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Estimation of the Cox model with grouped lifetimes

Piotr Bolesław Nowak 1

Abstract

This paper presents how random numbers can be used to transform grouped lifetimes into
a pseudo-complete sample. The aim of the study is to investigate the Fisher consistency of
the partial likelihood estimator of the regression parameters in the Cox model based on the
restored sample. It has been proven that for elliptical-type distributional assumptions about
explanatory variables the estimators of the regression parameters in the Cox model based
on the pseudo-complete sample are consistent up to a scaling factor. A simulation study
illustrates the asymptotic properties of the estimates. In addition, real data case analysis is
presented.
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1. Introduction

Let T be a random variable denoting survival time and X = (X1, . . . ,Xp)
⊤ be a vector of

covariates having cumulative distribution function H. The Cox proportional hazard model
is a common technique for analysis of censored survival data which assumes that the hazard
function of time t, given the covariate value X = x is of the form

λ (t|x) = λ0(t)exp(β⊤x),

where λ0(t) is the baseline hazard function and β ∈ Rp denotes unknown regression pa-
rameters. It implies that the conditional survival function of T given X = x takes the form
S(t|x) = P(T > t|x) = exp(−Λ(t)exp(β⊤x)) , where Λ(t) =

∫ t
0 λ0(s)ds is the baseline cu-

mulative hazard function.
Given a random sample {(Ti ∧Ci,(Xi1, . . . ,Xip),δi)}n

i=1, where δi = 1(Ti ≤ Ci) and the
censoring variable C is independent of T given the value of X = x, Cox (1972) introduced
a method of estimating β without considering Λ, which is known as the partial likelihood
method. The partial likelihood estimator for the Cox model solves the equation∫ [

y−
∫

1(t ∧ c ≥ w)xexp(β⊤x)dFn(t,c,x)∫
1(t ∧ c ≥ w)exp(β⊤x)dFn(t,c,x)

]
1(w ≤ a) dFn(w,a,y) = 0, (1)

where Fn(t,c,x) denotes the empirical distribution function of the random sample and 1
denotes the indicator function.

Assume now that time is partitioned into k intervals A j = [a j−1,a j), j = 1, . . . ,k and
a0 = 0, ak = ∞. For each individual the exact value of X is known but the underlying
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variable T is unobserved due to grouping mechanism. We only know in what interval each
individual died or was censored.

In practice, it is impossible to measure time with infinite precision. For instance, in con-
structing life tables age is rounded to the nearest year. Moreover, sample elements are often
classified into disjoint subsets, like intervals, rectangles, etc. It means that it is not possible
to give individual sample values but only the numbers of observations in each specified class
(for more examples see Haitovsky (1982)). Inference methods for the grouped survival data
can be found in Kalbfleich and Prentice (1973), Thompson (1977), Prentice and Gloeckler
(1978). Kalbfleich and Prentice (1973) obtained a generalized linear model with a com-
plementary log-log link function while Thompson (1977) used the logistic model. A com-
prehensive lecture on discrete hazard models can be found in Fahrmeir and Tutz (2001), in
particular, see Chapter 9 for the methods for modelling of discrete survival data. McKeague
and Zhang (1996) obtained a Sheppard correction for grouping in the Cox model.

The aim of this paper is to present a different approach from the one mentioned above
to estimate the conditional survival function, which we describe in the next section. In the
sequel we show that estimating equation (1) can be used for inference about β even when
lifetimes coming from the Cox model are grouped into intervals. In the final section, we
present simulation study concerning scale Fisher consistency of the proposed estimators and
give examples with a real data set.

2. The estimator of the parameters for the grouped Cox model

Since the presented considerations hold also in the case of censoring, in order to simplify
notations, we first consider the case without censoring.

Recall, that for grouped data instead of the sample {(Ti,(Xi1, . . . ,Xip)}n
i=1 we observe

{(zi,(Xi1, . . . ,Xip)}n
i=1, where zi is a 1× k vector indicating the grouping interval. Thus,

∑
n
i=1 zi = (n1, . . . ,nk), where ni is the total number of deaths in the ith interval.

The estimation of the distribution parameters based on the grouped data is often more
difficult than for ungrouped data. For data divided into intervals the most straightforward
approach to estimation is to assume that all observations within each finite interval are
assigned to its midpoint.

The presented method of estimation in the case of the grouped data is based on the
idea that an unobserved lifetime T for given X = x in the interval A j = [a j−1,a j) may be
replaced by a random variable T̃ generated independently according to some distribution on
this set with cumulative distribution function (cdf), namely G j. Therefore, instead of sample
{(Ti,(Xi1, . . . ,Xip)}n

i=1 we have {(T̃i,(Xi1, . . . ,Xip)}n
i=1 and hence the estimating equation (1)

can be applied. Throughout this paper we will call this sample the pseudo-complete sample
generated by the grouped Cox model. The term of the pseudo-complete sample was also
used by Whitten et al. (1988) for the restoration of incomplete samples, but their method
was applied only to censored samples.

Observe that the density of the random variable [T̃ |X = x] is given by the formula
f̃ (t|x) = ∑

k
i=1 gi(t)1Ai(t)P(T ∈ Ai|x), where gi is the density function over the set Ai. Now,

denote the conditional survival function of this distribution by S̃(t|x). From the above de-
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scription, we conclude that

S̃(t|t ∈ A j,x) = P(T̃ > t|t ∈ A j,x) = S(a j|x)+ [1−G j(t)][S(a j−1|x)−S(a j|x)].

The uniform distribution over [a j−1,a j) is the most natural choice of G j for each finite
A j. It corresponds to the piecewise linear approximation of the survival function S. For
the last set Ak, it is reasonable to consider shifted exponential distribution or distribution of
random variable with probability one at the point ak. When 1−G j(t) = (a+ h− t)/h is
the survival function of the uniform distribution over [a,a+ h) and if the interval length h
approaches 0, then we have S̃(t|t ∈ [a,a+h),x)≈ S(a|x)+(t −a)S′(a|x).

In the next chapter we prove that the described reconstruction of the sample leads to
estimators which are consistent up to some positive scale, which is explained below.

3. Scaled Fisher consistency

In statistics, most estimators are defined as solutions to the estimating equations based
on the empirical distribution. We say that the estimating equation is Fisher consistent at the
model (or in short, the estimator being its solution is Fisher consistent) if the solution to
this equation coincides with the true parameter when the empirical distribution is replaced
by the true model distribution. For instance, Fisher consistency for the Cox model means
that if Fn in (1) is substituted by a joint distribution of (T,C,X), where (T,X) is from the
Cox’s model with parameter β0, then β = β0 is its only solution. Proving Fisher consistency
is a primary step in examining the asymptotic properties of M-estimators (see, e.g. Huber
and Ronchetti (2009)). This notion was used by Bednarski (1993) in robust method of
estimation of regression coefficients based on a modification of partial likelihood estimator.

The scaled Fisher consistency means that solutions to the estimating equation, if the
empirical distributions are replaced by the true model distributions, are scaled regression
parameters, i.e. β = αβ0 for some scaling factor α > 0.

The problem of scaled Fisher consistency for some regression models was considered
by Ruud (1983) and Stoker (1986), among others. Another recent important account in such
studies is due to Bednarski and Skolimowska-Kulig (2018), who showed that the maximum
likelihood estimator for the regression parameters in the classical exponential regression
model is scaled Fisher consistent for the extended model. Recently, Bednarski and Nowak
(2021), Bednarski, Nowak and Skolimowska-Kulig (2022) have showed that in the Cox
model with arbitrary frailty the partial likelihood estimator is also Fisher consistent up to
a scaling factor under elliptic type distributional assumptions on explanatory variables.

For further considerations replace the empirical distribution function Fn in (1) by the
joint distribution of (T̃ ,X), i.e. F̃β0(t,x) = F̃β0(t|x)H(x). We always use the subscript β0 to
emphasize that the distribution of (T,X) is under the true value of the parameter β . Thus,
equation (1) becomes

k

∑
j=1

∫
A j

[
y−

∫
S̃β0(w|w∈A j,x)xeβ⊤xdH(x)∫
S̃β0(w|w∈A j,x)eβ⊤xdH(x)

]
dF̃β0(w,y) = 0. (2)
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We have the following definition.

Definition 1. The scaled Fisher consistency of the partial likelihood estimator of β in the
Cox model based on a pseudo-complete sample means that equation (2) is satisfied for
β = αβ0, where α > 0 is some scaling factor.

Remark 1. Reduction of equation (2)

Observe that equation (2) can be reduced with an assumption that EX = 0.
Denoting by µ0 the expectation of X and after performing some simple algebra this

equation can be transformed as follows: H(x) is replaced by H(x + µ0) and Λ(w) by
eβ⊤

0 µ0Λ(w).
In the view of the above remark our aim is to show that L̃(β ,β0) = 0 is satisfied for

β = αβ0, α > 0, where

L̃(β ,β0) =
k

∑
j=1

∫
A j

[∫
S̃β0(w|w∈A j,x)xeβ⊤xdH(x)∫
S̃β0(w|w∈A j,x)eβ⊤xdH(x)

]
dF̃β0(w). (3)

The main idea of proving scaled Fisher consistency is based on the construction of an
auxiliary function fβ : [0,∞)→ R defined as follows:

fβ (α) =
k

∑
j=1

∫
A j

[∫
(β⊤x)S̃β (w|w ∈ A j,x)eαβ⊤xdH(x)∫

S̃β (w|w∈A j,x)eαβ⊤xdH(x)

]
dF̃β (w). (4)

The behavior of the function fβ is described in the following lemma. Its proof is omitted
as it is similar to the proof of Lemma 3.1 in Bednarski and Nowak (2021).

Lemma 1. For any β and any continuous G1, . . . ,Gk the function fβ has the following
properties:

1. It is continuous and strictly increasing on [0,∞) .

2. fβ (0)< 0.

3. lim
α→∞

fβ (α)> 0.

Now, let us recall that a p-dimensional random vector X is spherically symmetric dis-
tributed if for every orthogonal matrix Γ of size p (i.e. ΓΓ⊤ = Γ⊤Γ = I) the random vector
ΓX is distributed as X . Then, the random vector Y = µ +AX is said to be elliptically sym-
metric distributed with parameters µ ∈Rp and covariance matrix ΣY , where ΣY = AA⊤. It is
known that conditional expectation of Y given β⊤Y = c is a linear function with respect to c.
In fact, the following lemma can be proved (see also Bednarski and Nowak (2021)).

Lemma 2. Let Y be a p-dimensional random vector which has an elliptically symmetric
distribution with parameters µ ∈ Rp and ΣY . Then, for any β ∈ Rp and any c ∈ R it holds

E[Y |β⊤Y = c] = µ +(c−β
⊤

µ)
ΣY β

β⊤ΣY β
.
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Now, we are ready to formulate the main theorem, which gives sufficient conditions for
the scaled Fisher consistency when the partial likelihood estimator is used for the grouped
Cox model based on the pseudo-complete sample.

Theorem 1. Let the vector of explanatory variables X = (X1, . . . ,Xp)
⊤ be elliptically sym-

metric distributed. Then for any continuous distributions G1, . . . ,Gk the partial likelihood
estimator for the grouped Cox based on the pseudo-complete sample is Fisher consistent up
to a scale factor.

Proof. We show that the equation L̃(αβ0,β0) = 0 is satisfied for some scaling factor α > 0.
Observe that an immediate conclusion from Lemma 1 is that there exists α0 > 0 such that
fβ0(α0) = 0. Putting β = α0β0 we can write the inner integral from the numerator in (3)

as the expectation E(S̃β0(w|w ∈ A j,X)Xeα0β⊤
0 X ). Conditioning it on β⊤

0 X and applying
Lemma 2 for X with µ = 0 we have

E(S̃β0(w|w∈A j,X)Xeα0β⊤
0 X ) =

E(E(S̃β0(w|w∈A j,X)Xeα0β⊤
0 X |β⊤

0 X)) =
ΣX β0

β⊤
0 ΣX β0

E
(
(β⊤

0 X)S̃β0(w|w∈A j,X)eα0β⊤
0 X

)
.

Hence, L̃(α0β0,β0) =
ΣX β0

β⊤
0 ΣX β0

fβ0(α0) = 0, which ends the proof.

Remark 2. The presence of a censoring variable.

In the case of the presence of a censoring variable we observe (T1∧C1,X1,δ1), . . . ,(Tn∧
Cn,Xn,δn), where X denotes covariate vector and δ = 1(T ≤ C). Let F(t,c,x) denote the
joint distribution of time T , censoring variable C and covariates X under the Cox model.
Under the conditional independence of T and C given X one can factorize dFβ0(t,c,x) =
dFβ0(t|x)dC(c|x)dH(x). Now, we replace the random variable T ∧C by T̃ as follows: when
T ∧C takes the values from A j then T̃ follows the distribution on the set A j with cdf G j

on this set. Thus, the pseudo-sample generated by the grouped Cox model consists of
(T̃1,X1,δ1), . . . ,(T̃n,Xn,δn). Then, the Fisher scaled consistency for the grouped Cox model
based on the pseudo-complete sample means that the equation L(β ,β0) = 0 is satisfied for
β = αβ0, α > 0, where

L(β ,β0) =

k

∑
j=1

∫
A j

[
y−

∫
S̃β0(w|w∈A j,x)[1−C(w|x)]xeβ⊤xdH(x)∫
S̃β0(w|w∈A j,x)[1−C(w|x)]eβ⊤xdH(x)

]
[1−C(w|y)]dF̃β0(w|y)dH(y)= 0.

From the above it follows that Lemma 1 and Theorem 1 remain applicable in the pres-
ence of a censoring variable.
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4. Numerical examples

This section presents computational examples for selected distributions and an applica-
tion of presented method for real and simulation data.

Example 1. (Monte Carlo simulation)
A Monte Carlo experiment for 5000 runs was conducted to investigate properties of the

partial likelihood estimation under the pseudo-complete sample when data were generated
from the Cox model. The S-Plus programing language was used to generate lifetimes com-
ing from the Cox model. For the true parameter value β0 = (1,−0.5,0.5)⊤, two types of
cumulated baseline intensities, Λ(t) = t1/2 and Λ(t) = t2 were used. The vector X was ei-
ther elliptically distributed with standard normal distributions or non-elliptically distributed
with exponential marginals. The sample size was taken n = 500 and the grouping was per-
formed for k = 2,5,15,20. For each grouping the class Ak = [ak,∞) was chosen so that
Pβ0(T > ak) = 0.1 and the group limits 0,a1, . . . ,ak−1 were equidistant. After grouping of
lifetimes the pseudo-complete samples were created. The uniform distribution on each fi-
nite interval and the shifted exponential distribution on the tail were applied. Table 1 shows
the results of this experiment.

Table 1: Results of simulation experiment for true parameter β0 = (1,−0.5,0.5)⊤. The first
vector in each cell refers to the means of ratios of components of estimates and the true
parameters. The second one refers to the standard deviations of the vector estimates of true
parameter values.

grouping
Regressors normally distributed Regressors non-elliptically distributed

Λ(t) = t1/2 Λ(t) = t2 Λ(t) = t1/2 Λ(t) = t2

k = 2
(3.220, 3.231, 3.214) (3.105, 3.113, 3.116) (6.262, 2.382, 4.255) (6.288, 2.386, 4.257)
(0.066, 0.065, 0.065) (0.065, 0.064, 0.066) (0.045, 0.041, 0.042) (0.045, 0.041, 0.044)

k = 5
(2.056, 2.060, 2.053) (1.216, 1.213, 1.210) (3.500, 1.848, 2.492) (1.557, 1.420, 1.343)
(0.068, 0.066. 0.066) (0.075, 0.070, 0.069) (0.054, 0.041, 0.047) (0.090, 0.045, 0.056)

k = 15
(1.544, 1.542, 1.545) (1.089, 1.091, 1.088) (2.465, 1.624, 1.829) (1.098, 1.223, 1.073)
(0.073, 0.066, 0.066) (0.079, 0.072, 0.072) (0.067, 0.042, 0.051) (0.075, 0.047, 0.051)

k = 20
(1.462, 1.463, 1.468) (1.084, 1.087, 1.081) (2.292, 1.581, 1.732) (1.066, 1.203, 1.054)
(0.074, 0.069, 0.068) (0.077, 0.072, 0.071) (0.071, 0.042, 0.053) (0.068, 0.048, 0.050)

Simulations indicate good asymptotic performance of the estimator under normally dis-
tributed covariates. Note, that each elliptically distributed vector X can be chosen as a
member of a large family of probability distributions like multivariate normal distributions,
multivariate t-distributions, multivariate Logistic and Laplace distributions and many others.
For this case components of the first vectors in each cell are almost the same, which shows
that we have the estimation of the regression parameter up to the same scaling factor. It is
interesting that even for grouping for k = 2 we can estimate the regression parameter up to a
scaling constant which is approximately equal to 3.2 and 3.1 for Λ(t) = t1/2 and Λ(t) = t2,
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respectively. The scaling factors decrease as the number of classes increase. For grouping
with k = 15,20 and Λ(t) = t2 a scaling factor is near one, which corresponds to the consis-
tent estimation of the regression parameter. On the other hand, we observe bad performance
of the estimators under departure from the elliptical type distributional assumption of ex-
planatory variables when the number of grouping classes is small, especially for k = 2. As
the number of classes increase the estimators may approach to the true parameter despite
non-elliptically distributed regressors, for instance, see the case for k = 15 and Λ(t) = t2,
where the estimation seems to be correct.
Example 2. (Life table)

Another example presented here compares two estimation methods for the life table
for gender and race (see Table 2 based on article by Arias (2007)). These data were also
considered by Agresti (2010) on page 127.

The first method of the estimation is applied in order to reconstruct the entire sample
from the grouped sample using random numbers generated according the uniform distribu-
tion on each interval. We assumed that A7 = (95,120), because according to the Interna-
tional Database on Longevity the longest-lived person ever form the United States died at
the age of 119 years and 97 days, see also Kestenbaum and Ferguson (2010).

For two explanatory variables, gender g (1 = female; 0 = male) and race r (1 = black;
0 = white), the Cox model was fitted to the pseudo-complete sample of size 1000 for each
of the four groups.

As a second model, we used the generalized linear model (GLM) with complementary
log-log link function, i.e.

log(− log(1−P(Y ≤ j))) = θ j +β1g+β2r, j = 1,2, . . . ,6.

Table 2 contains fitted distributions, the first value in each parenthesis corresponds to the
Cox model and the second value in each parenthesis to the GLM. For each of the four
distributions and for each of the estimation methods, we calculated the dissimilarity index,
which is the half the sum of absolute differences between the fitted and estimated population
distributions. This index takes values (in percent) 2.2, 6.6, 7.2, 3.5 for the Cox model and
2.7, 6.8, 6.8, 3.3 for the GLM. The differences in estimates of two mentioned methods are
very small.

Example 3. (Veteran data)
The next example compares the two estimation methods for the Veteran’s Administra-

tion lung cancer data, see Kalbfleisch and Prentice (1980). This data set is frequently used to
test different estimation. There were continuous covariates: Karnofsky rating, disease dura-
tion and age whereas binary ones are prior therapy (yes=1 or no=0), treatment (standard=1
or test=0) and four cell types (squamous, small, large and adeno). Because of colinearity
of these cell types, we take into consideration in this model only three of them, namely
squamous, small and adeno.

In order to present the result for the pseudo-complete sample we grouped lifetimes into
twenty equidistance classes, i.e. k = 20. The range of lifetime is 1–999. Each grouped
lifetime was replaced by a random number according to the uniform distribution on the
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Table 2: Observed and fitted (in parentheses) life-length distributions of U.S. residents,
as percentages. The first value in each parenthesis corresponds to the Cox model based
on pseudo-complete sample, the second one to the GLM with complementary log-log link
function.

Life Length
Gender Race 0-20 20-40 40-50 50-65 65-80 80-95 over 95

Female
Black

1.8 2.4 3.7 12.9 29.6 39.3 10.3
(1.5, 1.5) (2.6, 2.6) (3.4, 3.3) (12.6, 12.4) (30.0, 29.9) (40.8, 41.5) (9.1, 8.8)

White
0.9 1.3 1.9 8.0 25.9 49.7 12.3

(1.2, 1.2) (2.2, 2.0) (2.7, 2.6) (10.4, 9.9) (26.3, 25.3) (43.1, 43.5) (14.1, 15.5)

Male
Black

2.6 4.9 5.6 20.2 34.7 27.8 4.2
(2.1, 2.2) (3.6, 3.8) (4.6, 4.8) (16.6, 17.3) (35.2, 36.1) (34.5, 33.2) (3.4, 2.6)

White
1.3 2.8 3.2 12.2 32.8 42 5.7

(1.7, 1.7) (2.9, 2.9) (3.7, 3.8) (13.9, 14.0) (32.1, 32.2) (39.2, 39.3) (6.5, 6.1)

corresponding interval. Scaled values of estimates for complete and pseudo-complete sam-
ple are presented in Table 3. The differences in scaled estimates are very small, i.e. the
maximum absolute difference is no more than 0.05.

Table 3: Comparison of partial likelihood estimation for complete and pseudo-complete
sample for the Veteran’s Administration lung cancer data.

complete sample pseudo-complete sample
covariates ple scaled ple p-value ple scaled ple p-value
karnofsky -0.0328 -0.0314 0.0000 -0.0327 -0.0299 0.0000
diag time 0.0001 0.0001 0.9929 -0.0040 -0.0036 0.6683
age -0.0087 -0.0083 0.3492 -0.0015 -0.0014 0.7807
prior 0.0072 0.0068 0.7579 0.0018 0.0017 0.8328
squamous -0.4013 -0.3839 0.1557 -0.4072 -0.3720 0.1574
small 0.4603 0.4403 0.0838 0.4404 0.4024 0.1105
adeno 0.7948 0.7604 0.0087 0.8498 0.7764 0.0076
tratment 0.2946 0.2818 0.1558 0.3390 0.3098 0.1131

Example 4. (Estimation in the Cox model with rounded data)
Let us recall that the Cox model is based on several restrictive assumptions and one of

them says that there were no tied values among the observed survival times. When con-
structing a new partial-likelihood function we must assume that the roundings for particular
survival times appear by imprecision in the measurements of survival time. Therefore, when
we have d values rounded to the one value, in fact they could have been observed in any
of the d! possible orders. The exact form of the partial-likelihood function is obtained by
modification of the partial-likelihood function to include all possible arrangements. Then,
we get expressions inconvenient for further calculations, therefore we use approximations.
Approximation, both introduced by Breslow (1974) and Efron (1977), provides simpler ex-
pressions than an exact function, but still include effect of rounded data.
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In order to apply randomization procedure to rounded data we replace each tied sur-
vival time, namely t, by a random variable according to uniform distribution on the inter-
val (t − ε, t + ε), ε > 0.

Now, we illustrate this randomization procedure by considering data on HMO examina-
tion of patients infected with HIV (see Hosmer and Lemeshow (1999)), where 100 patients
participated in the study, with 31 different survival times. The number of people with the
same time survival rates ranged between 1 and 17. For the simulation, we assumed that
ε = 0.5.

Table 4: Comparison of estimation results for different estimation methods.

Method
AGE DRUG

Coeff. Sd.Err. Coeff. Sd.Err.
Exact 0.0977 0.0187 1.0226 0.2572

Breslow 0.0915 0.0185 0.9414 0.2555
Efron 0.0971 0.0186 1.0167 0.2562

Random 0.0976 0.0186 1.0307 0.2577

Table 4 shows estimation results for methods mentioned above. Note that using the
randomization method (see the last row of Table 4), we get the results that are very close to
the exact one. In fact, estimators calculated by all four methods are close to each other and
their standard errors are almost identical.

5. Final conclusions

The Cox model is based on several restrictive assumptions and one of them assumes
continuous survival time. This assumption may not be fulfilled in many situations, e.g. when
the data are rounded and then at least two events may occur at one point in time. Another
situation concerns the case when survival data are grouped. In general, data grouping is
a frequently used data presentation mechanism in practical applications. There are well-
known methods of inference based on grouped data in the statistical literature, but due to
data compression, the resulting estimators may be less effective or more biased than those
obtained on the basis of the full sample.

This paper presents a method of estimation of the regression parameters in the Cox
model, when lifetimes are grouped into a set of intervals. We showed how using random
numbers, which are easily available in statistical packages, one can obtain a reconstruction
of a simple sample, called here a pseudo-complete sample, and hence the classic Cox es-
timator can be still used. We noticed that in case of using a uniform distribution on each
grouping interval, the described randomization method corresponds to the approximation of
the survival function by a piecewise linear function. We proved that for the pseudo-complete
sample the partial likelihood method of estimation leads to the consistent estimation of re-
gression parameters up to a scaling factor if covariates are elliptically distributed. By stan-
dard asymptotic argumentation it means that solutions to equation (1) for restored samples
converge to scaled regression parameters as the sample increases and they are asymptoti-
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cally normal.
The problem discussed in this paper is important because initial data are often aggre-

gated and then classical methods based on the assumption of continuity of the dependent
variable are limited. Therefore, the presented randomization method can also be used in
other regression models, where a dependent variable is grouped.
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