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Area-biased one-parameter exponential distribution with
financial applications

Abdullah Hardan,1 Loai Alzoubi2

Abstract

Area-biased distributions are special cases of size-biased distributions. We have used the idea of
area-biased distributions in this paper to propose a generalisation of a one-parameter linear exponen-
tial distribution. The concept is called the area-biased one-parameter linear exponential distribution.
Its various characteristics are deduced and thoroughly explored. Some numerical studies are imple-
mented which demonstrate that the distribution is skewed to the right with heavier tail than the normal
distribution. The mean waiting and residual life time are also studied. Six methods of estimation are
employed to estimate the parameters distribution. A simulation study is conducted which shows that
the estimators are approximately unbiased and consistent. Three financial real data sets are applied.
They represent the earning per share in the financial, industry and service sectors at the Amman Stock
Exchange. The study shows that the suggested distribution has the best fit for these data sets compared
to some competence distributions.

Key words: one-parameter linear exponential distribution, area-biased, methods of estimation, earn-
ing per share.

1. Introduction

In statistics, modelling lifetime data is an important issue in many fields, including
biomedical sciences, economics, finance, engineering, and many others. A lot of contin-
uous distributions have been introduced for modelling such data, because they can tend to
be more efficient than the base distributions. Many methods have been used to propose new
models such as the combination of two or more distributions.

Weighted distributions, involving a variety of sampling surveys, have been widely ap-
plied to model data in nature, offering more insights and adequacy in the modelling. The
theory of weighted distributions ensures a collective access to the problems of model specifi-
cation and data interpretation. It provides a procedure for fitting models to unknown weight
functions when samples can be taken from both the original distribution and the developed
distribution. They take into account the method of ascertainment by adjusting the probabili-
ties of the actual occurrence of events in order to arrive at a specification of the probabilities
of those events as observed and recorded.
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The idea of weighted distributions was initially introduced by Fisher (1934) and de-
veloped by Rao (1965). Recently, this concept has been employed in a lot of researches
related to reliability, ecology, family data analysis, bio-medicine, and some other fields for
the improved performance of appropriate statistical models. It is defined by

fw(x) =
w(x) f (x)
E(w(x))

, x > 0, (1)

where w(x) is a non-negative weight function.

Let X be a random variable with probability density function (pdf) f (x), then the size-
biased distribution can be produced by using the weight function w(x) = Xm. It was first
studied by Patil and Ord (1976). For m = 2, we get the area-biased distribution, which was
first employed by Cox (1968) and Zelen (1974). Thus, the resulting pdf takes the form of

f1(x) =
x2 f (x)
E(X2)

. (2)

Area-biased distributions, as mentioned above, are special types of weighted distribu-
tions. In recent times, many authors have been interested in studying these types of distri-
butions, such as Sharma et al. (2018) who introduced the length- and area-biased Maxwell
distribution. Al-Omari et al. (2019a) suggested the power length-biased Suja distribution
as a new extension of the length-biased Suja distributions. Saghir et. al. (2017) studied a
new class of Maxwell length-biased distributions. Shen et al. (2009) used semi-parametric
transformations to model the length-biased data. Al-Omari and Alanzi (2021) suggested
and studied the properties of the one-parameter inverse length-biased Maxwell distribution.
Das and Roy (2011) suggested the length-biased form of the weighted Weibull distribution.
The weighted distributions based on the mixture of two distributions based on weights p1

and p2, with p1+ p2 = 1 are used by many authors, such as: Alzoubi et al. (2022), Benrabia
and Alzoubi (2022a), Benrabia and Alzoubi (2022b) and Alzoubi et al. (2022).

In this paper, we propose a new distribution. This distribution is applied to financial
data extracted from the Amman Stock Exchange (ASE). We have used Earnings per share
(EPS) data to compare the suggested distribution with other distributions. EPS is one way of
measuring a company’s success. An increase in the EPS indicates higher investor prosperity
(Ferniawan et al. 2024). Some researchers concluded that EPS has a significant and positive
impact on company value (Kristanti et al. 2024), others indicated a substantial and positive
impact of EPS on the stock prices (Taubah et al. 2024 and Dang et al., 2024). The ASE was
established in March 1999 as a non-profit independent institution, authorised to function
as a regulated market for trading securities in Jordan. ASE aims to operate, manage and
develop the operations and activities of security, commodity, and derivatives markets inside
and outside of Jordan. It seeks to provide a strong and secure environment to ensure the
interaction of supply and demand forces for trading in proper and fair trading practices. It
also aims to raise the awareness and knowledge of investing in the financial markets and
defining the services provided by the ASE (ASE, 2023).
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2. One-parameter linear-exponential distribution

Ghitany et al. (2008) introduced a single parameter distribution called the Lindley dis-
tribution. The pdf of this distribution is given by

fl(x) =
θ 2(1+ x)e−θx

1+θ
; x > 0, θ > 0. (3)

Sah (2021) proposed the one-parameter linear-exponential distribution (OPLED). Its pdf
and second moment are defined as

fo(x) =
θ 2(θ 2 + x)e−θx

1+θ 3 ; x > 0, θ > 0 (4)

E
(
X2) =

2(θ 3 +3)
θ 2(1+θ 3)

. (5)

3. Area-biased one-parameter linear-exponential distribution

This section introduces the new proposed distribution, the area-biased one-parameter
exponential distribution (ABOPLED). The pdf of this distribution is defined using (2), (4)
and (5):

f (x) =
θ 4x2

(
x+θ 2

)
e−θx

2θ 3 +6
; x > 0, θ > 0. (6)

The cumulative distribution function (CDF) of ABOPLED is defined as:

F(x) =
∫ x

0

θ 4u2
(
u+θ 2

)
e−θu

2θ 3 +6
du

= 1−
(
θ 3x3 +

(
θ 5 +3θ 2

)
x2 +

(
2θ 4 +6θ

)
x+2θ 3 +6

)
e−θx

2θ 3 +6

= 1−
(

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx. (7)

F(x) satisfies the conditions of the CDF, since (1) F(x) is right-continuous. (2) limx−→0

F(x) = 0, and (3) limx−→∞ F(x) = 1
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Figure 1. The pdf and CDF of ABOPLED for different values of θ .
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Figures 1a and 1b show the pdf and CDF plots of ABOPLED for θ values of 1.5-
9.5(step(1)). Figure 1a shows that the peak of the distribution gets sharper for smaller
values of θ . Figure 1b shows that the CDF reaches 1 faster for larger values of θ .

4. Moments and related measures of the ABOPLED

The moment generating function along with the moments and related measures of the
ABOPLED and some tables of the mean, standard deviation, coefficient of skewness, excess
kurtosis, and coefficient of variation for certain values of the parameter will be derived in
this section.

4.1. Moments

Theorem 1 . Let X be a random variable following the ABOPLED. The rth moment of X is

E(X r) =

(
(r+3)!+θ 3(r+2)!

)
2θ r(2θ 3 +6)

, r = 1,2, .... (8)

Proof 1 The rth moment can be found as

E(X r) =
∫

∞

0
xr f (x)dx =

∫
∞

0

θ 4xr+2
(
x+θ 2

)
e−θx

2θ 3 +6
dx

=
θ 4

2θ 3 +6

∫
∞

0
xr+2 (x+θ

2)e−θxdx =

(
(r+3)!+θ 3(r+2)!

)
2θ r(2θ 3 +6)

.

Thus, the first four moments can be calculated by substituting r with 1, 2, 3 and 4 in (8).
Hence, we have

µ = E(X) =

(
12+3θ 3

)
θ(θ 3 +3)

, (9)

E(X2) =

(
60+12θ 3

)
θ 2(θ 3 +3)

, (10)

E(X3) =

(
360+60θ 3

)
θ 3(θ 3 +3)

, (11)

E(X4) =

(
2520+360θ 3

)
θ 4(θ 3 +3)

. (12)

4.2. Related measures

From (9), and (10), the variance (σ2) and the standard deviation (σ) are as follows:
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σ
2 = E(X2)−µ

2 =

(
60+12θ 3

)
θ 2(θ 3 +3)

−

((
12+3θ 3

)
θ(θ 3 +3)

)2

=
3(θ 3 +2)(θ 3 +6)

θ 2 (θ 3 +3)2

σ =

√
3(θ 3 +2)(θ 3 +6)

θ (θ 3 +3)
. (13)

The coefficient of variation (CV) is defined using (9) and (13) as:

CV =

√
3(θ 3 +2)(θ 3 +6)
(12+3θ 3)

. (14)

The skewness (Sk) is defined using (9), (10), (11) and (13) as:

Sk(X) =
E(X3)−3µE(X2)+2µ3

σ3 =
6
(
θ 9 +12θ 6 +36θ 3 +36

)(√
3(θ 3 +2)(θ 3 +6)

)3 . (15)

Au et al. (2015) defined the excess kurtosis (eKur) as: eKur(X) = Kur(X)− 3. Thus,
for ABOPLED it is defined using (9), (10), (11), (12) and (13) as:

eKur(X) =
E(X4)−4µE(X3)+6µ2E(X2)−3µ4

σ4 −3

=

(
5θ 12 +80θ 9 +408θ 6 +864θ 3 +648

)
((θ 3 +2)(θ 3 +6))2 −3. (16)

Table 1. Related moments measures for ABOPLED for different values of θ

θ µ σ Sk eKur CV θ µ σ Sk eKur CV
1.25 2.8845 1.5686 1.045 1.614 54.3793 4.50 0.6737 0.3889 1.154 1.9966 57.7223
1.50 2.3137 1.2858 1.0738 1.7005 55.5715 4.75 0.6373 0.3679 1.1542 1.9975 57.7257
1.75 1.9194 1.0825 1.0991 1.7846 56.4014 5.00 0.6047 0.3491 1.1543 1.9981 57.7281
2.00 1.6364 0.9315 1.1181 1.8527 56.9275 5.25 0.5753 0.3321 1.1544 1.9986 57.7298
2.25 1.426 0.8163 1.1311 1.9019 57.2455 5.50 0.5487 0.3168 1.1545 1.9989 57.731
2.50 1.2644 0.7262 1.1395 1.9354 57.4344 5.75 0.5244 0.3028 1.1545 1.9992 57.732
2.75 1.1368 0.6542 1.1448 1.9574 57.5469 6.00 0.5023 0.29 1.1546 1.9994 57.7326
3.00 1.0333 0.5954 1.1482 1.9716 57.6147 6.25 0.4819 0.2782 1.1546 1.9995 57.7332
3.25 0.9478 0.5465 1.1504 1.9809 57.6564 6.50 0.4632 0.2674 1.1546 1.9996 57.7335
3.50 0.8758 0.5052 1.1518 1.9869 57.6825 6.75 0.4459 0.2574 1.1546 1.9997 57.7338
3.75 0.8144 0.4699 1.1527 1.9909 57.6991 7.00 0.4298 0.2481 1.1546 1.9997 57.7341
4.00 0.7612 0.4393 1.1533 1.9936 57.71 7.25 0.4149 0.2395 1.1547 1.9998 57.7342
4.25 0.7147 0.4125 1.1537 1.9954 57.7173 7.50 0.4009 0.2315 1.1547 1.9998 57.7344

Table 1 shows the mean, standard deviation, skewness, excess kurtosis, and coefficient
of variation of the ABOPLED distribution for θ values of 0.25-7.5 (step 0.25). The dis-
tribution is right-skewed and the table makes this clear regardless of the values of θ as all
skewness values are positive. The tails of the proposed distribution are heavier than the tails
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of the normal distribution, which is demonstrated by the fact that all excess kurtosis values
are positive. Furthermore, Table 1 shows how the mean and standard deviation increases as
the value of α increases and how they decrease as θ increases. The coefficient of variation
increases as the values of θ increase.

4.3. Moment generating function

Another way of deriving the moments is called the moment generating function (MGF).
It is defined by the theorem described below.

Theorem 2 Assume that random variable X follows the ABOPLED, then the moment gen-
erating function of X is given by

MX (t) =
θ 4
(
θ 2 (θ − t)+3

)
(θ − t)4 (θ 3 +3)

, θ > t. (17)

Proof 2

MX (t) =
∫

∞

0
etx f (x)dx =

∫
∞

0
etx θ 4x2

(
x+θ 2

)
e−θx

2θ 3 +6
dx =

θ 4
(
θ 2 (θ − t)+3

)
(θ − t)4 (θ 3 +3)

The rth derivative of MX (t) at t = 0 gives the rth central moment of random variable X ,
i.e. M(r)(0) = E(X r).

4.4. Mode

The mode is the most frequent value that occurs in data (Manikandan, 2011). When
data occur equally, then there is no mode. On the other hand, some data sets can have
more than one mode. This happens when the data set has two or more values of an equal
frequency which is greater than that of any other value in its neighbourhood. The mode
of the ABOPLED is given by equating the derivative of the pdf (6), or equivalently the
logarithm of the pdf, with respect to x to zero. Thus, from (6), we have:

f ′(x) =
θ 4

2θ 3 +6
(
−θ
(
x3 +θ

2x2)+ (3x2 +2θ
2x
))

e−θx. (18)

When equating (18) to 0, we receive

0 = −θx3 +(3−θ
3)x2 +2θ

2x

x =
θ 3 −3−

√
θ 6 +2θ 3 +9

−2θ
. (19)

Hence, we have one mode only assured by the plot of (19) in Figure 2f. Figure 2f shows
the plot of Equation (19). It indicates that the equation has only one solution regardless of
the value of θ .
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5. Reliability analysis of the ABOPLED

This section introduces the reliability, hazard rate, cumulative hazard rate, reversed haz-
ard rate, and odds rate functions for the ABOPLED, as well as an explanation of their shapes
for various values of the distribution parameters.

The reliability function of the ABOPLED can be calculated using (7):

R(t) = 1−F(t) =

(
θ 3t3 +

(
θ 5 +3θ 2

)
t2 +

(
2θ 4 +6θ

)
t +2θ 3 +6

)
e−θ t

2θ 3 +6
. (20)

The hazard rate function of ABOPLED, is defined using (6) and (20):

h(t) =
f (t)

1−F(t)
=

θ 4t2
(
t +θ 2

)
(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)

.

Using (20), the cumulative hazard rate function of is defined as:

H(t) =−ln(R(t)) = −ln

((
θ 3t3 +

(
θ 5 +3θ 2

)
t2 +

(
2θ 4 +6θ

)
t +2θ 3 +6

)
e−θ t

2θ 3 +6

)
.

The reversed hazard rate function is defined using (6), and (7):

RH(t) =
f (t)
F(t)

=
θ 4t2

(
t +θ 2

)
e−θ t

2θ 3 +6− ((θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t)
.

The odds rate function is defined using (7), and (20):

O(t) =
F(t)

1−F(t)
=

2θ 3 +6−
((

θ 3t3 +
(
θ 5 +3θ 2

)
t2 +

(
2θ 4 +6θ

)
t +2θ 3 +6

)
e−θ t

)
((θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t)

.

Figure 2 shows the reliability analysis functions of ABOPLED for θ values of 1.5-
9.5 (step1). Figure 2a shows the plot of the reliability function. Figure 2b represents the
plot of the hazard rate function. The reversed hazard rate function is presented in Figure
2c. Whereas the cumulative hazard rate function is presented in Figure 2d. The odds rate
function plot is shown in Figure 2e.

6. Some structural and statistical properties

6.1. Order statistics

Let X(1),X(2), · · · ,X(n) be the order statistics of the random sample X1,X2, · · · ,Xn ob-
tained from ABOPLED, then the pdf of the kth order statistics is:

f(k)(x) =
n!

(k−1)!(n− k)!
[F(x)]k−1[1−F(x)]n−k f (x)
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=
n!

(k−1)!(n− k)!

(
1−
(

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)k−1

×
((

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)n−k
[

θ 4x2
(
x+θ 2

)
e−θx

2θ 3 +6

]
. (21)

The minimum and maximum order statistics of ABOPLED can be found by replacing
k = 1 and k = n, respectively, in (21). As a result, we obtain what follows:
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Figure 2. Reliability analysis functions of ABOPLED for different θ values and the plot of
(19).

f(1)(x) = n
((

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)n−1
[

θ 4x2
(
x+θ 2

)
e−θx

2θ 3 +6

]
(22)

f(n)(x) = n
(

1−
(

θ 3x3

2θ 3 +6
+

θ 2x2

2
+θx+1

)
e−θx

)n−1
[

θ 4x2
(
x+θ 2

)
e−θx

2θ 3 +6

]
.(23)
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6.2. Quartiles

Quartiles are special cases of quantiles. The first quartile (Q1) corresponds to 25%
of the values that are below a specific value in the distribution, while the second quartile
(Q2) corresponds to 50% of the values that are below a specific value in the distribution.
It represents the median of the distribution. The third quartile (Q3) corresponds to 75% of
the values that are below a specific value in the distribution. The quantile function can be
obtained by finding the inverse of (7), so it can be obtained as:

q = F(xq) = 1−
(
θ 3x3

q +
(
θ 5 +3θ 2

)
x2

q +
(
2θ 4 +6θ

)
xq +2θ 3 +6

)
e−θxq

2θ 3 +6

1−q =

(
θ 3x3

q +
(
θ 5 +3θ 2

)
x2

q +
(
2θ 4 +6θ

)
xq +2θ 3 +6

)
e−θxq

2θ 3 +6
, (24)

where q is a random variable following the uniform distribution, i.e. q ∈ (0,1). For q = 0.5,
we obtain the median of the distribution. Equation (24) does not have an explicit solution.
Figure 3 shows the plot of this equation for θ = 1.5 and q values of 0.05, 0.1, 0.25, 0.4, 0.5,
0.6, 0.75, 0.8 and 0.95. It shows that (3b) it has exactly one solution.
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Figure 3. The pdf of order statistics for θ =2.5 and n = 10 and the quantile function when
θ =2.5.

6.3. Mean waiting time

Significantly, the mean waiting time is the measure used to verify the effectiveness of the
service. The form, which is most effective in decreasing waiting time, can be determined by
comparing many different services patterns. Pollaczek (1957) introduced a formula for the
mean waiting time in a G/G/1 queue. Rosenberg (1968) introduced the mean waiting time to
measure the effectiveness of the service because it is the easiest property of the waiting time
distribution to calculate. Otsuka et al. (2010) proposed a theoretical analysis of the mean
waiting time for message delivery in lattice ad hoc networks. Romero-Silva and Hurtado
(2017) studied the difference in mean waiting times between two classes of customers in a
single-server FIFO queue. For the ABOPLED, the mean waiting time can be written as:



10 A. Hardan, L. Alzoubi: Area-biased one-parameter exponential distribution

mw(t) =
1

F(t)

∫ t

0
F(x)dx

=

( ((
2θ 4 +6θ

)
t −6θ 3 −24

)
eθ t +θ 3t3 +

(
θ 5 +6θ 2

)
t2

+
(
4θ 4 +18θ

)
t +6θ 3 +24

)
θ (2θ 3 +6− (θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6))

. (25)

6.4. Mean residual life time

Several studies have attempted to find substitutes that do not depend on the entire right
tail of the pdf, such as mean residual lifetime and median residual life, and the correspond-
ing residual life quantiles. Several studies have addressed this issue. First, Schmittlein and
Morrison (1981) introduced the median residual lifetime and characterisation theorem along
with its application. Joe and Proschan (1984a) and Joe and Proschan (1984b) examined the
comparison of two life distributions based on their percentile residual life functions. Lillo
(2005) studied the median residual lifetime and its properties. Jeong et al. (2008) investi-
gated the nonparametric inference on median residual life function. Recently, Zamanzade
et al. (2024) analysed the estimation of the mean residual life based on ranked set sampling.
For the ABOPLED, the mean residual lifetime can be written as"

MR(t) =
1

F(t)

∫
∞

t
F(x)dx =

2θ 3 +6
(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t

×
∫

∞

t

(
θ 3x3 +

(
θ 5 +3θ 2

)
x2 +

(
2θ 4 +6θ

)
x+2θ 3 +6

)
e−θx

2θ 3 +6
dx

=
2θ 3 +6

(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)e−θ t

×
(
θ 2t3 +(θ(θ 3 +6)t2 +(4θ 3 +18)t +6θ 2 + 24

θ

)
e−θ t

2θ 3 +6

=

(
θ 2t3 +(θ(θ 3 +6)t2 +(4θ 3 +18)t +6θ 2 + 24

θ

)
(θ 3t3 +(θ 5 +3θ 2) t2 +(2θ 4 +6θ) t +2θ 3 +6)

. (26)

6.5. Entropy

Olbryś and Ostrowski (2021) introduced introduced a new procedure for the measure-
ment of stock market depth and market liquidity. An algorithm inferring the initiator of a
trade supports the proposed Shannon entropy-based market depth indicator. The findings of
the empirical experiments for real high-frequency data specify that this new entropy-based
method can be considered as a good market depth and liquidity proxy with an intuitive base
for both theoretical and the empirical analyses in financial markets. In this section, we have
derived the theoretical entropies with some numerical results.
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The Shannon (Shannon, 1948) (Sρ ), Rényi (Rρ ) (Rényi, 1961) and Tsallis (Tρ ) (Tsallis,
1988) entropies of the ABOPLED are defined as:

Sρ = −
∫

∞

0
f (x) log( f (x))dx

= −
∫

∞

0

(
(θ 4)(θ 2 + x)x2

(2θ 3 +6)
e−θx

)
log
(
(θ 4)(θ 2 + x)x2

(2θ 3 +6)
e−θx

)
dx (27)

Rρ =
1

1−ρ
log
(∫

∞

0
( f (x))ρ dx

)
, ρ > 0, ρ ̸= 0

=
1

1−ρ
log

(∫
∞

0

(
(θ 4)(θ 2 + x)x2

(2θ 3 +6)
e−θx

)ρ

dx

)

=
1

1−ρ
log

((
(θ 4)

(2θ 3 +6)

)ρ ∫
∞

0

ρ

∑
k=0

(
ρ

k

)
θ

2kx3ρ−ke−ρθxdx

)

=
1

1−ρ
log

((
(θ 4)

(2θ 3 +6)

)ρ ρ

∑
k=0

(
ρ

k

)
(3ρ − k)!

ρ3ρ−k+1θ 3ρ+k+1

)
(28)

Tρ =
1

ρ −1

(
1−

∫
∞

0
( f (x))ρ dx

)
, ρ > 0, ρ ̸= 0

=
1

ρ −1

(
1−

((
(θ 4)

(2θ 3 +6)

)ρ ρ

∑
k=0

(
ρ

k

)
(3ρ − k)!

ρ3ρ−k+1θ 3ρ+k+1

))
. (29)

Table 2 shows the numerical results for Shannon, Rényi and Tsallis entropies for ABO-
PLED using different values of θ of 0.05-4.25 (step(0.1)) when ρ = 5. It also shows the
mean waiting time and the mean residual life time. The table clarifies that as the values of
θ increase, all entropy values decrease. It shows the values of the mean waiting time and
the mean residual life time for the same values of θ . The mean waiting time values rise as
the values of θ grow. On the other hand, the values of the mean residual life time decrease
as the values of θ increase.

Table 2. Numerical results for Shannon, Rényi and Tsallis entropies, the mean waiting time
and mean residual life time for ABOPLED using different θ values with ρ=5.

θ Sρ Rρ Tρ mw MR θ Sρ Rρ Tρ mw MR
0.05 3.477 4.704 0.250 0.010 71.213 2.25 1.099 0.771 0.239 1.081 0.653
0.25 3.410 3.089 0.250 0.054 15.729 2.45 1.003 0.674 0.233 1.300 0.569
0.45 2.822 2.501 0.250 0.101 8.374 2.65 0.916 0.586 0.226 1.540 0.503
0.65 2.453 2.132 0.250 0.154 5.384 2.85 0.836 0.506 0.217 1.792 0.451
0.85 2.180 1.860 0.250 0.214 3.701 3.05 0.763 0.432 0.206 2.050 0.409
1.05 1.958 1.639 0.250 0.283 2.630 3.25 0.695 0.364 0.192 2.308 0.374
1.25 1.769 1.449 0.249 0.365 1.924 3.45 0.631 0.300 0.175 2.563 0.345
1.45 1.603 1.281 0.249 0.462 1.454 3.65 0.572 0.241 0.155 2.813 0.320
1.65 1.455 1.132 0.247 0.579 1.138 3.85 0.516 0.185 0.131 3.058 0.299
1.85 1.323 0.998 0.245 0.719 0.920 4.05 0.463 0.132 0.102 3.299 0.281
2.05 1.205 0.878 0.243 0.886 0.766 4.25 0.413 0.082 0.070 3.535 0.264
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7. Parameters estimation

7.1. Maximum likelihood method

Let X1,X2, · · · ,Xn be a random sample from ABOPLED, where x1,x2, · · · ,xn are the
observed values of the random sample. The likelihood function is:

L =
n

∏
i=1

[
θ 4x2

i
(
xi +θ 2

)
e−θxi

2θ 3 +6

]
=

[
θ 4

2θ 3 +6

]n
(

n

∏
i=1

x2
i

)(
n

∏
i=1

(xi +θ
2)

)(
e−θ ∑

n
i=0 xi

)
Thus, the log-likelihood function is:

ℓ = ln(L) = 4nln(θ)−nln(2θ
3 +6)+

n

∑
i=0

ln
(
x2

i
)
+

n

∑
i=0

ln
(
(xi +θ

2)
)
−θ

n

∑
i=0

xi (30)

With respect to θ , we receive

∂ℓ

∂θ
=

4n
θ

− 6nθ 2

2θ 3 +6
+

n

∑
i=1

2θ

xi +θ 2 −
n

∑
i=0

xi.

Nonlinear equation ∂ℓ
∂θ

= 0 can be solved numerically as there is no explicit solution,
and the maximum likelihood estimate (MLE) of θ is this solution.

7.2. Least square methods

This subsection describes the least squares methods for estimating the ABOPLED pa-
rameters. These methods were summarised by Swain et al. (1988) as follows: Let X(1),X(2),

· · · ,X(n) be the order statistics of random sample X1,X2, · · · ,Xn obtained from ABOPLED
with the observed ordered values of x(1),x(2), · · · ,x(n). The ordinary least squares (OLS)
method is defined as:

ROLS =
n

∑
i=1

[
F(x(i))−

i
n+1

]2

=
n

∑
i=1

[
n+1− i

n+1
−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i)

]2

. (31)

Thus, the OLS estimator of θ is the solution of ∂ROLS
∂θ

= 0.
The weighted least squares (WLS) estimate can be determined as:

WWLS =
n

∑
i=1

(n+1)2(n+2)
i(n+1− i)

[
1−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i) − i

n+1

]2

. (32)

Again, the WLS estimators of θ is the solution of ∂WWLS
∂θ

= 0.
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7.3. Maximum product spacings method

The maximum product of spacings (MPS) (Cheng and Amin, 1983) estimator, θ̂MPS, of
θ can be obtained using

NL(α,β |x) =
1

n+1

n+1

∑
i=1

ln

[
F(x(i);α,β )−F(x(i−1);α,β )

]

=
1

n+1

n+1

∑
i=1

ln

[[
1−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i)

]

−

[
1−

(
θ 3x3

(i−1)

2θ 3 +6
+

θ 2x2
(i−1)

2
+θx(i−1)+1

)
e−θx(i−1)

]]
. (33)

θ̂MPS can be obtained by solving nonlinear equation ∂NL(θ |x)
∂θ

= 0 with respect to θ

parameter.

7.4. Cramer-Von Mises and Anderson-Darling methods

The Cramer-Von Mises (CV M) method (Cramér, 1928 and Von Mises, 1928) for esti-
mating ABOPLED parameters is defined as:

CV M =
1

12n
+

n

∑
i=1

[
F(x(i),θ)−

2i−1
2n

]2

=
1

12n
+

n

∑
i=1

[
1−

(
θ 3x3

(i)

2θ 3 +6
+

θ 2x2
(i)

2
+θx(i)+1

)
e−θx(i) − 2i−1

2n

]2

. (34)

The estimator is the solution of the following system of nonlinear equation ∂CV M
∂θ

= 0.

The Anderson-Darling (AD) estimators (Anderson, 1962) of θ can be obtained as:

AD =−n− 1
n

n

∑
i=1

(2i−1)
{

ln[F(x(i);α,βθ)]+ lnF(x(n+1−i);α,β )
}

=−n−
n

∑
i=1

(2i−1)
n

 ln
(

1−
(

θ 3x3
(i)

2θ 3+6 +
θ 2x2

(i)
2 +θx(i)+1

)
e−θx(i)

)
+ln

((
θ 3x3

(n+1−i)
2θ 3+6 +

θ 2x2
(n+1−i)
2 +θx(n+1−i)+1

)
e−θx(n+1−i)

)
 . (35)

The AD estimator of θ is the solution of the non-linear equation ∂AD
∂θ

= 0.

The estimator presented in this section will be estimated using a simulation study in the
next part of the article.
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8. Simulation study

A simulation study is conducted to examine the efficiency of the estimators used and
the precision of the methods applied to estimate the ABOPLED parameters is discussed in
Section 7.

The following algorithm is used to estimate the distribution parameters:

• A Monte Carlo simulation study is carried out using different sample sizes: n = 30,
50, 100, 200, 300 and 500 to assess the performance of the ABOPLED via the R
package (R Core Team, 2021)

• 1,000 samples are simulated using the true parameters values θ =2.

• The MLE, OLS, WLS, MPS, CVM and AD estimators are obtained through the non-
linear equations by maximising or minimising Equations (30), (31), (32), (33), (34),
(35), respectively, as required by the method with respect to θ .

• The AB and MSEs of all estimates are calculated.

• For each sample, the estimates of the parameter θ , MSE and the bias are obtained.
Then, we calculate the AB and the MSE as follows: AB(θ̂)= 1

N ∑
N
i=1(θ̂ −θ), MSE =

1
N ∑

N
i=1(θ̂ −θ)2. The results of this simulation are summarised in Table 3.

Table 3 shows the estimate of θ and its AB and MSE. It shows that these values de-
crease as the sample size increases, indicating that the estimate behaves consistently for θ̂ ,
therefore it is unbiased and consistent. Based on AB and MSE, we recommend using the
MLE method to estimate the parameter.

Table 3. AB and MSE for estimated ABOPLED parameters

Method n θ̂ AB MSE Method n θ̂ AB MSE
MLE

30

2.0047 0.0047 0.0035 MLE

200

2.0017 0.0017 0.0006
OLS 2.1161 0.1161 0.2267 OLS 2.0621 0.0621 0.0313
WLS 2.0868 0.0868 0.2594 WLS 2.0186 0.0186 0.0305
CVM 2.2910 0.2910 0.3560 CVM 2.0310 0.0310 0.0860
MPS 2.4773 0.4773 0.7012 MPS 2.1164 0.1164 0.3551
AD 2.1014 0.1014 0.3807 AD 2.0301 0.0301 0.0860
MLE

50

2.0025 0.0025 0.0021 MLE

300

2.0016 0.0016 0.0003
OLS 2.0852 0.0852 0.1282 OLS 2.0577 0.0577 0.0222
WLS 2.0489 0.0489 0.1364 WLS 2.0145 0.0145 0.0207
CVM 2.0516 0.0516 0.2017 CVM 2.0305 0.0305 0.0746
MPS 2.2317 0.2317 0.5507 MPS 2.1148 0.1148 0.3138
AD 2.0516 0.0516 0.2017 AD 2.0250 0.0250 0.0746
MLE

100

2.0022 0.0022 0.0010 MLE

500

2.0008 0.0008 0.0002
OLS 2.0750 0.0750 0.0612 OLS 2.0568 0.0568 0.0137
WLS 2.0363 0.0363 0.0641 WLS 2.0134 0.0134 0.0113
CVM 2.0442 0.0442 0.1297 CVM 2.0299 0.0299 0.0660
MPS 2.1517 0.1517 0.5069 MPS 2.1066 0.1066 0.3011
AD 2.0452 0.0452 0.2017 AD 2.0130 0.0130 0.0660
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9. Real data applications

This section compares the proposed distribution’s goodness of fit to a few other existing
distributions in order to demonstrate its flexibility based on three financial real data sets.

The data were collected from companies listed at the ASE. The sample selection criteria
depended on data availability for three years: 2021, 2022, 2023. The population comprised
of all companies listed at the ASE, i.e. a total of 203 companies, the final sample consisted
of 92 companies, excluding those suspended from trading, with incomplete data and those
that incurred losses during the study periods. The total number of observations of EPS and
ROE was 273 each.

Earnings per share is the amount of income earned on a share of common stock during
an accounting period. It is calculated by dividing the profit or the loss attributable to or-
dinary equity holders of the parent entity (the numerator) by the weighted average number
of ordinary shares outstanding (the denominator) during the period (IAS, 2023). The ratio
indicated the company’s ability to produce a profit for common shareholders. It is widely
used by analysts and other external users of financial statements, as well as by management.

The following distributions are used for this comparison:

• Gharaibeh distribution (Gharaibeh, 2021):

f (x) =
θ 6

120(θ 6 +θ 4 +θ 2 +1)

(
x5 +20x3 +120x+120θ

)
e−θx; x > 0, θ > 0;

• Exponential distribution (Exp) (Kingman, 1982):

f (x) = αe−θx, x > 0, θ > 0;

• Lindley distribution (Ghitany et al., 2008):

f (x) =
θ 2(1+ x)e−θx

1+θ
; x > 0,θ > 0;

• Length bias Benrabia distribution (LBBD) (Almakhareez and Alzoubi, 2024a):

fl(x;α,β ) =
β (αΓ(α −1)βx+β α xα−1)e−βx

(α −β +αβ )Γ(α −1)
, x > 0, α > 1, β > 0;

• Area bias Benrabia distribution (ABBD) (Almakhareez and Alzoubi, 2024b):

fa(x;α,β ) =
(αΓ(α −1)β 3x2 +β α+2xα)e−βx

(α2β −αβ +2α)Γ(α −1)
; x, β > 0, α > 1;
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• Karam distribution (Gharaibeh and Sahtout, 2022):

f (x) =
θ 6
(
x5 + x4 + x2 +1

)
θ 5 +2θ 3 +24θ +120

e−θx; x > 0; θ > 0;

• OPLED (See (4));

• size-biased Ishita distribution (SBID) (Al-Omari et al., 2019b):

fs(x) =
θ 4

θ 3 +6
x(θ + x2)e−θx, x > 0, θ > 0.

Tables 4-6 show the data sets used in this section. They show the financial ratios per
year for financial, industry and service sectors during the 2021-2023 period.

Table 4. Dataset I: EPS for the financial sector during the 2021-2023 period

Company Name Financial Ratios/Year
2023 2022 2021

JORDAN ISLAMIC BANK 0.31151 0.30555 0.29529
SAFWA ISLAMIC BANK 0.1751 0.15112 0.1406
ISLAMIC INTERNATIONAL ARAB BANK 0.35326 0.35497 0.4
JORDAN KUWAIT BANK 0.39405 0.12455 0.05159
JORDAN COMMERCIAL BANK 0.09571 0.0945 0.05837
THE HOUSING BANK FOR TRADE AND FINANCE 0.43406 0.41111 0.33531
ARAB JORDAN INVESTMENT BANK 0.12384 0.12039 0.11394
BANK AL ETIHAD 0.23569 0.21455 0.20312
ARAB BANKING CORPORATION /(JORDAN) 0.04546 0.06063 0.08729
INVEST BANK 0.24629 0.19826 0.17812
CAPITAL BANK OF JORDAN 0.27317 0.33007 0.39407
CAIRO AMMAN BANK 0.18571 0.18218 0.17263
BANK OF JORDAN 0.22012 0.2007 0.18004
JORDAN AHLI BANK 0.09266 0.08422 0.07092
ARAB BANK 0.58648 0.51113 0.2436
MIDDLE EAST INSURANCE 0.03929 0.10864 0.07403
AL-NISR AL-ARABI INSURANCE 0.63802 0.231 0.29263
JORDAN INSURANCE 0.06033 0.00036 0.02921
DELTA INSURANCE 0.10801 0.0777 0.01752
JERUSALEM INSURANCE 0.18775 0.20698 0.16436
THE UNITED INSURANCE 0.21804 0.1675 0.16527
GULF INSURANCE GROUP/ JORDAN 0.36495 0.28091 0.25762
NATIONAL INSURANCE 0.16729 0.13781 0.11505
EURO ARAB INSURANCE GROUP 0.19688 0.19041 0.11778
THE MEDITERRANEAN & GULF INSURANCE COMPANY-
JORDAN P.L.C

0.0208 0.03486 0.00737

FIRST INSURANCE 0.10379 0.07202 0.07
THE ISLAMIC INSURANCE 0.11616 0.11066 0.13
AL-AMAL FINANCIAL INVESTMENTS 0.01476 0.02963 0.09023
BABELON INVESTMENTS 0.07179 0.0246 0.00509
DARAT JORDAN HOLDINGS 0.04654 0.01134 0.10751
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FIRST FINANCE 0.03256 0.04269 0.02772
INMA INVESTMENT AND FINANCIAL ADVANCES 0.03367 0.04155 0.02566
JORDAN LOAN GUARANTEE CORPORATION 0.06282 0.03956 0.03886
JORDAN MORTGAGE REFINANCE 0.3677 0.35538 0.43181
JORDANIAN MANAGEMENT AND CONSULTING COMPANY 0.29049 0.17916 0.19246
AD-DULAYL INDUSTRIAL PARK & REAL ESTATE COMPANY
P.L.C

0.06236 0.05714 0.04944

AL-TAJAMOUAT FOR TOURISTIC PROJECTS CO PLC 0.02698 0.02374 0.00992
AMAD INVESTMENT & REAL ESTATE DEVELOPMENT 0.00437 0.07656 0.01058
CONTEMPRO FOR HOUSING PROJECTS 0.00308 0.01992 0.0209
JORDAN MASAKEN FOR LAND & INDUSTRIAL DEVELOP-
MENT PROJECTS

0.0148 0.00919 0.00289

NOOR CAPITAL MARKTS FOR DIVERSIFIED INVESTMENTS 0.12639 0.19163 0.317
THE PROFESSIONAL COMPANY FOR REAL ESTATE INVEST-
MENT AND HOUSING

0.02423 0.0337 0.02976

THE REAL ESTATE & INVESTMENT PORTFOLIO CO. 0.00286 0.05566 0.02754
NOOR ASSETS MANAGEMENT AND LEASING CO. 0.2158 0.13914 0.12803

Table 5. Dataset II: EPS for the industry sector during the 2021-2023 period

Company Name Financial Ratios/Year
2023 2022 2021

THE INDUSTRIAL COMMERCIAL & AGRICULTURAL 0.05789 0.03362 0.06274
THE ARAB PESTICIDES & VETERINARY DRUGS MFG. CO. 0.27107 0.26055 0.23649
JORDAN CHEMICAL INDUSTRIES 0.02470 0.14547 0.05689
UNITED CABLE INDUSTRIES 0.02930 0.01857 0.01208
READY MIX CONCRTE AND CONSTRUCTION SUPPLIES 0.17116 0.07234 0.02440
ARABIAN STEEL PIPES MANUFACTURING 0.13898 0.09263 0.06792
AL-QUDS READY MIX 0.15671 0.01634 0.02434
ASSAS FOR CONCRETE PRODUCTS CO. LTD 0.05061 0.07530 0.04958
JORDAN DAIRY 0.16668 0.05058 0.08475
GENERAL INVESTMENT 0.21088 0.24084 0.20878
UNIVERSAL MODERN INDUSTRIES 0.07028 0.11759 0.13885
NUTRI DAR 0.00842 0.04065 0.02242
JORDAN VEGETABLE OIL INDUSTRIES 0.35863 0.25515 0.25914
SINIORA FOOD INDUSTRIES PLC 0.15817 0.19213 0.27924
ARAB ALUMINIUM INDUSTRY /ARAL 0.00100 0.06988 0.12114
JORDAN PHOSPHATE MINES 1.80000 8.67159 4.05965
NORTHERN CEMENT CO. 0.07000 0.11382 0.13499
THE ARAB POTASH 3.51000 7.21611 2.60108
INVESTMENTS & INTEGRATED INDUSTRIES CO. PLC (HOLD-
ING CO)

0.04000 0.03953 0.01875

DAR AL DAWA DEVELOPMENT & INVESTMENT 0.09033 0.06637 0.03005
HAYAT PHARMACEUTICAL INDUSTRIES CO. 0.24502 0.37144 0.38339
PHILADELPHIA PHARMACEEUTICALS 0.10763 0.09348 0.05470
THE JORDAN WORSTED MILLS 0.12776 0.14262 0.09987
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Table 6. Dataset III: EPS for the service sector during the 2021-2023 period

Company Name Financial Ratios/Year
2023 2022 2021

BINDAR TRADING & INVESTMENT 0.262608 0.40806 0.170304
COMPREHENSIVE LEASING COMPANY 0.243656 0.22314 0.388221
JORDAN INTERNATIONAL TRADING CENTER 0.07173 0.093165 0.057167
JORDAN TRADE FACILITIES 0.374112 0.242446 0.238253
JORDANIAN DUTY FREE SHOPS 0.336582 0.375173 0.00718
AL-ISRA FOR EDUCATION AND INVESTMENT 0.205352 0.332692 0.263241
AL-ZARQA EDUCATIONAL & INVESTMENT 0.046396 0.039709 0.033073
PETRA EDUCATION COMPANY 0.140622 0.167452 0.230803
PHILADELPHIA INTERNATIONAL EDUCATIONAL INVEST-
MENT

0.11588 0.005117 0.019367

THE ARAB INTERNATIONL FOR EDUCATION & INVEST-
MENT

0.118594 0.056378 0.108322

JORDAN PETROLEUM REFINERY 1.226189 0.961974 0.520464
AFAQ FOR ENERGY CO. P.L.C 4.914741 3.491291 0.211068
NATIONAL PETROULEUM 2.495661 5.240506 0.378521
THE CONSULTANT & INVESTMENT GROUP 0.041827 0.044151 0.041361
ARAB INTERNATIONAL HOTELS 0.026987 0.008047 0.004793
AL-FARIS NATIONAL COMPANY FOR INVESTMENT & EX-
PORT

0.009391 0.0315 0.044468

JORDAN TELECOM 0.243991 0.234832 0.13933
JORDAN NATIONAL SHIPPING LINES 0.078482 0.257447 0.193284
SALAM INTERNATIONL TRANSPORT & TRADING 0.013732 0.117071 0.076555
TRUST INTERNATIONAL TRANSPORT 0.080481 0.007918 0.013924
IRBID DISTRICT ELECTRICITY 0.657753 2.070165 0.690224
JORDAN ELECTRIC POWER 0.187703 0.170691 0.114224
ELECTRICITY DISTRIBUTION 0.507459 1.578454 0.618777
CENTRAL ELECTRICITY GENERATING 4.424406 0.822969 0.398052

Table 7 shows the summary of the three data sets used in this study.

Table 7. Summary of the datasets

Dataset Min. 1st Qu Median Mean 3rd Qu Max.

I 0.00036 0.03950 0.11449 0.14826 0.20887 0.63802
II 0.00100 0.05058 0.09987 0.51149 0.21088 8.67159
III 0.004793 0.053883 0.190493 0.538412 0.380946 5.240506

Tables 8 - 10 show that the suggested distribution has the lowest values of −ln(L), AIC,
CAIC, BIC, HQIC and KS with the highest p-value. Therefore, the suggested distribution is
preferred over the competence distributions. The 95% CIs of the parameter θ are calculated
in these tables.
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Table 8. Application I

Distribution −ln(L) AIC CAIC BIC HQIC KS p-value parameter Estimate SE 95%CI

Gharaibeh 268.9182 498.5167 498.6809 504.66 501 0.79057 2.23E-05 θ 1.40952 0.07806 1.256519 1.562515

ABOPLED 214.7046 247.6625 247.8083 249.848 248.5 0.108 0.5671 θ 2.45937 0.148823 2.16768 2.751065

Karam 220.2601 254.0115 254.1574 256.197 254.8 0.1224 0.409 θ 0.926 0.162 0.60848 1.24352

OPLED 240.4058 246.3666 248.4974 250.326 249.1 0.19233 0.043 θ 0.0924 0.009725 0.07334 0.111461

Exponential 254.1606 412.3661 412.4869 415.313 413.5 0.523845 0.000126 θ 0.20058 0.027815 0.146062 0.255096

Lindley 283.1807 493.5926 493.9845 499.837 496 0.835538 2.99E-07 θ 0.89039 0.055254 0.782089 0.998684

ABBD 339.3911 546.5599 546.8783 551.633 548.5 0.952397 2.42E-12
α 1.32772 0.131967 1.069067 1.586376

β 0.59652 0.047479 0.503466 0.689583

LBBD 292.5332 519.4088 519.8325 526.16 522 0.42493 4.91E-09
α 13.4936 1.916729 9.736853 17.25043

β 0.79805 0.093192 0.615392 0.980704

SBID 342.8647 555.0833 555.1819 557.489 556 0.910601 1.46E-12 θ 0.8271 0.215 0.405702 1.248502

Table 9. Application II

Distribution −ln(L) AIC CAIC BIC HQIC KS p-value parameter Estimate SE 95%CI

Gharaibeh 131.4238 264.8477 264.9074 267.0818 265.734 0.40153 4.35E-10 θ 1.100993 0.062543 0.978409 1.223577

ABOPLED 629.0371 1262.074 1262.198 1267.284 1264.183 0.095631 0.3198 θ 0.129883 0.011658 0.107032 0.152733

Karam 91.09243 184.1849 184.2446 186.419 185.0712 0.26513 0.000123 θ 1.97627 0.106528 1.767475 2.185065

OPLED 89.82951 181.659 181.7187 183.8931 182.5454 0.28699 2.32E-05 θ 1.408618 0.078005 1.255727 1.561509

Exponential 130.9789 263.9578 264.0175 266.1919 264.8441 0.4477 1.94E-12 θ 0.407271 0.049029 0.311173 0.503368

Lindley 119.311 240.622 240.6817 242.8561 241.5083 0.40044 4.90E-10 θ 0.653587 0.049124 0.557304 0.74987

ABBD 396.0404 796.0808 796.2547 800.6341 797.8935 0.15922 0.05196
α 4.546753 1.956473 0.712066 8.38144

β 0.032501 0.001715 0.02914 0.035863

LBBD 116.3911 234.7822 234.9201 236.2161 235.2496 0.14041 0.1951
α 2.444609 1.21023 0.072558 4.816659

β 0.008821 0.000642 0.007563 0.010078

SBID 96.31876 194.6375 194.6972 196.8716 195.5239 0.29669 1.06E-05 θ 1.353036 0.072632 1.210677 1.495395

Table 10. Application III

Distribution −ln(L) AIC CAIC BIC HQIC KS p-value parameter Estimate SE 95%CI

Gharaibeh 190.437 382.016 382.04 383.505 382.619 0.15386 1.76E-02 θ 0.53498 0.13245 0.27537 0.79458

ABOPLED 63.473 127.746 127.771 128.788 128.168 0.04221 0.6136 θ 0.40425 0.05325 0.29988 0.50862

Karam 268.019 537.53 537.56 539.474 538.317 0.2158 0.000123 θ 0.59548 0.16864 0.26495 0.92602

OPLED 333.624 669.248 669.289 671.854 670.303 0.92175 < 2.2E −16 θ 0.63064 0.15134 0.33401 0.92727

Exponential 243.719 488.92 488.95 490.85 489.701 0.17301 5.02E-03 θ 0.10125 0.04523 0.0126 0.1899

Lindley 74.541 149.55 149.56 150.159 149.797 0.06768 0.5881 θ 0.18657 0.06413 0.06089 0.31226

ABBD 321.539 647.077 647.201 652.287 649.186 0.44059 < 2.2E −16
α 4.87299 0.75101 3.401 6.34498

β 0.41435 0.05011 0.31614 0.51256

LBBD 144.212 290.243 290.299 292.611 291.201 0.12309 9.66E-02
α 3.95669 1.67379 0.67606 7.23733

β 0.23114 0.03585 0.16087 0.3014

SBID 188.221 377.572 377.595 379.046 378.169 0.15845 1.32E-02 θ 0.40413 0.13112 0.14713 0.66112
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10. Conclusions

In this paper, we propose the area-biased one-parameter linear exponential distribution.
The main properties of this distribution are derived such as the moments and the related
measures, the harmonic mean and the mode. The reliability analysis functions are derived
along with the pdfs of the minimum, maximum and the kth order statistics; additionally, the
quantile function; additionally, the mean absolute deviations from the mean and the median
jointly with the mean waiting and residual lifetime. A simulation study using the MLE,
OLS, WLS, MPS, CVM and AD methods of estimating parameters is conducted showing
that the estimators are unbiased and consistent. Three real financial data applications prove
the goodness of fit for this distribution. They show that the suggested distribution fits the
real data better than the competence distributions.
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