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Optimal sample size in a triangular model
for sensitive questions

Stanisław Jaworski1

Abstract

The estimation of the fraction of a population with a stigmatizing characteristic is the issue
that this study attempts to address. In this paper the nonrandomized response model pro-
posed by Tian et al. (2007) is considered. The exact confidence interval (CI) for this fraction
is constructed. The optimal sample size for obtaining the CI of a given length is also derived.
In order to estimate the proportion of the population with a stigmatizing characteristic, we
explore the nonrandomized response model proposed by Tian et al. (2007). The prevalent
approach to constructing a CI involves applying the Central Limit Theorem. Unfortunately,
such CIs fail to consistently maintain the prescribed confidence level, contradicting the Ney-
man (1934) definition of CIs. In this paper, we present the construction of an exact CIs
for this proportion, ensuring adherence to the designated confidence level. The length of
the proposed CI depends on both the given probability of a positive response to a neutral
question and the sample size. For these CIs, the probability of a positive response to a neu-
tral question is established in relation to the provided limit on the privacy protection of the
interviewee. Additionally, we derive the optimal sample size for obtaining a CI of a given
length.

Key words: sensitive questions, nonrandomized response model, exact confidence interval.

1. Introduction

In surveys aiming to estimate the proportion of individuals with a stigmatizing character-
istic, respondents often hesitate to provide truthful responses when directly questioned. To
address this challenge, various methods of indirect questioning have been developed to safe-
guard privacy and encourage the disclosure of sensitive information. The initial approach
to obscuring answers to sensitive questions was proposed by Warner (1965). This method
involves the randomization of responses, with the interviewee determining the randomized
answer, and the interviewer remaining unaware of the actual response to the sensitive ques-
tion. Over time, Warner’s model has been extended in different ways by researchers such
as Horvitz et al. (1967), Greenberg et al. (1969), Raghavarao (1978), Franklin (1989), and
Kuk (1990). Collectively, Warner’s model and its extensions fall under the category of
randomized response techniques, which necessitate the use of a randomization device.

Tian et al. (2007) and Yu et al. (2008) introduced two innovative techniques for address-
ing sensitive questions in population surveys: the triangular model and the crosswise model.
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Both models involve asking two questions simultaneously – one sensitive and one neutral.
A key advantage of these methods is that they do not require a randomization device, unlike
earlier approaches. The triangular and crosswise models, along with the parallel model in-
troduced by Tian (2014), belong to the same class of non-randomized models. The issue of
determining the optimal sample size for these models has been examined by Liu and Tian
(2014) and Yu et al. (2008).

An essential aspect of the sample survey design is determining the number of respon-
dents. Tian et al. (2011) explored sample size determination for the non-randomized tri-
angular model when dealing with sensitive questions in surveys. Their approach involved
precision and power analyses for one-sided and two-sided tests, examining the hypothesis
H0 : π = π0, where π represents the population proportion with the sensitive characteristic,
and π0 is a pre-specified reference value. The sample size determination was guided by
controlling the type I and II error rates of the tests. However, the resulting solution depends
on both the pre-specified reference value π0 and the true unknown value of π , making it
challenging to apply directly in practical situations.

Qiu et al. (2014) also examined sample size determination for the triangular model, de-
riving formulas for estimating the parameter π . Unlike Tian et al. (2011), they explicitly
incorporated an assurance probability of achieving the pre-specified precision into the for-
mulas. However, these formulas still depend on the unknown value of π and are based on
asymptotic confidence intervals, which do not maintain the nominal confidence level.

In this study, we present an alternative approach to determining the optimal sample
size for the non-randomized triangular model. This approach was originally introduced by
Jaworski and Zieliński (2023) for the non-randomized crosswise model. Their method si-
multaneously considers both the confidence interval length and the protection of respondent
privacy.

In Section 2, we revisit the construction of asymptotic confidence intervals for π and
elucidate the process of constructing an exact confidence interval for this parameter. Section
3 introduces the methodology for sample size selection, taking into account the privacy of
the interviewee. Section 4 delves into various aspects of the numerical determination of the
optimal sample size. Concluding remarks are provided in Section 5.

2. Confidence interval in Triangular Model

Let Y be a binary variable, where {Y = 1} indicates the occurrence of drawing a person
with a stigmatizing trait, and {Y = 0} is the complement to {Y = 1}. Our focus is on
estimating the proportion (denoted by π = P{Y = 1}) of individuals with the stigmatizing
trait and constructing a confidence interval for π . The challenge we encounter is that the
random variable Y is not reliably observable. Therefore, we observe another variable Z,
contingent on respondents’ answers to two questions. The relationship between Z and the
two questions is specified by the assumed model.

In the triangular model, respondents are simultaneously presented with two indepen-
dent questions–one neutral and one sensitive. They are instructed to report 0 only if the
answers to both questions are not positive (NO). Thus, the observable variable in this model
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is denoted as Z, where

Z =

{
0, if both answers are NO,

1, otherwise.
(1)

In the triangular model the probability q of answering YES to neutral question is assumed
to be known. Therefore

Z =

{
0, with probability (1−π)(1−q),

1, with probability π +(1−π)q.
(2)

Let us denote the probability π +(1−π)q by ρ . Hence, in the triangular model

π =
ρ −q
1−q

. (3)

Let Z1,Z2, . . . ,Zn be a sample. Maximum likelihood estimator (MLE) of ρ is ρ̂ =

1
n ∑

n
i=1 Zi. Therefore, π̂q =

ρ̂ −q
1−q

is a natural estimator of π . However, the MLE of π

has the form
π̂ = max

{
0,πq

}
. (4)

Yu et al. (2008) proved that the estimators π̂ and π̂q are asymptotically equivalent. When
n → ∞, the central limit theorem implies that π̂q is asymptotically normal. Hence, the
following δ100% Wald confidence interval of π can be constructed:

π̂q ± z 1−δ
2

√
v(π̂q) (5)

where zν denotes the upper ν−th quantile of the standard normal variable and v(π̂q) =

ρ̂(1− ρ̂)/[(n−1)(1−q)2].

It is also possible to construct δ100% Wilson (score) confidence interval of π:π ∈ ⟨0,1⟩ : (π̂q −π)2 ≤
z2

1−δ
2

Var(ρ̂)

(1−q)2

 , (6)

where Var(ρ̂) =
(
π +(1−π)q

)
(1−π)(1−q)/n.

The Wald and Wilson confidence intervals are known to deviate from the prescribed
confidence level, making them imprecise. In contrast, the Clopper-Pearson method (Clop-
per and Pearson (1934)) can be employed to construct an exact confidence interval for π .
Notably, since π is a linear and increasing function of ρ , the resulting exact confidence in-
terval for π is

(πL(π̂),πR(π̂)) =

(
max

{
0,

ρL(ρ̂)−q
1−q

}
,

ρR(ρ̂)−q
1−q

)
(7)
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where (ρL(ρ̂),ρR(ρ̂)) is a Clopper-Pearson exact confidence interval of ρ , that is

ρL(ρ̂) =

0 dla ρ̂ = 0,

B−1
(

n−nρ̂ +1,nρ̂; 1+δ

2

)
dla ρ̂ > 0,

(8)

ρU (ρ̂) =

1 for ρ̂ = 1,

B−1
(

n−nρ̂,nρ̂ +1; 1−δ

2

)
for ρ̂ < 1,

(9)

where B−1(a,b; ·) denotes the inverse of CDF of the Beta distribution with parameters (a,b).
Note, that it is enough to use the B−1(·, ·; ·) function for setting the exact confidence interval.

3. Optimal sample size

Let us consider the length l(π̂;q,n) of the exact confidence interval. For the nρ̂ observed
YES answers to the questionnaire we have

l(π̂;q,n) = πR(π̂)−πL(π̂), where π̂ = max
{

0,
ρ̂ −q
1−q

}
. (10)

The length of the confidence interval is a random variable concerning π̂ , contingent on
q and n. We explore two approaches to minimize the length of the CI:

1. Minimizing expected length: Find minimal sample size n such that the expected
length of the confidence interval does not exceed a predetermined value.

2. Almost sure minimizing: Find minimal sample size n such that there is a high prob-
ability that the length of the confidence interval does not exceed a predetermined
value.

The solution of these approaches is influenced by the probability of a positive answer to
the neutral question. Thus, a rational criterion for the optimal selection of this probability
needs to be formulated. Denoting the optimally selected q, dependent on the sample size n,
as qe(n) and qd(n) in the first and second approaches, respectively. Let Π and Q represent
acceptable sets for π and q, respectively. In the absence of prior knowledge about π and
reasonable restrictions for q, the sets are Π = (0,1) and Q = ⟨0,1).

Optimal q in the first approach. Let X denote the sample space of π̂ . The problem
may be written in the following way:

qe(n) = argmin
q∈Q

sup
π∈Π

EC(π)
π l(π̂;q,n), (11)

where EC(π)
π l(π̂;q,n) = ∑x∈C(π) l(x;q,n)Pπ{π̂ = x} represents the expected length of the

CI covering estimated value of π . Here, the set C(π) = {x ∈ X : πL(x) < π < πR(x)}
comprises the values of the variable π̂ for which the CI covers π .
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Optimal q in the second approach. The problem may be written in the following way:

qd(n) = argmax
q∈Q

inf
π∈Π

PC(π)
π {l(π̂;q,n)≤ d} , (12)

where δ ·PC(π)
π {l(π̂,q,n)≤ d}= ∑x∈C(π) Pπ{π̂ = x}1(l(x,q,n)≤ d) represents the proba-

bility that the length of the CI covering the estimated value of π does not exceed the given
value d. The function 1(p) is equal to one if the logical value of p is true and zero otherwise.

In the case of Q = ⟨0,1), the minimal length concerning q is achieved when q = 0,
equivalent to not asking the neutral question. However, such a questionnaire (without
a neutral question) fails to ensure the privacy of respondents. Therefore, it is reasonable
to impose a constraint on the probability q, considering the desired level of protection.

Tan et al. (2009) introduced the concept of the degree of privacy protection through the
probabilities

Pπ {Y = 1|Z = 1} and Pπ {Y = 1|Z = 0} . (13)

These probabilities are connected with the safety of the interviewee of non-discovering
her/his positive answer to the sensitive question. These probabilities should be small enough
so that they do not exceed the given value γ ∈ (0,1). The researcher can set this value ac-
cording to the requirements of the conducted survey. In the triangular model, the aforemen-
tioned probabilities are as follows:

Pπ {Y = 1|Z = 1}= π

π +(1−π)q
,

Pπ {Y = 1|Z = 0}= 0.
(14)

The relationship between the probability Pπ {Y = 1|Z = 1} and q is illustrated in Figure 1.

0.2 0.4 0.6 0.8 1

π

1

q

π

π+(1−π)q

Figure 1: Privacy protection versus q.

We are interested in q < 1 such that

π

π +(1−π)q
≤ γ for π ∈ Π. (15)

Simple algebra yields the following condition for q:

q(π;γ)≤ q < 1 for π ∈ Π, (16)
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where q(π;γ) = π(1−γ)
γ(1−π) increases with respect to π . Since q(γ,γ) = 1, the condition (16)

holds if and only if γ > π . This implies that the maximal privacy protection (i.e. the min-
imal γ to be chosen) is restricted by the percentage of the population that has committed
socially stigmatizing characteristic. Consequently, the problem of minimizing the length,
assuming π ≤ π0 for a given ∈ (0,1), is well defined for q ∈ ⟨q(π0;γ),1). In the following
discussion, we assume that Π = (0,π0⟩ and Q = ⟨q(π0;γ),1), where γ > π0. The value
π0 reflects our prior knowledge about π , indicating that we know the percentage of people
bearing a stigmatizing characteristic is less than π0. The inequalities (15) and (16) lead us
to the conclusion that without this knowledge, determining the appropriate value for γ is
not feasible. Note that both Π and Q do not depend on the sample size n. Therefore, the
length of the CI can be minimized by selecting an appropriate sample size. Let d ∈ (0,1)
be a given number. Our goal is to determine the sample size that yields a CI with a length
not exceeding d. Specifically, we are interested in a CI covering the estimated value of π .
We can define two approaches to address this problem.

Optimal sample size in the first approach. Identify minimal n such that

EC(π)
π l(π,qe(n),n)≤ d for all π ∈ Π. (17)

Optimal sample size in the second approach. Identify minimal n such that

PC(π)
π {l(π,qd(n),n)≤ d} ≥ 1−λ for given 1−λ and all π ∈ Π. (18)

In the first approach, our objective is to ensure that the average length of the CI cover-
ing the estimated value of π is less than a given d. In the second approach, our goal is to
ensure that the length of at least (1−λ )% of the CIs covering the estimated π is less than
the specified d. It is important to note that we have a minimum of δ% of intervals cover-
ing the unknown parameter π , and for an infinitely large sample size n, the defined value
PC(π)

π {l(π̂,q,n)≤ d} is equal to one.
The approaches to determining the optimal sample size were initially introduced for the

non-randomized crosswise model by Jaworski and Zieliński (2023).

4. Numerical consideration

Let us assume that π < 0.5 and the confidence level is set at δ = 0.95. Moving on
to the first approach, an analysis of EC(π)

π l(π̂,q,n) reveals (refer to Figure 2) that for each
π < 0.5 and n it increases with q. Consequently, it can be inferred that qe(n) = q(π0,γ)

for any γ ∈ (0,0.5⟩. In the triangular model, q(π0,γ) decreases with γ . Hence, our interest
lies in identifying the smallest and acceptable value of γ . However, it is crucial to note that
the measure of privacy protection revealed by the triangular model cannot be zero. Hence,
opting for γ = 0.5 appears reasonable. In this scenario, the probability that the respondent
belongs to a sensitive group is 50%, thereby mitigating the legal risks associated with the
respondent’s answers in the survey.
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Figure 2: Expected length versus π ∈ (0,γ = 0.5) with respect to q under the condition
that π is covered by the CI.

The expected length EC(π)
π l(π̂,q,n) is not monotonic with π for every q. Let us define

πmax(n;π0) = argsup
π∈Π

EC(π)
π l(π,q(π0,0.5),n). (19)

It is depicted in Figure 3 that if π0 ≤ 0.25 then πmax(n;π0) = π0 otherwise it is a de-
creasing function of sample size n (with the accuracy implied by the discreteness of the
distribution of the observed variable). This knowledge of πmax can be helpful in the opti-
mal sample size numerical finding in the approach. In Table 1 some exemplary of optimal
sample sizes are given for confidence level δ = 0.95 and privacy protection level γ = 0.5.
The optimal sample size is increasing with π0. Larger values of π0 correspond to higher
uncertainty about parameter π . Therefore, the optimal sample sizes are smaller for smaller
values of π0.

1000 5000 8000 12000
0.00

0.10
0.15
0.20
0.25

n

π
m

ax

π0 = 0.10
π0 = 0.15
π0 = 0.20
π0 = 0.25

1000 5000 8000 12000
0.00

0.30
0.35
0.40

n

π
m

ax

π0 = 0.30
π0 = 0.35
π0 = 0.40

Figure 3: πmax(n) = argsupπ∈Π EC(π)
π l(π,q(π0,0.5),n) versus sample size n
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Consider the case for d = 0.06. The optimal sample size is equal to 822 when π0 = 0.1
and is about 8 times greater for π0 = 0.4. This means that the costs of conducting a survey
are much higher for the latter case. Recall that when we conduct a survey by asking the
sensitive question directly with no additional neutral question, the length of the CI for π is
equal approximately to 0.06 when sample size n = 1000. This remark enable us to conclude
that without additional knowledge about the scope of π we will incur much higher research
costs with an appropriately secured level of privacy.

Table 1: The smallest n that supπ∈Π EC(π)
π l(π,q(π0,γ),n)≤ d.

π0 q(π0,γ) d = 0.05 d = 0.06
0.1 0.11 1171 822
0.2 0.25 2422 1693
0.3 0.43 4146 2893
0.4 0.67 8120 5646

Note: q(π0,γ) =
π0

1−π0
for γ = 0.5

Now, let us consider the second approach. The probability PC(π)
π {l(π,q,n)≤ d} de-

creases with q, and this dependency is illustrated in Figures 4, 5 and 6. When comparing
Figures 4 and 5, we observe that the monotonicity of PC(π)

π {l(π,q,n)≤ d} concerning π de-
pends on the sample size n. It is noteworthy that the lines in Figures 4, 5 and 6 exhibit some
lack of smoothness due to the discreteness of the observed variable, albeit small enough to
explore the optimal sample size at q = q(π0,γ). In Table 2, we provide some exemples of
optimal sample sizes.

0.10 0.20 0.30 0.40 0.50
0.00

0.50

1.00 q = 0.37
q = 0.38
q = 0.39
q = 0.4

Figure 4: The probability as a function of π , with respect to q under the condition that π is
covered by the CI. Here, n = 4000.

0.02 0.04 0.06 0.08 0.10
0.00

0.50

1.00 q = 0.667
q = 0.669
q = 0.671
q = 0.673
q = 0.675

Figure 5: The probability as a function of π , with respect to q under the condition that π is
covered by the CI. Here, n = 1359.
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Figure 6: The probability as a function of π , with respect to q under the condition that π is
covered by the CI. Here, n = 12243.

Please note that the optimal sample size exhibits a modest variation when λ is set to
0.01 compared to 0.05, with the maximum observed difference being 13 (refer to Table 2).
However, noteworthy disparities arise in relation to π0, contingent upon the prior knowledge
of the true value of the π parameter. Increased uncertainty regarding π results in a higher
optimal sample size requirement. For instance, when π = 0.4, the optimal sample size is
approximately nine times greater than that for π = 0.4.

Table 2: The smallest n that infπ∈Π PC(π)
π {l(π,q(π0;γ),n)≤ d} ≥ 1−λ .

d = 0.05 d = 0.06

π0 q(π0,γ) λ = 0.01 λ = 0.05 λ = 0.01 λ = 0.05
0.1 0.11 1376 1359 973 960
0.2 0.25 2708 2702 1891 1886
0.3 0.43 4774 4774 3324 3324
0.4 0.67 12250 12243 8499 8494

Note: q(π0,γ) =
π0

1−π0
for γ = 0.5

5. Conclusions

The paper introduces a novel CI for the fraction of sensitive questions in the triangular
model. Unlike the widely used asymptotic CI, the new approach maintains the prescribed
confidence level, which is consistent with Neyman’s (1934) definition of CIs.

Addressing a crucial practical concern, we derived the minimum sample size satisfy-
ing two criteria: average length and almost sure length. To obtain these sample sizes, we
impose restrictions on privacy protection, specifically the probability of discovering a YES
answer to the sensitive question. This probability should be sufficiently small to ensure the
interviewee’s comfort in answering the questionnaire. Additionally, we limit our analysis
to rare phenomena, focusing on sensitive questions with a small (predefined) probability of
a positive answer.

It is crucial to emphasize that we refrain from comparing the length of our CI with
asymptotic versions. Asymptotic CIs are inherently shorter because they lack the capability
to uphold a specified confidence level, leading to a real probability of coverage that is less
than the designated confidence level. Consequently, the comparison of lengths is devoid
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of meaningful insights. Our CI is characterized by its ease of calculation; even a standard
spreadsheet application can efficiently compute the quantiles of the Beta distribution. While
asymptotic CIs based on normal approximation served a purpose in times when computers
were not readily available, we advocate for the practical application of our CI in contempo-
rary scenarios.

The provided numerical examples demonstrate that incorporating prior knowledge of
the true value of π enables a reduction in the minimum sample size necessary to achieve
the desired estimation precision. In the absence of this knowledge, the optimal sample size
may inflate by more than eight times, posing an unfavorable scenario given the associated
research costs.
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