA 0.743 0.8618 0.9159 0.3625 0.8596 0.9762 0.5694 0.7622
Unemployment Rate 0.3828 0.4488 0.4279 0.9053 0.2303 0.8876 0.9747 0.7178

To summarize the results of testing the differences in the distributions of macroeconomic
surprises in the three periods under consideration, the fraction of indicators of significant
differences (at least one test rejecting the null hypothesis) oscillates between 9.3% for Japan
to 30.8% for China (for the Eurozone – 26.1%, for Germany – 18.2%, for Poland – 11.5%,
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Table 5: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for Japan

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
Annualized Housing Starts 0.3706 0.7978 0.6558 0.2575 0.2342 0.5767 0.2477 0.1753
BoP Current Account Adjusted 0.7209 0.232 0.4361 0.6723 0.6726 0.4681 0.8262 0.2723
BoP Current Account Balance 0.6336 0.6705 0.4425 0.686 0.252 0.2503 0.4497 0.2546
Capital Spending Ex Software YoY 0.5234 0.6999 0.2827 0.6601 0.6601 0.2738 0.3332 0.338
Capital Spending YoY 0.3027 0.8994 0.2827 0.9801 0.2827 0.182 0.83 0.2884
Coincident Index 0.1633 0.4681 0.2528 0.2843 0.052 0.1881 0.336 0.0443
Consumer Confidence Index 0.0138 0.0647 0.0054 0.0659 0.342 0.0042 0.0287 0.2734
Core Machine Orders MoM 0.85 0.7333 0.9942 0.9024 0.8939 0.8968 0.9188 0.8744
Core Machine Orders YoY 0.9265 0.9248 0.9024 0.9942 0.686 0.7574 0.9667 0.8715
Eco Watchers Survey Current SA 0.1283 0.0362 0.2578 0.2575 0.0299 0.0447 0.1352 0.0468
Eco Watchers Survey Outlook SA 0.5566 0.3626 0.2628 0.2613 0.8982 0.3117 0.3245 0.5998
Exports YoY 0.2887 0.4837 0.4445 0.4364 0.6736 0.2155 0.1354 0.4004
GDP Annualized SA QoQ 0.4754 0.4199 0.9522 0.0879 0.3033 0.8778 0.1266 0.3885
GDP Business Spending QoQ 0.4122 0.5469 0.6036 0.3959 0.0928 0.6533 0.3094 0.0781
GDP Deflator YoY 0.3629 0.07 0.3139 0.2308 0.3787 0.5749 0.2469 0.2087
GDP Nominal SA QoQ 0.7669 0.4487 0.7229 0.6594 0.6225 0.9155 0.6595 0.631
GDP Private Consumption QoQ 0.5953 0.3638 0.3749 0.0927 0.517 0.279 0.2448 0.6062
GDP SA QoQ 0.4824 0.5109 0.5743 0.206 0.2916 0.6548 0.12 0.2857
Household Spending YoY 0.3009 0.3655 0.9115 0.4493 0.2628 0.8205 0.2806 0.2014
Housing Starts YoY 0.2886 0.5132 0.6736 0.6794 0.0678 0.4561 0.5307 0.1297
Imports YoY 0.5667 0.5722 0.4425 0.8843 0.6731 0.3823 0.6441 0.5757
Industrial Production MoM 0.7919 0.7639 0.9024 0.686 0.686 0.7316 0.7387 0.7256
Industrial Production YoY 0.6782 0.6641 0.4426 0.6798 0.6752 0.1253 0.4024 0.6261
Job-To-Applicant Ratio 0.7114 0.9219 0.1825 0.9696 0.5581 0.2803 0.9533 0.6459
Jobless Rate 0.3474 0.219 0.3875 0.6208 0.1078 0.2237 0.3216 0.1218
Labor Cash Earnings YoY 0.2202 0.332 0.3281 0.2653 0.6794 0.3406 0.1183 0.5474
Leading Index CI 0.2205 0.1548 0.5845 0.061 0.4044 0.4193 0.0713 0.4948
Monetary Base End of period 0.3801 0.4375 0.3333 0.6667 1 0.2975 0.6267 1
Monetary Base YoY 0.3189 0.6064 0.5 0.6 1 0.1247 0.3491 0.9762
Money Stock M2 YoY 0.214 0.1116 0.2138 0.5958 0.1039 0.061 0.3675 0.1464
Money Stock M3 YoY 0.1094 0.0214 0.0861 0.7311 0.2764 0.0118 0.3669 0.1015
Natl CPI Ex Fresh Food YoY 0.2421 0.2623 0.3177 0.3639 0.6821 0.0657 0.0746 0.9804
Natl CPI YoY 0.3988 0.4425 0.7193 0.6387 0.999 0.2019 0.6741 0.8336
PPI MoM 0.2148 0.1186 0.2273 0.9909 0.4195 0.1749 0.7889 0.2065
PPI Services YoY 0.764 0.7845 0.9828 0.4457 0.947 0.8227 0.5287 0.8737
PPI YoY 0.4237 0.3774 0.6349 0.4324 0.9916 0.3116 0.1867 0.8628
Real Cash Earnings YoY 0.7447 0.7997 0.4205 0.6526 0.9942 0.3327 0.6624 0.9312
Retail Sales MoM 0.6351 0.4622 0.4425 0.8938 0.6794 0.2491 0.6778 0.4816
Retail Sales YoY 0.8635 0.8926 0.686 0.449 0.8982 0.5033 0.2586 0.7907
Tankan Large All Industry Capex 0.9489 0.9813 0.6601 0.6601 0.9801 0.637 0.5407 0.6688
Tankan Large Mfg Index 0.2787 0.3366 0.2827 0.2827 0.6601 0.0856 0.3955 0.5445
Tankan Large Mfg Outlook 0.8325 0.663 0.9702 0.6601 0.9702 0.9141 0.6183 0.9479
Tankan Large Non-Mfg Index 0.717 0.7724 0.9801 0.6601 0.9801 0.83 0.5308 0.6472
Tankan Large Non-Mfg Outlook 0.2144 0.1509 0.9702 0.2528 0.2827 0.8873 0.161 0.1595
Tankan Small Mfg Index 0.4439 0.5356 0.2572 0.6601 0.6601 0.1288 0.4257 0.637
Tankan Small Mfg Outlook 0.077 0.0465 0.6601 0.087 0.1702 0.3664 0.0289 0.1945
Tankan Small Non-Mfg Index 0.3589 0.539 0.2827 0.2827 0.9702 0.2265 0.1661 0.9203
Tankan Small Non-Mfg Outlook 0.6914 0.656 0.6224 0.6224 0.9801 0.8558 0.7994 0.7641
Tertiary Industry Index MoM 0.3706 0.1836 0.2576 0.3075 0.177 0.3024 0.178 0.2179
Tokyo CPI Ex-Fresh Food YoY 0.4978 0.7377 0.1791 0.228 0.293 0.3219 0.2115 0.2504
Tokyo CPI YoY 0.4997 0.5494 0.7664 0.8777 0.6285 0.5838 0.5442 0.4852
Trade Balance 0.6945 0.6137 0.9928 0.8982 0.8939 0.9481 0.6486 0.7499
Trade Balance Adjusted 0.9066 0.8031 0.8982 0.6794 0.8791 0.5868 0.709 0.6929
Trade Balance BoP Basis 0.1884 0.1631 0.6634 0.8928 0.1322 0.5484 0.5262 0.0647

for the United Kingdom – 23.7%, for United States – 26.3%). In general, we observe
significant differences in the distributions of surprise indicators related to inflation and un-
employment across most of the economies under consideration in these periods. Another
conclusion is that, in general, the bigger the economy, the higher the fraction of indicators
of significant differences (with the exception of Japan). Across examined economies, the
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Table 6: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for Poland

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
Average Gross Wages MoM 0.3927 0.1263 0.1366 0.686 0.8891 0.19 0.2035 0.5778
Average Gross Wages YoY 0.4008 0.2329 0.2628 0.6794 0.4435 0.1638 0.2808 0.354
Construction Output YoY 0.9081 0.6002 0.8982 0.2575 0.2628 0.7662 0.1387 0.3768
CPI Core MoM 0.5374 0.4214 0.7427 0.9533 0.9406 0.7062 0.9632 0.9673
CPI Core YoY 0.6387 0.9479 0.934 0.6839 0.9533 0.7072 0.9497 0.6878
CPI MoM 0.1532 0.1186 0.0539 0.7858 0.0979 0.0438 0.8467 0.1185
CPI YoY 0.0533 0.0236 0.0165 0.4197 0.0656 0.0109 0.3313 0.1215
Current Account Balance 0.732 0.9319 0.4425 0.2628 0.4425 0.5631 0.3064 0.585
Employment MoM 0.6443 0.3327 0.1775 0.6441 0.3687 0.2355 0.6488 0.1528
Employment YoY 0.6369 0.7597 0.8106 0.8043 0.8605 0.6072 0.8081 0.5227
Exports 0.8011 0.8606 0.9928 0.686 0.8982 0.9182 0.7198 0.8388
GDP Annual YoY 0.1017 0.0548 0.3333 0.3333 0.3333 0.0835 0.0835 0.0835
GDP SA QoQ 0.6171 0.7552 0.2827 0.6224 0.2827 0.1135 0.4352 0.1486
GDP YoY 0.4371 0.2993 0.6601 0.6601 0.087 0.2727 0.487 0.1013
Imports 0.447 0.3042 0.6794 0.6726 0.2628 0.6076 0.402 0.1321
Money Supply M3 MoM 0.4917 0.6216 0.7012 0.3649 0.6794 0.9286 0.4069 0.6261
Money Supply M3 YoY 0.3251 0.6887 0.436 0.1328 0.1322 0.4549 0.12 0.347
PPI MoM 0.0585 0.0268 0.228 0.2384 0.0238 0.1067 0.142 0.0231
PPI YoY 0.1712 0.1867 0.25 0.686 0.1316 0.0701 0.5461 0.1717
Retail Sales Real YoY 0.5711 0.2449 0.686 0.992 0.8982 0.5022 0.9665 0.4132
Retail Sales YoY 0.1662 0.0674 0.2526 0.8982 0.6794 0.081 0.6567 0.3498
Sold Industrial Output MoM 0.4511 0.2994 0.4425 0.2509 0.1287 0.2763 0.5976 0.264
Sold Industrial Output YoY 0.3009 0.2399 0.9024 0.1398 0.1361 0.6009 0.2947 0.122
Trade Balance 0.626 0.3254 0.8982 0.6794 0.9024 0.8624 0.5034 0.796
Unemployment Rate 0.9327 0.7941 0.8312 0.9819 0.8404 0.7847 0.9998 0.8188
Unemployment Rate Quarterly 0.9398 0.9368 0.9851 0.6601 0.3998 0.9932 0.5282 0.4681

ANOVA test seems to be more sensitive in detecting significant differences in distribution
than the Kruskal-Wallis test. Results in three sub-sample periods indicate that the Anderson
Darling test is superior to Kolmogorov-Smirnov test in the purpose of detecting differences
in distributions. This is in line with the statistical intuition as the Anderson Darling test puts
more weight into the comparison of the tail distribution.

In the next section, we first define the aggregated sentiment (AS). We also include the
p-values of the Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-Darling tests
for these economies in the tables.

5. Empirical results – sentiment level

In order to quantitatively aggregate the impact of new market information from macroe-
conomic data announcements, we have suggested using the aggregated sentiment. For mul-
tiple events occurring at the same time, this indicator is also normalized by the sum of
Relevance Factors of all simultaneous macroeconomic data releases. This means that the
sentiment is calculated as the weighted average where the weights are based on the values
of the relevance factor per each indicator.

Definition 2 Aggregated sentiment (AS) at the time t is the product sum of the surprise
indicator (SI) and relevance factor (RF), summed through all economic releases taking
place simultaneously – let us assume that they are annotated by natural numbers (1, . . . ,n):

ASt =
∑

n
i=1 SIi,t ·RFi,t

∑
n
i=1 RFi,t

(2)
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Table 7: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for the United Kingdom

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
Average Weekly Earnings 3M/YoY 0.6103 0.3073 0.24 0.5995 0.9924 0.2353 0.3435 0.8719
Bank of England Bank Rate 0.2405 0.3185 1 1 0.4678 0.7461 1 0.0337
BRC Sales Like-For-Like YoY 0.0643 0.1164 0.1703 0.5455 0.1538 0.0575 0.5716 0.0454
CBI Business Optimism 0.3493 0.4249 0.4156 0.5357 0.6786 0.2748 0.5186 0.2906
CBI Retailing Reported Sales 0.9677 0.7446 0.9024 0.8514 0.9686 0.887 0.9786 0.9276
CBI Total Dist. Reported Sales 0.5722 0.97 0.6667 1 0.5714 0.5681 1 0.6483
CBI Trends Selling Prices 0.5624 0.2396 0.6336 0.4802 0.5966 0.5261 0.4433 0.6487
CBI Trends Total Orders 0.2703 0.344 0.1362 0.449 0.449 0.1056 0.3097 0.4377
Construction Output MoM 0.2712 0.297 0.686 0.6794 0.0678 0.6846 0.6636 0.1067
Construction Output YoY 0.3912 0.4427 0.686 0.686 0.1398 0.5517 0.7122 0.1883
CPI Core YoY 0.1122 0.6117 0.0958 0.0193 0.9909 0.0229 0.0119 0.9874
CPI MoM 0.1638 0.5642 0.0468 0.0187 0.9924 0.0207 0.0162 0.8693
CPI YoY 0.1343 0.4897 0.1154 0.0529 0.9907 0.038 0.0439 0.978
CPIH YoY 0.0885 0.3294 0.0466 0.0532 0.9889 0.0392 0.0319 0.9981
Current Account Balance 0.9981 0.9619 0.9801 0.9702 0.9801 0.773 0.7412 0.9184
Employment Change 3M/3M 0.8368 0.9336 0.9942 0.9938 0.7679 0.9552 0.982 0.8079
Exports QoQ 0.141 0.4233 0.2557 0.2942 0.9534 0.1311 0.0751 0.9659
GDP QoQ 0.4975 0.4552 0.2961 0.4593 0.9112 0.2185 0.2596 0.8996
GDP YoY 0.0311 0.1026 0.1173 0.031 0.2102 0.0367 0.0096 0.1817
GfK Consumer Confidence 0.4859 0.2556 0.8797 0.2393 0.4604 0.7948 0.2835 0.371
Government Spending QoQ 0.0763 0.1293 0.0557 0.0815 0.7387 0.0397 0.0573 0.8355
Gross Fixed Capital Formation QoQ 0.5089 0.0428 0.3607 0.5953 0.4131 0.4583 0.3823 0.2253
House Price Index YoY 0.2081 0.6762 0.3435 0.0481 0.1011 0.2918 0.0639 0.0944
ILO Unemployment Rate 3Mths 0.7351 0.3993 0.1416 0.7478 0.3165 0.2467 0.4811 0.2421
Imports QoQ 0.7023 0.3155 0.2653 0.9038 0.7315 0.5285 0.6205 0.4653
Index of Services 3M/3M 0.6214 0.9634 0.3196 0.4497 0.4195 0.4716 0.3862 0.7146
Index of Services MoM 0.9474 0.7642 0.5168 0.9321 0.8982 0.355 0.7257 0.6031
Industrial Production MoM 0.6693 0.4079 0.9935 0.6794 0.8916 0.9936 0.51 0.6169
Industrial Production YoY 0.392 0.303 0.2576 0.4425 0.4425 0.1927 0.3492 0.2705
Manufacturing Production MoM 0.465 0.2407 0.4364 0.6794 0.9024 0.2775 0.3526 0.5283
Manufacturing Production YoY 0.608 0.4662 0.4425 0.686 0.6794 0.1672 0.4925 0.2713
Monthly GDP (3M/3M) 0.0827 0.1153 0.0168 0.7086 0.3956 0.0387 0.5078 0.2779
Monthly GDP (MoM) 0.6648 0.5717 0.6056 0.7305 0.6794 0.4144 0.6306 0.4939
Mortgage Approvals 0.8066 0.9949 0.8891 0.8982 0.8946 0.5233 0.7986 0.6571
Nationwide House PX MoM 0.3041 0.189 0.2854 0.8728 0.2032 0.2181 0.9464 0.4242
Nationwide House Px NSA YoY 0.1203 0.0845 0.0733 0.9549 0.0856 0.0751 0.8581 0.1382
Net Consumer Credit 0.2129 0.2242 0.9024 0.6691 0.1398 0.6399 0.593 0.0781
Net Lending Sec. on Dwellings 0.4213 0.3822 0.9024 0.4033 0.4163 0.7698 0.3158 0.3332
PPI Input NSA MoM 0.1385 0.0493 0.256 0.4425 0.2628 0.1125 0.5957 0.1017
PPI Input NSA YoY 0.1442 0.0407 0.1398 0.693 0.5644 0.0548 0.5783 0.2578
PPI Output NSA MoM 0.5306 0.5397 0.4324 0.8828 0.8916 0.2567 0.9014 0.592
PPI Output NSA YoY 0.5912 0.8369 0.413 0.3744 0.1899 0.466 0.3696 0.3862
Private Consumption QoQ 0.1966 0.4396 0.1009 0.3447 0.8559 0.0876 0.2948 0.8097
PSNB ex Banking Groups 0.8869 0.7864 0.4357 0.449 0.9024 0.2796 0.4615 0.4898
Public Sector Net Borrowing 0.6792 0.5422 0.9024 0.4089 0.6462 0.5387 0.6351 0.5494
Retail Price Index 0.0416 0.133 0.129 0.011 0.8982 0.105 0.0139 0.9058
Retail Sales Ex Auto Fuel MoM 0.3642 0.3023 0.8982 0.686 0.686 0.6024 0.2237 0.5422
Retail Sales Ex Auto Fuel YoY 0.4678 0.3525 0.449 0.2628 0.449 0.4279 0.3151 0.3832
Retail Sales Inc Auto Fuel MoM 0.3914 0.409 0.449 0.1338 0.8982 0.4167 0.1094 0.8732
Retail Sales Inc Auto Fuel YoY 0.2431 0.1088 0.449 0.4425 0.2628 0.3311 0.1212 0.2688
RICS House Price Balance 0.0257 0.2031 0.0299 1 0.0299 0.0085 0.9998 0.0054
RPI Ex Mort Int.Payments (YoY) 0.1383 0.4749 0.2546 0.1135 0.3679 0.0946 0.151 0.3788
RPI MoM 0.079 0.1965 0.1063 0.1067 0.9877 0.0521 0.0595 0.9857
RPI YoY 0.0254 0.0639 0.1212 0.0215 0.9909 0.0366 0.0072 0.872
Total Business Investment QoQ 0.8197 0.991 0.5882 0.4269 0.499 0.325 0.7206 0.2983
Total Business Investment YoY 0.0771 0.023 0.006 0.7794 0.1429 0.0114 0.6977 0.1233
Trade Balance GBP/Mn 0.5853 0.2875 0.9942 0.9024 0.4379 0.6923 0.6858 0.4068
Visible Trade Balance GBP/Mn 0.862 0.3787 0.9024 0.9024 0.9024 0.9255 0.8022 0.8752
Weekly Earnings ex Bonus 3M/YoY 0.5193 0.4773 0.5757 0.976 0.6133 0.7922 0.6293 0.4317

Table 10 presents the p-values of the Kruskal-Wallis and ANOVA tests applied to the
sentiment data calculated for all economies under consideration. The division of the sample
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Table 8: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for United States (1/2)

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
ADP Employment Change 0.6999 0.8979 0.6795 0.6249 0.2694 0.6082 0.5618 0.2161
Advance Goods Trade Balance 0.8299 0.8633 0.9315 0.8823 0.8982 0.9454 0.754 0.7363
Average Hourly Earnings MoM 0.1764 0.2271 0.4041 0.2214 0.9847 0.1214 0.174 0.9696
Average Hourly Earnings YoY 0.5612 0.6671 0.575 0.8253 0.9847 0.5 0.3599 0.949
Average Weekly Hours All Employees 0.0166 0.0494 0.0003 0.1971 0.1004 0 0.0546 0.0414
Building Permits 0.994 0.9797 0.9942 0.6794 0.9942 0.8492 0.735 0.967
Building Permits MoM 1 0.9766 0.9928 0.6726 0.9942 0.8218 0.6979 0.9873
Business Inventories 0.2025 0.2095 0.5315 0.5712 0.0547 0.6281 0.8064 0.155
Cap Goods Orders Nondef Ex Air 0.2428 0.203 0.6455 0.0844 0.5099 0.4886 0.1625 0.2547
Cap Goods Ship Nondef Ex Air 0.559 0.2604 0.2762 0.6326 0.3328 0.2672 0.6854 0.5332
Capacity Utilization 0.2794 0.5081 0.0593 0.8982 0.2413 0.1194 0.8988 0.3687
Change in Manufact. Payrolls 0.5187 0.5237 0.9024 1 0.6794 0.55 0.9896 0.6145
Change in Nonfarm Payrolls 0.1017 0.0876 0.686 0.1398 0.2584 0.4908 0.1207 0.0348
Change in Private Payrolls 0.2388 0.2019 0.9942 0.2576 0.4354 0.8638 0.2341 0.1771
Chicago Fed Nat Activity Index 0.809 0.5306 0.6023 0.5792 0.5479 0.7402 0.7349 0.7093
Conf. Board Consumer Confidence 0.8655 0.9109 0.9024 0.8982 0.9942 0.8673 0.9228 0.9648
Construction Spending MoM 0.5246 0.1743 0.9024 0.4426 0.9024 0.6774 0.3267 0.8067
Consumer Credit 0.936 0.5845 0.9024 0.8982 0.9024 0.6675 0.6967 0.8012
Continuing Claims 0.6419 0.6926 0.3647 0.3027 0.1404 0.5156 0.0811 0.1365
Core PCE Price Index QoQ 0.7627 0.8378 0.7145 0.7976 0.8385 0.4524 0.521 0.8464
CPI Core Index SA 0.6156 0.6799 0.8676 0.4272 0.9024 0.8303 0.3938 0.5571
CPI Ex Food and Energy MoM 0.4512 0.394 0.8191 0.5177 0.8434 0.3869 0.1178 0.771
CPI Ex Food and Energy YoY 0.6345 0.2384 0.8253 0.5114 0.575 0.3303 0.5174 0.385
CPI Index NSA 0.3665 0.2212 0.0656 0.6727 0.9024 0.123 0.4559 0.6542
CPI MoM 0.238 0.145 0.0756 0.5177 0.8253 0.0453 0.313 0.4755
CPI YoY 0.3076 0.1449 0.1836 0.8253 0.6397 0.0678 0.432 0.385
Current Account Balance 0.5054 0.6265 0.9801 0.6601 0.9801 0.8487 0.3394 0.8638
Dallas Fed Manf. Activity 0.3606 0.6519 0.9942 0.2628 0.2628 0.7131 0.3266 0.2071
Durable Goods Orders 0.3953 0.2335 0.6536 0.1981 0.4279 0.8683 0.2367 0.4933
Durables Ex Transportation 0.0282 0.2389 0.0113 0.012 0.83 0.1085 0.0113 0.4914
Empire Manufacturing 0.5301 0.317 0.6795 0.1366 0.1398 0.6978 0.1439 0.1805
Employment Cost Index 0.3164 0.2179 0.205 0.5594 0.6224 0.1719 0.408 0.3789
Existing Home Sales 0.018 0.0195 0.004 0.4435 0.2576 0.0067 0.3638 0.0884
Existing Home Sales MoM 0.0176 0.0213 0.0043 0.2628 0.2628 0.0066 0.2926 0.0924
Export Price Index MoM 0.2687 0.1254 0.2497 0.6794 0.6691 0.2375 0.5433 0.2318
Export Price Index YoY 0.1845 0.3941 0.3636 0.9474 0.0398 0.2397 0.8803 0.0548
Factory Orders 0.2795 0.3202 0.2497 0.6475 0.2577 0.0979 0.3735 0.1026
FHFA House Price Index MoM 0.1382 0.2466 0.4361 0.0113 0.449 0.2486 0.0382 0.6466
FOMC Rate Decision (Lower Bound) 0.0695 0.068 0.2143 1 0.35 0.9944 0.4566 0.8011
FOMC Rate Decision (Upper Bound) 0.0695 0.068 0.2143 1 0.35 0.9944 0.4566 0.8011
GDP Annualized QoQ 0.5571 0.3942 0.6444 0.1792 0.057 0.6381 0.3629 0.1085
GDP Price Index 0.3611 0.6551 0.2832 0.031 0.836 0.2078 0.0454 0.563
Housing Starts 0.6112 0.3325 0.686 0.686 0.449 0.3605 0.5112 0.4213
Housing Starts MoM 0.2334 0.1699 0.686 0.0651 0.686 0.4059 0.0954 0.6279
Import Price Index ex Petroleum MoM 0.0877 0.0594 0.0657 0.2628 0.2628 0.0435 0.4252 0.2444
Import Price Index MoM 0.3341 0.4266 0.2522 0.9935 0.1398 0.2314 0.8664 0.1755
Import Price Index YoY 0.3178 0.8949 0.4289 0.4309 0.0256 0.1585 0.7307 0.0342
Industrial Production MoM 0.9205 0.831 0.443 0.686 0.6794 0.4743 0.774 0.3609
Initial Jobless Claims 0.2653 0.1653 0.2143 0.918 0.3492 0.157 0.7839 0.1978

data is exactly the same as in the previous examinations for single macroeconomic indica-
tors. The economies for which both p-values are smaller than or equal to 5% are (in order of
significance) the United States, the Eurozone, the United Kingdom and Japan, which means
that the null hypothesis about the same distribution in the three periods with respect to the
COVID-19 pandemic was rejected. In the case of China no significant differences in these
periods were found. Somewhat "intermediate" cases are the German and Polish economies
- in these examples the ANOVA test indicates definitely insignificant differences, while the
Kruskall-Wallis test is significant at the level of 10%.
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Table 9: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for United States (2/2)

Indicator K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
Interest on Reserve Balances Rate 0.0824 0.0749 0.1818 1 0.1818 0.0457 1 0.0354
ISM Employment 0.6242 0.6886 0.6667 0.5333 0.5817 0.5681 0.5275 0.6638
ISM Manufacturing 0.1287 0.1295 0.2581 0.4428 0.0298 0.2989 0.3414 0.0229
ISM New Orders 0.0434 0.2658 0.0351 0.049 0.1637 0.0129 0.0803 0.2332
ISM Prices Paid 0.0419 0.057 0.0678 0.686 0.0678 0.0767 0.5974 0.0254
ISM Services Index 0.1067 0.1221 0.1398 0.6794 0.1364 0.1382 0.6982 0.0708
JOLTS Job Openings 0.1918 0.239 0.0678 0.4426 0.6804 0.1317 0.664 0.2581
Kansas City Fed Manf. Activity 0.0991 0.1593 0.0177 0.2695 0.6601 0.0186 0.1405 0.5798
Labor Force Participation Rate 0.0521 0.0411 0.093 0.3505 0.1548 0.0321 0.3298 0.2098
Leading Index 0.007 0.0072 0.3568 0.3175 0.0057 0.2102 0.0886 0.0005
Manufacturing (SIC) Production 0.7954 0.9839 0.9888 0.6546 0.8916 0.737 0.5727 0.6412
MNI Chicago PMI 0.23 0.3279 0.4435 0.9024 0.2628 0.2532 0.5425 0.1613
Monthly Budget Statement 0.0628 0.346 0.2227 0.4216 0.061 0.0568 0.4559 0.0346
NAHB Housing Market Index 0.1201 0.1735 0.9909 0.2074 0.1236 0.9731 0.0715 0.0377
New Home Sales 0.9156 0.9851 0.6794 0.686 0.9942 0.8126 0.7561 0.9777
New Home Sales MoM 0.3053 0.4056 0.4362 0.2628 0.6794 0.473 0.1449 0.6292
NFIB Small Business Optimism 0.754 0.742 0.6794 0.6794 0.5311 0.8121 0.6172 0.4853
Nonfarm Productivity 0.609 0.6193 0.8663 0.2677 0.4188 0.7812 0.4751 0.2879
PCE Core Deflator MoM 0.1804 0.1583 0.2378 0.0683 0.7076 0.0186 0.1985 0.3135
PCE Core Deflator YoY 0.5963 0.9192 0.1275 0.6964 0.9784 0.0907 0.5426 0.7773
PCE Deflator MoM 0.7685 0.79 0.9053 0.5889 0.7193 0.2599 0.1356 0.8617
PCE Deflator YoY 0.2844 0.5361 0.1256 0.3634 0.7518 0.086 0.1695 0.8456
Pending Home Sales MoM 0.8158 0.6056 0.9024 0.9935 0.8982 0.6324 0.888 0.7242
Pending Home Sales NSA YoY 0.673 0.3487 0.4398 0.9087 0.781 0.3799 0.861 0.7062
Personal Consumption 0.1163 0.3203 0.9495 0.2294 0.1305 0.868 0.1062 0.0546
Personal Income 0.2843 0.3714 0.1129 0.3127 0.2101 0.0523 0.2707 0.1503
Personal Spending 0.678 0.8254 0.8253 0.3447 0.2258 0.2539 0.1914 0.1629
Philadelphia Fed Business Outlook 0.0868 0.0434 0.449 0.2581 0.1398 0.3676 0.2143 0.0289
PPI Ex Food and Energy MoM 0.206 0.0851 0.1236 0.6208 0.2273 0.1185 0.4236 0.084
PPI Ex Food and Energy YoY 0.4723 0.1908 0.8916 0.9909 0.6691 0.3704 0.6944 0.4358
PPI Final Demand MoM 0.0851 0.0898 0.24 0.9899 0.2497 0.0665 0.9196 0.0526
PPI Final Demand YoY 0.1328 0.235 0.1249 0.8778 0.0272 0.0775 0.6319 0.0814
Real Personal Spending 0.1757 0.6699 0.2503 0.0976 0.1154 0.1401 0.0755 0.0514
Retail Inventories MoM 0.4232 0.7639 0.1877 0.9525 0.1287 0.2583 0.9526 0.1979
Retail Sales Advance MoM 0.7557 0.4813 0.4425 0.1315 0.6657 0.6313 0.1568 0.3665
Retail Sales Control Group 0.3802 0.3369 0.9924 0.4324 0.449 0.9828 0.1665 0.305
Retail Sales Ex Auto and Gas 0.0791 0.0464 0.6794 0.0619 0.2532 0.284 0.0202 0.2773
Retail Sales Ex Auto MoM 0.2886 0.2016 0.8946 0.1305 0.4301 0.7714 0.0974 0.4145
Richmond Fed Manufact. Index 0.3498 0.3933 0.2524 0.6794 0.4425 0.1311 0.4946 0.3196
S&P CoreLogic CS 20-City MoM SA 0.0402 0.0216 0.2456 0.0105 0.2524 0.1768 0.0058 0.2194
S&P CoreLogic CS 20-City YoY NSA 0.1227 0.1018 0.2628 0.4425 0.686 0.0598 0.2211 0.5328
S&P CoreLogic CS US HPI YoY NSA 0.2159 0.2603 0.1429 0.5714 0.8571 0.0751 0.448 0.871
Trade Balance 0.3588 0.2939 0.4294 0.686 0.1354 0.3291 0.6974 0.1359
U. of Mich. Current Conditions 0.8699 0.4701 0.879 0.9904 0.6491 0.6107 0.9854 0.4734
U. of Mich. Expectations 0.7509 0.6247 0.7299 0.6478 0.4458 0.7103 0.7167 0.34
U. of Mich. Sentiment 0.9769 0.8463 0.8456 0.8457 0.6905 0.8196 0.7684 0.5082
Unemployment Rate 0.1639 0.1696 0.0463 0.8588 0.4199 0.171 0.7705 0.162
Unit Labor Costs 0.532 0.5395 0.4892 0.8469 0.2057 0.4438 0.7722 0.2793
Wholesale Inventories MoM 0.6487 0.4644 0.8787 0.4998 0.8265 0.6047 0.5891 0.5095
Wholesale Trade Sales MoM 0.5499 0.5503 0.7863 0.2987 0.6074 0.7363 0.6027 0.4816

Figure 1 presents the results of the Tukey HSD test for China, the Eurozone, Germany
and Japan. Analogously, Figure 2 refers to Poland, the United Kingdom and the United
States. The groups have been assigned as follows: I – pre-crisis, II – crisis, III – post-crisis.

The Tukey HSD test provides more insightful information about differences in distribu-
tions than the ANOVA or Kruskall-Wallis tests. The Tukey HSD test does not only indicate
whether there is a statistically significant difference between groups, but also helps to un-
derstand which pair of groups causes that result. For example, when we look at the chart
for the Eurozone, we can prove that there is a statistically significant difference between
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Table 10: P-values of Kruskal-Wallis, ANOVA, Kolmogorov-Smirnov and Anderson-
Darling tests for Sentiment Indicator, per examined economies

Country K.W ANOVA K.S_1 K.S_2 K.S_3 A.D_1 A.D_2 A.D_3
China 0.5209 0.5656 0.6741 0.5824 0.2989 0.5828 0.5068 0.3246
Eurozone 0.0013 0.0164 0.0393 0.7086 0.0018 0.006 0.3777 0.0005
Germany 0.064 0.6128 0.0235 0.1268 0.4016 0.0117 0.0248 0.1996
Japan 0.042 0.0322 0.0131 0.1422 0.2792 0.0083 0.2886 0.1829
Poland 0.0746 0.249 0.0613 0.3991 0.0597 0.0642 0.2792 0.0527
United Kingdom 0.0098 0.0636 0.0252 0.1407 0.1595 0.0025 0.0502 0.0891
United States 0 0 0 0.3678 0.0018 0 0.1575 0.0003

periods I/II and between periods II/III, while there is no evidence of a difference for pair
I/III (this means that the difference in distributions of the sentiment indicator in periods I
and III is statistically not significant).

Figure 1: Visualization of the results of the Tukey HSD test for China, Eurozone, Germany
and Japan

Figure 2: Visualization of the results of the Tukey HSD test for Poland, the United Kingdom
and United States

The interpretation of the above visualizations of the Tukey HSD test for economies
under study is left to the reader.

For all economies, excluding China and Poland, we obtained significant differences
between the distributions in the periods under consideration (as per Table 10). In the case
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of China, the breach of 5% significance is quite large, although for Poland the differences
are only slightly greater than 5%.

As can be seen from columns K−S_1 and A−D_1, we should reject the null hypothesis
for the same sentiment’s indicator distributions before and during the crisis for the five
economies considered. From the p-values in columns K − S_2 and A−D_2, it follows
that the sentiment’s indicator distributions before and after the crisis are not significantly
different (except for Germany in the Anderson-Darling test). Lastly, columns K −S_3 and
A−D_3 indicate that the differences in distribution of the sentiment’s indicator during the
crisis and post-crisis time also appear, but not as significantly as in the pre-crisis versus
crisis period.

Therefore, the sentiment indicator seems to be a good proxy of the state of the economy.
This explanation might follow from the fact that the increased uncertainty of economic
forecasts, which is an attribute of the crisis period, makes the results of analysts’ projections
less reliable. In other words, surprises in macroeconomic data releases follow different
distributions in crisis and non-crisis periods. This conclusion is strongly supported by the
p-values of the Kolmogorov-Smirnov and Anderson-Darling tests reported above for the
three periods under consideration.

As observed in the previous section, the fraction of macroeconomic indicators exhibiting
significant distribution differences in the periods under consideration was moderate across
economies concerned. However, aggregation of individual surprises into country level sen-
timent makes most of the distribution differences strongly pronounced.

The next, final section summarizes the results, concludes and indicates future directions
for research.

6. Conclusions

A striking observation based on the empirical results is the relatively small percentage
of macroeconomic indicators exhibiting statistically significant differences in the distribu-
tions of the surprise indicator across all economic areas examined, taking into account the
proposed division of the data sample into three sub-intervals (pre-pandemic, pandemic and
post-pandemic). Strictly speaking, only 1 out of 26 indicators for China, 2 out of 26 for the
Eurozone, 1 out of 33 for Germany, 4 out of 57 for Japan, 2 out of 26 for Poland, 8 out 59
for the United Kingdom and 11 out of 101 for the United States.

However, when we consider the sentiment indicator defined in Section 5, we obtain a
different picture. The economic areas for which we found a statistically significant differ-
ence with respect to the sentiment indicator in the three sub-periods are the United States,
the Eurozone, the United Kingdom and Japan. Only China exhibits an insignificant differ-
ence in the sentiment indicator across these periods. In the case of Germany and Poland,
the Kruskall-Wallis and ANOVA tests do not coincide, while the Kruskal-Wallis test is al-
most significant in both cases and ANOVA is definitely not significant. At the first glance,
it might seem counter-intuitive that the aggregated approach leads to detecting more signif-
icant differences in distributions. However, in the case of the vast majority of the statical
tests, the power of the test as the function of the number of observations is strictly increas-
ing. Furthermore, using the relevance factor as the weighting coefficient guarantees that
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more important economic announcements are more impactful on the sentiment indicator’s
value than minor releases.

To the best of our knowledge, the methodology of the aggregated sentiment, where the
relevance factors are used as the weighting coefficients has been applied for the first time.
The second novelty of the paper is using the intraday data to calculate the sentiment.

The above-mentioned conclusions are also supported by the results of the Kolmogorov-
Smirnov and Anderson-Darling tests, which were performed separately for individual macroe-
conomic indicators and aggregated sentiment. Therefore, the sentiment indicator seems to
be more sensitive to the economic crisis, in comparison with the values of the surprise indi-
cator per single category of macroeconomic data announcements.

The next observation based on the Tukey HSD test is that the pre-pandemic and post-
pandemic periods with respect to the sentiment indicator are mostly convergent, while in
most cases both significantly differ from the pandemic period.

We found no evidence that the importance of the macroeconomic data release, measured
by the relevance indicator, impacts the distribution of the surprise indicator. Therefore, it
is quite improbable that financial analysts’ forecasts for the most important categories of
macroeconomic indicators are of better quality than for the minor ones - neither the mean
nor variance of the surprise indicator seems to be sensitive to the relevance factor.

As far as the direction of future research is concerned, we plan to examine the reaction
of various asset classes (for example stocks, equity indices, bonds, foreign exchange rates,
commodity prices, etc.) to macroeconomic data releases with a strong emphasis on the ex-
planatory power of the sentiment indicator in selected periods to determine trends in prices
and the volatility of securities. Intuitively, the higher the absolute value of the sentiment, the
more pronounced the price, volatility and trading volume movements should be. Further-
more, the sign (positive or negative) of the sentiment indicator should explain the direction
of the metric movements of the securities, mentioned above. We expect a sharper impact
for negative surprises (in other words, sentiment indicator values below 0).
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Bayesian and frequentist modelling of West African economic 
growth: a dynamic panel approach 

Nureni Olawale Adeboye1, Olumide Sunday Adesina2 

Abstract 

The empirical outcomes of previous studies examining the relationship between economic 
growth and socio-economic indicators have been inconclusive and conflicting. To further 
probe into the study area, the current research employed a dynamic panel model estimated 
via three robust dynamic panel data estimators of the generalized method of moment 
(GMM), frequentist instrumental variable (IV) and the Bayesian IV on real and simulated 
data. Various model performance criteria such as Wald statistics, leave-out-one cross-
validation and the Pareto k checks were used for validity verification. The results of the 
robust diagnostics checks and a model strength metric showed that the family of IV models 
outperformed the GMM. Thus, the estimation provided by the Bayesian IV is upheld and 
recommended in modelling dynamic panel data as it provides robust estimates of the 
parameters of interest. 

Key words: dynamic panel data, economic growth, generalized method of moment, 
instrumental variable, socio-economic indicators. 

1.  Introduction 

National economic development alludes to an expansion in the total efficiency of  
a nation or landmass. It is the amount more the economy produces than it did in the 
earlier period. To be exact, the correlation should eliminate the impacts of expansion 
(Becsi and Wang, 2002). Financial development is the advancement of Total national 
output (Gross domestic product) in the short, medium and long haul. It is the aftereffect 
of an expansion in esteem added delivered by every one of the organizations working 
inside a country. The increment in the worth added during a given period implies that 
the worldwide abundance of a country is rising and this shows itself in the development 
of per capita income and in a more significant level of prosperity. 
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A wide scope of studies has explored the variables fundamental to economic 
development utilizing varying calculated and strategic perspectives, these investigations 
have set accentuation on an alternate arrangement of informative boundaries and 
offered different bits of knowledge to the wellsprings of economic development 
(Lensink and Morrissey, 2006). Venture is the most major determinant of economic 
development distinguished in the literature. The significance appended to speculation 
has prompted a colossal measure of experimental investigations analyzing the 
connection among venture and economic development (Artelaris et al., 2007). It is 
additionally conceivable to accomplish total economic development without an 
expanded normal negligible efficiency yet through additional immigrants or higher 
rates of birth (Obadan, 2006). 

Basu et al. (2005) noticed that Africa is the world's least fortunate continent. 
Various nations have as of late arose out of common conflicts that have seriously 
interfered with their formative endeavors while in different pieces of the continent, new 
outfitted struggles have erupted. These contentions and other antagonistic factors, 
outstandingly helpless climate conditions and crumbling as far as exchange, have 
prompted misfortune in monetary energy in the district in the course of the most recent 
twenty years. The authors recommend that what is required is a maintained and  
a considerable expansion in genuine per capita Gross domestic product development 
rates in these nations, combined with huge enhancements in friendly conditions. 
Endeavor to appraise the African mainland development is dependent on its Gross 
domestic product advancement and resident's buying equality. The monetary and 
social circumstance in sub-Saharan Africa accordingly stays delicate and defenseless 
against homegrown and outside shocks. Speculation stays curbed, restricting endeavors 
to broaden financial designs and lift development (Nkurunziza and Bates, 2004). This 
is in sharp difference to the happenings in the OECD nations where expansion in 
reserve funds and venture rate lead to economic development (Becsi and Wang, 2002). 

Hu et al. (2014) suggest a generalized method of moment with individual specific 
fixed and threshold effects simultaneously. The issue of endogeneity in GMM was 
resolved by confirming that the symmetry conditions proposed by Arellano and Bond 
(1991) are legitimate. The proposed GMM estimator shows that the edge and incline 
boundary can be assessed precisely with consistency, and furthermore the finite sample 
dissemination of slant boundaries is well approximated by the asymptotic distribution 
(Blundell and Bond, 2000; Al-Sadoon et al., 2019). 

Bardi et al. (2016) established empirically a positive and critical connection between 
structural policy and economic development utilizing a generalized moment method 
developed within dynamic panel structure. Sharma (2018) equally employs 
generalized method of moment estimator to re-examine wellbeing development 
relationship utilizing an unequal panel of 17 developed economies. The estimator takes 
care of endogeneity issues and through alternate model specifications it was established 
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that population apply a positive and critical impact on both genuine income per capita 
just as development. 

A few other authors who have written extensively on the estimation of economic 
growth both in Africa and globally as well as the practical application of GMM 
technique in modelling dynamic panel data are Lichtenberg (1992); Kiviet (1995); 
Blundell and Bond (1998); Agiomirgianakis et al. (2002); Ajayi (2003); Bengoa and 
Sanchez-Robles (2003); Agbeyegbe (2006); Obadan (2006); Lensink and Morrissey 
(2006); Dreher (2006); Levina (2011); Meraj (2013) and Adeboye et al. (2023). While 
GMM estimators depends strongly on the ratio of variance of the individual-specific 
effect and the variance of the general error term (see, e.g. Bun and Carree 2005), the IV 
largely depends on their individual specific effects that are uncorrelated with the 
explanatory variables 𝑥௜௧. A recent technique with limited approach in the literature is 
the Bayesian inference, which provides robust estimates of parameter of interest given 
because it involves updating the information based on prior statistics (Adesina and 
Obokoh, 2024). Limited studies have employed Bayesian statistics especially in recent 
times to estimate the parameters of interest in panel data. Some of the studies include 
Cho and Zheng (2021).   

Dynamic panel estimation techniques were employed to establish the econometric 
bond between the selected macro-economic indicators of economic growth and 
purchasing power parity (PPP) across West African countries so that we can examine 
some desirable implications. Panel data has been established in the literature as all 
encompassing, in the areas of economic analysis [see the work of Adeboye and 
Agunbiade, 2019a and Adeboye and Agunbiade, 2019b]. Dynamic panel data 
estimation includes the work of Li et al. (2021) and Jin et al. (2021) who provided GMM 
estimation for dynamic panel models. The aim is to estimate the economic panel data 
with classical and Bayesian models using two-stage Least Square (2SLS) instrumental 
variable technique and compare with the GMM estimator proposed by Hu et al. (2014) 
to determine the approach that will provide the best estimates for dynamic panel. The 
adopted variables of measurement to validate the position of Basu et al. (2005) on the 
estimation of African continent growth are based on its GDP evolution and citizen’s 
purchasing parity.  The remaining part of the paper comprises Section 2, the material 
and methods, the results are presented in Section 3, and finally, Section 4 the provides 
conclusion.  

2. Materials and Methods 

The life data utilized were obtained mainly from UNESCO data site, which covers 
a period of 10 years ranging from 2008-2017 for selected West African countries as 
retrieved in the year 2018 while Monte Carlo simulation scheme was carried out using 
a data-generating procedure specified within a dynamic panel data model. 
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2.1. Model Specification 

The relational model for this study is specified as 

𝑙𝐺𝐷𝑃௜௧ ൌ  𝛽଴௜௧ ൅  𝛽ଵሺ𝑙𝑃𝑃𝑃ሻଵ ,௜௧ ൅ 𝛽ଶሺ𝑙𝐺𝑁𝐼ሻଶ,௜௧ ൅ 𝑒௜௧    (1) 

where 𝑖 and 𝑡 indicate the cross-sectional units (countries) and years under 
consideration respectively.  GDP is the gross domestic product, PPP is the purchasing 
power parity and GNI is the gross national income of the West African countries while 
𝒆𝒊𝒕 is the unestimated residual. Considering the fact that the countries are diverse,  
a panel unit root test was carried out on the variables through the adoption of IPS (2003) 
test for individual unit root process given as 

∆𝑦௜௧ = 𝜌௜௧𝑦௜,௧ିଵ + ∑ ∅௜௅∆y௜,௧ି௅ ൅  𝑧௜௧
/ 𝑦 ൅  𝑢௜௧

௣೔
௅ୀଵ         (2) 

The LPS test is based on the assumption that the unit root can differ across the 
cross-sectional units in the model. 

2.2. Estimation Methods 

Two dynamic panel data estimation methods of the generalized method of moment 
and instrumental variable were employed. GMM was estimated according to the 
Arellano and Bond approach having fully taken care of endogeneity phenomenon and 
IV estimated via a 2sls technique. 

2.2.1 Generalized Method of Moment (GMM) 

Considering the first order model 

  𝑦௜௧  = 𝑋௜௧β + 𝛿𝑦௜,௧ିଵ + 𝛼௜  + 𝜀௜௧       (3) 

and adopting the principle established by Hu et al. (2014), the first difference equation 
of (3) was observed to get rid of constant time of individual effects as 

∆  𝑦௜௧  = ∆𝑋௜௧ሺβሻᇱ 𝛼௜  + ∆𝑦௜,௧ିଵሺ𝛿ሻᇱ + ∆𝜀௜௧      (4) 
𝑦௜௧ − yi,t−1 = ∝௜  (𝑥௜௧ − xi,t−1)βᇱ  + (yi,t−1 − yi,t−2) 𝛿ᇱ + (𝜀௜௧− εi,t−1)   (5) 

Considering that αଵ ് αଶ, it was established that the orthogonality conditions that 
exist between lagged values of 𝑦௜௧ and the residual term 𝜀௜௧ are also valid in model (5). 
And without loss of generality, for any given t 

𝑋௜௧ሺβሻ ൌ ሺ𝑥௜௧ , 0ሻᇱ𝑜𝑟 𝑋௜௧ሺβሻ ൌ ሺ0. 𝑥௜௧ሻ′     (6) 
And the first difference yields  

∆𝑋௜௧ሺβሻ ൌ 𝑋௜,௧ − Xi,t−1         (7) 

It should be noted that Xi,t−1 satisfies the conditions of endogeneity and 𝜺𝒊𝒕′𝒔 are 
serially uncorrelated. Thus, the orthogonality conditions are given by 

𝐸൫𝑋௜,௧ି௦ ∆𝜀௜௧൯ ൌ 0,      𝑓𝑜𝑟 𝑠 ൌ 1,⋯ , 𝑡 െ 1; 𝑡 ൌ 2,⋯ ,𝑇 
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Thus, within T observations in group i, Arellano and Bond (1995) suggested the 
fact that 

E൦൮
𝑿𝟏𝒊𝒕
𝑿𝟐𝒊𝒕
𝒛𝟏𝒊
𝑿ഥ𝟏𝒊

൲  ሺ𝜼𝒊𝒕 ି 𝜼ഥ𝒊𝒕ሻ൪ ൌ 𝟎   for some s ≠ t.     (8) 

In principle, each valid instrument is extrinsic with respect to 𝜂௜௧   subject to 
current, lagged, and future periods. Thus, there are a total of [T(C1 + C2)+ D1 + C1)] 
moment conditions for every observation. 

Let   𝑾𝒊 ൌ

⎝

⎜
⎛𝒘𝒊𝟏

/

𝒘𝒊𝟐
/

⋮

𝒘𝒊𝑻
/
⎠

⎟
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      and    𝒚𝒊 ൌ

⎝

⎜
⎛𝒚𝒊𝟏

/

𝒚𝒊𝟐
/

⋮

𝒚𝒊𝑻
/
⎠

⎟
⎞

       (9) 

𝑊௜ is assumed to be a T× (1+ C1 + C2 + D1 +D2) matrix and T +1 observations 
available on 𝑦௜. Considering a matrix 𝑉௜  consisting of Ti − 1 rows with instrument v/

it  

given as 

 𝑽𝒊 ൌ ൦

𝒗𝒊𝟏
/   𝟎/        ⋯ 𝟎/

⋮    𝒗𝒊𝟏
/         ⋱ ⋮

 𝟎/ ⋯ 𝒂𝒊
/

൪               (10) 

Considering the transformation matrix, H, constructed as   

H = ቀ 𝑴𝟎𝟏

𝑻ష𝟏𝒊ᇲ𝑻ቁ           (11) 

where M01 denotes the first T −1 rows of the matrix (M0) that creates deviations from 
group means. Thus, H replaces the last row of M0 with a row of 𝑇ିଵ.  

Let the T × 1 column vector of disturbances be represented as 
𝜂௜ = [ηi1, ηi2, . . . ,𝜂௜்] = [(εi1 + 𝑢௜), (εi2 + 𝑢௜), . . . , (𝜀 ௜்+ 𝑢௜ )]/,   (12) 

then 

𝑯𝜼= ቌ
𝜼𝒊𝟏ି 𝜼ഥ𝒊

⋮
𝜼𝒊,𝑻ష𝟏𝜼ഥ𝒊

𝜼ഥ𝒊

ቍ 

 E[𝑉/𝐻ఎ௜ ] = E[𝑔௜ ] = 0.         (13) 
The moment condition that follows from (13) is given as 

 𝑝𝑙𝑖𝑚 𝑛ିଵ ∑ 𝑉௜
/𝐻ఎ೔

௡
௜ୀଵ         (14) 

Explicitly given as 

 𝑝𝑙𝑖𝑚  𝑛ିଵ ∑ 𝑉௜
/𝐻௡

௜ୀଵ

⎣
⎢
⎢
⎢
⎡ 𝑦௜ଵ െ  𝛿𝑦௜଴ െ  𝑥ଵ௜ଵ

/ 𝛽ଵെ 𝑥ଶ௜ଵ
/ 𝛽ଶ െ 𝑧ଵ௜

/ 𝛼ଵ െ 𝑧ଶ௜
/ 𝛼ଶ

𝑦௜ଶ െ  𝛿𝑦௜ଵ െ  𝑥ଵ௜ଶ
/ 𝛽ଵെ 𝑥ଶ௜ଶ

/ 𝛽ଶ െ 𝑧ଵ௜
/ 𝛼ଵ െ 𝑧ଶ௜

/ 𝛼ଶ
⋮

𝑦௜் െ  𝛿𝑦௜,்ିଵ െ  𝑥ଵ௜்
/ 𝛽ଵെ 𝑥ଶ௜்

/ 𝛽ଶ െ 𝑧ଵ௜
/ 𝛼ଵ െ 𝑧ଶ௜

/ 𝛼ଶ⎦
⎥
⎥
⎥
⎤

         ሺ15) 

 
 ൌ 𝑝𝑙𝑖𝑚  𝑛ିଵ ∑ 𝑚௜

௡
௜ୀଵ  = 𝑝𝑙𝑖𝑚𝑚ഥ                (16) 
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Then the GMM estimator 𝜃෠ is obtained by minimizing  
 𝑞௜௧ ൌ 𝑚ഥ /𝐴𝑚ഥ          (17) 

The best weighting result of matrix A is derived as the inverse of the asymptotic 
covariance matrix of √𝑛𝑚ഥ  and the solution to the minimizing problem of 𝑞௜௧ with 
respect to the parameter vector θ is the GMM estimator given as 

𝜃෠ீெெ = [(∑ 𝑊௜
/𝐻𝑉௜ሻሺ∑ 𝑉௜

/𝐻𝜂௜𝜂௜
/𝐻/𝑉௜

௡
௜ୀଵ ሻିଵሺ𝑉௜

/𝐻/𝑊௜ሻ
௡
௜ୀଵ ]-1 

          [(∑ 𝑊௜
/𝐻𝑉௜ሻሺ∑ 𝑉௜

/𝐻𝜂௜𝜂௜
/𝐻/𝑉௜

௡
௜ୀଵ ሻିଵሺ𝑉௜

/𝐻/𝑊௜ሻ
௡
௜ୀଵ ]     (18) 

2.2.2. Instrumental Variable (IV) 

This is used to estimate causal relationships when controlled experiments are not 
feasible. Going by equation (3), the first order model becomes 

𝑦௜௧ = 𝑥௜௧
/ β + 𝑧௜

/α +𝜀௜௧.          (19) 
The underlying assumption of equation (19) clearly specifies that individual 

specific effects 𝑧௜ are uncorrelated with the explanatory variables 𝑥௜௧. Thus, the model 
becomes 

𝑦௜௧= x/
1i tβ1 + x/

2i tβ2 + z/
1iα1 + z/

2iα2 +εit + ui     (20) 
where β = (β1 ,β2) and  α = (α1 α2). 

The strategy for estimation involved deviations of group means to have 
yit − 𝑦തi = (x1it − 𝑥̅1i)/β1 + (x2it − 𝑥̅2i)/β2 + εit - 𝜀௜̅.       (21) 

Representing the model variables as a weighted instrument given as 

𝑤௜௧
/ = (𝑥ଵ௜௧

/ , 𝑥ଶ௜௧
/  , 𝑧ଵ௜

/  , 𝑧ଶ௜ᇱ  ).       (22) 
The transformed variables  of equation (22) becomes 

𝑤௜௧
∗/ = 𝑤௜௧

/  - 𝜃෠𝑤ഥ௜
/ and 𝑦௜௧∗  = 𝑦௜௧

/  - 𝜃෠𝑦ത௜
/       (23) 

where  𝜃 ෡  is a BLUE of θ. Thus, instrumental variables are given as 

𝑣௜௧
/  = [(x1it − 𝑥̅1i)/ + (x2it − 𝑥̅2i)/ + z1t - 𝑥̅ଵ௧ ]      (24) 

And these are pile up in the rows of matrix 𝑛𝑇𝑥ሺ𝐶1 ൅  𝐶2ሻ ൅  𝐷1 ൅  𝐶1ሻ  denoted 
as V. The time-invariant variables and group means are repeated for the 3rd and 4th set 
of instruments, and the instrumental variable estimator becomes 

ሺ𝛽𝛼ሻ௜௩= [(W∗/V)(V/V)−1(V/W∗)]−1[(W∗/V)(V/V)−1(V/y∗)].     (25) 
The Bayesian alternative to the frequentist IV is presented in Section 2.3.  

2.3. The Bayesian Implementation for the Instrumental Variable (IV) 

Beyond the frequentist IV, the Bayesian IV was conducted based on multilevel 
approach. The Bayesian statistics involves the combination of likelihood and the prior 
distribution to obtain another distribution known as posterior distribution.  
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2.3.1. Prior Distributions and Sampling procedure 

Prior distribution at group level assumed that parameters of interest come from 
a multivariate normal distribution having zero mean and unknown covariance matrix Σ . 

                                                             𝜖~𝑁ሺ0,𝚺ሻ                                                             ሺ26ሻ 
Covariances between group-level parameters are generally of different groupings 

factors and assumed to be zero. The model can be simplified to 
                                                                 𝜖௜~𝑁ሺ0,𝚺𝒊ሻ                                                          ሺ27ሻ 

where i  indexes grouping factors. In cases where there are different levels with additional 
level indexed by 𝑗 and the grouping factors are not dependent, Eq. (27) leads to:  

                                                              𝜖௜௝~𝑁൫0,𝐌𝒋൯                                                         ሺ28ሻ 
The model parameters will result from the covariance matrices 𝐌𝒋, and No-U-Turn 

Sampler (NUTS) to sample 𝐌𝒋 as recommended by Hoffman and Gelman (2014). The 
parameters of 𝜧௝ are selected in terms of correlation matrix 𝜴𝒋 and a vector of standard 
deviations  𝜎௝ through  

 𝜧௝ ൌ 𝑫൫𝜎௝൯𝜴𝒋𝑫൫𝜎௝൯                                                 (29) 

2.3.2. The Sampling and Diagnostics Checks 

The sampling method is the NUTS Sampler. NUTS is an extended Hamiltonian 
Monte-Carlo (HMC) which allows setting parameters and eliminates the need for 
hand-tuning Hoffman and Gelman (2014). Software package by R core team (2024) was 
used to fit the model with brms package by Bürkner (2017), which uses stan processor. 
Diagnostic plots for acceptance of NUTS plots were conducted, Adesina (2021) has the 
details of the procedure.  

The study adopted the Leave-one-out cross-validation (LOO-CV) for the 
diagnostic tests. In Bayesian analysis, the data are repeatedly subdivided into a training 
set  𝑦௧௥௔௜௡ and a holdout set 𝑦௛௢௟ௗ௢௨௧  with the objective of fitting 𝑦௧௥௔௜௡  yielding  
a posterior distribution  

                                 𝑝௧௥௔௜௡ሺ𝜃ሻ ൌ 𝑝௧௥௔௜௡ሺ𝜃|𝑦௧௥௔௜௡ሻ                                      (30) 
The Bayesian LOO-CV estimate of out-of-sample predictive fit is 

 𝑝𝑑௟௢௢௖௩ ൌ ∑ 𝑙𝑜𝑔 𝑝௣௢௦௧ሺି௜ሻ
௡
௜ୀଵ ሺ𝑦௜ሻ                       (31) 

and estimated as   
      ∑ 𝑙𝑜𝑔 ቀ

ଵ

ௌ
∑ 𝑙𝑜𝑔 𝑝 ሺ𝑦௜|𝜃௜௦ሻ
ௌ
௦ୀଵ ቁ௡

௜ୀଵ               (32) 

To compare between two or more models the lowest LOO suggests better model fit.    
The k Pareto also assesses the reliability and approximate convergence rate of the 

Pareto smoothed importance sampling (PSIS). It follows that if 𝑘 ൏ 0.5 (‘good’) then 
the central limit theorem holds. If 0.5 ൑ 𝑘 ൏ 1, (‘ok’) then the variance of the raw 
importance ratios is infinite, but the mean exists. On the other hand, if 𝑘 ൐ 0.7 (‘bad’), 
unreasonable convergence rates are observed and unreliable Monte Carlo error 
estimates, and finally, if 𝑘 ൒ 1 (‘very bad’), the variance and the mean of the raw 
importance ratios does not exist. 
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2.4 Monte Carlo Simulation Scheme 

Monte Carlo simulations method was used to generate alternative data necessary 
for fitting and validation of the suitability of the proposed economic growth model. 
According to Hu et al. (2014), the data generating procedure (DGP) is given by 

𝑦௜௧ = δyi,t−1 + x/
1itβ1 + x/

2itβ2 + z/
1i𝛼ଵ + z/

2i𝛼ଶ + 𝜀௜௧+ 𝑢௜௧      (33) 
𝑓𝑜𝑟 𝑖 ൌ 1,⋯ ,𝑁 𝑎𝑛𝑑 𝑡 ൌ 1,⋯ ,𝑇 𝑤ℎ𝑒𝑟𝑒 𝜀௜௧~𝑖. 𝑖.𝑑.𝑁ሺ0,1ሻ, 𝑢௜௧~𝑖. 𝑖.𝑑.𝑁ሺ0,1ሻ, 
𝛼ଵ ൌ 𝛼ଶ ൌ 0. 𝑧௜௧,  𝑢௜௧ , 𝜀௜௧ are mutually independent random variables.  

The design of Monte Carlo simulations was carried out to further examine both the 
effectiveness and finite sample properties of different estimators of parameter α. The 
cross-sectional units are as small as 20 while 𝑇 ൌ 10 is the largest time dimension used 
in the study. A balanced panel data was first simulated and the data was made dynamic 
by the deletion of 2nd time period (time 4) for all individuals. It was assumed rho and 
alpha are 0, while the parameters used are uniformly distributed.  

3.  Results and Discussions 

The results of both real life and simulated data are presented in the following 
tables: 

Table 1: Results of Generalized method of Moments (GMM) 

                            Real Life Data   Simulated Data 
Economic Growth 

Indicators 
GMM (One step) 

Parameter Estimate 
GMM (One step) 

Parameter Estimate 
l_GDP(-1)   0.936024        (0.0001)  0.0727352      (0.9891) 
Constant −0.00519         (0.9951) -0.0088614     (0.8455)     
l_PPP   0.32395          (0.1575) -0.0237805     (0.7934) 
l_GNI   0.04064          (0.4341)  0.0016380     (0.9269) 

Table 2: GMM Model Diagnostic  

Table 3: Results of Instrumental Variable 

                                   Real Life Data Simulated Data 
Test Estimates Estimates 

Test for AR(1) errors     -1.33091        (0.1832) -0.7451126              (0.4562) 
Test for AR(2) errors      -0.47378       (0.6357)  0.1865387             (0.85202) 
Sargan over-identification 
test 

       87.3077      (0.0001)    14.40015               (1.0000) 

Wald (joint) test        6298.11     (0.0000) 0.1324148               (0.9979) 

Real Life Data Simulated Data 
Indicators 2SLS Estimates Indicators 2SLS Estimates 

Constant   13.1335        (4.42e-112)*** Constant              12.47        (2e-16)*** 
PPP  -3.63842             (0.0238)** (gdp,1)   0.000001408      (2e-16)*** 
GNI      5.6721         (7.36e-06)* PPP  -0.00007405        (0.767)  
  GNI    0.00003354       (0.550) 
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Table 4: IV Model Diagnostic  

Real Life Data Simulated Data 
Test Estimates Estimates 

F- statistic 219.195        (0.0000) 823.615           (2e-16)*** 
Wald (joint) test 18.5464        (0.0001) 226900        (2.2e-16)*** 
𝑅ଶ 0.69433         0.9997 

Note that the P-values are in parenthesis.  

GMM and IV models specified from Tables 1 and 3 are given as 
𝑙ீ஽௉೔೟ ൌ  െ0.00519 ൅ ൫0.93602ீ஽௉ሺ௜௧ିଵሻ൯ ൅  0.32395ሺ𝑙௉௉௉ሻଵ ,௜௧ ൅ 0.04064ሺ𝑙ீேூሻଶ,௜௧                    (34) 
𝑙ீ஽௉೔೟ ൌ  െ0.00886 ൅ ൫0.0727ீ஽௉ሺ௜௧ିଵሻ൯ െ 0.0237ሺ𝑙௉௉௉ሻଵ ,௜௧ ൅ 0.0406423ሺ𝑙_𝐺𝑁𝐼ሻଶ,௜௧                 (35) 
𝐺𝐷𝑃௜௧ ൌ  13.1335 െ 3,63842ሺ𝑃𝑃𝑃ሻଵ ,௜௧ ൅5.6721ሺ𝐺𝑁𝐼ሻଶ,௜௧               (36) 

     𝐺𝐷𝑃௜௧ ൌ  12.47 ൅ 0.000001408ሺ𝐺𝐷𝑃 ଵሻ െ 0.00007405ሺ𝑃𝑃𝑃ሻଵ ,௜௧ ൅0.00003354ሺ𝐺𝑁𝐼ሻଶ,௜௧          (37) 

Models (34) – (37) represent the empirical growth models estimated from both real 
life and simulated data. It is pertinent to note that models from the GMM technique 
give negative projections of African economic growth at constant values of the 
predictors, despite the absence of exogeneity while that of IV give positive projections 
with a more superior significant values as presented in Tables 2 and 4. Thus, the model 
in which its explanatory variables are more significant with improved validity checks is 
that of the instrumental variable. 

The validity checks further revealed the absence of serial correlation among the 
variables due to the results of AR(1) and AR(2)  while the Sargan test validates the 
instrumental variables. Similarly, the results reported in Table 3 shows that this 
instrument can be considered as exogenous given that the null hypothesis is not rejected 
at both 1% and 5% percent level, as posited by Bascle (2008). The other two 
macroeconomic instruments were individually and simultaneously tested for exogene-
ity to increase our confidence that both instruments can be considered as exogenous 
in this setting. Table 5 contains the estimates based on Bayesian Multilevel IV model.  

Table 5: Bayesian Multilevel IV model  

Specification Estimate Est.Error l-95%CI u-95%CI 𝑹෡  
Bulk 
ESS 

Tail 
ESS 

sd(GDP_Intercept) 181914.25 109221.3 5516.60 409371.7 1.01 126 185 
sd(GDP_GNI) 0.00 0.00 0.00 0.00 1.00 231 440 
sd(GDP_PPP) 316677.86 214973.8 7218.73 66169.88 1.01 109 154 
sd(logGDP_Int.) 2.60 0.48 1.83 3.71 1.00 282 343 
sd(logGDP_PPP) 1.19 0.55 0.21 2.41 1.00 387 412 
sd(logGDP_GNI) 0.00 0.00 0.00 0.00 1.00 262 306 
cor(GDP_Int, GDP_GNI) 0.02 0.47 -0.83 0.87 1.02 85 221 
cor(GDP_Int, GDP_PPP) 0.05 0.49 -0.83 0.88 1.00 239 457 
cor(GDP_GNI, GDP_PPP) -0.02 0.48 -0.88 0.80 1.00 446 473 
cor(logGDP_Int, logGDP_PPP) -0.57 0.28 -0.95 0.08 1.00 534 383 
cor(logGDP_Int, 
logGDP_GNI) 0.31 0.51 -0.78 0.95 1.00 175 332 
cor(logGDP_PPP, logGDP_GNI) -0.04 0.49 -0.86 0.86 1.00 253 425 

NB: Int-Intercept. 
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There are two models in Table 5, the standard deviation estimate model, and the 
correlation model. The estimates are provided in the second column. The estimation 
error in the third column, the upper and lower 96% confidence interval in the fourth 
and fifth column. The Rhat (𝑅෠) in the sixth column which serves as potential scale 
reduction factor on split chains. The Bulk ESS, and Tail ESS in the seventh and eight 
column. The Bulk ESS is a diagnostic test to determine sampling efficiency while Tail 
ESS is used to determine the sampling efficiency in the tails of the posterior respectively.  

The Bayesian multilevel IV model based on Table 5 can be expressed in terms of 
random intercepts and random slope, correlations between predictors and Bayesian 
priors as given in equations (38) and (39) below, which represent the models with 
standard deviation and correlation respectively:   

𝐺𝐷𝑃௜௧ ൌ  181914.25 ൅ 0.000ሺ𝐺𝑃𝐷_𝐺𝑁𝐼ሻሺ௜௧ሻ ൅  316677.86ሺ𝐺𝐷𝑃_𝑃𝑃𝑃ሻ ௜௧ ൅

2.60ሺ𝐺𝐷𝑃_𝐼𝑛𝑡𝑟𝑒𝑐𝑒𝑝𝑡ሻ௜௧ ൅ 1.19ሺ𝑙𝑜𝑔𝐺𝐷𝑃_𝑃𝑃𝑃ሻ ௜௧  ൅  0.000ሺ𝑙𝑜𝑔𝐺𝑃𝐷_𝐺𝑁𝐼ሻሺ௜௧ሻ             (38) 
𝐺𝐷𝑃௜௧ ൌ  0.02ሺ𝐺𝑃𝐷_𝐼𝑛𝑡ሻሺ𝐺𝐷𝑃_𝐺𝑁𝐼ሻሺ௜௧ሻ ൅ 0.05ሺ𝐺𝑃𝐷_𝐼𝑛𝑡ሻሺ𝐺𝐷𝑃_𝑃𝑃𝑃ሻሺ௜௧ሻ െ
0.02ሺ𝐺𝑃𝐷_𝐺𝑁𝐼ሻሺ𝐺𝐷𝑃_𝑃𝑃𝑃ሻሺ௜௧ሻ െ 0.57ሺ𝑙𝑜𝑔𝐺𝐷𝑃_𝐼𝑛𝑡ሻሺ𝑙𝑜𝑔𝐺𝐷𝑃_𝑃𝑃𝑃ሻ ௜௧ ൅
 0.31ሺ𝑙𝑜𝑔𝐺𝑃𝐷_𝐼𝑛𝑡ሻሺ𝑙𝑜𝑔𝐺𝐷𝑃_𝐺𝑁𝐼ሻ ௜௧ െ 0.04ሺ𝑙𝑜𝑔𝐺𝐷𝑃_𝑃𝑃𝑃ሻሺ𝑙𝑜𝑔𝐺𝐷𝑃_𝐺𝑁𝐼ሻ௜௧             (39) 

The models predicted GDP using several predictors (𝐺𝐷𝑃_𝐺𝑁𝐼,𝐺𝐷𝑃_𝑃𝑃𝑃, 
log𝐺𝑃𝐷_𝐺𝑁𝐼, 𝑙𝑜𝑔𝐺𝑃𝐷_𝐺𝑁𝐼 𝑎𝑛𝑑 𝑙𝑜𝑔𝐺𝑃𝐷_𝐼𝑛𝑡ሻ. The random intercept estimated in equation 
(38) accounts for the variation across units and it is assumed to follow a normal 
distribution with a standard deviation of 181914.25, which indicates substantial 
variation in GDP across countries. The zero variation between GDP and GNI implies 
that the countries’ GNI has impacted favorably on the GDP without any variation while 
that of PPP suggests a large variation in the GDP of countries as occasioned by the 
countries’ PPP. According to the correlation estimates provided in equation (39), the 
predictors are correlated with each other at different degrees, with correlations close to 
zero, suggesting little association between variables.  

The estimated standard errors of the model as contained in the column 3 of Table 5 
are negligible except for that of the interaction between GDP and PPP. This implies that 
the estimates of all other predictors are reliable with negligible uncertainty in their 
estimation. This was supported with credible intervals provided for all the predictors, 
with intervals which include zero except for that of PPP mentioned earlier. All the 𝑅෠  
are greater than 1.00 in all the cases indicating a good convergence for the Markov 
Chain Monte Carlo (MCMC) chains, with high values of ESS (ESS > 100), which 
suggests that the estimates are reliable and that the posterior distribution has been 
adequately sampled. This opinion is in tune with the work of Bürkner (2017) and 
Jiménez et al. (2022).  

Table 6 contains the estimates of the response variables based on the intercept. 

Table 6: Comparison of Intercept Estimates   

Specification Estimate 
Est. 

Error 
l-95% CI u-95% CI 𝑹෡  

Bulk 
ESS 

Tail 
ESS 

GDP_Intercept 4702.15 3421.77 -2638.15 10147.91 1.06 21 59 
logGDP_Intercept 11.86 0.64 10.53 13.10 1.01 94 226 
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From Table 6, the regression estimate of the ሺ𝐺𝐷𝑃ሻ௜௡௧ ൌ 4702.15, zero included, 
while ሺ𝑙𝑜𝑔𝐺𝐷𝑃ሻ௜௡௧ ൌ 11.86 is significant. The Rhat is close to 1 in both cases, which 
shows that the chain converged. The Bulk ESS and Tail ESS of ሺ𝐺𝐷𝑃ሻ௜௡௧ are less than 
100, whereas Tail ESS of ሺ𝑙𝑜𝑔 𝐺𝐷𝑃ሻ௜௡௧ is greater than 100 showing that  there is efficient 
sampling in the tails of the posterior distribution.  

Draws were sampled using sampling (NUTS). For each parameter, Bulk ESS and 
Tail ESS are effective sample size measures, and Rhat is the potential scale reduction 
factor on split chains (at convergence, Rhat = 1). Table 7 shows the posetrior summary. 
 

 
Figure 1: Acceptance diagnostic checks for NUT Sampler 

Figure 1 shows that the acceptance probability of the sampler is nearly 100%, which 
shows the efficiency of the sampler for the model. The density on the upper right in 
Figure 1 shows that the data are well distributed. The accept_stat_ in Figure 1 shows 
that the sample cluster around 1.00 and majority close to 1.00 showing a high 
acceptance rate.  

Table 7: Posterior Distribution Estimates 

Specification Estimate Est.Error Q2.5 Q97.5 
b_GDP_Intercept 4.7021e+03 3.4217e+03 -2.6381e+03 1.0147e+04 
b_logGDP_Intercept 1.1860e+01 6.4158e-01 1.0531e+01 1.3098e+01 
sd_ID__GDP_Intercept 1.8191e+05 1.0922e+05 5.5165e+03 4.0937e+05 
sd_ID__GDP_GNI 1.7202e-07 5.0712e-08 9.3678e-08 2.8880e-07 
sd_ID__GDP_PPP 3.1667e+05 2.1497e+05 7.2187e+03 7.6616e+05 
sd_ID__logGDP_Intercept 2.6008e+00 4.7777e-01 1.8265e+00 3.7144e+00 
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Table 7: Posterior Distribution Estimates  (cont.) 

Specification Estimate Est.Error Q2.5 Q97.5 
sd_ID__logGDP_PPP 1.1864e+00 5.5401e-01 2.1320e-01 2.4061e+00 
sd_ID__logGDP_GNI 1.0017e-13 6.7751e-14 3.2062e-14 2.8442e-13 
cor_ID__GDP_Intercept 
__GDP_GNI 2.1594e-02 4.7442e-01 -8.2537e-01 8.7270e-01 
cor_ID__GDP_Intercept 
__GDP_PPP 4.5414e-02 4.9268e-01 -8.2671e-01 8.8462e-01 
cor_ID__GDP_GNI 
__GDP_PPP -2.2093e-02 4.7607e-01 -8.8198e-01 8.0275e-01 
cor_ID__logGDP_Intercept 
__logGDP_PPP -5.6823e-01 2.8381e-01 -9.4641e-01 7.9702e-02 
cor_ID__logGDP_Intercept 
__logGDP_GNI 3.0527e-01 5.0828e-01 -7.8195e-01 9.4885e-01 
cor_ID__logGDP_PPP 
__logGDP_GNI -4.3449e-02 4.8786e-01 -8.5531e-01 8.6349e-01 
sigma_GDP 2.7149e+05 1.6926e+04 2.4059e+05 3.0696e+05 
sigma_logGDP 3.3815e-01 2.2685e-02 2.9746e-01 3.8724e-01 
Intercept_GDP 4.7021e+03 3.4217e+03 -2.6381e+03 1.0147e+04 
Intercept_logGDP 1.1860e+01 6.4158e-01 1.0531e+01 1.3098e+01 
rescor__GDP__logGDP 7.0127e-01 4.7306e-02 5.9782e-01 7.8346e-01 

Table 7 shows the posterior summary, which shows the model is similar to that of 
the estimates in Table 5. It was computed from 1000 by 143 log-likelihood matrix. The 
models for the standard deviation and the correlation estimates can as well be specified 
in the neighborhood of model (38) and (39). Table 8 and Table 9 contain the leave-out-
one cross validation estimates and Pareto k diagnostic tests.  

Table 8: LOO 

Specification Estimate SE 
elpd_loo -2031.1 76.6 
p_loo 69.5 34.4 
Looic 4062.3 153.3 

The elpd_loo (-2031.1) is the Bayesian leave-one-out (LOO) estimate of the 
expected log pointwise predictive density (ELPD), it can either be positive or negative. 
Large ELPD values indicate good estimated predictive performance, when comparing 
models, a larger ELPD suggests a better predictive performance.  The p_loo is the 
difference between elpd_loo and the non-cross-validated log posterior predictive 
density. If p_loo < the number of parameters 𝑝, then the model is likely to be 
misspecified. The p_loo is 69.5 greater than the number of parameters.  

Table 9: Pareto k diagnostic values 

Specification Count Pct. Min. ESS 
(-Inf, 0.67] (good) 139 97.2% 71      
(0.67, 1]    (bad) 1 0.7% - 
(1, Inf)     (very bad) 3 2.1% -     
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Table 9 shows that out of 143 data points, 139 (97.2%) fall under good samples, 1 
(0.7%) falls under bad sample, while 3 (2.1%) fall under very bad samples. The model 
proved to be a very good one.  

Table 10 shows the 𝑅ଶ statistics for both Bayes and (leave-out-one) LOO.  

Table 10: Measure of Determination for Bayes and LOO Estimates 

Specification Estimate Est.Error Q2.5 Q97.5 
 Baye_R2 
R2GDP 0.9174490 0.005425372 0.9055567 0.9261627 
R2logGDP 0.9796951 0.001253107 0.9770527 0.9819441 

 LOO_R2 
R2GDP 0.9150547 0.05972399 0.7529397 0.9818688 
R2logGDP 0.9758178 0.01030771 0.9491834 0.9894607 

The 𝑅ଶ for both Bayes and LOO are very high with the 𝑅ଶ values of  0.9174490 and 
0.9150547 (91.75% and 91.51%) respectively, higher than that of frequentist IV model 
(0.69433). The two tail 95% confidence interval Q2.5 and Q97.5 shows that both 𝑅ଶ are 
significant since the interval does not include zero.  

4.  Conclusions 

Instances of African economic development have become the concern of many 
international agencies and governments at various levels, hence the needs for its 
continuous evaluation. Moreover, the opinions posited by previous studies examining 
the relationship between economic growth and socio-economic indicators have been 
indecisive and conflicting due to different sample periods, variables used, countries 
studied and econometric techniques employed.  Thus, dynamic panel data estimation 
techniques of the generalized method of moment and instrumental variables (both the 
classical and the Bayesian) were employed to revisit the estimation. GMM was 
estimated according to the Arellano and Bond approach having fully taken care of 
endogeneity phenomenon as established by Hu et al. (2014) and IV estimated via a two-
stage least square (2SLS) technique; it was discovered that the instrumental variable 
technique outperformed GMM based on robustness of the estimated models and the 
adopted model selection criteria. The preferred technique works well for both life and 
simulated data and Monte Carlo simulations reveal that the two methods have very 
good finite sample performance and give a positive projection of African economic 
growth compared to GMM, which gives a negative projection with weak validity 
criteria.  

It is pertinent to emphasize the robustness of the adopted Bayesian IV in providing 
more reliable policy insights in terms of its consistency in handling endogeneity issues 
in data-driven approaches, which can improve the accuracy of policy recommenda-
tions. As established with the fitted IV models, policy makers should prioritize the 
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growth of the countries national income and create more leverage in the purchasing 
power parity of citizenries to enhance sustainable economic development. 

It is pertinent to note that the greater focus of this current research is in the area of 
opinionating a robust estimation technique for a dynamic panel model through the 
modeling of African economic growth, and this has been vigorously established in the 
Bayesian IV. This technique, however, is recommended for the expedition of current 
economic data with more diverse econometric variables for a more robust contribution 
to the field of econometrics, as it concerns the modeling of economic growth.  
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Exploring the stochastic production frontier in the presence of 
outliers: a simulation study 

Anik Djuraidah1, Ismail Pranata2 

Abstract 

Technical efficiency measures the performance of an observation unit in generating outputs 
effectively. The stochastic production frontier (SPF), which is a commonly used method for 
this purpose, determines how close a unit is to achieving maximum output based on its 
inputs. However, the outliers in the data can distort the accuracy of SPF models. To address 
this issue, various error distribution modifications like gamma, Student’s-t, Weibull and 
Rayleigh distributions have been proposed. However, there is limited research comparing 
these distributions in handling outliers. This study describes a simulation conducted to 
compare five SPF models: Normal-half Normal, Normal-Gamma, Normal-Weibull, 
Normal-Rayleigh, and Student’s-t-half Normal. Applying simulated data across nine 
scenarios with varying data amounts and outlier percentages, the findings demonstrate that 
the SPF Student’s t-half Normal model provides the most accurate prediction of technical 
efficiency. Using a heavy-tailed distribution, such as the Student's t distribution, for the 
disturbance component is more effective in handling outliers in the response variable than 
modifying the inefficiency of the component distribution. 

Key words: robust, outlier, simulation, stochastic production frontier, technical efficiency. 

1.  Introduction 

Stochastic Frontier Analysis (SFA) is one of the analytical methods used to measure 
the performance of individual units by estimating the technical efficiency level in trans-
forming input into output. SFA modelling in performance measurement assumes that 
the outputs generated by individual units are not always efficient or do not reach the 
maximum output limit (Coelli et al. 2005). Additionally, the SFA model assumes that 
inefficiency effects do not solely cause the deviations occurring in SFA modelling but 
can also be attributed to factors of statistical errors/disturbances (noise) (Mariyono 
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2006). The error component of SFA is a combination of inefficiency and disturbance 
components. Both components are assumed to have  specific parametric distributions. 
The disturbance component has a symmetric distribution that is assumed to be 
independently and identically distributed, while the inefficiency component is assumed 
to have a one-sided distribution independent of the disturbance component (Aigner et 
al. 2023).  

SFA modelling is supported by only one assumption: the production approach that 
can utilize distance, income, cost, or profit functions (O’Donnell 2018). In general, the 
SFA model uses a distance approach to calculate the efficiency level of individual units, 
where the model measures the distance between the observed production and the 
estimated maximum production (frontier) at a given input. The SFA model using the 
distance function approach is called the Stochastic Production Frontier (SPF). The SPF 
model will estimate the maximum production by incorporating disturbance 
components into its estimation process, thus yielding a stochastic estimation of the 
maximum production. The estimation of the performance level of an individual unit  
in the SPF model begins with estimating the inefficiency. Estimating inefficiency in the 
SPF model can be measured through two approaches, namely the output-oriented and 
the input-oriented approach (Kumbhakar et al. 2015). The SPF model in measuring 
inefficiency estimation using an output-oriented approach is the difference between the 
actual production and the maximum possible production by a certain amount of input. 
The production function is theoretically common in various literature, namely the 
Cobb-Douglas (CB) and the Transcendental Logarithmic (Translog) (Zulkarnain et al. 
2021).  

The distribution of the standard SPF model assumes that the disturbance 
component follows a Normal distribution (Nሾ0,σ୴ଶሿ) and the inefficiency component 
follows a half-normal distribution (Nାሾ0,σ୳ଶሿሻ (Meeusen et al. 1977; Aigner et al. 2023). 
The standard SPF model, in its application, has limitations in estimating technical 
efficiency values when there are outliers present in a dataset (Campos et al. 2022). The 
presence of outliers in the SPF model can cause parameter estimation to become 
inaccurate and lead to an excessive spread in the estimated values of technical efficiency 
(Wheat et al. 2019). One approach to deal with outliers in a dataset when forming an 
SPF model is modifying the distribution assumptions with a more flexible 
parameterization to describe the data distribution (Greene 1990). 

SPF models that use a more flexible distribution have been widely implemented to 
improve robustness against outliers. The SPF Normal-Gamma model replaces the 
standard half-normal inefficiency distribution with a Gamma distribution, enhancing 
the accuracy and distribution of technical efficiency estimates (Greene 1990). The SPF 
Normal-Gamma model can also provide smaller standard deviations and ranges of 
estimated technical efficiency compared to the standard SPF model. Similarly, the 
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Normal-Weibull SPF model modifies the inefficiency distribution to follow a Weibull 
distribution, which has a longer tail and higher kurtosis than the Gamma distribution, 
helping to mitigate outlier effects (Tsionas 2007). The SPF Normal-Rayleigh model 
assumes a two-sided normal distribution for disturbances and a one-sided Rayleigh 
distribution for inefficiency, allowing for non-zero inefficiency estimates and reducing 
the risk of underestimation (Hajargasht 2015). Meanwhile, the SPF Student’s t-half 
Normal model modifies the disturbance component to follow a Student’s t-distribution 
while keeping the half-normal inefficiency distribution. With heavier tails in the 
disturbance component, this model improves inefficiency estimation, resulting in 
smaller standard deviations, a narrower range, and a more favorable distribution 
pattern (Wheat et al. 2019). 

This research compares various SPF models with different parameter distributions 
for disturbance and inefficiency components to identify the most accurate model for 
estimating technical efficiency in the presence of outliers. The optimal SPF model is 
one that effectively handles outliers, assessed through its application to both real and 
simulated data. Previous studies on SPF model development using real data have 
examined the SPF Normal-half Normal, SPF Normal-Gamma, and SPF Student’s t-half 
Normal models (Pranata et al. 2023). This study expands the analysis by incorporating 
simulation data to evaluate additional models, including SPF Normal-Weibull and SPF 
Normal-Rayleigh. The simulation data consists of varying sample sizes with different 
outlier proportions. 

2. Stochastic Production Frontier 

The Stochastic Production Frontier (SPF) is a Stochastic Frontier Analysis (SFA) 
model that measures the performance of individual units by measuring the distance 
between actual production and the estimated production frontier, given the same 
inputs.  The production frontier function in the model is a production function that 
incorporates disturbance effects in its estimates, making it inherently stochastic. The 
disturbance component describes the possibility of random shocks that affect the 
production process and cannot be controlled, such as weather, economy, etc. (Coelli et 
al.  2005). In the SPF model, there is also an inefficiency component (Aigner et al. 1968). 
The measurement of estimation inefficiency in the SPF model can be categorized into 
output-oriented inefficiency and input-oriented inefficiency (Kumbhakar et al. 2015). 
Output-oriented inefficiency calculates the distance between the produced output and 
the estimated output frontier (achievable maximum production) for a given input. On 
the other hand, input-oriented inefficiency calculates the distance between the actual 
input and the estimated input frontier (minimum required) to achieve a certain output. 
In this study, the approach for measuring inefficiency in the model uses the output-
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oriented inefficiency measurement. The form of the SPF model using the Cobb-
Douglas production function is as follows: 

ln y୧ ൌ β଴ ൅෍β୨ ln x୧୨

୬

୨ୀଵ

൅ ε୧,   ε୧ ൌ v୧ െ u୧ (1) 

where ε୧ represents the error model for observation i. The error model consists of two 
components, v୧ is the disturbance component following symmetric distribution for 
observation i and  u୧ is the inefficiency component following one-sided distribution 
that is always positive for observation i.  

One of the parameter estimation methods in the SPF model is maximizing the log-
likelihood function based on the marginal density function of the error. When the 
marginal density function of the error is not in a closed form, the estimates of the 
parameter cannot directly maximize the log-likelihood function, but use the simulated 
maximum likelihood method (Train 2009). The equation for the log-likelihood 
function is as follows: 

lnℒ ൌ lnෑ fሺε୧

୬

୧ୀଵ

ሻ (2) 

where ℒ represents the likelihood function and fሺεሻ represents the marginal density 
function of the error SPF model. The probability density function of the error in the 
SPF model is formed by composing the probability density functions of the disturbance 
and the inefficiency component. The probability density function for the error in the 
SPF model begins with the formation of a joint probability density function between 
the disturbance and the inefficiency component. Since both components are 
independent, their joint probability density function is the product of their density 
functions. The joint probability density function of the two components is as follows: 

fሺv, uሻ ൌ fሺvሻ ൈ fሺuሻ (3) 

where fሺvሻ represents the probability density function of the disturbance component 
and fሺuሻ represents the probability density function of the inefficiency component.  The 
joint probability density function fሺε, uሻ is constructed by transforming the disturbance 
component using v ൌ ε ൅ u. The error's probability density function is then obtained 
by integrating the joint density over the inefficiency component. The equation is given 
as follows: 

fሺεሻ ൌ න fሺε, uሻ du
ஶ

଴
 (4) 

Estimating inefficiency in the SPF model begins by forming the probability density 
function of inefficiency values where the error values are known ሺfሺu|εሻሻ. This function 
can be determined as follows: 

fሺu|εሻ ൌ
fሺu, εሻ

fሺεሻ
 (5) 



STATISTICS IN TRANSITION new series, September 2025 

 

121

In the SPF model, inefficiency is estimated by calculating the expected value of 
inefficiency given the error Eሺu|εሻ. The form of this expected value is as follows: 

Eሺu|εሻ ൌ න u fሺu|εሻ du
ஶ

଴
 (6) 

The estimation of technical efficiency (TE෢ሻ in the SPF model follows the equation 
introduced by Jondrow et al. (1982), where technical efficiency is computed as the 
exponent of negative estimated inefficiency. The equation as follows: 

TE෢ ൌ expሺെEሺu|εሻሻ (7) 

Several types of SPF models include the following: 
1. The SPF Normal-half Normal Model: The SPF Normal-half Normal model is  

a standard SPF model in which the disturbance component follows a symmetric 
Normal distribution ሺNሺ0,σ୴ଶሻሻ, and the inefficiency component follows a half 
Normal distribution ሺNାሺ0,σ୳ଶሻሻ  Meeusen & Van Den Broeck (1977) and (Aigner 
et al., 2023). The marginal density function of the error in the SPF Normal-half 
Normal model is closed-form so that the estimation of the parameter maximizes the 
log-likelihood function. 

2. The SPF Normal-Gamma Model: The SPF Normal-Gamma model is a SPF model 
where the disturbance component follows a symmetric Normal distribution 
ሺNሺ0,σ୴ଶሻሻ, and the inefficiency component follows a Gamma distribution ሺGሺα, θሻሻ 
as introduced by (Greene, 1990). Since the marginal density function of the error 
lacks a closed-form solution, its log-likelihood function cannot be directly 
maximized. Instead, parameter estimation can be performed using the maximum 
simulated likelihood method, as suggested (Greene 2003).  

3. The SPF Normal-Weibull Model: The SPF Normal-Weibull model assumes that 
the disturbance component follows a symmetric Normal distribution ሺNሺ0,σ୴ଶሻሻ, 
and the inefficiency component follows a Weibull distribution. This model was first 
introduced by (Tsionas 2007). The Weibull distribution has a long-tailed curve 
shape, classified as heavy-tailed. The characteristic of a long-tailed curve shape 
allows the Weibull distribution to handle outliers or extreme observations in data 
distributions. The formed marginal density function of the error in the SPF Normal-
Weibull model does not have a closed-form expression, so parameter estimation 
using simulated maximum likelihood (Nurwulan et al. 2023). 

4. The SPF Normal-Rayleigh Model: The SPF Normal-Rayleigh model assumes that 
the disturbance component follows a symmetric Normal distribution ሺNሺ0,σ୴ଶሻሻ, 
and the inefficiency component follows a Rayleigh distribution Raሺ0,σ୳ଶሻ,  
as introduced by Hajargasht (2015). The characteristics of the Rayleigh distribution 
in the SPF model are different from the half-normal and exponential distributions. 
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The half-normal and exponential distributions tend to produce inefficiency 
estimates close to zero, raising concerns about potential underestimation.  
In contrast, the Rayleigh distribution exhibits a broader spread of data, reducing 
concentration near zero and potentially providing more accurate inefficiency 
estimates. The marginal density function of the error in the SPF Normal-Rayleigh 
model has a closed-form so that the estimation of the parameter maximizes the log-
likelihood function. 

5. The SPF Student’s t-half Normal Model:   The SPF Student’s t-half Normal model 
assumes that the disturbance component follows a symmetric Student's t 
distribution ሺTሺaሻሻ with degrees of freedom ሺaሻ, while the inefficiency component 
follows a half-normal distribution ሺNାሺ0,σ୳ଶሻሻ (Wheat et al., 2019). The Student's t 
distribution is a two-tailed distribution characterized by a long-tailed curve on both 
sides of the distribution. Like the Weibull distribution, the Student's t distribution 
is also categorized as heavy-tailed. The marginal density function of the error in the 
SPF Student’s t-half Normal model is not a closed form. As a result, the parameter 
estimation process for this SPF model utilizes simulated maximum likelihood. 

3. Method 

This study compares the estimated coefficients of model parameters, inefficiency 
values, and technical efficiency among five Stochastic Production Frontier (SPF) 
models. The five SPF models include the SPF Normal-half Normal model, SPF Normal-
Gamma model, SPF Normal-Weibull model, SPF Normal-Rayleigh model, and SPF 
Student’s t-half Normal model. Additionally, this study will also identify the best-
performing SPF model or the SPF model robust to outliers in the response variable 
observations. The data used in this research is generated through simulation, where 
simulated data is created for nine dataset scenarios. These scenarios are formed based 
on combinations of predefined data quantities and outlier observation percentages. The 
process of modelling SPF in this study utilizes the "sfaR" package (Dakpo et al. 2022) 
and the "rfrontier" package (Wheat et al. 2019). 

3.1. Generating Simulated Data 

This study uses data simulation with Monte Carlo simulations. Monte Carlo 
simulation data repeatedly generates random numbers or values of a variable with  
a specific distribution (Sartono 2005). The number of generated data in the simulation 
consists of three different data quantities: 200 data points as the small data category, 
500 points data as the medium data category, and 1000 points data as the large data 
category. The varying sample data sizes aim to observe the influence of data quantity 
on enhancing estimation accuracy. The simulation outlier percentages are divided into 
three levels: 1%, 3%, and 5% of the response variable. It aims to assess the model's 
consistency in handling data containing outlier observations. 
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The production function used in the SPF model is the Cobb-Douglas production 
function, where the model's parameter coefficients are determined as follows: β଴ ൌ 0,1, 
βଵ ൌ 2, and βଶ ൌ 2. Thus, the form of the simulated data SPF model is as follows: 

ln y୧ ൌ 0,1 ൅ 2 ln xଵ୧ ൅ 2 ln xଶ୧ ൅ v୧ െ u୧ (8) 

Generating simulated data starts by creating independent variable data, disturbance 
components, and inefficiency components. The model uses two independent variables, 
where both are mutually independent and are generated using a Uniform distribution 
(10, 20). In generating independent variable data, using a variance-covariance matrix is 
an identity matrix to ensure that the generated data for both variables are mutually 
independent. The disturbance components are assumed to follow a Normal 
distribution. The disturbance components will be generated with a mean of 0 and a 
variance of 0.25 ሺNሺ0, 0,25ሻሻ. Meanwhile, the inefficiency components are assumed to 
follow a half-normal distribution. The inefficiency components will be generated with 
a mean of 0 and a variance of 1 ሺNାሺ0,1ሻሻ. The results of generated data from 
independent variables, disturbance component, and inefficiency component will be 
input into the model to obtain the generated data for the response variable. The process 
will be repeated one hundred times for each set of generated data. 

The outlier data in the simulated data is a set of data significantly different from the 
generated data. The outlier will replace a randomly selected portion of the response 
variable data, and the predetermined outlier percentage will determine the amount of 
these replaced data. 

3.2. Modelling 

The SPF model has a characteristic that the residual distribution is skewed to the left 
(Kumbhakar et al., 2015). Therefore, an error distribution test is performed on the 
generated data before conducting the SPF modelling to ensure the error distribution is 
skewed to the left. The testing can be done by calculating the statistically significant 
Coelli Test (M3T) (Mutz et al. 2017). The M3T test counts the standardized third 
moment of the error from the least squares model and has an asymptotic distribution 
of a standard normal random variable. The equation for the M3T test is as follows: 
(Coelli 1995) 

M3T ൌ mଷ

ඥ6mଶ
ଷ/N൘  (11) 

where mଶ and  mଷ are the second and third moments of the least square error, forming 
a distribution Nሺ0, 6mଶ

ଷ/Nሻ. The Hypothesis is as follows: 
H଴: The error has a symmetric distribution. 
Hଵ: The error has a skewed distribution.  
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The generated data can be used for SPF modelling if the M3T test results reject the 
null hypothesis (the M3T value falls outside the critical range of ±1.96) at a significance 
level of α=5% and the M3T value is negative. This condition indicates that the 
distribution of least squares errors from the generated data has a left-skewed curve. 

Once it is confirmed that the generated data for SPF modelling has a left-skewed 
distribution, the next step is to proceed with SPF modelling using the five different SPF 
model forms to obtain parameter estimation values, inefficiency values, and technical 
efficiency values from the models. 

3.3. Estimation Performance 

The criterion for selecting the best SPF model is its ability to provide estimated 
technical efficiency close to the true values. It can be determined by the mean square 
error (MSE) of the estimated inefficiency and technical efficiency compared to the true 
values. The SPF model that yields the smallest MSE can be considered the best SPF 
model. The MSE for estimating inefficiency is the average of the squared differences 
between the estimated inefficiency and the true inefficiency across all observations and 
repetitions. The calculation of the MSE for inefficiency is as follows:  

MSEሺuሻ ൌ
1

NR
෍෍ሺuො୧,୰ െ u୧,୰ሻଶ

୒

୧ୀଵ

ୖ

୰ୀଵ

 (9) 

where N is the number of generated dataset scenarios, R is the number of repetitions, 
uො୧,୰ is the estimated inefficiency for observation i and repetition r, u୧,୰ is the true 
inefficiency (generated) for observation i and repetition r. Meanwhile, the MSE for 
technical efficiency is the average of the squared differences between the estimated 
technical efficiency and the true technical efficiency across all observations and 
repetitions. The MSE for technical efficiency is as follows (Sakouvogui et al. 2021): 

MSEሺTEሻ ൌ
1

nR
෍෍ሺTE෢୧,୰ െ TE୧,୰ሻଶ

୒

୧ୀଵ

ୖ

୰ୀଵ

 (10) 

where TE෢୧,୰ is the estimated technical efficiency for observation i and repetition r and 
TE୧,୰ is the true value (generated) technical efficiency for observation i and repetition r. 

4. Results and Discussion 

The simulation of data of the SPF model begins by generating data for nine 
scenarios. These nine scenarios consist of three sets of generated data, each with  
a sample size of 200, 500, and 1000. Within each set there are three variations of outlier 
percentages: 1%, 3%, and 5%.  The distribution of generated data in nine scenarios can 
be observed in Figure 1. The data distribution plots in Figure 1 represent a sample from 
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one dataset of the independent variable (ln xଵ) and response variable (ln yሻ generated 
from a hundred repetitions for each scenario. 

The generated data from the nine scenarios is tested using the M3T test to ensure 
that the generated data has the error distribution criteria of the SPF model. The results 
of the minimum and maximum M3T values across a hundred repetitions are presented 
in Table 1. The M3T test uses a significance level of α ൌ 5%, and the critical values for 
rejecting H0 a are when the M3T value is less than -1.96 or greater than 1.96. The range 
of the M3T values from the nine scenarios with a hundred repetitions for each 
simulation yields values smaller than -1.96. Hence, all the generated datasets reject the 
null hypothesis with the negative M3T values. In other words, all the generated data 
distributions have a left-skewed error distribution with a 95% confidence level.  

 
Figure 1:  Plot the distribution of generated data between the response variable (ln yሻ and the 

independent variable ሺln xଵሻ with outlier observation percentages 1%; 3%; and 5%,  
(a) a sample size of 200, (b) a sample size of 500, (c) a sample size of 1000 

Source: own study. 

Table 1.  The range of M3T values across the nine simulation scenarios with 100 repetitions 

Simulation Scenarios 
M3T Score 

Minimum Maximum 
Sample size=200 

Outlier 1% 
Outlier 3% 
Outlier 5% 

 
-17.99 
-16.31 
-14.89 

 
-5.63 

-10.15 
-10.01 



126                                              A. Djuraidah, I. Pranata: Exploring the stochastic production frontier … 

 

 

Table 1:  The range of M3T values across the nine simulation scenarios with 100 repetitions  (cont.) 

Simulation Scenarios 
M3T Score 

Minimum Maximum 
Sample size=500 

Outlier 1% 
Outlier 3% 
Outlier 5% 

 
-22.07 
-24.67 
-23.07 

 
-13.99 
-19.05 
-18.88 

Sample size=1000 
Outlier 1% 
Outlier 3% 
Outlier 5% 

 
-28.63 
-34.28 
-33.01 

 
-20.44 
-27.39 
-28.12 

Source: own study. 

4.1. SPF Model Parameter Estimates 

The distribution of estimated intercept ሺb଴ሻ from the SPF Normal-half Normal 
model, SPF Normal-Gamma model, SPF Normal-Weibull model, SPF Normal-
Rayleigh model, and SPF Student’s t-half Normal model is presented in Figure 2. From 
the generated simulation data, the SPF Student’s t-half Normal model is the model that 
can estimate the parameter value β଴ close to the true value. This can be seen from the 
distribution of estimated b଴, which are around the true parameter, and the median of 
b଴ has the smallest bias to the true parameter compared to the other four SPF models 
across the nine simulation scenarios. 

 
Figure 2:  The estimation distribution of b଴  across nine simulation data scenarios using the SPF 

Normal-half Normal, SPF Normal-Gamma, SPF Normal-Weibull, SPF Normal-Rayleigh, 
and SPF Student's t-half Normal models 

Source: own study. 

Meanwhile, the SPF Normal-Rayleigh model exhibits significant estimation bias, 
with the distribution of b଴ estimates deviating considerably from the true parameter 
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value and the estimated median of b଴ being far from the actual value.  The median of 
the b଴ in the Normal-half Normal SPF model is greater than that in the SPF Student’s 
t-half Normal model. Furthermore, in the Normal-Half Normal SPF model, the median 
of the b଴ increases with higher percentages of outliers. This indicates that the accuracy 
of the standard SPF model in estimating intercept coefficients is greatly affected when 
outlier observations are present in the data. The SPF Normal-Gamma model and SPF 
Normal-Weibull model have similar characteristics in estimating intercept parameter 
coefficients. Both SPF models have an estimated distribution of b଴ that tends to be 
lower than the true intercept. Despite having a heavier tail distribution than the SPF 
Normal-Gamma model, the SPF Normal-Weibull model does not yield better intercept 
estimations than the SPF Normal-Gamma model. A box plot in Figure 2 shows that as 
the sample size used in the SPF model increases, the variance of b଴ estimation becomes 
smaller. It is indicated by the decreasing length of the box plot as the simulation data 
size grows.  

(a) 

 
(b) 

 

Figure 3:  Distribution of estimated slope parameter across nine simulation data scenarios using the 
SPF Normal-half Normal, SPF Normal-Gamma, SPF Normal-Weibull, SPF Normal-
Rayleigh, and SPF Student’s t-half Normal models, (a) estimated of bଵ (b) estimated of bଶ. 

Source: own study. 
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The distribution of the estimated slope from nine simulation scenarios, composed of 
two coefficient parameters, namely the estimated bଵ and bଶ, is depicted in the box plot 
diagram presented in Figure 3. The five SPF models were used to estimate the 
coefficients bଵ and bଶ, which generally had a median parameter estimate close to the 
true values. However, in simulations with 500 observations and a 5% outlier percentage, 
the SPF Normal-Rayleigh model yields median slope estimates that deviate from the 
true values. 

4.2. Inefficiency and Technical Efficiency Prediction 

Figure 4 compares the estimated inefficiency distributions of the SPF Normal-Half 
Normal, SPF Normal-Gamma, SPF Normal-Weibull, SPF Normal-Rayleigh, and SPF 
Student’s t-Half Normal models across nine simulation scenarios. The SPF Normal-
Half Normal and SPF Normal-Rayleigh models tend to overestimate inefficiency, while 
the SPF Normal-Gamma and SPF Normal-Weibull models generally underestimate it. 
Among these models, the SPF Student’s t-Half Normal model provides the most 
accurate inefficiency estimates, with its distribution closely aligning with the true 
inefficiency values. This is evident from the median of the estimated inefficiency 
distribution being close to the true inefficiency median, with the overall estimated 
distribution falling within the range of the true inefficiency values. In the SPF Student’s 
t-Half Normal model, the number of estimated inefficiency outliers closely matches the 
true inefficiency outliers. In contrast, the other four SPF models tend to produce 
significantly more outliers than the true inefficiency distribution. 

 
Figure 4:  The distribution of true inefficiency and the estimated distributions of inefficiency using the 

SPF Normal-half Normal, SPF Normal-Gamma, SPF Normal-Weibull, SPF Normal-
Rayleigh, and SPF Student’s t-half Normal models across nine simulation scenarios 

Source: own study. 
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In addition to comparing the estimated inefficiency scores of the five SPF models 
using box-and-whisker plots, the mean squared error (MSE) was calculated to assess 
how accurately each model predicts the true inefficiency. The MSE results, presented 
in Table 2, compare the estimated inefficiency with the true values across nine 
simulation scenarios using the five SPF models. The SPF Student’s t-Half Normal 
model consistently produces lower MSE values than the other four SPF models across 
all nine simulation scenarios. In contrast, the SPF Normal-Weibull model performs the 
worst in predicting inefficiency, as indicated by its significantly higher MSE compared 
to the other models. Increasing the outlier percentage in the response variable generally 
leads to higher MSE values. However, this trend does not apply to the SPF Normal-
Weibull model. 

Table 2:   Mean square error of the estimated inefficiency of five SPF models across nine simulation 
scenarios 

Source: own study. 

The distribution of estimated technical efficiency from the five SPF models is 
presented in Figure 5, with each model yielding a distinct distribution. Among the nine 
simulation scenarios, the SPF Student's t-half Normal model produces estimated 
technical efficiency distributions that closely align with the true distribution. This is 
evident from the box-and-whisker plot, which closely resembles the true technical 
efficiency plot, with the estimated median exhibiting minimal bias relative to the true 
median.  The estimated technical efficiency of the Student’s t-half Normal and SPF 
Normal-half Normal models does not contain outliers, whereas the other three SPF 
models do. 

The accuracy of the model in predicting technical efficiency values is measured 
using the Mean Squared Error (MSE) between the estimated and true technical 
efficiency values. The MSE results for nine simulation scenarios are presented in 
Table 3. The SPF Student’s t-half Normal model has the smallest MSE among all SPF 

Simulation  
scenario 

MSE Scores of SPF 
Normal-half 

Normal 
Normal-
Gamma 

Normal-
Weibull 

Normal-
Rayleigh 

Student’s t-half 
Normal 

Sample size=200 
Outlier 1% 
Outlier 3% 
Outlier 5% 

 
0.4619 
1.1106 
1.7314 

 
0.4890 
0.8847 
1.2923 

 
85.5771 

3.1932e+05 
6.4129 

 
1.1897 
2.2624 
3.2150 

 
0.1941 
0.2100 
0.2313 

Sample size=500 
Outlier 1% 
Outlier 3% 
Outlier 5% 

 
0.4524 
1.0874 
1.7247 

 
0.4668 
0.8626 
1.2943 

 
1.5906e+10 
1.1455e+05 

3.6382 

 
12.6826 

4.6814 
39.2181 

 
0.1666 
0.1897 
0.2081 

Sample size=1000 
Outlier 1% 
Outlier 3% 
Outlier 5% 

 
0.4326 
1.0787 
1.7409 

 
0.4251 
0.8547 
1.3054 

 
8.7324e+08 

21.1244e+05 
34.9856 

 
1.5060 
7.2978 

290.9171 

 
0.1635 
0.1806 
0.1982 
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models across all nine simulated data scenarios. In contrast, the SPF Normal-Weibull 
and SPF Normal-Rayleigh models have the highest MSE among the five SPF models.  

These results indicate that handling outliers in the response variable by replacing 
the distribution of inefficiency components with a heavy-tailed distribution does not 
impact the SPF model's ability to improve the accuracy of predicting true technical ef-
ficiency. Conversely, modifying the distribution of disturbance components to a heav-
ier-tailed distribution can enhance the model's accuracy in predicting true technical 
efficiency. 

 
Figure 5: The distribution of true technical efficiency and the estimated technical efficiency using the 

SPF Normal-half Normal, SPF Normal-Gamma, SPF Normal-Weibull, SPF Normal-
Rayleigh, and SPF Student's t-half Normal models across nine simulation scenarios 

Source: own study. 

Table 3: Mean square error of the estimated technical efficiency of five SPF models across nine 
simulation scenarios 

Source: own study. 

Simulation  
scenario 

MSE Scores 
SPF Normal-
half Normal 

SPF Normal-
Gamma 

SPF Normal-
Weibull 

SPF Normal-
Rayleigh 

SPF Student’s 
t-half Normal 

Sample size=200 
Outlier 1% 
Outlier 3% 
Outlier 5% 

 
0.0429 
0.0578 
0.0682 

 
0.0520 
0.0531 
0.0564 

 
0.1467 
0.1044 
0.0946 

 
0.1058 
0.1331 
0.1491 

 
0.0376 
0.0371 
0.0391 

Sample size=500 
Outlier 1% 
Outlier 3% 
Outlier 5% 

 
0.0419 
0.0573 
0.0683 

 
0.0497 
0.0523 
0.0563 

 
0.1312 
0.1118 
0.1039 

 
0.1069 
0.1715 
0.2501 

 
0.0314 
0.0329 
0.0344 

Sample size=1000 
Outlier 1% 
Outlier 3% 
Outlier 5% 

0.0419 
0.0564 
0.0676 

0.0470 
0.0517 
0.0559 

 
0.1205 
0.1044 
0.1005 

 
0.1072 
0.1768 
0.2336 

 
0.0308 
0.0318 
0.0330 
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5. Conclusions 
The findings suggest that the SPF Student's t-half Normal model produces more 

accurate intercept and slope estimates than the SPF Normal-half Normal, SPF Normal-
Gamma, SPF Normal-Weibull, and SPF Normal-Rayleigh models. Additionally,  
it provides the most accurate inefficiency and technical efficiency predictions among 
the SPF models. Changing the assumption of the distribution in the disturbance 
component to a distribution with heavy tails, such as the Student's t distribution,  
is more effective in handling outliers in the response variable than altering the 
assumption of the distribution in the inefficiency component. The SPF Student's t-half 
Normal model is robust in dealing with outliers in the response variable when 
predicting technical efficiency. 
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Regional differentiation of income distributions in Poland 

Alina Jędrzejczak1, Małgorzata Misztal2, Dorota Pekasiewicz3 

Abstract 

Income inequality is observed to have recently increased both at the country and regional 
level. Consequently, inequality, poverty and social stratification have become important 
issues of debate among economists, sociologists and social policy-makers. Thus, an in-depth 
statistical analysis of the income situation of households is particularly important when 
counteracting the social effects of the discussed phenomenon. In the literature, the situation 
of regions in Poland is compared primarily in terms of the differences in GDP or average 
wages observed for households. The aim of the article is to analyze the regional differences 
in the entire income distribution in Poland, taking into account not only average income 
levels, but also income inequality and poverty parameters. The study, based on individual 
data from the Household Budget Survey, used parametric and non-parametric methods for 
estimating inequality and poverty measures, as well as cluster analysis methods. In the 
parametric approach, the empirical income distributions in Poland were approximated 
using the theoretical Dagum distribution. This enabled the segmentation of voivodships in 
terms of the estimated characteristics of the equivalent household income distribution. The 
results of the calculations confirmed the assumption that income distributions in Poland 
differ significantly across regions, and the obtained clusters allowed the detection of groups 
of regions that may require a separate social policy aimed at improving the material situation 
of households. 

Key words: income distribution; inequality; poverty; Dagum model; cluster analysis. 

1.  Introduction 

Reducing regional inequality was one of the key means of promoting the 
“harmonious development” within Europe envisioned in the EEC Treaty of 1957.  
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The pursuit of “economic, social and territorial cohesion” through ever closer regional 
and national harmonization was also proclaimed in the 2007 Lisbon Treaty, but 
deepening European integration has not always been matched with convergence in 
living standards between sub-national regions. The gap between poorer and richer 
areas increased during the last economic crisis even in some developed economies, and 
the income discrepancy between richer and poorer regions is likely to widen further as 
government-spending cuts disproportionately hurt less prosperous regions. Over the 
last few decades, income inequality measured by the Gini index has been growing not 
only in Europe (see: Growing Unequal, OECD 2008; Divided We Stand. Why Inequality 
Keeps Rising, OECD 2011; In It Together: Why Less Inequality Benefits All, OECD 2015), 
and in 2014 most OECD countries recorded the highest level of inequality in 30 years. 
An even more pessimistic picture of income and wealth inequalities can be seen in a 
recent publication of  OECD (2024), where it has been revealed that more than one-
third of people in the OECD are at risk of poverty. The total income inequality can be 
decomposed into between- and within- regions inequality.  Recent trends on income 
inequality in the EU confirm that, by decomposing overall inequality, as much as 85% 
is explained by within countries inequality (Bonesmo Fredriksen, 2012), while the 
findings of Barca (2009) reveal how prosperous regions in EU countries show at the 
same time strong internal, i.e. subnational, disparities. It has also been found that nearly 
40% of total income goes on average to people in the highest income quintile, and less 
than 10% to people in the first quintile (Eurostat, 2014). In a working paper of Savoia 
(2020), devoted to the question whether the EU Cohesion Policy may have contributed 
to reduce the inequalities within countries or regions, it has been found that income 
inequality observed within NUTS 2 is converging, but to a higher level, so the regions 
“have tended to become equally more unequal”. As a result of the increasing 
inequalities within and across countries and regions, the reduction in the number of 
persons at risk of poverty or social exclusion was one of the five key targets of the 
Europe 2020 strategy.  

Income inequality in Poland increased significantly during the process of 
transformation from a centrally-planned to a market economy - the Gini index went 
up by approximately 10 percentage points. After the period of rapid economic changes 
the rate of growth of the Gini index slowed down and for a long time we could observe 
only slight fluctuations, at about the level of 0.34-0.35, according to the Household 
Budget Survey (HBS) data, and 0.31 according to EU-SILC. After the decline between 
2016 and 2019  the Gini ratio in Poland began increasing again, and in 2023 it reached 
a very high level of 0.414 (GUS, 2024, p. 212), with high discrepancy between income 
distributions for socio-economic groups.   
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Regional inequalities can be measured and analyzed in many different ways - the 
extent of inequality may be mapped in terms of demography, income and wealth, labor 
markets, and education and skills. The main focus of this presentation is on the analysis 
of regional inequalities in terms of household income distribution. Income 
distributions can differ in many aspects and it seems definitely not enough to compare 
them only from the point of view of average income levels. Economic inequalities are 
particularly important today and can be measured by income inequality between and 
within regions, among other things. Regional income inequality can be strongly linked 
to the poverty and social exclusion observed across regions and socioeconomic groups. 
Having said that, though, it is worth noting that the dependencies between average 
income, inequality and poverty are not straightforward and they depend on many other 
socio-economic factors.  

It is well known that high income inequality can have several undesirable political 
and social consequences, such as poverty and the polarization of particular economic 
groups. Although they are usually perceived as similar and are in fact highly related 
concepts, inequality and poverty may not always come together. One can imagine a 
strictly egalitarian distribution of incomes, where all the income receivers are poor, or 
a highly dispersed population without poverty. Setting aside these not very likely 
situations, there is a strong empirical evidence based on income data from many 
countries that confirms a strong positive correlation between inequality and poverty. 
As a consequence, the countries with a more dispersed income distribution tend to have 
a higher relative level of income poverty, with only a few exceptions. The situation can 
be different, however,  when analyzing these variables across regions. The relationships 
between economic development  (measured by GDP per capita or average household 
income) and the corresponding income inequality (measured by, e.g. the Gini index) 
can also be different across countries and  regions, what have been discussed in 
Jędrzejczak (2015) for the Polish and Italian regions. The observed  regularities seem to 
partially confirm the well-known Kuznets’ “inverted-U” relationship between the level 
of economic development and income inequality.  

It is worth noting that the discussion on the possible relationship between GDP and 
the inequality level, which has been present in the economic literature since the mid- 
1950s, has produced very inconclusive results. We can find many countries (e.g. the 
Czech Republic) where the process of transformation was connected with no 
substantial inequality growth, while for many developed countries the inequality first 
declined, then increased again after a tipping point had been reached (e.g.: Italy in the 
1990s). Deininger and Squire (1998, pp. 259-287), using their famous panel data on 
income inequality, did not find any significant relationship between income inequality 
and the level of development, even when country-effects were included into the 
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analysis. Li, Squire and Zou (1998, pp. 26-43) found out that the Kuznets relationship 
seems to work better in cross-sectional than time-series analyses. 

Polish voivodeships differ in the level of economic development. There are many 
reasons for this differentiation and they concern various areas of socio-economic 
policy. The most important determinants of economic development include: the levels 
of regional GDP per capita, average incomes of households and individuals, 
characteristics of the labor market, demographic indicators, infrastructure and many 
others. Various works have recently been published on this issue, including: Malina 
(2020), Dańska-Borsiak  (2024), where the authors take into account many indicators, 
the basic ones being GDP and household income, and then use multivariate statistical 
methods, which leads to interesting results. The data on GDP per capita and the 
estimates of household income suggest that there are substantial differences in regional 
income levels across the country, but little can be deduced from this about differences 
within regions and the relative number of people in different regions with income 
below the poverty line, as defined at the national level. In our study, we focus on income 
distribution characteristics which constitute an important dimension of regional 
disparities.  

In the paper we would like to compare and contrast the regions of Poland 
(voivodeships) from the point of view of differences in their income distributions. The 
main aim is to analyze regional differences in the entire income distribution in Poland, 
taking into account not only average income levels, but also the parameters of income 
inequality and poverty. The study used non-parametric and parametric methods for 
estimating inequality and poverty measures, as well as cluster analysis methods for 
grouping the regions. This enabled the segmentation of voivodeships in terms of the 
estimated characteristics of the equivalent household income distribution. The applied 
parametric approach fills the gap in the existing grouping of regions, allowing for the 
estimation of income distribution parameters based on the Dagum distribution model, 
which has a strong stochastic basis. 

The empirical evidence was micro-data coming from the Household Budget Survey 
conducted by Statistics Poland (GUS) for the year 2021.  The detailed objectives of the 
paper are the following: 

 analysis of income distributions in Polish voivodeships and their approximation 
based on the Dagum distribution, 

 segmentation of Polish voivodeships according to estimated distribution 
characteristics, including the level of poverty and income inequality, using 
hierarchical cluster analysis methods. 

The novelty of the paper is the segmentation of Polish voivodeships combined with 
the parametric approach based on the density curves of their income distributions. 
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2. Methodological remarks 

2.1. Income distribution characteristics 

Let Y > 0 be a random variable representing gross or net incomes as well as taxes. 
Let F(y) be its cumulative distribution function (cdf), f(y) the corresponding density 
function (pdf) and F-1(p) =inf {y: F(y) ≥ p} its quantile function for 0 < p < 1.  

Income distribution characteristics comprise many popular descriptive statistical 
measures, frequently applied in numerous statistical analyses, including measures of 
central tendency, dispersion and shape, but a special attention is paid to the 
measurement of distribution inequality. Income inequality refers to the degree of 
difference in earnings among various individuals or segments of a population.   

Measures of inequality, also called concentration coefficients, are widely used to 
study income, welfare and poverty issues. Amongst numerous inequality measures the 
most popular is the Gini index, defined in terms of the Lorenz curve (Gini, 1912;1914). 
In its over 100-year history, the index has had numerous formulas and interpretations 
(see, e.g.: Jędrzejczak, 2011).   

In practice, inequality coefficients, including the Gini index,  are usually estimated 
from empirical data coming from representative samples. One can estimate the value 
of the Gini index from the survey data using the following formula (1),  proposed by 
Fei et al. (1978):  

 𝐺෠ ൌ
ଶ∑ ൫௪೔௬ሺ೔ሻ ∑ ௪ೕ

೔
ೕసభ ൯ି∑ ௪೔௬ሺ೔ሻ

೙
೔సభ

೙
೔సభ

൫∑ ௪೔
೙
೔సభ ൯∑ ௪೔௬ሺ೔ሻ

೙
೔సభ

െ 1, (1) 

where: y(i) – household incomes in a non-descending order,  

 wi – survey weight for i-th economic unit,  

 

i

j jw
1

 – rank of i-th economic unit in n-element sample.  

Formula (1) can be applied for individual data coming from random samples, 
including the samples obtained within the Household Budget Survey, as it incorporates 
survey weights available for each statistical unit and is constructed on the basis of  their 
inclusion probabilities. These weights make it possible to adjust for unequal  selection 
probabilities and non-response bias.  

Another type of inequality indices are the measures based on distribution quantiles 
or the estimators of these quantiles – these measures are very popular due to their 
simplicity and straightforward economic interpretation. In this class the most useful 
measures are: quintile and decile dispersion ratios (Panek, 2011) and the reciprocal of 
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the decile dispersion ratio called the dispersion index for the end portions of the 
distribution. The estimator of this index is: 
 𝐾෡ଵ:ଵ଴ ൌ

∑ ௬೔೔∈ಸವభ

∑ ௬೔೔∈ಸವభబ
   (2) 

where jGD  is j-th decile group. 

This index (2) takes values from the interval [0,1] and if it is closer to 1, the 
inequality is lower (mean incomes in the extremal decile groups are the same). 

A natural consequence of income inequality can be material poverty and social 
exclusion. Starting with the seminal publication of Sen (1976),  numerous poverty 
measures have been proposed and analyzed but in practice the most popular are poverty 
indexes belonging to the class FGT (Foster–Greer–Thorbecke), which addresses three 
basic aspects of this phenomenon: poverty incidence, depth and severity (see: Panek, 
2011). In this class, the most popular index is undoubtfully at-risk-of-poverty rate also 
called poverty head-count ratio, which can be estimated from the n-element sample 
by means of the following formula: 
 𝑊෡௣ ൌ

∑ ூ೔௪೔
೙
೔సభ

∑ ௪೔
೙
೔సభ

,    (3) 

where: Ii – indicator function taking value 1 when i-th household’s equivalent income 
is below a poverty line, and taking value 0 in the opposite situation,  
wi – survey weight for i-th economic unit.  

The poverty threshold is usually assumed as 60% of the national median equivalent 
income - this approach is used in EU-SILC, the European Union Statistics on Income 
and Living Conditions, anchored by Eurostat. In some publications of Statistics Poland 
one can find another relative poverty line - 50% of  mean equivalent income. In this 
study we utilize the Eurostat poverty threshold equal to 𝑦∗ ൌ 0.6𝑀𝑒, where Me is 
established as the estimate of median equivalent household income for the whole 
country. 

Poverty gap index provides additional information regarding the distance of  
households from the poverty line. This measure captures the mean aggregate income 
or consumption shortfall relative to the poverty line across the whole population. It is 
obtained by adding up all the shortfalls of the poor and dividing the total by the number 
of the poor. 

The estimator of the poverty gap index, which incorporates sampling weights wi, is 
the following: 

 𝑃𝐺௣෢ ൌ
∑ ሺሺ௬∗ି௬೔ሻ ௬∗⁄ ሻ௪೔
೙೛
೔సభ

∑ ௪೔
೙೛
೔సభ

, (4) 

where:  yi   is household equivalent income, 
             𝑦∗denotes poverty line (poverty threshold), 
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             np  is the number of  poor households,   
             wi  accounts for the survey weight for i-th household.   

The index (4) can be interpreted as minimum income that should have been 
transferred from the rich to the poor households to totally cancel poverty. 

For many practical applications it seems reasonable to approximate empirical 
income data by means of a well-fitted theoretical model.  

Since Pareto proposed his first income distribution model in 1896, many 
economists and mathematicians have tried to describe empirical distributions by 
simple mathematical formulas with a small number of parameters. These formulas can 
be useful for many reasons. Firstly, applying a theoretical model simplifies the analysis, 
because different distribution characteristics can be performed by the same parameters. 
Secondly, a theoretical model well fitted to the data can be used to the prediction of 
wage and income distributions in different divisions. Moreover, approximating 
empirical wage and income distributions using theoretical curves can smooth out 
irregularities resulting from imperfect data collection methods, which is often the case 
with income data. After decades of applications to real data in different divisions, we 
can propose the Dagum model as an excellent candidate to model income distributions 
of males and females (see: Jędrzejczak, Pekasiewicz, 2020).  

The Dagum distribution is based on both empirical and stochastic foundations, 
similarly to the Pareto model (Dagum, 1977), but in contrast to the Pareto it fits 
population income quite well throughout the entire domain and has been successfully 
applied for many countries all over the world. Therefore, in the case of different 
subpopulations, e.g. regions or social groups,  fitting the income distribution by means 
of the Dagum distribution can also be applied. 

The probability density function of the Dagum distribution is given by (Kleiber and 
Kotz, 2003, Jędrzejczak and Pekasiewicz, 2020): 

 𝑓ሺ𝑥ሻ ൌ
௔௣

௕ೌ೛
𝑥௔௣ିଵ ቀ1 ൅ ቀ

௫

௕
ቁ
௔
ቁ
ିଵି௣

   for x > 0, (5) 
and the corresponding cdf takes the form: 

 𝐹ሺ𝑥ሻ ൌ ቀ1 ൅ ቀ
௫

௕
ቁ
ି௔
ቁ
ି௣

    for 𝑥 ൐ 0. (6) 

where 𝑎 ൐ 0  is scale parameter, 𝑏 ൐ 0  and 𝑝 ൐ 0  are shape parameters. 
Using a fit to the Dagum distribution, the Gini index can be determined from the 

formula: 

  𝐺 ൌ
୻ሺ௣ොሻ୻ቀଶ௣ොା

భ
ෝೌ
ቁ

୻ሺଶ௣ොሻ୻ቀ௣ොାభ
ෝೌ
ቁ
െ 1   for  𝑎ො ൐ 1, (7) 

and poverty head-count ratio from the formula: 
  𝑊෡ ൌ 𝐹෠ሺ𝑦∗ሻ    (8) 
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Deciles necessary to determine the decile groups in the definition of the dispersion 
index for the end portions of the distribution (see: formula (2)) are determined based 
on the quantile function of the Dagum distribution.  

Any measure of deviation, based on a synthesis of the absolute or squared 
differences between observed and estimated frequencies obtained for class intervals, 
can be a candidate for assessing the goodness of fit. We will evaluate the following 
goodness-of-fit measures based on this approach: the Mortara index  ሺ𝐴ଵሻ  and the 
Pearson index ሺ𝐴ଶሻ, together with the coefficient of distribution similarity Wp, also 
called an overlap measure (Gastwirth, 1976).   

The coefficient of distribution similarity can be obtained from grouped data by 
means of the following formula: 
 𝑊𝑝𝑠 ൌ ∑ min ሺ𝑤௝ ,௦

௝ ୀ ଵ 𝑤ෝ௝ሻ, (9) 
where:  s is the number of class intervals, 𝑤௝  and  𝑤ෝ௝ denote empirical and theoretical 
frequencies, respectively.   

The other consistency measures mentioned above take the form (Zenga et al., 
2010): 

 𝐴ଵ ൌ
ଵ

௡
∑ |𝑛௝ െ 𝑛ො௝|௦
௝ ୀ ଵ , (10) 

 𝐴ଶ ൌ ට
ଵ

௡
∑

ሺ௡ೕ ି ௡ොೕሻమ

௡ොೕ
௦
௝ ୀ ଵ , (11) 

where 𝑛௝ and  𝑛ො௝denote the empirical and theoretical frequencies for class intervals.   

2.2. Methods of cluster analysis adopted in the study 

The segmentation of Polish voivodeships from the point of view of theoretical 
income distribution parameters estimated on the basis of the HBS 2003-2011 was 
proposed in Jędrzejczak, Kubacki (2017).  Brzezińska (2018) applied correspondence 
analysis and the Ward  hierarchical method to a multivariate analysis of poverty in 
Poland, based on the reports on economic poverty published by Statistics Poland in 
2015.  

In the paper, the hierarchical cluster analysis methods were used to perform the 
segmentation of Polish voivodeships in terms of selected income distribution 
characteristics, concerning  income inequality and poverty indices. 

At the first stage, the clusterSim package (Walesiak, Dudek, 2020) was applied to 
determine the optimal clustering procedure. In our study, complete-linkage clustering 
with the general distance measure 𝐺𝐷𝑀1 (Walesiak, 2016) turned out to be optimal, as 
it maximizes the silhouette index considered the best measure of classification quality.  
The procedure was finally implemented by adopting interval or ratio scales for 
measuring variables and taking into account the number of clusters no greater than 7, 
after a prior normalization of variables using classical standardization.  
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The general distance measure 𝐺𝐷𝑀1 for metric data is given by the following 
equation: 

𝐺𝐷𝑀1 ൌ 𝑑௜௞ ൌ
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           (12) 

where: 
𝑧௜௝ ሺ𝑧௞௝ , 𝑧௟௝ሻ – i-th (k-th, l-th) normalized observation on j-th variable. 
𝑖, 𝑘, 𝑙 – the numbers of the objects;  𝑖, 𝑘, 𝑙 ∈ ሼ1, … ,𝑛ሽ 
𝑗 – the number of the variable; 𝑗 ∈ ሼ1, … ,𝑚ሽ 

The silhouette index (𝑆𝐼), applied to assess the general quality of clustering, is 
defined as (Kaufman, Rousseeuw, 1990; Dudek, 2020):  

 𝑆𝐼 ൌ
ଵ

௡
∑ ௕ሺ௜ሻି௔ሺ௜ሻ

୫ୟ୶ ሼ௔ሺ௜ሻ;  ௕ሺ௜ሻሽ
௡
௜ୀଵ   (13) 

where:   
𝑛 – number of objects in dataset, 
𝑎ሺ𝑖ሻ - average distance from object 𝑖 to other objects belonging to cluster 𝑃௥, (object 𝑖 
belongs to cluster 𝑃௥), 
𝑏ሺ𝑖ሻ - minimum of average distance from object 𝑖 to other objects belonging to cluster 
𝑃௦ (object 𝑖 does not belong to cluster 𝑃௦). 

Therefore, 
 𝑎ሺ𝑖ሻ ൌ  ∑ 𝑑௜௞/ሺ𝑛௥ െ 1ሻ௞∈ሼ௉ೝ\௜ሽ  (14) 

 𝑏ሺ𝑖ሻ ൌ  min
௦ஷ௥

൛∑ 𝑑௜௞/𝑛௦௞∈௉ೞ ൟ (15) 
where:  
ሼ𝑑௜௞ሽ – distance matrix, 
𝑛௥ – number of objects in cluster 𝑃௥,  
𝑛௦ – number of objects in cluster 𝑃௦. 

The silhouette index values, defined by formula (13), range from -1 to +1 
(Kaufman, Rousseeuw, 1990). The 𝑆𝐼 score from 0.70 to 1.00 indicates very good 
clustering results with well-separated clusters. Values between 0.50 to 0.70 identify 
moderate clustering quality with some clusters well separated and the others 
overlapping. If the SI index is between 0.25 and 0.50, one can recognize poor clustering 
performance, where many objects are misclassified or clusters overlap.  The 𝑆𝐼 score 
below 0.25 indicates a very poor clustering quality, suggesting that no substantial 
structure has been found. 

Calculations were performed using the R environment (clusterSim package) and 
the STATISTICA PL v. 13.3 statistical package. 
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3. Results 

All the calculations were based on the random sample coming from the Household 
Budget Survey (HBS) 2021 provided by Statistics Poland and being the main source of 
information on income of the population of households. The variable of interest was 
household equivalent income, with an equivalence scale established as the LIS 
(Luxembourg Income Study) scale (square root of the number of household members).  
The calculations were carried out taking into account the sampling weights (for details 
see: GUS, 2024). 

In the empirical analysis, which adopted a complete-linkage clustering of the Polish 
regions, we included the following variables, which in our opinion comprise basic 
statistical characteristics of income distributions:  

 Average equivalent income, 
 Poverty head-count ratio,  
 Poverty gap index,  
 Gini index,  
 Dispersion index for the end portions of the distribution.  
The above-mentioned variables reflect various aspects of income distribution, i.e. 

its central tendency, dispersion and shape, with particular emphasis on how total 
income in a voivodeship is divided among households. The choice of the variables was 
supported by the considerations presented in the Introduction regarding possible (and 
sometimes ambiguous) interactions between the level of average income, inequality and 
poverty. 

Based on complete-linkage clustering with the general distance measure (12), the 
optimal number of clusters obtained was 5. The value of the silhouette index equal to 
0.64 confirms that a meaningful group structure was found. 

Figure 1 presents the dendrogram obtained for the Polish voivodeships. The layout 
of the dendrogram tells us which voivodeships are most similar to each other. "Branch" 
height indicates how similar or different they are: the greater the height, the greater 
difference. The red line illustrates the division of the dendrogram into 5 clusters. 

The clusters created as a result of multivariate statistical analysis reveal hidden sim-
ilarities and differences between voivodships that may be the basis for interesting sta-
tistical and economic conclusions. The regions constituting the clusters are not always 
adjacent to each other, which is a natural consequence of the procedure based on eco-
nomic rather than geographical characteristics. Cluster no. 1 comprises the Dolnośląs-
kie and Mazowieckie voivodeships, cluster no. 2 the Opolskie, Pomorskie and Wielko-
polskie voivodeships, cluster no. 3 the Kujawsko-Pomorskie, Lubelskie, Łódzkie, Pod-
laskie and Warmińsko-Mazurskie voivodeships, cluster no. 4 the Lubuskie, Małopol-
skie and Śląskie voivodeships, and cluster no. 5 the Podkarpackie, Świętokrzyskie and 
Zachodniopomorskie voivodeships. 
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Figure 1:  Dendrogram obtained for voivodeships 

Source: authors’ calculations 

The identified clusters are visualized in Figure 2. 

 
Figure 2:  Visualization of the resulting clusters 

Source: authors’ calculations 
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The preliminary description of the clusters with regard to the analyzed variables is 
illustrated in a heatmap (Figure 3). In addition, descriptive statistics for the obtained 
clusters are presented in Table 1 and Figure 4. 

 
Figure 3:  Heatmap – cluster characteristics 

Source: authors’ calculations 

The legend of the heatmap (Figure 3) shows the boundaries of the intervals based 
on the standardized values of the variables taken into account (average equivalent in-
come, poverty head-count ratio, poverty gap index, Gini index and dispersion index). 
The light colors indicate close-to-average values while dark red or dark green corre-
spond to very high or very low levels of the variables for the selected regions, respec-
tively.   

The voivodeships in cluster no. 1 are characterized by moderate values of the 
poverty head-count ratio, high values of the poverty gap index and the Gini index,  
a low dispersion index and high average equivalent income. 

The voivodeships in cluster no. 2 are described by high values of the poverty head-
count ratio, the poverty gap index and the Gini index, as well as a low dispersion index 
and low average equivalent income. 

The voivodeships in cluster no. 3 are characterized by an average level of all the 
indicators studied, except for the Wielkopolskie Voivodeship, which has higher values 
of the poverty head-count ratio and the poverty gap index compared to other voivode-
ships in this cluster.  
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The voivodeships in cluster no. 4 are described by low values of the poverty head-
count ratio, poverty gap index and the Gini index, high dispersion index and high 
average equivalent income. 

The voivodships included in cluster no. 5 are characterized by low values of poverty 
head-count ratio, the poverty gap index and the Gini index, as well as a fairly high dis-
persion index and low average equivalent income. 

The conclusions drawn from the heatmap are supported by the values of the de-
scriptive statistics presented in Table 1 and Figure 4.  

 

 
Figure 4:  Comparison of clusters by poverty level and income inequality  

(median with range (min-max)) 

Source: authors’ calculations 

On average, the highest values of the poverty head-count ratio, the poverty gap 
index and the Gini index are observed for the voivodeships in cluster no. 2 (Opolskie, 
Pomorskie and Wielkopolskie voivodships); these voivodeships are also characterized 
by the lowest equivalent income on average. 

On average, the highest values of the Gini index with a relatively high poverty gap 
index, are observed for voivodeships belonging to cluster no. 1 (Dolnośląskie and 
Mazowieckie voivodeships); these voivodeships are also characterized by the highest 
average equivalent income. 
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Table 1:  Cluster characteristics – descriptive statistics 

Variable Measure 
Cluster no. 

1 2 3 4 5 
n=2 n=3 n=5 n=3 n=3 

Poverty head-
count ratio 

mean 0.20 0.26 0.19 0.12 0.15 
SD 0.01 0.04 0.02 0.01 0.02 
CV 3.5% 13.7% 9.4% 11.1% 11.0% 

Poverty gap index 
mean 0.51 0.58 0.32 0.27 0.24 

SD 0.03 0.11 0.04 0.11 0.06 
CV 6.0% 18.1% 11.2% 40.7% 22.8% 

Gini index 
mean 0.37 0.36 0.30 0.26 0.24 

SD 0.04 0.04 0.01 0.01 0.01 
CV 11.5% 10.3% 3.1% 3.7% 3.7% 

Dispersion index 
mean 0.03 0.02 0.11 0.17 0.18 

SD 0.01 0.03 0.01 0.03 0.05 
CV 48.3% 156.4% 9.9% 20.4% 30.5% 

Average equivalent 
income 

mean 3808.76 3088.70 3380.18 3612.22 3185.19 
SD 258.74 109.09 95.87 114.84 37.94 
CV 6.8% 3.5% 2.8% 3.2% 1.2% 

Note: SD - standard deviation; CV – coefficient of variation 

Source: authors’ calculations 

The voivodeships in cluster no. 3 (Kujawsko-Pomorskie, Lubelskie, Łódzkie, 
Podlaskie and Warmińsko-Mazurskie) are characterized by an average level of all the 
examined variables. 

The voivodeships belonging to cluster no. 4 (Lubuskie, Małopolskie and Śląskie 
voivodeships) and cluster no. 5 (Podkarpackie, Świętokrzyskie and Zachodniopomor-
skie voivodeships) are characterized by, on average, the lowest values of the poverty 
head-count ratio, the poverty gap index and the Gini index, as well as the highest values 
of the dispersion index. The compared clusters are distinguished from each other by 
the level of average equivalent income (high in cluster no. 4 and low in cluster no. 5). 

The approximation of income distributions for voivodeships, carried out by means 
of the Dagum model, and the application of formulas (7)-(8) did not affect the 
classification of voivodeships, however, it smoothed out irregularities and shed light on 
differences in the location and shape of the compared subpopulations. Figure 5 shows 
the empirical and theoretical distributions (determined by formula (5)) for voivode-
ships representing individual clusters. Table 2 contains the parameters of the distribu-
tions adjusted to the empirical data, while Table 3 values of fit measures calculated on 
the basis of formulas (9)-(11). 
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Dolnośląskie  

Łódzkie 

 
Małopolskie 

 
Podkarpackie 

 
                                   Pomorskie 

Figure 5:  Income distributions in selected Polish voivodeships and fitted Dagum distributions 

Source: authors’ calculations 

Table 2:  Dagum distribution parameters for cluster representatives 

Voivodeship 
Dagum distribution parameters 

a b p 

Dolnośląskie 4.402 4667.61 0.403 

Łódzkie 4.456 3775.38 0.554 

Małopolskie 4.093 3456.44 0.868 

Podkarpackie 5.815 3719.32 0.469 

Pomorskie 4.964 4981.48 0.265 

Source: authors‘ calculations 



150                                                      A. Jędrzejczak et al: Regional differentiation of income distributions… 

 

 

Table 3: Goodness-of-fit measures for cluster representatives 

Voivodeship 
Goodness-of-fit measure 

Wps 𝑨𝟏 𝑨𝟐 
Dolnośląskie 0.996 0.008 0.437 
Łódzkie 0.984 0.031 1.572 
Małopolskie 0.995 0.008 0.659 
Podkarpackie 0.959 0.082 0.127 
Pomorskie 0.930 0.139 0.228 

Source: authors’ calculations 

On the basis of the goodness-of-fit measures presented in Table 3, it can be noted 
that the consistency of the empirical and theoretical distributions is satisfactory – the 
similarity coefficient of the distributions generally exceeds 0.95, i.e. the compared 
empirical and theoretical frequencies are very similar. The high goodness-of-fit of 
empirical and theoretical distributions is also confirmed by the low values of the A1 
and A2 measures. The worst  results were obtained for the Pomorskie voivodeship, 
which can also be seen in Figure 5.  

Both the values of goodness-of-fit measures and the plots of empirical and 
theoretical distributions suggest good consistency of the income distributions of the 
representatives of each cluster with the Dagum model.  Analogous results were obtained 
for the other voivodeships.  

The plots of the Dagum densities estimated for the voivodeships constituting 
individual clusters are presented in Figure 6. 
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Figure 6. Dagum distributions estimated for voivodeships within the obtained clusters  

Source: authors’ calculations 

 

 
Figure 7:  Dagum distributions estimated for cluster representatives 

Source: authors’ calculations 

Figure 6 shows that the differences between the estimated income distributions for 
the members of each cluster are relatively small, but the differences between the income 
distributions for voivodeships from different clusters are substantial, as can be seen in  
Figure 7. 

4. Conclusion 

The aim of the paper was to reveal regional differences in income distributions in 
Poland, with a special attention paid to income inequality and poverty.  The statistical 
analysis, based on individual data from the Household Budget Survey, applied selected 
non-parametric and parametric methods for estimating inequality and poverty 
measures, as well as the complete-linkage clustering for grouping the Polish 
voivodeships. The approximation of empirical distributions performed using the three-
parameter Dagum model turned out to be an appropriate tool for both parametric 
estimation and visualization of the results. The estimated distribution characteristics 
enabled the effective segmentation of voivodeships, which was additionally  confirmed 
by very similar Dagum density curves obtained for each cluster.  On the contrary, the 
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differences between clusters are substantial. For the richest cluster, which consists of 
Dolnośląskie and Mazowieckie voivodeships, the highest poverty gap has been 
observed, which can be connected with discrepancies located at the left tail of income 
distributions. The most difficult situation  was observed for the cluster containing: 
Opolskie, Pomorskie and Wielkopolskie - the cluster represents highest values of the 
average poverty head-count ratio, the poverty gap index and the Gini index and is also 
characterized by the lowest equivalent income. In the cluster including: Podkarpackie, 
Świętokrzyskie and Zachodniopomorskie, the poverty indices are small due to relatively 
small overall inequality, even if the average income level for this cluster is low. 

The results of the calculations confirmed the assumption that income distributions 
in Poland differ significantly across regions. The obtained clusters allowed detecting 
groups of regions that may require separate social policies aimed at increasing 
household income, or rather at reducing income inequality. 
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Modelling the asymmetric relationship between energy and CO2 
emissions in the Visegrad group: empirical evidence from  

a panel NARDL approach 
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Abstract 

The study aims to understand the impact of renewable energy consumption, non-renewable 
energy consumption, and economic growth on carbon dioxide (CO2) emissions per capita 
(measured in metric tonnes) in the Visegrad countries between 1991 and 2021. Using  
a Nonlinear Autoregressive Distributed Lag (NARDL) model for panel data, the research 
captures both long-term dependencies and short-term dynamics. The results show that 
a reduction in CO2 emissions yielded by a significant long-term decrease in non-renewable 
energy consumption is proportionally larger than the increase in the emissions caused by 
the growth in the consumption of such energy. What is more, GDP growth in the V4 coun-
tries increases CO2 emissions, but GDP decline contributes significantly more to the 
reduction in emissions. In contrast, renewable energy consumption consistently reduces 
CO2 emissions over the long term, with no significant asymmetry detected. In the short term, 
both economic growth and non-renewable energy consumption increase CO2 emissions. 
The error correction factor suggests a rapid adjustment of CO2 emissions towards a long-
term equilibrium, with a decreasing trend over time. These results have some policy 
implications, i.e. they suggest that for the V4 countries, increasing investment in tech-
nologies and solutions that improve energy efficiency will be crucial for reducing non-
renewable energy consumption and, consequently, CO2 emissions, without negatively im-
pacting economic growth. Additionally, stable and long-term promotion of renewable 
energy should be a policy priority in order to effectively contribute to emission reductions. 

Key words: renewable energy, non-renewable energy, CO2 emissions, growth, NARDL panel. 

1.  Introduction 

Energy is a fundamental production factor in modern economies, without which 
no economic activity is possible (Stern 2019). The efficient use of energy resources is 
a key competitive advantage for individual economies, influencing their efficiency and 
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cost intensity and therefore their economic development (Fanchi 2023). While energy 
is a key driver of economic growth, its production, particularly from conventional 
sources, has significant environmental implications (Ndoricimpa 2017). Since the 
Industrial Revolution, energy production, particularly from coal and oil, has con-
tributed significantly to the emission of greenhouse gases, especially carbon dioxide 
(CO2), which numerous studies have identified as a primary driver of global warming 
(Al-Ghussain 2019). The excessive release of greenhouse gases has resulted in a global 
temperature increase of 1.1°C, with further rises occurring at a rate of 0.2°C per decade 
(Pörtner et al. 2022). 

The economic implications of climate change have become a key topic of discussion 
at the political and scientific levels. It is imperative that global economies pursue 
sustainable solutions in energy production and consumption (Czyżewski, Polcyn, and 
Brelik 2022). The need to improve environmental conditions and halt global warming 
has driven the global community to adopt regulations aimed at reducing the use of fossil 
fuels in energy production and thereby cutting CO2 emissions. This effort began with 
the signing of the Kyoto Protocol in 1997, followed by the Paris Agreement in 2015 
(Flanker 2016). Furthermore, in 2019, the European Union initiated the European 
Green Deal, which aims to halve CO2 emissions by 2030 and achieve climate neutrality 
by 2050 (Samper, Schockling, and Islar 2021). The indicated actions have contributed 
to the green transformation, which can be defined as the integration of economic 
growth with environmental stewardship to ensure a high quality of life for current and 
future generations, while effectively and rationally utilizing available resources in line 
with civilizational progress (Cheba et al. 2022). 

Achieving the stated goals while maintaining conditions for economic growth 
requires replacing non-renewable energy sources with renewable ones, which is part of 
the energy transformation process (Adedoyin et al. 2021). For countries with a signifi-
cant reliance on fossil fuels in their energy mix, a transition to renewable energy sources 
will be particularly significant. The Visegrad Group is an example. It comprises the 
Czech Republic, Hungary, Poland and Slovakia. These countries have undergone 
substantial economic transformations, shifting to market economies while experienc-
ing significant changes in their production structures and numerous economic shocks 
(Ambroziak et al. 2021). Despite experiencing substantial economic growth, these 
nations still rely significantly on fossil fuels, including coal, for energy production 
(Brodny and Tutak 2021). Consequently, the energy transformation process represents 
a significant challenge for these countries, given the substantial investments required 
to increase the share of renewable energy sources in their energy mix (Marzec and Zioło 
2016). As highlighted by Bigos (2017), Poland and the Czech Republic are facing 
significant challenges in their energy sectors due to their substantial reliance on coal for 
electricity generation and heating. Slovakia faces greater challenges in adapting its 
industrial sector, while Hungary aims to achieve greater energy independence from 
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fossil fuels, including variable gas, by 2030. However, the impact of potential energy 
transformation on economic growth and CO2 emissions in these countries is still not 
fully understood, according to Suproń and Myszczyszyn (2023). 

A growing body of research from a range of regions and countries indicates that 
renewable energy can play a role in reducing CO2 emissions while supporting economic 
growth (Alper and Oguz 2016; Bhuiyan et al. 2022). However, the results are not always 
definitive. For example, Antonakakis et al. (2017) found that, in a sample of 106 
countries, there is no definitive evidence that the use of renewable energy promotes 
growth more efficiently and sustainably for the environment. Many previous studies 
have concentrated on the linear relationships between energy, economic growth and 
environmental pollution (Mardani et al. 2019). However, Khan i Sun (2024) posits that 
assuming a linear relationship is a flawed approach that leads to oversimplified 
conclusions. This is because it assumes that variables change proportionally, which may 
not fully account for external shocks. It is important to note that many economic 
relationships based on data represent non-linear relationships, which reflect the nature 
of economic events (Chauvet and Jiang 2023).  

Furthermore, research in environmental economics is increasingly emphasising the 
non-linearity of relationships between CO2 emissions, energy production and eco-
nomic factors (Iorember, Usman, and Jelilov 2019; Kirikkaleli, Abbasi, and Oyebanji 
2023; Akadiri and Adebayo 2022). As Kouton (2019) notes, asymmetries emerge due to 
a range of economic and natural shocks, including technological changes, policy shifts, 
economic policies, and even natural disasters. Employing non-linear models facilitates 
a more comprehensive examination of time series, particularly during periods when 
such shocks have occurred. 

Over the past 30 years, the Visegrad Group countries have faced a series of 
significant internal and external challenges. These include economic transformation, 
accession to the EU, the financial crisis, the Eurozone crisis and the impact of the global 
pandemic. As a result, economic data for these countries is characterized by a few 
structural breaks and non-linear stochastic processes. Additionally, some studies 
suggest that the relationships between CO2 emissions and the economy and energy 
sector in these countries may exhibit non-linear U- or N-shaped patterns (Suproń 2024; 
Supron and Myszczyszyn 2023).  

Considering the above rationale and the V4 countries' commitments to achieving 
climate neutrality, the aim of the study was to determine the short- and long-term 
impacts of renewable and non-renewable energy consumption, as well as economic 
growth, on CO2 emissions in the V4 countries, incorporating non-linear effects. Based 
on the study objectives and existing literature, the following research hypotheses were 
formulated: 
Hypothesis H1:  There is a negative and asymmetric relationship between renewable 
 energy consumption and CO2 emissions in the Visegrad countries in 
 the long term. 
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Hypothesis H2:  There is a positive and asymmetric relationship between non-
 renewable energy consumption and CO2 emissions in the Visegrad 
 countries in the long term. 

Hypothesis H3:  Economic growth has a positive and asymmetric impact on CO2 
 emissions in the Visegrad countries in the long term. 

The choice of the research method was based on an analysis of the existing literature 
on the subject. Many studies analyzing the relationship between energy consumption, 
production, and CO2 emissions use panel data, including econometric techniques such 
as linear VAR, ARDL, and the non-linear generalized method of moments (GMM) 
(Masron and Subramaniam 2018; Rasoulinezhad and Saboori 2018; Antonakakis, 
Chatziantoniou, and Filis 2017).  

This study employs a modern estimation method based on the NARDL model, 
which differs from previous research in this field. The choice of this methodological 
approach is driven by the fact that traditional panel methods often encounter issues 
related to heteroskedasticity and cross-sectional dependence in time series data. These 
issues limit the applicability of traditional panel methods and necessitate compromises 
in the estimation process. The use of nonlinear methods addresses these methodologi-
cal challenges and yields more accurate results. Additionally, NARDL allows for the 
modelling of long-term effects for both positive and negative deviations from 
equilibrium, as well as nonlinear short-term effects, which are often overlooked in 
traditional panel regression models (Shin, Yu, and Greenwood-Nimmo 2014; B. Li et 
al. 2023). Furthermore, these models are resilient to structural shifts in the data,  
a common challenge with economic indicators for Central and Eastern European 
countries, which have undergone substantial economic transformation and encoun-
tered numerous internal and external disruptions over the past three decades. 

The novel aspects of this study can be summarized as follows. Firstly, this study 
employs a contemporary methodology based on the NARDL model, offering new 
insights that differ from those of earlier research. Secondly, the findings related to 
Central and Eastern European countries, particularly the Visegrad Group, have 
significant implications for countries that may undergo similar transformation 
processes in the future. Finally, to the best of our knowledge, no previous studies have 
used NARDL methodology to study the V4 group with relationships of energy, GDP 
and CO2. 

The remainder of this paper is structured as follows. Section 1 provides a review of 
the recent literature. Section 2 presents the methodology and the empirical model. 
Section 3 describes the data and the results of the empirical analysis. Section 4 provides 
a discussion to the results of the study. The final section provides a summary. 
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2. Literature review 

There is a large body of theoretical and empirical research focusing on the 
relationship between energy consumption, economic growth, and CO2, in both highly 
developed and developing economies (Bąk and Cheba 2023). The literature can be 
divided into three main streams of research: the first focuses on the causal relationship 
between energy consumption and CO2, the second focuses on the relationship between 
production and air pollution. The third combines both, providing a unified framework 
for identifying the links between energy consumption, CO2 emissions and economic 
growth (Antonakakis, Chatziantoniou, and Filis 2017). 

Based on ample empirical evidence, existing aggregate reviews of the literature 
indicate the existence of unidirectional and bidirectional positive relationships between 
economic growth and CO2, (Omri 2014; Ozturk 2010; Tugcu, Ozturk, and Aslan 2012). 
In contrast, some studies to date have not confirmed a significant interaction between 
economic growth and higher CO2. However, it should be pointed out that individual 
studies differ both in the selection of countries, the study periods, the length of the time 
series and the methodology used (Haberl et al. 2020).  

As previously mentioned, the second part of the research focused on the topics of 
energy consumption and production and the impact of the indicated variables on CO2. 
Considering the previous research results in this area, most studies confirmed a positive 
unidirectional relationship between increased CO2, and electricity production. (Aziz et 
al. 2022). Some authors have conducted more detailed analyses comparing the impact 
of renewable and non-renewable energy on economic growth. Based on the evidence, 
it has been indicated that renewable energy consumption promotes CO2, but only after 
it has exceeded a certain share in the energy mix (Shahbaz & Sinha, 2019; Tiba & Omri, 
2017). Thus, according to the existing scientific consensus, renewable energy appears 
to be an effective instrument for sustainable decarbonization (Bourcet 2020).  

The rapid development of econometric methods has meant that previous studies 
have been conducted for both individual countries and groups of countries. The use of 
panel methods has contributed to the development of new results and conclusions from 
the estimation of broad data sets. A detailed characterization of recent studies using 
panel methods is presented in Table 1.  

Table 1:  A review of recent panel data studies and their results in the impact of economic growth and 
energy consumption on CO2 emissions 

Source 
Country 
(region) 

Causality Model Period 

Allard et al. (2018) 74 countries REW CO2 (-) PQARDL 1994-2012 

Anwar et al. (2021) 
ASEAN 
countries 

REW CO2 (-) 
NREW CO2 (+) 

FMOLS / DOLS 1980-2013 

Armeanu et al. (2017) EU Countries REW GDP (+) PVAR 2003-2014 
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Table 1:  A review of recent panel data studies and their results in the impact of economic growth and 
energy consumption on CO2 emissions  (cont.) 

Source 
Country 
(region) 

Causality Model Period 

Bekun et al. (2019) EU countries 
REW CO2 (-)  
NREW CO2 (+) 

ARDL-PMG 1996-2014 

Ben Jebli et al. (2020) 102 countries REW CO2 (-) GMM 1990-2015 
Bhattacharya et al. 
(2017) 85 countries 

NREW CO2 (+)  
REW CO2 (-) 

FMOLS 1991-2012 

Busu & Nedelcu (2021) EU countries REW CO2 (+) OLS panel 2000-2019 

Cai et al. (2018) G7 countries REW CO2 (-) ARDL-PMG 1965-2015 
Charfeddine & Kahia 
(2019) 

MENA 
countries REW CO2 (-) PVAR 1980-2015 

Chen et al. (2022) 97 countries REW CO2 (-) DPTRM 1995-2015 

Cialani (2017) 150 Countries CO2  GDP ECM panel 1960-2008 

Gozgor et al. (2018) 
OECD 
Countries 

NREW GDP (+) 
REW GDP (+) 

ARDL 1990 - 2013 

Inglesi-Lotz & Dogan 
(2018) Africa countries 

NREW CO2 (+)  
REW CO2 (-) 

DOLS 1980-2011 

Ito (2017) 
42 developed 
countries REW GDP (-) OLS panel 2002-2011 

Lazăr et al. (2019) CEE Countries GDP CO2 (+) FMOLS 1996-2015 

Li et al. (2020) 
Post-
Communist 
Economies 

GDP CO2 (+) OLS panel 1996-2018 

Ma et al. (2021) 
Germany and 
France 

REW CO2 (-)  
NREW CO2 (+) 

FMOLS 1995-2015 

Muço et al. (2021) 
European 
transition 
economies 

GDP CO2 (+) 
REW GDP (+) 

PVAR 1990-2018 

Ozcan and Ozturk 
(2019) 

Emerging 
countries REW ≠ GDP (+)  Causality panel 1990-2016 

Pope et al. (2019) EU Countries REW GDP (+) PVECM 1990-2014 

Papież et al., (2019) EU Countries 
REW≠GDP 
NREW ≠GDP 

PVAR 1995-2015 

Saqib et al. (2022) GCC NREW CO2 (+) OLS panel 1993-2019 

Suproń (2024) 
Visegrad 
countries 

NREW  CO2 (+) 
GDP  CO2 (+) 

Asymmetric FGLS 1991-2021 

Chen et al. (2022) 24 countries 
REW CO2 (-) 
NREW CO2 (+) 

ARDL-PMG 1995-2014 

Zhang and Liu (2019) 
NSEA-10 
countries 

REW CO2 (-) 
NREW CO2 (-) 

FMOLS 1995-2014 

REW - use/consumption of renewable energy; NREW - use/consumption of non-renewable energy; CO2 
- carbon dioxide emissions; GDP - economic growth; (+) positive impact; (-) negative impact.  
Source: author’s study. 
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As suggested by the summary presented in Table 1 on the impact of renewable and 
non-renewable energy consumption and economic growth on CO2, some results show 
consensus, while others often generate contradictory conclusions. These discrepancies 
may be due to the different data used, different econometric methods and the quality 
of the time series, among other things (Antonakakis, Chatziantoniou, and Filis 2017; 
Stern and Common 2001; Yang and Zhao 2014).  

Despite the wide range of research in this area, there still seems to be a research gap 
regarding the Visegrad countries. According to the literature analysis presented by 
Suproń & Myszczyszyn (2023) a panel study examining the relationship between energy 
consumption from different sources and economic growth on CO2 emissions in the V4 
countries has not yet been carried out.  

Developments in econometrics, newer estimators and models make it possible to 
provide new evidence in many of the areas studied. An analysis of the existing literature 
indicates that the relationship between energy consumption and CO2 emissions has not 
been extensively investigated using non-linear ARDL-PMG models. To date, this 
model has been used to establish relationships between CO2, and labor force (Naseer et 
al. 2022) and foreign investment (Deng, Liu, and Sohail 2022) in the BRICS countries. 
There have also been studies using the NARDL panel model to analyze the asymmetric 
impact of education on CO2 in MINT countries (Ahmed et al. 2022) and the ICT sector 
on environmental pollution in GCC countries (Saqib, Duran, and Hashmi 2022). 

Although the impact of renewable and non-renewable energy and economic 
growth on CO2 emissions has been extensively studied, significant research gaps re-
main, particularly regarding the use of non-linear methods for V4 economies. Non-
linear analysis is crucial in this context, as it enables a more detailed examination of the 
relationship between changes in independent variables and CO2 emissions (Ahmed et 
al. 2022). Despite this, the current literature does not confirm the existence of long-
term asymmetric relationships between energy production from renewable and non-
renewable sources, economic growth, and CO2 emissions in the Visegrad countries. 

3.  Data and methodology 

This study examined the relationship between renewable (REW) and non-
renewable (NREW) electricity consumption and economic growth (GDP), as well as 
carbon dioxide (CO2) emissions. The research was conducted for the V4 countries, with 
a time series covering the years from 1991 to 2021. Table 2 sets out the full characteris-
tics of the time series studied. The study used a panel data set, with the variables 
transformed to the form of natural logarithms. 
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Table 2:  Data, units and data sources 

Variable Full name Unit Source 

CO2 
Carbon dioxide (CO2) 
emissions per capita Metric tonnes per capita 

World 
Development 
Indicators (WDI) 

GDP GDP per capita 
GDP per capita in constant 
2015 US dollars 

World 
Development 
Indicators (WDI) 

REW 
Electricity consumption from 
renewable sources 

Tonnes of oil equivalent 
(per capita) EEA / Eurostat 

NREW 
Electricity consumption from 
non-renewable sources 

Tonnes of oil equivalent 
(per capita) EEA / Eurostat 

Source: World Bank Data and Eurostat Database2.  

In this study, the NARDL methodology proposed by Shin et al. (2014) is employed 
to determine the relationship between CO2 emissions, renewable energy consumption, 
non-renewable energy consumption, and economic growth. The NARDL-PMG model 
based on the ARDL-PMG model, which is applied to panel data, provides short- and 
long-term parameter estimation and support for integrated variables at both I(0) and 
I(1) levels (Pesaran, Shin, and Smith 2001). NARDL models are also effective for small 
samples and robust to structural breaks in the data. The NARDL approach is more 
flexible in relation to the dynamics of cointegration between variables. In addition, 
NARDL models allow the assessment of both long- and short-term effects of the 
independent variables on the dependent variable with consideration of asymmetric 
effects. Considering the purpose of the study and the literature, the basic specification 
of the model was defined as follows: 

∆𝐶𝑂ଶ௧ ൌ 𝑓ሺ𝐺𝐷𝑃,𝑅𝐸𝑊,𝑁𝑅𝐸𝑊ሻ                                       (1) 

To drop serial correlation and heteroskedasticity, the model was transformed to  
a log-linear form: 

∆𝐶𝑂ଶ௧ ൌ  𝛽଴ ൅ 𝛽ଵ௧𝑙𝑛𝐺𝐷𝑃௧ ൅ 𝛽ଶ௧𝑙𝑛𝑅𝐸𝑊௧ ൅  𝛽ଷ௧𝑙𝑛𝑁𝑅𝐸𝑊௧ ൅ 𝜀௧          (2) 

                                                           
2 WDI dataset: https://databank.worldbank.org/metadataglossary/world-development-
indicators/series/EN.ATM.CO2E.PC, accessed on 31.05.2023; Eurostat dataset: 
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics, accessed on 
31.05.2023. 
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The variables lnGDP and lnREW have been transformed into subtotals according 
to the assumptions of the NARDL model to highlight their asymmetric effects. This 
allows the study to consider both their positive and negative effects on CO2 emissions. 
The subtotals of the variables studied are presented below in the form of equations 
(Shin, Yu, and Greenwood-Nimmo 2014): 

෍Δ𝑙𝑛𝐺𝐷𝑃௜௧
ି

௧

௡ୀଵ

ൌ ෍minሺΔln𝐺𝐷𝑃௜௧
ି, 0ሻ  ∩ 

௧

௡ୀଵ

෍Δ𝑙𝑛𝑁𝑅𝐸𝑊௜௧
ି

௧

௡ୀଵ

ൌ ෍minሺΔ𝑙𝑛𝑁𝑅𝐸𝑊௜௧
ି, 0ሻ 

௧

௡ୀଵ

 

(3) 

෍Δ𝑙𝑛𝐺𝐷𝑃௜௧
ା

௧

௡ୀଵ

ൌ ෍maxሺΔln𝐺𝐷𝑃௜௧
ା, 0ሻ

௧

௡ୀଵ

∩෍Δ𝑙𝑛𝑁𝑅𝐸𝑊௜௧
ା

௧

௡ୀଵ

ൌ ෍maxሺΔln𝑁𝑅𝐸𝑊௜௧
ା, 0ሻ

௧

௡ୀଵ

 

 
where GDP+ and NREW+ indicate positive changes in the series, GDP- and NREW- 
indicate negative changes in the series.  

The full panel NARDL model including asymmetric effects and short- and long-
term impacts is presented below: 
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(4) 

where i is the cross-sectional dimension, t is the time dimension, p is the corresponding 
order of delay, 𝛿 are the parameters of the short-term relation, and 𝜑 the parameters of 
the long-term relationship.  

The study used an estimation based on the Pooled Mean Group (PMG) estimator. 
The selection of the optimal number of delays in the model, on the other hand, was 
determined according to the Akaike Information Criterion (AIC). The PMG estimator 
provides greater reliability for cross-country data, as it takes into account regional 
specificities and allows for a better interpretation of the long-run equilibrium (Attiaoui 
and Boufateh 2019).  

In addition, PMG allows for heterogeneity in short-run coefficients, while long-run 
coefficients can be identical and homogeneous for the entire panel area (Pesaran, Shin, 
and Smith 1999). Testing for asymmetry was carried out using the Wald test and the 𝑥ଶ 
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statistic (Andrews 1987; Shin, Yu, and Greenwood-Nimmo 2014). Because all variables 
tested are stationary at level I (1) and the cross-section of the panel tested was four 
objects, cointegration tests were applied Kao (1999). In order to strengthen the results 
obtained, causality was tested using the Dumitrescu-Hurlin panel pairwise procedure 
(Dumitrescu and Hurlin 2012). 

4.  Research results 

4.1.  Exploratory Data Analysis 

Table 3 presents the fundamental descriptive statistics for the surveyed data for the 
years 1991 and 2021. The Visegrad Group countries (Czech Republic, Hungary, Poland, 
and Slovakia) experienced notable shifts in carbon dioxide (CO2) emissions, per capita 
GDP, and energy consumption from renewable and non-renewable sources between 
1991 and 2021. There was a notable decrease in CO2 emissions per capita over the 
period in question. In 1991, the average CO2 emissions were 9.36 metric tonnes per 
capita. By 2021, this figure decreased to 6.84 metric tonnes. The reduction in the 
standard deviation from 3.07 to 2.65 tonnes indicates a more uniform distribution of 
emissions across the region, likely reflecting improvements in environmental policies 
and industrial technologies. GDP per capita grew considerably. In 1991, the average 
GDP per capita was $7,284.27, rising to $17,286.35 by 2021. Despite this growth, the 
reduction in the standard deviation from $2,330.20 to $2,003.16 indicates a reduction 
in income inequality within the region, although significant disparities in living stand-
ards between countries persist. 

There was an increase in the consumption of electricity from non-renewable 
sources, with the average rising from 0.36 to 0.47 tonnes of oil equivalent per capita. 
This was accompanied by a rise in the standard deviation, which increased from  
0.11 to 0.16 tonnes. This indicates an increasing demand for energy and the potential 
for delays in the transition to renewable sources. In contrast, there was a notable 
increase in electricity consumption from renewable sources, with the average rising 
from 0.01 to 0.09 tonnes of oil equivalent per capita.  

While the contribution of renewable energy to overall consumption remains 
relatively modest, the decline in the standard deviation from 0.01 to 0.02 tonnes sug-
gests a more consistent uptake of renewable technologies across the countries.  
In conclusion, the period from 1991 to 2021 saw significant developments in the 
Visegrad Group countries, including reductions in CO2 emissions and economic growth. 
The increased consumption of renewable energy reflects an ongoing energy transition, 
although challenges remain with rising energy use from non-renewable sources. 
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Table 3:  Descriptive statistics 

Variable 1991 2021 
Mean Min Max SD Mean Min Max SD 

CO2 9.36 6.47 13.65 3.07 6.84 4.25 9.87 2.65 
GDP 7284.27 4743.75 10304.87 2330.20 17286.35 15485.47 19715.97 2003.16 
NREW 0.36 0.25 0.51 0.11 0.47 0.32 0.68 0.16 
REW 0.01 0.00 0.03 0.01 0.09 0.06 0.11 0.02 

Source: author’s calculations. 

Figures 1–3 present main time series data for the V4 countries. The CO2 emissions 
per capita have declined in all four countries since 1991 (Fig. 1), reflecting technological 
progress and reduced industrial intensity. The Czech Republic and Hungary showed 
steady decreases, with minor fluctuations. Poland and Slovakia also reduced emissions, 
despite periods of stagnation. Renewable energy consumption per capita increased  
in all countries (Fig. 2), most notably in Slovakia. Growth in the Czech Republic and 
Poland was moderate; Hungary accelerated after 2010. Non-renewable energy co-
nsumption per capita remained relatively stable (Fig. 3), with slight increases in the 
Czech Republic and Poland, stagnation in Hungary, and fluctuations in Slovakia. 

 

 
Figure 1:   CO2 emissions per capita in the study countries 1991–2021 

Source: WDI database. 
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Figure 2:  Electricity consumption from non-renewable sources in the study countries 1991–2021  

Source: EEA/Eurostat database. 

 
Figure 3:   Electricity consumption from renewable sources in the study countries 1991–2021  

Source: EEA/Eurostat database. 
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4.2.  Model estimation result 

The next step of the study was to conduct unit root tests. Three different types of 
tests were used for this purpose. The first was the unit root test of the second generation 
CIPS panel (Pesaran 2007) and the first generation test – Augmented Dickey–Fuller 
test (Dickey and Fuller 1979). The results of the tests are shown in Table 4. The tests 
performed indicate that all variables are stationary at the first difference, I (1). The re-
sults confirm that the tested variables meet the assumptions of the NARDL model.  

Table 2:  Panel data unit root tests 

Variable I (0) Level I (1) First difference 
CIPS ADF CIPS ADF 

lnCO2 -2.14 -0.98 -5.64* - 7.24* 
lnGDP -1.54 0.75 -3.61* -5.85* 
lnNREW -2.08 -0.26 -4.95* -6.68* 
lnREW -1.23 0.94 -3.36* -6.38* 

The significance of the coefficients is indicated by an asterisk in the tables, where ***, **, * denotes 5%, 
1%, and 0.1% significance level, respectively.  
Source: author’s calculations. 

Table 5 shows the results of the Wald test for the long-run coefficients and diag-
nostic tests. The results indicate that there is significant asymmetry in the long run for 
the GDP and NREW variables at the 10% significance level, while for the REW variable, 
the presence of statistically significant asymmetry could not be confirmed. Therefore, 
parameters for the REW variable were estimated using a linear method. The Kao coin-
tegration tests (Kao 1999) for the panel data is also statistically significant at the 5% 
level. The result of the test performed confirms that there is a sustained strong relation-
ship between the study variables in the long term. 

Table 5:  NARDL model asymmetry test results and diagnostics 

Variable Statistics Value Probability 

lnGDP 
F  4.594  0.034 
χ2  4.595  0.032 

lnNREW 
F  2.833  0.095 
χ2  2.834  0.092 

lnREW 
F  1.182  0.279 
χ2  1.183  0.276 

Kao-cointegration test t -2.371  0.009 
Log likelihood 257.1 

Source: author’s calculations. 
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The results of the estimation of the parameters of the long-run model are presented 
in Table 6. All the results obtained are statistically significant at the 10% significance 
level, allowing inference from the estimated model. The NARDL results indicate the 
existence of asymmetry in the long term regarding the impact of economic growth and 
energy production from non-renewable sources on CO2 emissions in the studied coun-
tries. According to the obtained parameters, a 1% increase in non-renewable energy 
consumption leads to a 0.26% increase in CO2 emissions, while a 1% decrease in con-
sumption generates a 0.63% decrease in CO2 emissions. In contrast, a 1% increase in 
GDP translates into a 0.21% increase in CO2 emissions, while a 1% decrease in GDP 
results in a 1.02% decrease in CO2 emissions. The results also show that the increase in 
energy consumption from renewable sources in the long term does not show significant 
asymmetry. Its increase by 1% is associated with a decrease in CO2 emissions of 0.05%. 

Table 6:  NARDL long-run results 

Variable Coefficient Standard error t-statistics Probability 

lnREW -0.045 0.016 -2.831 0.005 

𝜑ା lnNREW 0.269 0.158 1.700 0.092 

𝜑ି lnNREW 0.637 0.098 6.496 0.000 

𝜑ା lnGDP 0.208 0.062 3.340 0.001 

𝜑ି lnGDP 1.022 0.339 3.014 0.003 

Const. 1.442 0.098 14.588 0.000 

Source: author’s calculations. 

Table 7 shows the results of the estimation of the short-term model. The results 
confirm the impact of economic growth and energy consumption from non-renewable 
sources on CO2. However, no statistically significant short-term correlations between 
renewable energy consumption were confirmed. As a result of the model estimation, an 
error correction factor (ECT T-1) of -0.61 was also estimated. The negative and 
statistically significant correction factor is in line with the convergence requirements 
and further confirms the existence of long-term cointegration. In interpreting the ECT 
coefficientt-1, it is important to point out the relatively rapid adjustment of CO2, to 
long-run equilibrium (within about 1.5 years) in the face of shocks, and the general 
downward trend in the long run in the countries studied. 
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Table 7:  NARDL short-run results 

Variable Coefficient Standard error t-statistics Probability 
ECTt-1 -0.614 0.312 -1.970 0.032 
ΔlnCO2 t-1 0.168 0.186 0.905 0.368 
ΔlnCO2 t-2 -0.063 0.137 -0.459 0.647 
ΔlnCO2 t-3 -0.118 0.226 -0.521 0.604 
ΔlnREW -0.029 0.041 -0.700 0.486 
ΔlnREW t-1 -0.038 0.026 -1.421 0.159 
ΔlnREW t-2 0.012 0.038 0.304 0.762 
ΔlnREW t-3 -0.003 0.036 -0.080 0.936 
ΔlnNREW 0.355 0.190 1.868 0.065 
ΔlnGDP 0.512 0.258 1.985 0.050 
ΔlnGDP t-1 0.083 0.195 0.428 0.670 
ΔlnGDP t-2 0.205 0.049 4.138 0.000 
ΔlnGDP t-3 0.236 0.342 0.691 0.491 

Source: author’s calculations. 

In the final stage of the study, a causality test was conducted based on the 
Dumitrescu & Hurlin panel data test (2012). The test results indicate the existence of 
unidirectional causality from lnGDP to lnCO2, from lnNREW to lnCO2, from lnREW 
to lnCO2, and from lnGDP to lnREW. Additionally, causality is observed from lnGDP 
to lnNREW, at the 10% significance level. Thus, according to the results of the causality 
test, all the variables tested have an impact on CO2, which aligns with the model 
estimation results obtained. Furthermore, the causality test indicates that economic 
growth in the V4 countries induces energy consumption from both renewable and non-
renewable sources.  

Table 8:  Results of Pairwise Dumitrescu-Hurlin panel causality tests 

Cause → Effect W-Stat. Zbar-Stat. Prob. 
 lnGDP → lnCO2 4.211 1.698 0.090 
 lnCO2 → lnGDP 1.286 -0.750 0.453 
 lnNREW → lnCO2 2.514 1.851 0.081 
 lnCO2 → lnNREW 2.475 0.245 0.806 
 lnREW → lnCO2 4.244 1.726 0.084 
 lnCO2 → lnREW 2.571 0.326 0.745 
 lnNREW → lnGDP 3.499 1.102 0.270 
 lnGDP → lnNREW 5.531 2.802 0.005 
 lnREW → lnGDP 1.521 -0.553 0.580 
 lnGDP → lnREW 12.200 8.224 0.000 
 lnREW → lnNREW 1.297 -0.741 0.459 
 lnNREW → lnREW 2.836 0.547 0.584 

Source: author’s calculations. 
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5.  Discussion 

In summary, the results of the study provide significant insights into the relation-
ships between economic growth, renewable and non-renewable energy consumption, 
and CO2 emissions in the V4 countries. The study indicates that there are both sym-
metric and asymmetric relationships between CO2 emissions, renewable energy con-
sumption, and economic growth. Notably, the impact of asymmetry on CO2 emissions 
was confirmed only for the long term, while in the short term, all relationships were 
symmetric. These results demonstrate that asymmetric relationships between CO2 
emissions, energy consumption, and economic growth become more apparent over 
longer periods, reflecting long-term structural processes within the economy. In the 
short term, responses are often quicker and more uniform, leading to symmetric rela-
tionships.  

However, over a longer time horizon, factors such as technology adaptation, 
changes in energy policies, and shifts in economic structure can result in more complex, 
asymmetric interactions. Additionally, the analysis of short-term asymmetric relation-
ships would require higher frequency data (quarterly or monthly) for all variables stud-
ied, which are currently unavailable. In such cases, it would be possible to account for 
potential discrete non-linear dependencies. 

The study indicates that the long-term asymmetric impact on CO2 emissions is 
primarily driven by non-renewable energy consumption and economic growth. Specif-
ically, a GDP decrease leads to a significantly larger reduction in emissions than a GDP 
increase causes a rise. Similarly, a decrease in non-renewable energy consumption re-
sults in a much greater drop in CO2 emissions than an increase causes a rise. 

Combining these findings, it can be noted that further economic development in 
the V4 countries may not have such a negative impact on the environment. This is as-
sociated with shifting growth towards more efficient energy use, developing less emis-
sions-intensive economic sectors, and adopting ecological energy sources. According 
to the results, a fundamental issue for the V4 countries is their heavy reliance on non-
renewable sources compared to renewable sources. The asymmetric relationship sug-
gests that a significant reduction in emissions could be achieved either by curbing eco-
nomic activity or by decreasing non-renewable energy consumption. Since causality 
tests indicate that economic growth in the V4 countries is driven by increased energy 
consumption, ensuring sustainable economic development can only be achieved by re-
placing non-renewable sources with renewable ones. The study indicates that only in 
the long term does an increase in renewable energy usage have a negative and symmet-
ric effect on CO2 emissions. 

These observations align with findings by Papież et al. (2019), who noted that the 
positive economic aspects associated with renewable energy consumption become 
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apparent only when the share of renewable energy in the energy mix is significantly 
increased. Similarly, Ben Jebli et al. (2020) found that renewable energy positively 
impacts economic growth and reduces CO2 emissions in higher-income countries. 
Therefore, it appears crucial in this context that efforts to reduce CO2 emissions in the 
V4 countries may follow only two pathways: first, by merely reducing non-renewable 
energy consumption, which could result in decreased economic activity, or second, by 
increasing the use of renewable energy, thereby ensuring sustainable economic 
development. The significance of renewable energy consumption's impact only in the 
long term suggests that the energy transformation process requires a substantial period 
to achieve its goals. In summary, the results obtained confirm hypotheses H2 and H3 
and partially verify hypothesis H1 concerning the effect of renewable energy on CO2 
reduction, but only in a linear manner. 

It is not straightforward to compare these results with those presented in earlier 
studies for three reasons. Firstly, to date, no study using the NARDL-PMG method has 
fully addressed the variables examined in this study. Secondly, the group of countries 
analyzed here does not overlap with those in previous studies. The V4 countries have 
mostly been included in broader sets of countries studied (e.g. all EU countries). 
Thirdly, this study employed the widest possible time range for the time series analyzed, 
which allowed for more precise results compared to previous research. Nevertheless, 
when limiting the comparison to studies that have investigated linear and non-linear 
relationships between energy consumption, economic growth, and CO2 emissions, the 
results obtained are somewhat like those of previous studies. 

In reference to studies specifically concerning the V4 group, the results obtained in 
this research align with those of Supron and Myszczyszyn (2023), which indicate a 
negative impact of non-renewable energy on environmental pollution and a positive 
effect of renewable energy. Similarly, the study by Litavcová and Chovancová (2021), 
which did not cover all V4 countries, also partially confirms these findings, particularly 
in the context of CO2 emissions. This suggests that higher energy consumption leads to 
increased emissions but is necessary to sustain economic growth. 

However, with some caution when considering studies using non-linear methods, 
including NARDL, that involve different countries, there are notable similarities. 
Kirikkaleli et al. (2023) and Akadiri & Adebayo (2022) confirm an asymmetric relation-
ship between economic growth and CO2 emissions in India, where a decrease in GDP 
results in a greater reduction in emissions than an increase in GDP leads to an increase 
in emissions. In contrast, the results of this study differ from those obtained for GCC 
countries by Islam & Rahaman (2023), who, using the NARDL-PMG model, did not 
confirm a non-linear but only a linear relationship between economic growth and CO2 
emissions in the long term. Additionally, studies using linear panel models by Li et al. 
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(2014), Lazăr et al. (2019) and Muço et al. (2021) confirmed a positive linear relation-
ship between economic growth and CO2 emissions. 

Bekun et al. (2019), using the ARDL-PMG model, confirmed that an increase  
in renewable energy consumption contributes to a decrease in CO2 emissions, while 
non-renewable energy consumption results in an increase in CO2 emissions in the long 
term within EU countries, consistent with the results of this study. Furthermore, Chen 
et al. (2022), who studied a larger number of countries using non-linear methods 
(GMM), obtained similar results for developed countries, finding that a 1% increase  
in consumption from renewable sources results in a 0.04% decrease in CO2 emissions, 
while a 1% increase from non-renewable sources results in a 0.6% increase. These find-
ings are comparable to those obtained in this study. 

6.  Conclusions 

The results provide robust evidence of a persistent and long-term relationship be-
tween renewable and non-renewable energy consumption, economic growth and CO2 
emissions in the V4 countries. The estimated model indicates that changes in these var-
iables have a lasting impact on CO2 emissions in this region. The study also confirmed 
that there is a significant asymmetry in the long-term relationship between non-renew-
able energy consumption and CO2 emissions. This suggests that efforts to reduce non-
renewable energy consumption may have a more significant impact on emission reduc-
tions. Also, economic growth shows an asymmetric impact on CO2 emissions in the V4 
countries, where a decrease in economic growth has a greater impact on CO2 reduction 
than its increase. In view of this, energy efficiency improvements will be necessary to 
reduce CO2 emissions without negative effects on economic growth. Investment in 
technologies and solutions for more efficient energy use should therefore be a priority 
in the V4 countries. Unlike non-renewable energy, renewable energy consumption 
does not show a significant asymmetry in the long-term relationship with CO2. This 
suggests that policies promoting the use of renewable energy sources can contribute to 
reducing CO2 emissions in the long term. At the same time, increasing the use of re-
newable energy should occur in a stable and long-term manner. 

This study, like any empirical work, has certain limitations that could guide future 
research. First, environmental pollution is represented by CO2 emissions. Future re-
search could expand the analysis of the impact of energy consumption on the environ-
ment by including other greenhouse gases resulting from human economic activities 
(such as sulfur hexafluoride, carbon monoxide, and nitrous oxide). This would allow 
for more precise information and enable a comparative analysis of the effects of differ-
ent types of gases. Second, this study considers economic activity as the total output 
expressed through GDP. To increase accuracy, future studies could focus on examining 
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the asymmetric impact of individual economic sectors on environmental pollution. 
Finally, the study focuses on a narrow geographical area, encompassing the V4 coun-
tries. In future research, to draw broader conclusions, the presented model could be 
applied to a larger number of countries, covering the entire EU. This could also involve 
using classification methods and analyzing countries in groups based on characteristics 
such as the level of economic development and renewable energy usage. 

Moreover, the NARDL model itself has certain limitations due to the way data is 
estimated. The model yields the best results when using relatively long time series with 
high frequency. As environmental and energy data for many countries have only been 
collected since the mid-1990s, trade-offs between measurement accuracy and the num-
ber of variables and lags are necessary. In addition, many important indicators have an 
even shorter measurement history. As the number of data periods increases, future 
studies could introduce additional variables into the model, such as innovation, re-
search and development and social factors. This would increase the breadth and depth 
of knowledge, making it more detailed and accurate. 
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Multivariate two-sample permutation test with directional 
alternative for categorical data 

Stefano Bonnini1, Michela Borghesi2 

Abstract 

This paper presents a distribution-free test, based on the permutation approach, on 
treatment effects with a multivariate categorical response variable. The motivating example 
is a typical case-control biomedical study, performed to investigate the effect of the 
treatment called “assisted motor activity” (AMA) on the health of comorbid patients affected 
by “low back pain” (LBP), “hypertension” and “diabetes”. Specifically, the goal was to test 
whether the AMA determines an improvement in the functionality and the perceived health 
status of patients. Two independent samples (treated and control group) were compared 
according to 13 different binary or ordinal outcomes. The null hypothesis of the test consists 
in the equality in the distribution of the multivariate responses of the two groups, whereas 
under the alternative hypothesis, the health status of the treated patients is better. The 
approach proposed in this work is based on the Combined Permutation Test (CPT) method, 
which is suitable for analyzing multivariate categorical data in the presence of confounding 
factors. A stratification of the groups and intra-stratum permutation univariate two-sample 
tests are conducted to avoid the potential confounding effects. P-values from the partial tests 
are combined using the CPT approach to create a suitable test statistic for the overall 
problem. 

Key words: nonparametric statistics, permutation test, multivariate statistics, categorical 
data. 

1.  Introduction 

This study involves applying a distribution-free test using a permutation approach 
to address a multivariate biostatistical problem. The main goal of this work is to test the 
effect of “assisted motor activity” (AMA) on the health of patients affected by “low back 
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pain” (LBP), “hypertension” and “diabetes”. AMA is a therapy that focuses on targeted 
physical exercises to regain mobility restrictions resulting from various causes.  

In the literature, some studies were conducted on the effect of motor activity on 
patients affected by low back pain, especially on proving that treatments based on 
specific physical exercises can improve the health of patients (Ferreira et al., 2007; 
Gordon and Bloxham, 2016).  This type of analysis almost always consists of a random-
ized controlled trial and parametric methods are used which often require large sample 
sizes to obtain reliable results (Macedo et al., 2012; Macedo et al., 2014). 

This study is a case-control experiment that compares two independent samples. 
The samples consist of a treated group of 27 patients (group 1) and a control group of 
20 patients (group 0). At time 𝑡଴ (prior to treatment), there is no significant difference 
in health status between the two groups. A comparison is made at time 𝑡ଵ, following the 
treatment for group 1. Health status is assessed using 13 different binary or ordinal 
outcomes. The null hypothesis states that the distribution of multivariate responses is 
equal for groups 1 and 0, while the alternative hypothesis suggests that the treated 
patients have a better health status. This alternative hypothesis is directional, indicating 
a multivariate stochastic dominance issue for ordinal variables. Since being over 
60 years old and having LBP could be a risk factor, a confounding factor 𝑠 is established, 
where 𝑠 ൌ 1 if the patient is over 60 years old and has LBP, and 𝑠 ൌ 0 otherwise. 

The methodology outlined in this study is grounded in the Combined Permutation 
Test (CPT), which is effective for handling multivariate categorical data and addressing 
the issue of confounding factors (Pesarin and Salmaso, 2010; Bonnini et al., 2014). The 
combined permutation testing approach has been successfully applied in a wide range 
of contexts (Alibrandi et al., 2022). Specifically, it has seen extensive use in empirical 
research (Toma et al., 2017), involving both numerical and categorical variables 
(Bonnini et al., 2023), large-scale data scenarios (Simon and Tibshirani, 2012), and 
regression analyses (Bonnini and Borghesi, 2022). Furthermore, this method has 
proven effective in testing both directional and non-monotonic hypotheses (Bonnini et 
al., 2024a; Stute et al., 1998), in the analysis of count data (Bonnini et al., 2024b), and in 
numerous other applications. For more detailed information on the methodology of 
the nonparametric combination, refer to Bonnini et al. (2024). 

To mitigate confounding effects by comparing comparable patients regarding the 
confounder, we implement stratification of the groups and conduct intra-stratum 
permutation univariate two-sample tests. Considering there are 13 components in the 
multivariate response and 2 strata, the total number of partial tests amounts to 26. 
Utilizing the CPT methodology to combine the 𝑝-values from these partial tests yields 
a test statistic that is appropriate for the overall analysis. From the application point of 
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view, the aim is to evaluate if AMA leads to enhancements in the functionality and 
perceived health condition of patients with comorbidities, using a significance level  
𝛼 ൌ 0.05. 

Section 2 is dedicated to the description of the statistical problem and Section 3 
includes a description of the proposed methodological solution. In Section 4 a simula-
tion study is carried out, Section 5 is dedicated to the case study and the results are 
reported and commented in the conclusions (Section 6). 

2.  Statistical problem 

Let 𝑋ଵ,௦௩ and 𝑋଴,௦௩ represent the 𝑣-th outcome or, equivalently, the 𝑣-th component 
of the multivariate response, in the stratum 𝑠 for the treated and the control group 
respectively, with 𝑠 ൌ 0,1 and 𝑣 ൌ 1, … , 13. The partial problem related to the 𝑣-th 
outcome and the stratum 𝑠 consists of testing  

𝐻଴,௦௩:𝑋ଵ,௦௩ ൌ ௗ 𝑋଴,௦௩                                                       (1) 

versus the alternative hypothesis  

𝐻ଵ,௦௩:𝑋ଵ,௦௩ ൐ௗ 𝑋଴,௦௩,                                                      (2) 

where ൌௗ denotes equality in distribution and ൐ௗ indicates stochastic dominance. Such 
hypotheses may be written as 

𝐻0,𝑠𝑣:𝐹1,𝑠𝑣ሺ𝑥ሻ ൌ 𝐹଴,௦௩ሺ𝑥ሻ ∀𝑥                                              (3) 

and 

𝐻1,𝑠𝑣:𝐹1,𝑠𝑣ሺ𝑥ሻ ൑ 𝐹଴,௦௩ሺ𝑥ሻ ∀𝑥 and ∃𝑥|𝐹1,𝑠𝑣ሺ𝑥ሻ ൏ 𝐹଴,௦௩ሺ𝑥ሻ ,                  (4) 

where 𝐹௝,௦௩ሺ𝑥ሻ represent the cumulative distribution function of 𝑋௝,௦௩, with 𝑗 ൌ 0,1. 
Under the null hypothesis, for the 𝑣-th outcome, both the intra-stratum partial null 

hypothesis 𝐻଴,ଵ௩ and 𝐻଴,଴௩ are true, thus 𝐻଴,௩:𝐻଴,ଵ௩ ∩ 𝐻଴,଴௩ . Similarly, 𝐻ଵ,௩:𝐻ଵ,ଵ௩ ∪
𝐻ଵ,଴௩, with the same notation. Hence, the overall null and alternative hypothesis of the 
problem can be denoted by 

ቊ
𝐻଴:⋂ 𝐻଴,௩

ଵଷ
௩ୀଵ

𝐻ଵ:⋃ 𝐻ଵ,௩
ଵଷ
௩ୀଵ

                                                          (5) 

For problems of stochastic dominance for ordered categorical variables, the 
literature offers quite a long list of exact and approximate solutions (see Agresti and 
Klingenber, 2005; Han et al., 2004; Hirotsu, 1986; Loughin and Scherer, 1998; Loughin, 
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2004; Lumely, 1996; Nettleton and Banerjee, 2000). For the univariate case, most of the 
methodological solutions are based on the restricted maximum likelihood ratio test  
(see Cohen et al., 2000; Silvapulle and Sen, 2005; Wang, 1996). Asymptotic null dis-
tributions of the test statistic are mixtures of chi-squared, implying that the mixture's 
weights depend on the unknown population distribution. In general, this is a complex 
problem with no easy solution especially among the parametric methods and in par-
ticular the likelihood approach. 

Nonparametric solutions are proposed by Pesarin (1994), Brunner and Munzel 
(2000), Pesarin (2001), Troendle (2002), Pesarin and Salmaso (2006), Agresti (1999), 
and Arboretti and Bonnini (2009). The presented problem can be solved by performing 
13 ൈ 2 ൌ 26 partial permutation tests (Anderson-Darling type test statistics) and 
combining the 𝑝-values first with respect to the strata (within each variable) and then 
with respect to the variables (Pesarin, 2010; Pesarin and Salmaso, 2010; Bonnini et al., 
2014). 

3.  Methodological solution 

The absolute frequency of the number of statistical units on which such a category 
is observed (i.e. the 𝑗-th ordered category) within the stratum 𝑠 for the 𝑣-th variable in 
the treated and control group is 𝑓ଵ௝,௦௩ and 𝑓଴௝,௦௩ respectively. For that reason, the 
cumulative frequencies in the two groups can be denoted by 𝐹ଵ௝,௦௩ ൌ ∑ 𝑓ଵ௥,௦௩

௝
௥ୀଵ  and 

𝐹଴௝,௦௩ ൌ ∑ 𝑓଴௥,௦௩
௝
௥ୀଵ  respectively. For the partial test concerning the null and the 

alternative hypothesis, the Anderson-Darling type test statistic is used 

𝑇𝑠𝑣 ൌ ∑ ൫𝐹଴௝,௦௩ െ 𝐹ଵ௝,௦௩൯ൣ𝐹∙௝,௦௩൫𝑛௦ െ 𝐹∙௝,௦௩൯൧
ି଴.ହ௞ೡିଵ

௝ୀଵ ,     (6) 

where 𝑘௩ is the number of ordered categories of the 𝑣-th variable, 𝐹∙௝,௦௩ ൌ 𝐹଴௝,௦௩ ൅
𝐹ଵ௝,௦௩ and 𝑛௦ ൌ 𝐹∙௞ೡ,௦௩. In order to address the testing concerning the 𝑣-th variable, 
specifically testing 𝐻଴,௩ against 𝐻ଵ,௩, a first-level combination of the significance level 
functions of the partial tests of the two strata may be applied. If 𝐿௦௩ሺ𝑡௦௩ሻ ൌ
𝑃ሾ𝑇௦௩ ൒ 𝑡௦௩|𝑿ሿ is the significance level function for the 𝑠-th stratum and the 𝑣-th 
variable given the observed dataset 𝑿, for any 𝑡௦௩ ∈ ℝ, according to the permutation 
distribution, a suitable combined test statistic for the 𝑣-th variable is 

𝑇′𝑣ሺ𝑡ଵ௩ , 𝑡଴௩ሻ ൌ maxൣ൫1 െ 𝐿ଵ௩ሺ𝑡ଵ௩ሻ൯൫1 െ 𝐿଴௩ሺ𝑡଴௩ሻ൯൧,     (7) 

for any couple of values ሺ𝑡ଵ௩, 𝑡଴௩ሻ ∈ ℝଶ, where 𝐿௦௩ሺ𝑡௦௩ሻ ൌ 𝑃ሾ𝑇௦௩ ൒ 𝑡௦௩|𝐻଴,𝑿ሿ and 𝑿 is 
the observed dataset. 

Similarly, to solve the general multivariate problem, a second-level combination 
concerning the variables may be carried out. Let 𝐿′௩ሺ𝑡′௩ሻ ൌ 𝑃ሾ𝑇′௩ ൒ 𝑡ᇱ௩|𝑿ሿ denote the 
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significance level function of 𝑇′௩ for any 𝑡′௩ ∈ ℝ. The second-level combined test 
statistic is the following: 

𝑇′′𝑣ሺ𝑡′ଵ, … , 𝑡′ଵଷሻ ൌ maxൣ൫1 െ 𝐿′ଵሺ𝑡′ଵሻ൯, … , ൫1 െ 𝐿′ଵଷሺ𝑡′ଵଷሻ൯൧.     (8) 

In the end, 𝐻଴ is rejected if the 𝑝-value of the combined test is less than or equal to 
the significance level 𝛼 ൌ 0.05, specifically if 𝐿′′ሺ𝑡′′௢௕௦ሻ ൑ 𝛼, where 𝐿ᇱᇱሺ𝑡ᇱᇱሻ ൌ
𝑃ሾ𝑇′′ ൒ 𝑡ᇱᇱ|𝑿ሿ with 𝑡′′ ∈ ℝ.  

Probabilities and 𝑝-values are calculated based on the null permutation 
distributions derived from permuting the rows of 𝑿, as the condition of exchangeability 
holds under the null hypothesis. 

Generally, in the case of a multivariate two-sample permutation test, the general 
CPT procedure in the presence of 𝑞 ൒ 2 response variables concern testing 
𝐻଴:⋂ 𝐻଴

ሺ௝ሻ௤
௝ୀଵ  against the alternative hypothesis 𝐻ଵ:⋃ 𝐻ଵ

ሺ௝ሻ௤
௝ୀଵ . The decision rule 

consists in the rejection of 𝐻଴ for large values of 𝑇, as follows: 

𝜆መ௝,଴ ൌ 𝑃෠ ቀ𝑇௝ ൒ 𝑇௝,௢௕௦|𝐻଴
ሺ௝ሻቁ ൌ 𝐿෠௝൫𝑇௝,௢௕௦൯                                 (9) 

𝜆መ௝,௕
∗ ൌ 𝑃෠ ቀ𝑇௝ ൒ 𝑇∗௝,௕|𝐻଴

ሺ௝ሻቁ ൌ 𝐿෠௝൫𝑇∗௝,௕൯.                               (10) 

An alternative resampling strategy (based on Glivenko-Cantelli theorem) consists 
in carrying out 𝐵 (e.g. 10000) independent random samplings from the permutation 
space (CMC method).  

Finally, the combined 𝑝-value can be computed in the following way: 

𝑇௖௢௠௕,௕
∗ ൌ 𝜓൫𝜆ଵ,௕

∗ , … , 𝜆௤,௕
∗ ;𝑤ଵ, … ,𝑤௤൯ 

with 𝜓: ሺ0,1ሻଶ௤ → ℝ a suitable combining function, that must satisfy the following 
conditions: 

1. 𝜓 is monotonic decreasing with respect to each argument: 𝜓൫… , 𝜆௝,௕, … ൯ ൐
 𝜓൫… , 𝜆′௝,௕, … ൯ if 𝜆௝,௕ ൏ 𝜆′௝,௕, 

2. upper and lower bound: 𝜓൫… , 𝜆௝,௕, … ൯ → 𝜓ത if 𝜆௝,௕ → 0 and  𝜓൫… , 𝜆௝,௕, … ൯ → 𝜓 
if 𝜆௝,௕ → 1, 

3. limited acceptance region: ∀𝛼 ∈ ሺ0,1ሻ 𝑡௖௢௠௕,ఈ ൏ 𝜓ത ൏ ∞. 

In the literature, one of the most commonly used combining functions is the 
combination function of Tippett: 𝜓் ൌ max

௝
൫1 െ 𝜆௝൯. 
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4.  Simulation study 

In order to study the power behavior of the proposed methodological approach, 
consisting of combined permutation tests, a Monte Carlo simulation study is carried 
out. It mainly requires exchangeability under 𝐻଴ and it is distribution-free. It is suitable 
for both two-sided and one-sided alternatives.  

The application of the test, the data random generations, and the comparative 
performance assessments were carried out through original R scripts created by the 
authors. For the evaluation of the methods, according to the null permutation 
distribution of the test statistics, 1000 random permutations were carried out. For each 
setting, 1000 datasets (replicates) were randomly generated. 

Sample data were randomly simulated from normal 𝑞-variate distributions with 
null mean vector and variance-covariance matrix Σ and then transformed into 𝑞-variate 
categorical data. Formally, we have: 

 

Σ ൌ ൮

1
𝜌

𝜌
1

⋯
⋯

𝜌
𝜌

⋮
𝜌

⋮
𝜌

⋱
⋯

⋮
1

൲ 

 
where 𝜌 represents the Pearson correlation and the covariance between each couple of 
components of the multivariate normal random variable. 

Let 𝑧௧௜ denote the observation related to the 𝑡-th component observed on the 𝑖-th 
statistical unit, with 𝑡 ൌ 1, … , 𝑞 and 𝑖 ൌ 1, … ,𝑛. The rule of the transformation into 
categorical variables is as follows: 

𝑥௧௜ ൌ ൞

category 1 if 𝑧௧௜ ൑ െ1.5        
category 2 if െ1.5 ൏ 𝑧௧௜ ൑ 0
category 3 if 0 ൏ 𝑧௧௜ ൑ 1.5    
category 4 if 𝑧௧௜ ൐ 1.5            

 

 
Therefore, the setting parameters in the simulations are the following: 
 𝑛: sample size of the control and the treated group, 
 𝑞: number of response variables, 
 𝛿: mean value of each underlying normal random variable for the treated group, 

i.e. for each component of the 𝑞-variate response (for the control group the mean 
is zero), 

 𝜌: Pearson correlation index that represents the dependence between each 
couple of the 𝑘 components of the multivariate response. 

The nominal significance level chosen for the simulations, under all the settings 
considered in the study, is 𝛼 ൌ 0.05. 
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Looking at Table 1, we can say that the proposed solution, under the null 
hypothesis, respect the nominal 𝛼 level. This means that the test is well approximated.  

Table 1: Rejection rates of the proposed solution under 𝐻଴, with 𝛿 ൌ 0, 𝜌 ൌ 0.30 and 𝛼 ൌ 0.05 

𝒏 q Rejection rates 
10 5 0.004 

100  0.004 
10 10 0.008 

100  0.002 

Source: authors’ analysis. 

Furthermore, in Figure 1, the consistency of the proposed methodology is shown. 
The greater the sample size 𝑛, the greater the power of the proposed nonparametric 
procedure. The power tends to 1 when 𝑛 diverges.  

 

 
Figure 1:  Rejection rates of the proposed test under 𝐻ଵ as a function of 𝑛, with 𝑞 ൌ 5, 𝛿 ൌ 0.05, 𝜌 ൌ
0.30 and 𝛼 ൌ 0.05 

Source: authors’ analysis. 

The Combined Permutation Tests are exact, unbiased and consistent. CPTs are 
suitable when the problem can be broken down into several sub-problems (multi-
aspect, multivariate, multistrata, multiple comparisons, …) with possible different 
types of alternatives. Finally, they are suitable for complex alternatives (stochastic 
ordering, umbrella alternatives, multivariate one-sided test, …), for multivariate 
numeric, categorical, and mixed variables. 

5. Case study 

The case study concerns a test on the effect of “assisted motor activity” (AMA) on 
the health of patients affected by “low back pain” (LBP), “hypertension” and “diabetes”.  
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The health status is measured according to 13 different binary or ordinal outcomes. 
The components of the ordinal multivariate response variable are listed below: 

 𝑋ଵ – Perceived Health: Self-assessment on the general state of health (1-bad,  
2-neutral, 3-good), 

 𝑋ଶ – Moderate Activity: Self-assessment on the ability to perform moderate 
physical activity (1-no, 2-partial, 3-yes), 

 𝑋ଷ – Stair Climbing: Self-assessment on the difficulty in stair climbing (1-yes,  
2-partial, 3-no), 

 𝑋ସ – Physical Performance: Physical performance lower than expected in the last 
month (1-yes, 2-no), 

 𝑋ହ – Activity Limitations: Need to limit some types of activity in the last month 
(1-yes, 2-no), 

 𝑋଺ – Emotional State: Physical performance lower than expected due to 
emotional state in the last month (1-yes, 2-no), 

 𝑋଻ – Mind Concentration: Decrease of mind concentration in the last month 
due to emotional state (1-yes, 2-no), 

 𝑋଼ – Pain: Difficulty in daily activities due to pain in the last month (1-very 
much, 2-somewhat, 3-undecided, 4-not much, 5-not at all), 

 𝑋ଽ – Calm and Serenity: Frequency of calm and serenity in the last month  
(1-never, 2-rarely, 3-every once in a while, 4-sometimes, 5-always), 

 𝑋ଵ଴ – Full of Energy: Frequency of feeling full of energy in the last month  
(1-never, 2-rarely, 3-every once in a while, 4-sometimes, 5-always), 

 𝑋ଵଵ – Discouraged and Sad: Frequency of feeling discouraged and sad in the last 
month (1-always, 2-sometimes, 3-every once in a while, 4-rarely, 5-never), 

 𝑋ଵଶ – Social Activities: Frequency of negative effects of health and emotional 
state on social activities in the last month (1-always, 2-sometimes, 3-every once 
in a while, 4-rarely, 5-never), 

 𝑋ଵଷ – Stress Level: Self-assessment of the level of stress (1-very high, 2-high,  
3-average, 4-moderate, 5-low, 6-very low). 

In this application, the null hypothesis of no effect of AMA on the health of treated 
patients (t.p.) is tested against the alternative hypothesis of positive effect of AMA on 
the health of treated patients. In formula we have the following: 

𝐻଴: ሾℎ𝑒𝑎𝑙𝑡ℎଵ ൌௗ ℎ𝑒𝑎𝑙𝑡ℎ଴ሿ ∩ ሾ𝑎𝑐𝑡𝑖𝑣ଵ ൌௗ 𝑎𝑐𝑡𝑖𝑣଴ሿ ∩ …∩ ሾ𝑠𝑡𝑟𝑒𝑠𝑠ଵ ൌௗ 𝑠𝑡𝑟𝑒𝑠𝑠଴ሿ  

≡ 𝐻଴:ሩ𝐻଴,௩

ଵଷ

௩ୀଵ
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vs 

𝐻ଵ: ሾℎ𝑒𝑎𝑙𝑡ℎଵ ൐ௗ ℎ𝑒𝑎𝑙𝑡ℎ଴ሿ ∪ ሾ𝑎𝑐𝑡𝑖𝑣ଵ ൐ௗ 𝑎𝑐𝑡𝑖𝑣଴ሿ ∪ …∪ ሾ𝑠𝑡𝑟𝑒𝑠𝑠ଵ ൐ௗ 𝑠𝑡𝑟𝑒𝑠𝑠଴ሿ  

≡ 𝐻଴:ራ𝐻ଵ,௩

ଵଷ

௩ୀଵ

. 

Looking at Table 1, the joint frequency distribution of treatment and confounding 
factors are reported. It is evident that, considering the stratified methodology, we deal 
with small sample sizes. Hence, the need to use a non-parametric approach becomes 
crucial. 

Table 2: Joint frequency distribution of treatment and confounding factor 

Stratum 
Group 

Total 
0 1 

Over 60 with LBP 
(s=1) 10 7 17 

Oher patients (s=0) 10 20 30 
Total 20 27 47 

Source: authors’ analysis. 

Each partial test can be broken down into two sub-partial tests, i.e. one for each 
stratum. Let 𝑠 ൌ 1 and 𝑠 ൌ 0 denote the stratum of over 60 with LBP and other patients 
respectively: 

 

𝐻଴:ሩൣ𝐻଴,௩଴ ∩ 𝐻଴,௩ଵ൧

ଵଷ

௩ୀଵ

≡ 𝐻଴:ሩሩ𝐻଴,௩௦

ଵ

௦ୀ଴

ଵଷ

௩ୀଵ

 

vs 

𝐻଴:ራൣ𝐻ଵ,௩଴ ∪ 𝐻ଵ,௩ଵ൧

ଵଷ

௩ୀଵ

≡ 𝐻଴:ራራ𝐻ଵ,௩௦

ଵ

௦ୀ଴

ଵଷ

௩ୀଵ

. 

 
Summarizing the characteristics of the problem, we are in the presence of a 

multivariate test with 13 marginal variables, categorical data, a directional alternative 
hypothesis (stochastic dominance), a stratified test to avoid confounding effects and 
small sample sizes. 

The application of the described method leads an overall p-value of 0.019. Thus, we 
have empirical evidence in favor of the hypothesis of significant effect of AMA on the 
health of patients (i.e. significant effect of the treatment). 

To attribute the overall significance to some specific outcomes (second level partial 
tests) we need to adjust the partial 𝑝-values to control the Family Wise Error Rate 
(FWER), i.e. the probability of wrong rejection of one or more partial null hypotheses. 
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According to the Bonferroni-Holm procedure the adjusted 𝑝-values are computed 
as follows: 

𝑝෤ሺ௞ሻ ൌ max
௜ஸ௞

ቄminൣ1, ሺ13 ൅ 1 െ 𝑖ሻ𝑝ሺ௜ሻ൧ቅ,       (11) 

 
where 𝑝ሺଵሻ ൑ 𝑝ሺଶሻ ൑ ⋯ ൑ 𝑝ሺ௤ሻ are the sorted 𝑝-values of the partial tests. 
 

Table 2: Adjusted 𝑝-values of the partial tests (significance in bold) 

Test Variable Adjusted 𝒑-value 
𝑇ଵ Perceived Health 0.361 
𝑇ଶ Moderate Activity 0.357 
𝑇ଷ Stair Climbing 0.232 
𝑇ସ Physical Performance 0.444 
𝑇ହ Activity Limitations 0.444 
𝑇଺ Emotional State 0.444 
𝑇଻ Mind Concentration 0.304 
𝑇  Pain 0.444 
𝑇ଽ Calm and Serenity 0.444 
𝑇ଵ଴ Full of Energy 0.444 
𝑇ଵଵ Discouraged and Sad 0.019 
𝑇ଵଶ Social Activities 0.444 
𝑇ଵଷ Stress Level 0.258 

Source: authors’ analysis. 

According to Table 2, the positive effect of the treatment on the health of patients 
can only be attributed to a decrease in sadness and discouragement.  

6.  Conclusions 

This work aims to test the null hypothesis of no effect of AMA on the health of 
treated patients versus the alternative hypothesis of a positive effect of AMA on the 
health of treated patients. The state of health is a multivariate categorical variable and 
for such a problem of stochastic dominance, the combined permutation test method is 
a valid solution. The proposed approach represents a valid solution for the described 
testing problem, whose complexity is due to the multivariate nature of the response, the 
categorical data, the directional alternative hypothesis, the presence of confounders and 
the small sample sizes. The application to the case study provides an overall 𝑝-value of 
the CPT equal to 0.019, which provides empirical evidence in favor of the hypothesis of 
the significant effect of AMA on the health of patients. Furthermore, looking at the 
partial 𝑝-values, the positive effect of the treatment on the health of patients can only 
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be attributed to a decrease in sadness and discouragement. The good power behavior 
and in particular the consistency of the proposed test are proved in the simulation 
study. 

The proposed method offers several promising directions for future research. First, 
it could be extended to accommodate longitudinal multivariate categorical data, 
allowing for the analysis of repeated measures or follow-up studies while preserving the 
nonparametric nature of the test. Moreover, integration with hierarchical or mixed-
effects frameworks would enable its application in multi-center studies or clustered 
data settings. Another valuable advancement would be the development of software 
packages to facilitate wider adoption of the method in applied research. Robust 
handling of missing data through imputation strategies combined with permutation 
logic also represents a key area for enhancement. Furthermore, the extension of the 
method to comparisons involving more than two groups could broaden its applicability 
in complex experimental designs. In terms of application, the approach may prove 
particularly useful in the evaluation of public policy interventions using categorical 
indicators in socio-economic studies. Additional relevant fields include educational 
research (e.g. assessing student outcomes through ordinal rating scales), marketing and 
consumer behavior (e.g. preference or satisfaction surveys), and environmental 
epidemiology, where categorical health outcomes are compared across groups exposed 
to different environmental conditions. These areas all stand to benefit from a flexible, 
robust, and distribution-free testing procedure such as the one proposed in this study. 
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Normality tests for transformed large measured data:
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Abstract

In statistical analysis, evaluating the normality of large datasets is crucial for validating 
parametric tests, particularly in areas such as Global Navigation Satellite System (GNSS) 
measurements, where data often exhibit non-normal characteristics resulting from their vari-
ability and errors. This research aims to transform the measured GNSS data and to as-
sess the effectiveness of transformation methods in achieving normality. Techniques like 
logarithmic, quantile and rank-based Inverse Normal Transformation (INT) were evalu-
ated using visual methods (histograms, Q-Q plots), descriptive statistics (skewness, kur-
tosis) and statistical tests, including Kolmogorov-Smirnov (KS), Anderson-Darling (AD), 
Lilliefors (LF), D’Agostino K-squared (DA), Shapiro-Wilk (SW), Jarque-Bera (JB), Cramér-
von Mises (CM), and Pearson Chi-square (Chi2) tests. The sensitivity of these tests to devi-
ations from normality was assessed through the Receiver Operating Characteristic (ROC) 
analysis and the Area Under the Curve (AUC) values at a significance l evel o f 0 .1, us-
ing Monte Carlo (MC) simulations across the varying sample sizes. The results showed 
that untransformed latitude data consistently failed normality tests, while transformed data 
displayed normal characteristics. The rank-based INT showed superior effectiveness, influ-
enced by the original distribution and characteristics of the dataset. The findings underscore 
the importance of tailored transformations in large-scale data applications, enhancing the ac-
curacy and applicability of parametric statistical methods in geospatial and other industrial 
domains.

Key words: GNSS, ROC, normality test, statistical analysis.

1. Introduction

In statistical analysis, assessing the normality of datasets is essential, as many parametric
tests rely on the assumption of normally distributed data as described in (Tabachnick et al.,
2019). In highly competitive manufacturing industries, pilot runs typically involve very
small sample sizes to accelerate the launch of new products. While these small datasets
may approximate normal distributions due to their limited variability, large datasets, such
as those collected from Global Navigation Satellite Systems (GNSS), often deviate signifi-
cantly from normality due to various sources of error (Li et al., 2016). Yap and Sim (2011)
highlighted that these non-normal characteristics, influenced by factors such as atmospheric

1Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland.
E-mail: abu.feyo.bantu@polsl.pl. ORCID: https://orcid.org/0000-0001-6463-9864.

2Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland.
E-mail: andrzej.kozyra@polsl.pl. ORCID:https://orcid.org/0000-0003-2645-3537.

3Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland.
E-mail: jozef.wiora@polsl.pl. ORCID: https://orcid.org/0000-0002-8450-8623.

© Abu Feyo Bantu, A. Kozyra, J. Wiora. Article available under the CC BY-SA 4.0 licence



196 A. Bantu et al.: Normality tests for transformed large ...

disturbances, multipath effects, and satellite geometry, pose challenges to the application of
traditional parametric methods. Fault detection in GNSS systems is essential for ensuring
reliability; however, traditional methods often assume Gaussian noise, which limits their ef-
fectiveness in real-world scenarios where measurement noise deviates from normality. Yan
(2024) proposed a jackknife-based test statistic for fault detection in linearized pseudorange
positioning systems, which does not rely on specific noise distribution assumptions. This
method, combined with hypothesis testing using the Bonferroni correction, enhances ro-
bustness against non-Gaussian noise, making it particularly suitable for GNSS applications.

While such robust techniques improve fault detection and identify sources of errors in
GNSS applications, the assumption of normality in large datasets remains a debated topic.
Wilcox (2010) argues that, based on the central limit theorem, data naturally tend toward
a normal distribution as sample size increases. This suggests that normality assumptions
hold in large datasets, regardless of the method used to assess normality. However, Demir
(2022) challenges this notion; it is not true: since the number of data is large, the data will
not always have a normal distribution, particularly in the presence of measurement errors
and non-Gaussian noise.

To address this limitation, data transformation techniques are widely used to modify
data distributions and achieve a closer approximation to normality. According to Osborne
(2010), these methods are crucial for fulfilling statistical assumptions, enhancing effect
sizes, and preparing datasets for comprehensive analysis. Huang et al. (2023) emphasizes
that data transformation is a commonly employed technique for normalizing data to en-
hance statistical modeling. The study also outlines various transformation methods, such as
logarithmic, log-sinh, Box-Cox, Yeo-Johnson, and square root approaches, each designed
to address different types of non-normality. For instance, the Box-Cox transformation is a
flexible family of power transformations that adjusts data to stabilize variance and reduce
skewness. Peterson (2021) further elaborates on the implementation of the Box-Cox trans-
formation, emphasizing its ability to select an optimal parameter (λ ) that maximizes nor-
mality. Similarly, the Yeo-Johnson transformation extends the Box-Cox method to accom-
modate negative values, making it more versatile for diverse datasets (Cai and Xu, 2024).

Despite the availability of these transformation techniques, selecting the most appropri-
ate method for large, real-world datasets remains challenging due to their varying charac-
teristics and sources of variability (Khatun, 2021). Normality tests such as Shapiro-Wilk,
Anderson-Darling, and D’Agostino’s K-squared provide insights into dataset distributions
but offer limited guidance on effectively transforming data to satisfy normality assumptions
(Razali and Wah, 2011). Moreover, studies like Ogaja (2022) highlight the importance of
preprocessing steps in GNSS data analysis, where raw observables undergo rigorous pro-
cessing to estimate geodetic parameters. Barba et al. (2021) demonstrate the use of adapted
R packages to analyze GNSS time series, focusing on displacement velocities, noise levels,
and temporal forecasts. Their work underscores the necessity of identifying and addressing
outliers, gross errors, and noise to ensure reliable interpretation of GNSS data.

This research aims to transform the measured data and evaluate the efficiency of trans-
formation methods in the normality of large GNSS datasets. It compares log, quantile, and
rank-based INT transformations to provide insights for improving the reliability of para-
metric statistical methods in measurement-driven fields. We evaluated data normality using
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graphical, descriptive, and statistical methods, including p-value tests, to examine the ef-
fects of transformations. The transformed data were then compared with untransformed
data to assess improvements in normality.

The remainder of this paper is as follows: Section 2 reviews the relevant data transforma-
tion and normality tests. Section 3 introduces our methods and data collection techniques.
Section 4 presents the results and discussion through graphical representations, descriptive
and statistical analysis, and evaluation of normality test performance. Finally, Section 5
concludes the study.

2. Theory

2.1. Data transformation techniques

Raymaekers and Rousseeuw (2024) describe data transformation as a technique for han-
dling non-Gaussian data by preprocessing variables to approximate normality. This process
ensures that the transformed data are nearly normal at their core, while a few outliers may
still deviate. Here is a breakdown of common techniques, including their formula as shown
in Table 1.

Table 1: Data transformation techniques
Transformation techniques Formula When to use

Log Transform y = log(x) When data are positively
skewed.

Quantile Transform yi = Quantile(xi) When you want to map data
to a target distribution

(e.g. normal).
Rank-Based INT yi = Φ−1 ( ri

N+1
)

When data are highly
non-normal or

non-monotonic.

where yi is the transformed data point after mapping, xi is the original data point, Φ−1 is the inverse CDF of the normal distribution,
N is the total number of data points, and ri is the rank of the i-th data point in the dataset.

Log transformation is a widely used statistical method primarily applied to reduce data
skewness and mitigate variability caused by outliers. It is commonly believed to enhance
normality by making the data distribution more closely resemble a normal distribution (Sun
and Xia, 2024). As described by Ghasemi and Zahediasl (2012), it involves taking the
logarithm of each data value, which compresses the range of large values while preserving
the relationships between data points.

According to Pham (2021), quantile transformation is a statistical technique that con-
verts data from its original distribution to a target distribution. This approach effectively
normalizes non-normal data and mitigates issues caused by outliers and heavy tails.

As explained by McCaw et al. (2020), the rank-based inverse normal transformation
(INT) is commonly applied to highly skewed data and non-normally distributed traits. INT
is a non-parametric mapping that replaces sample quantiles by quantiles from the standard
normal distribution. After INT, the marginal distribution of any continuous outcome is
asymptotically normal. INT has the effect of symmetrizing and concentrating the residual
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distribution around zero. After applying data transformations to the dataset, normality was
evaluated using various testing techniques to assess how well the data conform to a normal
distribution.

2.2. Normality tests

A normality test is a statistical procedure used to determine whether a dataset follows a
normal distribution. Since many statistical methods rely on the assumption of normality in
population data, it is crucial to verify whether this assumption holds before applying such
methods (Kwak and Park, 2019). There are three major methods to check the normality:
graphical, descriptive, and statistical (Zygmonta, 2023).

Graphs allow the easy assessment of major data departures from normality (Obilor and
Amadi, 2018). The normal Quantile-Quantile (Q-Q) plot is a widely used and successful
method for determining data normality. As explained by Stine (2017), it validates the as-
sumption of normality in a sample dataset. It compares the two datasets to see if they have
the same distribution. A histogram is a bar graph representing the frequency distribution of
a dataset. It divides data into bins and counts the number of observations in each bin. For a
normally distributed dataset, it exhibits a bell-shaped curve, symmetric around the mean. If
the dataset is non-normal, the histogram deviates from the bell-shaped curve.

The second method is descriptive analysis, which uses skewness (S) and kurtosis (K)

to evaluate the shape of data distributions. This is one of the most commonly employed
techniques for this purpose. Skewness S evaluates the asymmetry of a probability distri-
bution, indicating how much the data deviate from a symmetrical distribution. A normal
distribution, which is symmetrical and bell-shaped, has zero skewness. A positively skewed
distribution (S > 0) has a long right tail, while a negatively skewed one (S < 0) has a long
left tail with most values concentrated on the right (Tabachnick et al., 2019).

Kurtosis K is a statistical measure that describes the shape of a probability distribution
by analysing its tails and peak relative to a normal distribution. According to Tabachnick
et al. (2019), positive kurtosis indicates a distribution with heavier tails and a sharper peak,
whereas negative kurtosis reflects lighter tails and a flatter peak. Excess kurtosis, calcu-
lated as K−3, compares the kurtosis of a given distribution to that of a normal distribution.
There are three main types of kurtosis: mesokurtic (K = 3,excess kurtosis = 0), represent-
ing a normal distribution; leptokurtic (K > 3,excess kurtosis > 0), indicating a distribution
with heavier tails and a sharper peak; and platykurtic (K < 3,excess kurtosis < 0), which
corresponds to a distribution with lighter tails and a flatter peak than a normal distribution.

The third technique is statistical, and p-values of tests such as Kolmogorov-Smirnov
(KS), Anderson-Darling (AD), Lilliefors (LF), D’Agostino’s (DA), Shapiro-Wilk (SW),
Jarque-Bera (JB), Cramér-von Mises (CM), and Pearson’s Chi-square (Chi2).

The KS test compares the empirical Cumulative Distribution Function (CDF) of a sam-
ple to the CDF of a reference distribution (e.g. normal). The test statistic, as described in
Kumbhar et al. (2024), is determined by the maximum absolute difference between the two
CDFs. The Anderson-Darling test assesses whether a sample comes from a specified distri-
bution. It leverages the principle that, under the assumption that the data originate from the
hypothesized distribution, their CDF should follow a uniform distribution (Kwak and Park,
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2019). The AD test assesses normality by comparing the test statistic to a critical value
(cv) at a given significance level. It is a variation of the KS test, which applies additional
weighting to emphasize differences in the tails of the distribution. The LF test is a variation
of the KS test; it corrects for the fact that the parameters (mean and variance) of the normal
distribution are estimated from the sample, which is calculated as in (Uyanto, 2022). The
test statistic is the maximal absolute difference between empirical and hypothetical CDF.
The DA test checks the S and K of the data and compares it to a normal distribution. It is
used to assess if a dataset deviates from normality in terms of its symmetry (skewness) and
peakness (kurtosis), with the detailed formula for its calculation provided in (D’Agostino,
2017).

The SW test evaluates how well the sample data fits a normal distribution by comparing
the sample to the expected values under normality, with its statistical formula provided in
(Kwak and Park, 2019).

The JB test is employed to verify the normality of a data set before applying standard
statistical tests such as the t-test, z-test, or F-test. For a detailed explanation of the formula
and parameters, refer to (Aslam et al., 2021). It evaluates S and K in the data, comparing
them to their expected values under a normal distribution.

The CVM test measures the difference between the empirical distribution function of
a sample and the CDF of the normal distribution. It is particularly useful when analyzing
the tails of the probability density function (PDF). For a detailed description of its equa-
tion (Von Mises, 2014). The Chi2 test compares the observed frequencies in bins with the
expected frequencies for a normal distribution. The original test by Pearson was designed
to see whether an observed set of frequency O was in agreement with a multinomial dis-
tribution with parameters m, p1, . . . , pk. This is done by calculating the expected frequency
Ei = mpi and the test statistic X = ∑(O−E)2/E (Rolke and Gongora, 2021).

Different normality tests often produce different results; some tests reject the null hy-
pothesis of normality while others fail to reject it (Demir, 2022). Therefore, it is better to
crosscheck the normality of the data using different techniques. The statistical value and
median p-value are the essential elements of the comparison tests (Khatun, 2021). The sta-
tistical value measures the difference between the observed and normal distributions. The
median p-value for a normality test is defined as:

pmedian =

p
( n+1

2

)
if n is odd,

p
( n

2

)
+ p

( n
2 +1

)
2

if n is even.
(1)

It is the middle value of the p-values obtained from repeated tests on different samples
p1, p2, . . . , pn, where pi represents the p-value from the i-th normality test. It is a non-
parametric measure of the central tendency of the p-values (Tabachnick et al., 2019). It
helps to assess the normality by considering its skewness and kurtosis. By analyzing these
p-values at 5% and 10% significance levels and varying sample sizes, we can gauge how
well the data conform to a normal distribution. A p-value below 0.05 suggests rejecting the
null hypothesis (H0), indicating non-normality, while a high p-value suggests insufficient
evidence to reject H0, indicating possible normality.
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After conducting normality tests, the performance of these tests was evaluated using the
ROC curve with Area Under the Curve (AUC) values, offering insight into their ability to
detect normality in both the original and transformed data. ROC is a graphical tool used
to assess the diagnostic ability of a binary classifier, such as normality tests in statistics
(Patrício et al., 2017). It is a plot of the True Positive Rate (TPR) versus the False Positive
Rate (FPR) at various threshold settings. The TPR is:

TPR =
True Positive (TP)

True Positive (TP)+False Negative (FN)
(2)

and FPR is:
FPR =

False Positive (FP)
False Positive (FP)+True Negative (TN)

(3)

so to plot the ROC curve, we need to compute TPR and FPR for multiple threshold values.
The AUC summarizes the entire location of the ROC curve rather than depending on a spe-
cific operating point. It is an effective and combined measure of sensitivity and specificity
that describes the inherent validity of diagnostic tests (Nahm, 2022). The AUC value ranges
from 0 to 1:

• AUC = 1: Perfect classification,

• AUC = 0.5: No discrimination (i.e. random guessing),

• AUC < 0.5: Worse than random guessing.

A higher AUC indicates better performance of the normality test, as it means the test can
better distinguish between normal and non-normal data. It can be approximated by the
trapezoidal rule as follows:

AUC =
n−1

∑
i=1

2(FPRi −FPRi−1) · (TPRi +TPRi−1) (4)

where FPRi and TPRi are the values at each threshold.

3. Methods

To collect GNSS sample data, we deployed an L76X GPS module in a fixed outdoor
location. This module, known for its compact design and high positioning accuracy, was
connected to a Raspberry Pi, which served as the control system. The Raspberry Pi han-
dled module configuration, data logging, and real-time monitoring, ensuring continuous and
reliable data collection throughout the experiment.

Over a continuous period of 96 hours, the GPS module recorded a substantial amount
of GNSS data, generating a total of over two million lines formatted in the National Ma-
rine Electronics Association (NMEA) standard. This widely used format in GNSS systems
organizes navigation and positional data into standardized sentences, making it ideal for
subsequent analysis. From the entire recorded dataset, $GPGGA sentences, with a specific
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type of NMEA message were extracted. These sentences contain key positional and sig-
nal quality parameters, including fix quality, satellite count, horizontal dilution of precision
(HDOP), and latitude / longitude, all of which are essential for evaluating the GNSS perfor-
mance. A total of 270 791 rows of $GPGGA sentences were isolated from the raw dataset for
detailed analysis. Python scripts were utilized to efficiently filter, parse, and structure the
extracted data into a log file.

4. Results and discussion

4.1. Graphical data analysis

Figure 1 highlights the analysis of untransformed latitude data. The histogram on the
left shows a positively skewed distribution, deviating from the normal curve, indicating non-
normality. The Q-Q plot on the right further confirms this by showing significant deviations
of data points from the reference line, particularly in the tails. These results emphasize the
challenges of applying parametric statistical methods to non-normal latitude data.

Figure 1: Distribution of untransformed GNSS latitude data histogram plot (left) and Q-Q
plot (right)

Figure 2 demonstrates the success of a rank-based inverse normal transformation (INT)
in normalizing latitude data. The histogram shows a symmetric, bell-shaped distribution,
while the Q-Q plot confirms that the transformed data points closely align with those of
a standard normal distribution. These results indicate the INT effectiveness in making the
data suitable for parametric statistical methods.
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Figure 2: Distribution of transformed GNSS latitude data histogram plot (left) and Q-Q
plot (right)

4.2. Descriptive data analysis (skewness and kurtosis)

Table 2 provides a statistical comparison of skewness and kurtosis values between trans-
formed and untransformed datasets, applying rank-based INT, quantile transformation, and
log transformation. This comparison underscores the effectiveness of these methods in ad-
dressing distributional issues such as skewness and kurtosis, which are pivotal for accurate
statistical analysis and enhancing model performance.

Table 2: Comparison of transformed and untransformed descriptive data statistics
Test Type Transformed data Untransformed data

Rank-based INT Quantile Transform Log Transform

Skewness 0.000001 0.019956 1.241654 1.241669
Kurtosis -0.000215 0.116283 1.961968 1.962022

The rank-based INT transformation achieves a skewness of 0.000 001, effectively neu-
tralizing asymmetry in the data. This indicates an almost perfect symmetric distribution.
The quantile transformation reduces skewness to 0.019 956, which is close to zero, reflecting
minimal asymmetry. Both the log transform and untransformed data retain significant skew-
ness: 1.241 654 and 1.241 669, respectively. This suggests the data are positively skewed
and remain far from a symmetric distribution.

In the case of kurtosis, rank-based INT yields a kurtosis value of -0.000 215, achieving a
near-normal distribution by minimizing the impact of extreme values. The quantile transfor-
mation also reduces kurtosis to 0.116 283, demonstrating a flattened distribution compared
to the untransformed data. However, the log transform shows kurtosis values of 1.961 968,
nearly similar to the untransformed data 1.962 022, indicating a heavy-tailed distribution
persists.

Overall, the rank-based INT transformation is the most effective method for address-
ing distributional issues in the dataset, achieving near-normal distribution properties with
minimal skewness and kurtosis. Quantile Transformation also performs well but is less ef-
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fective than INT. Log transformation retains significant skewness and kurtosis, making it
less suitable for analyses requiring normality.

4.3. Statistical and p-value of tests

Table 3 compares statistical test results for transformed and untransformed data to assess
normality at a significance level of α = 0.05. The untransformed data exhibit significant
deviation from a normal distribution, as indicated by high statistical values and consistently
low p-values (0.000) across most tests.

Table 3: Comparison of transformed and untransformed statistics and p-value
Test Type Transformed data Untransformed data

Statistic value p-value Statistic value p-value

Kolmogorov-Smirnov (KS) 0.001 0.964 0.133 0.000
Anderson-Darling (AD) 0.020 0.787(cv) 9.58x103 0.787(cv)

Lilliefors (LF) 0.000 0.990 0.132 0.001
D’Agostino’s K-squared (DA) 0.000 1.000 5.60x104 0.000

Shapiro-Wilk (SW) 1.000 1.000 0.897 0.000
Jarque-Bera (JB) 0.001 1.000 1.13x105 0.000

Cramér-von Mises (CM) 0.004 1.000 9.03x104 0.000
Pearson’s Chi-square (Chi2) 4.12x105 0.000 5.77x105 0.000

The transformed data consistently produce statistical values near 0.000 and p-values
greater than α = 0.05, indicating a failure to reject the H0. However, the Chi2 test reports
a high statistical value and a p-value below α = 0.05, suggesting the H0 is rejected. At a
significance level of α = 0.05, the AD test’s critical value (0.787) exceeds the calculated
statistical value (0.020), indicating a failure to reject the H0. All tests effectively validated
the normality of the transformed data, confirming no significant deviations from normality,
except for the Chi2 test. The p-values of all tests are 0.000, except for the AD test, where the
critical value (0.787) is lower than the corresponding statistical value, indicating a rejection
of H0 and significant deviations from normality in the case of untransformed data.

4.4. Performance evaluation of normality tests

4.4.1 Comparison of ROC for untransformed latitudes

From Figure 3, the ROC curves are clustered around the diagonal line, with AUC values
close to 0.5 for most tests. This suggests that at smaller sample sizes (45, 55, 65, 75, 85, 95,
105), the tests struggle to differentiate between normality and deviations from it, exhibiting
limited sensitivity and specificity.
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Figure 3: ROC analysis for untransformed GNSS latitude data with a small sample size
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Figure 4: ROC analysis for untransformed GNSS latitude data with a large sample size

Figure 4 describes ROC curve analysis of tests at 0.1% significance level. At larger
sample sizes (250, 350, 450, 550, 650, 750, 850, 950, 1050), tests like SW, JB, and DA
demonstrate enhanced discriminatory power, becoming more effective at detecting devi-
ations from normality. This improvement is likely due to the increased statistical power
associated with larger datasets.
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4.4.2 Comparison of ROC for transformed latitudes

Figure 5 and Figure 6 demonstrate the ROC curves and corresponding AUC metrics
for various normality tests applied to transformed latitude data for small and large sample
sizes at the significance level of 0.1%. From Figure 5, all AUC values are approximately
between 0.500 and 0.511, which indicates that the performance of the normality tests is
nearly equivalent to random classification. This suggests that the transformations applied to
the latitude data were successful in normalizing the data, making it indistinguishable from
a truly normal distribution at smaller sample sizes.
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Figure 5: ROC analysis for transformed GNSS latitude data with a small sample size

From Figure 6, all tests have AUC values near 0.5, suggesting that the tests are perform-
ing no better than random classification in distinguishing normality from non-normality in
the transformed data. This indicates no significant separation between the true positive rate
(sensitivity) and the false positive rate. For larger sample sizes, the transformations applied
to the latitude data effectively normalize the dataset. If the transformed data closely re-
semble the synthetic normal data, the tests may struggle to identify significant differences,
leading to a high number of false positives and false negatives. This ultimately results in
a lower AUC score. An AUC near 0.5 suggests that the test is essentially making random
guesses due to the indistinguishability of the data.

A moderate AUC (0.6 - 0.7) implies that the transformation of latitude data into a normal
distribution is not entirely successful. Conversely, a high AUC > (0.8) indicates that the
transformation has not completely normalized the data, allowing for detectable differences.
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Figure 6: ROC analysis for transformed GNSS latitude data with a large sample size

5. Conclussion

The study emphasizes the importance of assessing and transforming large datasets, such
as GNSS measurements, to ensure normality for the validation of parametric statistical tests.
The untransformed GNSS latitude data were identified as non-normal using various visual
and statistical tests, including histograms, Q-Q plots, skewness, kurtosis, and statistical
tests: KS, AD, DA, SW, JB, CVM, Chi2, and LF. Among the transformation techniques,
the rank-based Inverse Normal Transformation (INT) demonstrated high effectiveness in
enhancing data normality, as validated by various testing methods. The efficiency of sta-
tistical tests’ was assessed using ROC and AUC analysis, which successfully categorized
untransformed data as non-normal and transformed data as normal. These findings under-
score the necessity of using tailored transformation methods in large-scale data applications,
particularly in geospatial and industrial fields, to enhance the reliability and applicability of
parametric statistical methods.

Acknowledgements

This research was funded by the Polish Ministry of Science and Higher Education, grant
number 02/050/BKM-24/0042 (AF) and 02/050/BK-24/0032 (JW, AK).

References

Aslam, M., Sherwani, R. A. K. and Saleem, M., (2021). Vague data analysis using neutro-
sophic Jarque-Bera test. Plos one, 16(12), e0260689.

Barba, P., Rosado, B., Ramírez-Zelaya, J. and Berrocoso, M., (2021). Comparative anal-



STATISTICS IN TRANSITION new series, September 2025 207

ysis of statistical and analytical techniques for the study of GNSS geodetic time series.
Engineering Proceedings, 5(1), p. 21.

Cai, J. and Xu, X., (2024). Bayesian analysis of mixture models with yeo-johnson transfor-
mation. Communications in Statistics-Theory and Methods, 53(18), pp. 6600–6613.

D’Agostino, R. B., (2017). Tests for the normal distribution. in Goodness-of-fit-techniques,
Routledge, pp. 367–420.

Demir, S., (2022). Comparison of normality tests in terms of sample sizes under different
skewness and kurtosis coefficients. International Journal of Assessment Tools in Educa-
tion, 9(2), pp. 397–409.

Ghasemi, A., and Zahediasl, S., (2012). Normality tests for statistical analysis: A guide for
non-statisticians. International Journal of Endocrinology and Metabolism, 10, pp. 486–
489.

Huang, Z., Zhao, T., Lai, R., Tian, Y. and Yang, F., (2023). A comprehensive implementa-
tion of the log, Box-Cox and log-sinh transformations for skewed and censored precipi-
tation data. Journal of Hydrology, 620, pp. 129347.

Khatun, N., (2021). Applications of normality test in statistical analysis. Open Journal of
Statistics, 11(1), pp. 113–122.

Kumbhar, D. D., Kumar, S., Dubey, M., Kumar, A., Dongale, T. D., Pawar, S. D. and
Mukherjee, S., (2024). Exploring statistical approaches for accessing the reliability of
y2o3-based memristive devices. Microelectronic Engineering, 288, p. 112166.

Kwak, S. G. and Park, S. H., (2019). Normality test in clinical research. Journal of
Rheumatic Diseases, 26(1), pp. 5–11.

Li, D.-C., Wen, I.-H. and Chen, W.-C., (2016). A novel data transformation model for small
data-set learning. International Journal of Production Research, 54(24), pp. 7453–7463.

McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S. and Lin, X., (2020). Operating charac-
teristics of the rank-based inverse normal transformation for quantitative trait analysis in
genome-wide association studies. Biometrics, 76(4), pp. 1262–1272.

Nahm, F. S., (2022). Receiver operating characteristic curve: overview and practical use for
clinicians. Korean journal of anesthesiology, 75(1), pp. 25–36.

Obilor, E. I. and Amadi, E. C., (2018). Test for significance of Pearson’s correlation co-
efficient. International Journal of Innovative Mathematics, Statistics & Energy Policies,
6(1), pp. 11–23.

Ogaja, C. A., (2022), GNSS data processing. in Introduction to GNSS Geodesy: Foun-
dations of Precise Positioning Using Global Navigation Satellite Systems, Springer,
pp. 119–134.



208 A. Bantu et al.: Normality tests for transformed large ...

Osborne, J., (2010). Improving your data transformations: Applying the Box-Cox transfor-
mation. Practical Assessment, Research, and Evaluation, 15(1).

Patrício, M., Ferreira, F., Oliveiros, B. and Caramelo, F., (2017). Comparing the perfor-
mance of normality tests with roc analysis and confidence intervals. Communications in
Statistics: Simulation and Computation, 46, pp. 7535–7551.

Peterson, R. A., (2021). Finding optimal normalizing transformations via best normalize. R
Journal, 13(1).

Pham, L., (2021). Frequency connectedness and cross-quantile dependence between green
bond and green equity markets. Energy Economics, 98, p. 105257.

Raymaekers, J. and Rousseeuw, P. J., (2024). Transforming variables to central normality.
Machine Learning, 113(8), pp. 4953–4975.

Razali, N. M. and Wah, Y. B., (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and An-
alytics, 2, pp. 13–14.

Rolke, W. and Gongora, C. G., (2021), A chi-square goodness-of-fit test for continuous
distributions against a known alternative. Computational Statistics, 36(3), pp. 1885–
1900.

Stine, R. A., (2017). Explaining normal quantile-quantile plots through animation: the
water-filling analogy. The American Statistician, 71(2), pp. 145–147.

Sun, J. and Xia, Y. (2024). Pretreating and normalizing metabolomics data for statistical
analysis. Genes & Diseases, 11(3), p. 100979.

Tabachnick, B. G., Fidell, L. S. and Ullman, J. B., (2019). Using Multivariate Statistics, 7th
ed., Pearson.

Uyanto, S. S., (2022). An extensive comparisons of 50 univariate goodness-of-fit tests for
normality. Austrian Journal of Statistics, 51(3), pp. 45–97.

Von Mises, R., (2014). Mathematical theory of probability and statistics, Academic press.

Wilcox, R. R., (2010). Fundamentals of modern statistical methods: Substantially improv-
ing power and accuracy, Vol. 249, Springer.

Yan, P., (2024). Jackknife test for faulty GNSS measurements detection under non-gaussian
noises. in ‘Proceedings of the 37th International Technical Meeting of the Satellite Divi-
sion of The Institute of Navigation (ION GNSS+ 2024)’, pp. 1619–1641.

Yap, B. W. and Sim, C. H., (2011). Comparisons of various types of normality tests. Journal
of Statistical Computation and Simulation, 81, pp. 2141–2155.

Zygmonta, C. S., (2023). Managing the assumption of normality within the general linear
model with small samples: Guidelines for researchers regarding if, when and how. The
Quantitative Methods for Psychology.



STATISTICS IN TRANSITION new series, September 2025 
Vol. 26, No. 3, pp. 209–221, https://doi.org/10.59139/stattrans-2025-035 
Received – 10.12.2024; accepted – 24.04.2025 

A minimum variance unbiased estimator of finite population 
variance using auxiliary information 
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Abstract 

A class of estimators of finite population variance (S_y^2) using auxiliary information has 
been proposed under simple random sampling without replacement (SRSWOR) scheme. An 
attempt has been made to derive the minimum variance unbiased estimator of finite 
population variance from the proposed class of unbiased estimators. The efficiency of the 
class of estimators under optimality is compared with the usual unbiased estimator 
(t_{V0}=s_y^2), ratio type estimator (t_{VR}), product type estimator{\ (t}_{VP}),  
regression type estimator {(t}_{Vlr}), exponential ratio type estimator{\ (t}_{VER}), 
exponential product type estimator {\ (t}_{VEP}), and ratio-in-regression estimator (t_s), 
both theoretically and empirically under general conditions and under bivariate normality. 
The proposed class of estimator performs better than these estimators under certain realistic 
conditions. The proposed class of estimators is generalized for the case of multi-auxiliary 
variables. 

Key words: simple random sampling without replacement (SRSWOR), unbiased estimator, 
auxiliary variable, population variance, efficiency. 

1.  Introduction 

Estimation of finite population variance draws attention of many researchers due 
to its wide spread applications in various fields like portfolio analysis, asset evaluation, 
stock market analysis in finance; quality control problems, traffic controls, opinion 
polls, biostatistics, logistics analysis and many more. So, researchers have been paying 
specific attention towards estimating the finite population variance ൫𝑆௬ଶ൯  with a greater 
precision for many decades. Consider a finite population of 𝑁 ሺ൏ ∞ሻ units and 𝑌௜  being 
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the value of the study variable 𝑦 for the 𝑖-th unit of the population ሺ𝑖 ൌ 1ሺ1ሻ𝑁ሻ. We 
denote  

            S୷ଶ ൌ
1

N െ 1
෍ሺY୧ െ Yഥሻଶ
୒

୧ୀଵ

                                          ሺ1ሻ 

as the finite population variance. In order to estimate 𝑆௬ଶ, we draw a sample of size 𝑛 
from the population of size 𝑁 using simple random sampling without replacement 
(SRSWOR) scheme. Suppose 𝑦௜ is the value of the study variable 𝑦 for the 𝑖-th unit of 
the sample ሺ𝑖 ൌ 1ሺ1ሻ𝑛ሻ.  

To start with a very simple popular estimator of finite population variance, we 
consider the sample variance   

                    t୚଴ ൌ
1

n െ 1
෍ሺy୧ െ yതሻଶ
୬

୧ୀଵ

ൌ s୷ଶ,                                    ሺ2ሻ 

which is an unbiased estimator of 𝑆௬ଶ and its variance is given by  

                  Vሺt୚଴ሻ ൌ θS୷ସሾβ଴ସ െ 1ሿ,                                            ሺ3ሻ 

where θ ൌ ଵ

୬
െ

ଵ

୒
,     β଴ସ ൌ

µబర
µబమమ

,    µ୰ୱ ൌ
ଵ

୒
∑ ሺX୧ െ Xഥሻ୰ሺY୧ െ Yഥሻୱ୒
୧ୀଵ  

and µ௥௦ is called the ሺ𝑟, 𝑠ሻ-th order bivariate central moment of ሺ𝑥,𝑦ሻ for the 
population. 

In order to improve the present estimator by exploiting the information on an 
auxiliary variable 𝑥 (if available), Isaki (1983) proposed a ratio estimator for finite 
population variance using advance knowledge of population variance of auxiliary 
variable 𝑆௫ଶ as  

                      t୚ୖ ൌ s୷ଶ
S୶ଶ 
s୶ଶ 

                                                       ሺ4ሻ 

The estimator 𝑡௏ோ   is a biased estimator of 𝑆௬ଶ and its MSE up to  𝑜ሺ𝑛ିଵሻ is given by  

 MSEሺt୚ୖሻ ൌ θS୷ଶሾβ଴ସ ൅ βସ଴ െ 2βଶଶሿ,𝑤ℎ𝑒𝑟𝑒 βସ଴ ൌ
µସ଴

µଶ଴ଶ
,βଶଶ ൌ

µଶଶ
µଶ଴ µ଴ଶ .   ሺ5ሻ 

It may be seen that t୚ୖ  is more efficient than  t୚଴  if 

                                   § ൐
1
2

C. V. ሺs୶ଶሻ
C. V. ሺs୷ଶሻ

 ,                                                   ሺ6ሻ 

where § denotes the correlation coefficient between s୶ଶ and s୷ଶ. Further, C. V. ሺs୶ଶ ሻ and 
C. V. ሺs୷ଶሻ denote the coefficient of variation of s୶ଶ and s୷ଶ respectively. Thus, t୚ୖ  is 
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conditionally more efficient than the usual variance estimator t୚଴, which does not use 
any auxiliary information.  

Following Isaki (1983), a product estimator for 𝑆௬ଶ is suggested as  

                            t୚୔ ൌ s୷ଶ
s୶ଶ 
S୶ଶ 

.                                                         ሺ7ሻ 

It is also a biased estimator of 𝑆௬ଶ and its MSE up to 𝑜ሺ𝑛ିଵሻ is given by 

                    MSEሺt୚୔ሻ ൌ θS୷ସሾβ଴ସ ൅ βସ଴ ൅ 2βଶଶ െ 4ሿ                                        ሺ8ሻ 

Isaki (1983) also suggested a regression type estimator for estimating 𝑆௬ଶ, which is 
given by 

                     t୚୐ୖ ൌ s୷ଶ ൅ B෡ሺS୶ଶ െ s୶ଶሻ                                             ሺ9ሻ 

where B ൌ
େ୭୴ሺ ୱ౮ ,

మ ୱ౮మሻ 

୚ሺୱ౮
మሻ 

 and B෡ is the estimated value of 𝐵.  

This estimator t୚୐ୖ  is also a biased estimator of S୷ଶ and its MSE up to 𝑜ሺ𝑛ିଵሻ is 
given by 

                      MSEሺt୚୐ୖሻ ൌ θS୷ସሾβ଴ସ െ 1ሿ ሾ1 െ §ଶሿ                              ሺ10ሻ 

Singh et al. (2009) suggested an exponential ratio-type and an exponential product-
type estimator for 𝑆௬ଶ, which are given by 

                              t୚୉ୖ ൌ s୷ଶ exp ቆ
S୶ଶ െ s୶ଶ

S୶ଶ ൅ s୶ଶ
ቇ                                            ሺ11ሻ 

and 

                    t୚୉୔ ൌ s୷ଶ exp ቆ
S୶ଶ ൅ s୶ଶ

S୶ଶ െ s୶ଶ
ቇ .                                          ሺ12ሻ 

respectively. Both these estimators are biased estimators of 𝑆௬ଶ and their MSE up to 
𝑜ሺ𝑛ିଵሻ are given by 

                 MSEሺt୚୉ୖሻ ൌ θS୷ସ ൤β଴ସ ൅
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൨                       ሺ13ሻ 

and  
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respectively. 
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Swain (2015) suggested a class of ratio-in-regression estimators for estimating the 
finite population variance  ൫ 𝑆௬ଶ൯ as 

                  tୱ ൌ ws୷ଶ ൅ ሺ1 െ wሻs୷ଶ ቆ
S୶ଶ

s୶ଶ
ቇ                                       ሺ15ሻ 

The value of w for which the above class of estimators attains a minimum variance 
is given by  

  w୭୮୲ ൌ 𝛽ସ଴ െ  𝛽ଶଶ.   

Using this value of w in tୱ, we get the optimum estimator (estimator attaining a 
minimum variance) for this class as  
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s୶ଶ
ቇ .                 ሺ16ሻ 

The mean square error of this estimator is given by 

          𝑀𝑆𝐸൫tୱሺ୭୮୲ሻ൯ ൌ θS୷ସ ቈሺβ଴ସ െ 1ሻ െ
ሺβଶଶ െ 1ሻଶ

βସ଴ െ 1
቉  .                     ሺ17ሻ 

For a brief review of literature about the variance estimation, one can go through 
Evans (1951), Wakimoto (1971), Liu (1974), Das and Tripathi (1978), Srivastava and 
Jhajj (1980), Wu (1982), Upadhyaya and Singh (1983), Singh (1986), Singh et al. (1988), 
Prasad and Singh (1990,1992), Swain and Mishra (1992, 1994a,b), Singh and Biradar 
(1994), Cebrian and Garcia (1997), Kadilar and Cingi (2007), Shabbir and Gupta 
(2007),  Dubey and Sharma (2008), Yadav et al. (2013), Singh and Solanki (2013a,b), 
Singh et al. (2014), Dash and Sunani (2019) and many more.   

2.  Proposed class of unbiased estimators 

A class of estimators for estimating finite population variance (𝑆௬ଶ) in the presence 
of auxiliary information is proposed by taking the linear combination of the sample 
variance of study variable ሺ𝑠௬ଶሻ and the sample variance of auxiliary variable  ሺ𝑠௫ଶሻ. The 
proposed class of estimators of  𝑆௬ଶ is given by   

                       t୚୑ ൌ λ଴s୷ଶ ൅ λଵs୶ଶ,                                                 ሺ18ሻ 

where λ଴  and λଵ are two suitable constants or statistics. For different values of  𝜆଴ and 
𝜆ଵone can get different estimators. The following table presents some particular 
estimators deduced from the proposed class of estimator for different suitably chosen 
values of  𝜆଴ and 𝜆ଵ . 
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Table 1:  Some Deduced Estimators 

𝝀𝟎 𝝀𝟏 Deduced estimators 
1 0 t୚଴ ൌ s୷ଶ  [Usual unbiased estimator] 

S୶ଶ 
s୶ଶ 

 0 t୚ୖ ൌ s୷ଶ
S୶ଶ 
s୶ଶ 

  ሾIsaki ሺ1983ሻሿ 

s୶ଶ 
S୶ଶ 

 0 t୚୔ ൌ s୷ଶ
s୶ଶ 
S୶ଶ 

 

1 ሺS୶ଶ െ s୶ଶ ሻ
s୶ଶ 

 t୚୪୰ ൌ s୷ଶ ൅ B෡ሺS୶ଶ െ s୶ଶሻ [Isaki (1983)] 

exp ቈ
S୶ଶ െ s୶ଶ 
S୶ଶ ൅ s୶ଶ 

 ቉ 0 t୚୉ୖ ൌ s୷ଶ exp ቈ
S୶ଶ െ s୶ଶ 
S୶ଶ ൅ s୶ଶ 

቉ , ሾSingh et al. ሺ2009ሻሿ 

exp ቈ
s୶ଶ ൅ S୶ଶ 
s୶ଶ െ S୶ଶ 

 ቉ 0 t୚୉୔ ൌ s୷ଶexp ቈ
S୶ଶ ൅ s୶ଶ 
S୶ଶ െ s୶ଶ 

቉  ሾSingh et al. ሺ2009ሻሿ 

βସ଴ െ βଶଶ ሺ1 െ λ଴ሻ
s୷ଶ

s୶ଶ
S୶ଶ

s୶ଶ
 tୱሺ୭୮୲ሻ ൌ 𝜆଴𝑠௬ଶ ൅ ሺ1 െ 𝜆଴ሻ 𝑡௏ோ , [Swain, 2015] 

3.  Variance of the proposed class of estimators 

To construct a class of unbiased estimators, we have to choose the constants  λ଴   
and λଵ such that the class of estimators in (18) is unbiased for S୷ଶ and we shall attempt 
to identify minimum variance unbiased estimator in this class. The condition for  
t୚୑ to be unbiased for S୷ଶ is given by 

                          ሺλ଴ െ 1ሻS୷ଶ ൅ λଵS୶ଶ ൌ 0                                         ሺ19ሻ 
The variance of the estimator  t୚୑  is 

                    Vሺt୚୑ሻ ൌ λᇱSଶλ,                                                ሺ20ሻ 
where 

λ ൌ ൤
λ଴
λଵ
൨    and     Sଶ ൌ ൤

S଴଴ S଴ଵ
Sଵ଴ Sଵଵ

൨, 

S଴଴ ൌ Vሺs୷ଶሻ ൌ θS୷ସሾβଶሺyሻ െ 1ሿ,    Sଵଵ ൌ Vሺs୶ଶሻ ൌ θS୶ସሾβଶሺxሻ െ 1ሿ 
 Sଵ଴ ൌ S଴ଵ ൌ Cov൫s୶ଶ, s୷ଶ൯ ൌ θS୶ଶS୷ଶሾβଶଶሺx, yሻ െ 1ሿ. 

The optimum value of   λ  satisfying the unbiasedness condition (19) and leading 
to a minimum variance of t୚୑  is 

                         λ௢௣௧ ൌ S୷ଶ
Sଶ
ିଵ Qଶ

Qଶ
ᇱ  Sଶ

ିଵ Qଶ
ൌ λ∗ ,                                          ሺ21ሻ 

where  Sଶିଵ is inverse of matrix Sଶ,      Qଶ ൌ ቈ 
S୷ଶ

S୶ଶ
 ቉ , Qଶ

ᇱ  is the transpose  of Qଶ. 

Hence, after expansion, we get  

                                    λ∗  ൌ
ୗ౯మቈ

ୗ౯మୗభభିୗ౮మୗభబ
ିୗ౯మୗభబାୗ౮మୗబబ

቉

ୗ౯
రୗభభିଶୗ౯

మୗ౮
మୗభబାୗ౮

రୗబబ
                                             (22) 
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From (22) we get optimum values of  λ଴   and   λଵ, which are denoted by λ଴∗   and   λଵ
∗  

where 

 λ଴
∗ ൌ S୷ଶ

൫ୗ౯మୗభభିୗ౮మୗభబ൯

ୗ౯
రୗభభିଶୗ౯

మୗ౮
మୗభబାୗ౮

రୗబబ 
  ൌ

ஒరబିஒమమ
ஒరబିଶஒమమାஒబర

,                               (23) 

  λଵ
∗ ൌ S୷ଶ

ୗ౮మୗబబିୗ౯మୗభబ
ୗ౯
రୗభభିଶୗ౯

మୗ౮
మୗభబାୗ౮

రୗబబ
 ൌ

ୗ౯మ

ୗ౮
మ    

ஒబరିஒమమ
ஒరబିଶஒమమାஒబర 

                         (24) 

are called optimality conditions.  

The minimum variance unbiased estimator of population variance is given by 
               t୚୑ሺ୭ሻ ൌ  λ଴

∗sy
2 ൅   λଵ

∗sx
2,                                                ሺ25ሻ 

Using the values of λ଴∗   and   λଵ
∗  in equation (20), the minimum(optimum) variance 

of  t୚୑ is given by 

 V൫t୚୑ሺ୭ሻ൯௢௣௧ ൌ
ୗ౯ర

୕మ
ᇲ  ୗమ

షభ ୕మ
ൌ S୷ସ

ୗబబୗభభିୗభబ
మ

ୗ౯
రୗభభିଶୗ౯

మୗ౮
మୗభబାୗ౮

రୗబబ
                        (26) 

                                             ൌ θS୷ସ  
ሾஒరబିଵሿሾஒబరିଵሿ ሾଵି§మሿ

ஒరబିଶஒమమାஒబర
.                                                       (27) 

4. Comparison of efficiency 

The members of the suggested class of estimators  t୚୑  are unbiased estimators of 
the finite population variance S୷ଶ. Hence, this class of estimators t୚୑ in its optimal case 
is compared with several other estimators in terms of efficiency only. The comparison 
of the efficiency of suggested class of estimators t୚୑ under optimality with other 
estimators are made under the following two conditions: 
(a) under general condition and  
(b) under bivariate normality condition. 

I. The suggested class of estimators t୚୑ under optimality ൫tVMሺoሻ൯ is always more 
efficient than the usual unbiased estimator t୚଴ . 

II. The class of estimators  t୚୑ under optimality ൫tVMሺoሻ൯ is more efficient than t୚ୖ 
if 
Case  (a):  ሾβ40 െ 2β22 ൅ β04ሿ

2 ൐ ൣβ40 െ 1൧ൣβ04 െ 1൧ቂ1 െ §2ቃ                  (28)  
Case  (b):   4ሺ1 െ ρଶሻଶ ൐ ሾ1 െ §ଶሿ,                                                                 (29) 

     where, ρ  is the correlation coefficient between the study variable 𝑦 and the  
     auxiliary variable  𝑥. 
III. The class of estimators  t୚୑ under optimality ൫tVMሺoሻ൯ is more efficient than  t୚୔ 

if    
Case(a):      ሾβସ଴ െ 2βଶଶ ൅ β଴ସሿଶ െ 4ሾβଶଶ െ 1ሿଶ    

                ൐ ሾβସ଴ െ 1ሿሾβ଴ସ െ 1ሿሾ1 െ  §ଶሿ                                                   (30) 
Case(b):     4ሺ1 െ 2ρଶሻ ൐ ሾ1 െ §ଶሿ                                                                        (31) 
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IV. The class of estimators  t୚୑ under optimality ൫tVMሺoሻ൯ is more efficient than t୚୪୰ 
if  
Case(a):        ൣβ04 ൅ 1൧ ൐  2β22                                                                         (32) 

Case(b):                ρଶ ൏ ଵ

ଶ 
                                                                                     (33) 

V. The class of estimators  t୚୑ under optimality ൫tVMሺoሻ൯ is more efficient than 
t୚୉ୖ if  

Case(a):     
ሾβସ଴ െ 2βଶଶ ൅ β଴ସሿ ቂ βସ଴ െ 2βଶଶ ൅ β଴ସ െ

ଵ

ସ
ቃ

൐  ሾβସ଴ െ 1ሿሾβ଴ସ െ 1ሿሾ1 െ §ଶሿ
                              (34)  

Case(b):           ሺ1 െ ρଶሻሺ15 െ 16ρଶሻ ൐ 4ሾ1 െ §ଶሿ                                           (35) 
VI. The class of estimator  t୚୑ under optimality ൫tVMሺoሻ൯ is more efficient than t୚୉୔ 

if 

Case(a):     
ሾβସ଴ െ 2βଶଶ ൅ β଴ସሿ   ቂ

ଵ

ସ
βସ଴ െ 2βଶଶ ൅ β଴ସ െ

ଽ

ସ
 ቃ

൐  ሾβସ଴ െ 1ሿሾβ଴ସ െ 1ሿሾ1 െ §ଶሿ

 

                            (36) 

Case(b):           ሺ1 െ ρଶሻሺ15 െ 16ρଶሻ ൐ 4ሾ1 െ §ଶሿ                                           (37) 
VII. The class of estimator  t୚୑ under optimality ൫tVMሺoሻ൯ is more efficient than 

          tୱሺ୭୮୲ሻ if 

Case(a):      
ሺβ଴ସ െ 1ሻሺβସ଴ െ 1ሻ െ ሺβଶଶ െ 1ሻଶሾβସ଴ െ 2βଶଶ ൅ β଴ସሿ  

൐  ሾβସ଴ െ 1ሿଶሾβ଴ସ െ 1ሿሾ1 െ §ଶሿ

 

              (38) 

Case(b):        2ሺ1 െ ρସሻሺ1 െ ρଶሻ ൐ ሾ1 െ §ଶሿ                                                    (39) 

5.  Empirical Study 

To study the performance of the proposed class of estimators numerically, we 
consider 16 populations collected from different literature as described in Table 2 
(8 populations having positive correlation between x and y) and in Table 3 (8 popula-
tions having negative correlation between x and 𝑦). The source of populations, 
description of the nature of x and y, N, n, ρ, βସ଴ and β଴ସ for these populations are 
presented in these tables. We have considered the usual unbiased estimator ሺt୚଴ ൌ s୷ଶሻ, 
ratio type estimator (𝑡௏ோ) due to Isaki (1983), product type estimator ሺt୚୔ሻ,  regression 
type estimator ሺ𝑡௏௟௥) due to Isaki (1983), exponential ratio type estimator ሺt୚୉ୖሻ due to 
Singh et al. (2009), exponential product type estimator  ሺt୚୉୔ሻ due to Singh et al. (2009), 
Swain (2015)  ratio-in-regression estimator (tୱሺ୭୮୲ሻ) in order to compare with the 
proposed class of estimators under optimality, i.e. the minimum variance unbiased 
estimator ൫tVMሺoሻ൯ of the proposed class. Assuming simple random sampling without 
replacement, the relative efficiency of different estimators with respect to t୚଴ is 
compiled in Table 3 (for the cases in which the correlation coefficient is positive) and 
Table 4 (for the cases in which the correlation coefficient is negative).  
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Table 2:  Description of the Populations (𝛒 > 0) 

Table 3:  Description of the Populations (𝛒 < 0) 

Popn No. Source 𝒙 𝒚 𝑵 𝛒 𝛃𝟒𝟎 𝛃𝟎𝟒 

1 Black (2009), 
p. 511 Time Period 

Total No. of 
Savings       
Organization 

13 -0.17 1.786 1.602 

2 
Maddala (1988), 
p. 197 Year 

Prices Received by 
Farmer for Food 20 -0.21 1.794 2.81 

3 
Draper & Smith 
(1966), p. 352 

Number of Start-
ups 

Average 
Atmospheric 
Temperature 

25 -0.24 4.075 1.532 

4 Härdle & Hlávka 
(2007), p.335 

Marks for Car 
Safety 

Marks for Car 
Economy 24 -0.27 3.346 2.684 

5 Maddala (1988), 
p. 197 Year Food Prod. per 

Capita 20 -0.34 1.794 2.453 

6 Black (2009), 
p. 567 

Nuclear Electricity 
Production  
(in billion kwh) 

Dry Gas Prod.  
(in trillions of 
cubic feet) 

26 -0.4 1.579 3.012 

7 Black (2009), 
p.567 

Dry Gas Prod.  
(in trillions of 
cubic feet) 

Fuel Rate for 
Automobile 
(in miles/ gallon) 

26 -0.42 1.599 3.012 

8 
Härdle & Hlávka 
(2007), p. 339 

Expenditure on 
Meat 

Expenditure on 
Wine 12 -0.44 2.056 1.837 

Popn No. Source 𝒙 𝒚 𝑵 𝛒 𝛃𝟒𝟎 𝛃𝟎𝟒 

1 
Jobson (1992), 
p .674 

Percentage of 
White People 
in Population 

Total Mortality 
Rate 80 0.18 1.93 3.261 

2 Draper & Smith 
(1966), p. 366 

Amount of 
Tricalcium Silicate 

Amount of 
Tricalcium 
Aluminate 

13 0.23 1.677 3.075 

3 Black (2009), p.517 Job Satisfaction Advancement 
Opportunities 19 0.26 2.737 1.889 

4 Stevens (2009), 
p. 81 Knowledge Instructor 

Evaluation 32 0.28 3.099 2.511 

5 Draper & Smith 
(1966), p.352 

Pounds of Crude 
Glycerin Made 

Pounds of Steam 
used monthly 25 0.31 3.053 2.278 

6 Murthy (1967), 
p. 91 

Holding Size  
(in acres) 

Cultivated Area  
(in acres) 

36 0.37 17.47 3.183 

7 Cochran (1953), 
p. 113 

Size of large US 
Cities in 1920 

Size of large US 
Cities in 1930 49 0.4 7.504 38.91 

8 Black (2009), 
p. 517 

Relationship with 
Supervisor 

Advancement 
Opportunities 19 0.4 2.654 1.889 
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Table 4:  PRE of Estimators with respect 𝐭𝐨 𝐭𝐕𝟎  (when 𝛒 > 0) 

Popn 
No. 𝑁 𝑛 

Estimators 
𝑡௏଴ 𝑡௏ோ 𝑡௏ாோ  𝑡௏௟௥  tୱሺ୭୮୲ሻ t୚୑ሺ୭ሻ 

1 80 32 100 65.403 86.088 100.84 124.56 374.65 
2 13 6 100 57.714 77.839 114.46 251.23 607.36 
3 19 8 100 28.694 57.014 103.74 114.56 184.99 
4 32 13 100 37.636 67.504 101.32 126.19 193.88 
5 25 10 100 53.811 97.319 109.54 110.44 126.71 
6 36 15 100 11.286 32.855 100.33 105.30 117.8 
7 49 20 100 85.608 96.046 100 264.98 680.84 
8 19 8 100 28.613 56.103 105.73 137.15 198.64 

Table 5:  PRE of Estimators with respect 𝐭𝐨 𝐭𝐕𝟎  (when 𝛒 < 0) 

Popn 
No. 𝑁 𝑛 

Estimators 

𝑡௏଴ 𝑡௏ோ 𝑡௏ாோ  𝑡௏௟௥  tୱሺ୭୮୲ሻ t୚୑ሺ୭ሻ 

1 13 6 100 33.164 59.471 110.71 122.31 135.27 
2 20 8 100 131.08 129.57 135.18 269.34 651.64 
3 25 10 100 14.945 41.679 100.04 102.23 118.96 
4 24 10 100 47.729 83.372 101.61 149.31 196.28 
5 20 8 100 56.408 80.016 102.4 165.42 247.35 
6 26 11 100 63.243 82.057 108.09 197.85 373.49 
7 26 11 100 72.962 90.02 100.45 254.66 413.27 
8 12 5 100 42.041 72.777 100.28 141.64 170.44 

6.  Extension to the case of multi-auxiliary variables 

The proposed class of unbiased estimators can be extended to the case of multi-
auxiliary variables when the information on population variances 𝑠௫భ

ଶ , 𝑠௫మ
ଶ , … , 𝑠௫ೖ 

ଶ  for 
𝑘 െ auxiliary variables is available. The class of unbiased estimators of  𝑆௬ଶ is  

T ൌ λ଴s୷ଶ ൅ λଵs୶భ
ଶ ൅ ⋯  ൅ λ୩s୶ౡ

ଶ , ሺ40ሻ 

where the ሺ𝑘 ൅ 1ሻ constants λ୧ ሺ𝑖 ൌ 0,1,2,⋯ , 𝑘ሻ are chosen so that 𝑇 will be unbiased 
for S୷ଶ. So, we have 

EሺTሻ ൌ S୷ଶ       i. e.   λᇱ Q௞ାଵ ൌ S୷ଶ ሺ41ሻ 

and the variance of the class of estimators 𝑇 is  

VሺTሻ  ൌ    λᇱS௞ାଵλ,  ሺ42ሻ 

where  λᇱ ൌ ሾλ଴, λଵ,⋯ , λ୩ ሿ is a matrix of order 1 ൈ ሺ𝑘 ൅ 1ሻ and Q௞ାଵ
ᇱ ൌ

ൣ𝑆௬ଶ, 𝑆௫భ
ଶ ,⋯ , 𝑆௫ೖ

ଶ  ൧  is a matrix of order 1 ൈ ሺ𝑘 ൅ 1ሻ; S௞ାଵ ൌ  ሾ𝑆௜௝ ሿ is the dispersion 
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matrix of order ሺ𝑘 ൅ 1ሻ, such that 𝑆଴଴ ൌ 𝑉𝑎𝑟൫𝑠௬ଶ൯, 𝑆଴௝ ൌ 𝐶𝑜𝑣 ቀ𝑠௬ଶ, 𝑠௫ೕ
ଶ ቁ ൌ 𝑆௝଴, 𝑆௜௝ ൌ

𝐶𝑜𝑣 ቀ𝑠௫೔
ଶ , 𝑠௫ೕ

ଶ ቁ ൌ 𝑆௝௜  𝑗 ൌ  1,⋯ , 𝑘, 𝑖 ൌ 1,2,⋯ , 𝑘.   

The value of  𝜆   which minimises (41) subject to the unbiasedness condition (40) 
is found to be  

λ௢௣௧ ൌ S୷ଶ
𝑆௞ାଵ
ିଵ Q௞ାଵ

Q௞ାଵ
ᇱ𝑆௞ାଵ
ିଵ Q௞ାଵ

ൌ 𝜆∗ሺ𝑠𝑎𝑦ሻ, ሺ43ሻ 

where 𝑆௞ାଵିଵ  is inverse of the matrix S௞ାଵ and 𝜆∗ᇱ ൌ ሾλ଴
∗ , λଵ

∗ ,⋯ , λ௞
∗  ሿ are the optimum 

values of λᇱ. From the above conditions, we get the minimum variance unbiased 
estimator of this class as 

T௢௣௧ ൌ λ଴
∗s୷ଶ ൅ λଶ

∗s୶భ
ଶ ൅ ⋯  ൅ λ௞

∗ s୶ౡ
ଶ . ሺ44ሻ 

The optimum variance of  T௢௣௧  is given by 

V൫T௢௣௧൯ ൌ
S୷ସ

Q௞ାଵ
ᇱ𝑆௞ାଵ
ିଵ Q௞ାଵ

 
ሺ45ሻ 

7.  Conclusion 

1) In Table 4, for populations 1 to 8 the percent relative efficiency of the minimum 
variance unbiased estimator ൫tVMሺoሻ൯ of the proposed class is maximal. 

2) In Table 5, for populations 1 to 8 the percent relative efficiency of the minimum 
variance unbiased estimator ൫tVMሺoሻ൯ of the proposed class is maximal. 

When the study variable and auxiliary variable are positively correlated, the 
proposed estimator is more efficient than the ratio type estimator ሺt୚ୖሻ, exponential 
ratio type estimator  ሺt୚୉ୖሻ, regression type estimator  ሺt୚୪୰ሻ and ratio-in-regression 
estimator (tୱሺ୭୮୲ሻ). We may write the efficiency (E) in descending order     

E൫tVMሺoሻ൯ ൒ E൫tୱሺ୭୮୲ሻ൯ ൒  Eሺ t୚୪୰ሻ ൒  Eሺ t୚୉ୖሻ ൒  Eሺ t୚ୖሻ. 

When the study variable and auxiliary variable are negatively correlated, the 
proposed estimator is more efficient than the product type estimator ሺt୚୔ሻ, exponential 
product type estimator  ሺt୚୉୔ሻ, regression type estimator  ሺt୚୪୰ሻ and ratio-in-regression 
estimator (tୱሺ୭୮୲ሻ). We may write the efficiency (E) in descending order    

E൫tVMሺoሻ൯ ൒ E൫tୱሺ୭୮୲ሻ൯ ൒  E ሺ t୚୪୰ሻ ൒  Eሺ t୚୉୔ሻ ൒  Eሺ t୚୔ሻ. 
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