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An expectation-maximization algorithm for logistic
regression based on individual-level predictors and

aggregate-level response
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Abstract

Logistic regression is widely used in complex data analysis. When predictors are at individ-
ual level and the response at aggregate level, logistic regression can be estimated using the
Maximum Likelihood Estimation (MLE) method with the joint likelihood function formed
by Poisson binomial distributions. When directly maximizing the complicated likelihood
function, the performance of MLE will worsen as the number of predictors increases. In this
article, we propose an expectation-maximization (EM) algorithm to avoid the direct maxi-
mization of the complicated likelihood function. Simulation studies have been conducted to
evaluate the performance of our EM estimator compared to different estimators proposed in
the literature. Two real data-based studies have been conducted to illustrate the use of the
different estimators. Our EM estimator proves efficient for the logistic regression problem
with an aggregate-level response and individual-level predictors.

Key words: expectation-maximization algorithm, missing values, Poisson binomial distri-
bution, logistic regression, data aggregation, numerical optimization.

1. Introduction

With the fast development in technology, massive complex data have been collected
from multiple sources. New methods have been proposed for complex data situations such
as (1) how to deal with semi-structured data and structured data in the web (Zhai and Liu,
2006; Getdoor and Mihalkova, 2011), (2) analysis of graph-structured data (Geamsakul et
al., 27 2005; Henaff et al., 2015) and (3) multi-level and mixed-level data analysis (Primo
et al., 2007; Saramago et al., 2012).

Data can be collected, reported, and are available at different levels due to a range of
reasons such as confidentiality, data collection difficulty, and cost saving. For example, the
United State Department of Agriculture (USDA) National Agricultural Statistical Services
(NASS) (https://www.nass.usda.gov/) reports agricultural crop yields at the county
level instead of at the farm level, where county-level average or total is aggregated or es-
timated based on farm-level data in each county and farm-level data are confidential and
unavailable to the public. Business data may only publish aggregated commodity purchase
data at the store level and the month level to the public and keep individual-level data and

1Correspondence Author. Department of Mathematics and Statistics, Wright State University, Dayton, OH,
USA. E-mail: zheng.xu@wright.edu. ORCID: https://orcid.org/0000-0003-0311-7004.

© Zheng Xu. Article available under the CC BY-SA 4.0 licence



2 Zheng Xu: An expectation-maximization algorithm for logistic...

daily data confidential. Biological data, social-economic data, survey data, business data
are often collected and reported at different levels.

Data can be aggregated in different ways. For example, a sequential two-stage testing
method is used to study infectious diseases in epidemiology and bio-statistics. In the first
stage, group testing is applied to the combined sample. In the second stage, individuals
showing positive in the first stage are called for testing at the individual level. This group-
testing strategy has been widely used in coronavirus disease 2019 (COVID-19) testing to
increase efficiency and reduce cost (Mercer and Salit, 2021). Group-level Y in Group i can
be calculated via the formula Yi = 1(∑ni

j=1 Yi j > 0), where Yi j is the response for the j-th per-
son in group i, ni is the number of individuals in group i, and 1(.) is the indicator function.
The US Census Bureau reports household income as aggregate-level Y and individual in-
come as individual-level Y , the aggregation method is summation, i.e. Yi = ∑

ni
j=1 Yi j, where

Yi j is the income of the j-th person in the i-th household.
When individual-level X and individual-level Y are modeled by logistic regression,

individual-level Y follows a Binomial Distribution with success probability as a function
of individual-level X , denoted as π(X) = exp(XT β )/(1+exp(XT β )). Then aggregate-level
Y , as the sum of individual-level Y , follows a Poisson-Binomial distribution (Hong, 2013;
Xu, 2023). A complicated likelihood function L(β ) is derived and we previously proposed
MLE estimator β̂MLE = argmaxβ L(β ) with satisfactory statistical performance (Xu, 2023).

Because the maximization of the complicated likelihood function L(β ) is with respect to
β ∈R p, the performance of β̂MLE will decrease when the dimension p increases (Xu, 2023).
Different optimization methods to maximize the likelihood function have been considered
and compared in our previous study (Xu, 2023).

We noticed that the limitation of β̂MLE is mainly due to the direct optimization of
the complicated likelihood function L(β ), β ∈ R p, formed by Poisson binomial distribu-
tions. This optimization can be avoided when an expectation-maximization (EM) method
is adopted. As stated in Hastie et al (2009) and Givens and Hoeting (2012), the EM al-
gorithm is a popular tool for simplifying difficult maximum likelihood problems for which
maximization of the likelihood function is difficult, but made easier by enlarging the sam-
ple with latent data, i.e. a data-argumentation process. For our logistic regression problem
with individual-level X and aggregate-level Y , we can enlarge the sample with the latent
individual-level Y . One reason for using latent individual-level Y is that the usual logistic
regression can be easily conducted when both X and Y are at the same level. Under mild con-
ditions, this usual logistic regression has a unique MLE solution as a convex optimization
problem with a convex objective function (Agresti, 2013; Hilbe, 2009). The unique solution
can be obtained numerically via Newton’s method, which uses the observed second deriva-
tive or the Fisher scoring method, which uses the expectation of this second derivative, and
the Fisher scoring method is an application of the method of iteratively reweighted least
squares (IRLS) (Agresti, 2013; Hilbe, 2009). Our EM algorithm conducts the usual logistic
regression using IRLS method with stable performance and avoids the difficult optimization
of the complicated likelihood function. Another reason to propose our estimator as an EM
algorithm is that the EM algorithm view our problem in the perspective of missing values
and data augmentation. This different perspective, compared with our previously proposed
MLE estimator, makes our problem easily adapted and extensible to more complicated but
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similar problems including (1) the problem that predictors X themselves are at mixed lev-
els, (2) the problem that both X and Y contain missing values and (3) the problem that X
and Y are modeled via a generalized linear model (GLM). Both the EM algorithm and our
previously proposed MLE estimator in Xu (2023) have their own advantage in model ex-
tension to solve more complicated data situations, and choosing which is better depends on
specific data situations. Therefore, both EM estimator and MLE estimator are necessary in
methodological development of logistic regression.

The aim of this article is to study the performance of EM estimator in logistic regres-
sion based on aggregate-level Y and individual-level X . We proposed our EM estimator
in Section 2. We conducted simulation studies to evaluate the performance and compare
our EM estimator with literature estimators in Section 3. We illustrated the use of different
estimators in real data-based studies in Section 4. We provided discussion in Section 5 and
made conclusions in Section 6.

2. Materials and Methods

2.1. Data and Model Specification

Suppose there are N independent individuals aggregated into M groups, with group i
having ni individuals, i.e. N = ∑

M
i=1 ni. Denote (Xi j,Yi j), Xi j ∈R p, Yi j ∈R, i = 1,2, . . . ,M,

j = 1,2, . . . ,ni, as the predictor vector and the response for the j-th individual in the i-
th group. Thus, Xi j and Yi j are individual-level predictor vector (X) and individual-level
response (Y ). Aggregate-level Y is obtained by summation within a group, i.e. Yi =∑

ni
j=1 Yi j.

Suppose there is a logistic regression model at the individual level, i.e.

ln(
P(Yi j = 1)

1−P(Yi j = 1)
) = XT

i j β , i = 1,2, ...,M, j = 1,2, ...,ni. (1)

Then Yi j ∼ Bernoulli(πi j), where πi j = P(Yi j = 1) =
exp(XT

i j β )

1+exp(XT
i j β )

. When individual-level X

and individual-level Y are both available, the logistic model as a generalized linear model
(GLM) can be estimated using a range of methods including the Newton-Raphson method
and the Fisher scoring method and the Fisher scoring method is an application of the method
of iteratively reweighted least squares (IRLS) (Agresti, 2013; Givens and Hoeting, 2012).
We name the logistic regression based on X and Y at the same level as the “usual” logistic
regression (Agresti, 2013; Givens and Hoeting, 2012), to be compared with our problem
of conducting logistic regression based on individual-level X and aggregate-level Y , which
was considered in Xu (2023) and this article.

2.2. Joint Likelihood and MLE Method

Then the distribution of aggregate-level response, Yi = ∑
ni
j=1 Yi j, as the sum of ni in-

dependent Bernoulli random variables Yi j ∼ Bernoulli(πi j), j = 1,2, . . . ,ni, is a Poisson
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binomial distribution, i.e.

Yi ∼ PoissonBinomial(ni,(πi1,πi2, · · · ,πini)), (2)

where πi j = P(Yi j = 1) =
exp(XT

i j β )

1+exp(XT
i j β )

(Wang, 1993; Hong, 2013; Xu, 2023).

The joint likelihood function is

L(β ) =
M

∏
i=1

P(Yi|Xi1, ...,Xini ;β ), (3)

where P(Yi|Xi1, ...,Xini ;β ) is the probability of Yi, as specified in Equation 2.
The calculation of probability for a Poisson binomial distribution is complicated. In gen-

eral, for a variable Y ∼ PoissonBinomial(n,(π1,π2, . . . ,πn)), the probability mass function
is P(Y = y) = ∑A∈Fy ∏i∈A πi ∏ j∈Ac(1−π j), where Fy is the set of all subsets of y integers
that can be selected from {1,2,3, ...,n} and Ac is the complement of A (Wang, 1993). The
set Fk contains

(n
k

)
elements so the sum over it is computationally intensive and even infeasi-

ble for large n. Instead, more efficient ways were proposed, including the use of a recursive
formula to calculate P(Y = y) based on P(Y = k), k = 0, ...,y− 1, which is numerically
unstable for large n (Chen et al., 1994), and the inverse Fourier transform method (Fernan-
dez and Williams, 2010). Hong (2013) further developed it by proposing an algorithm that
efficiently implements the exact formula with a closed expression for the Poisson binomial
distribution (Hong, 2013). We adopted Hong’s algorithm and exact formula in calculat-
ing the likelihood function L(β ), β ∈ R p in Equation 3 since they are more precise and
numerically stable (Xu, 2023). Three optimization methods (Nelder and Mead’s simplex
method (NM) (Nelder and Mead, 1965), the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method (Fletcher, 1970), and the conjugate gradient (CG) method (Fletcher and Reeves,
1964)) to maximize the joint likelihood function L(β ) were compared in Xu (2023) and
the three methods show similar performance with NM method slightly better as our recom-
mended method, and NM method is derivative free (Xu, 2023; Givens and Hoeting, 2012).
We note that along the category of methods of directly optimizing the likelihood function
L(β ), β ∈ R p, there can be a range of potential methods including evolutional algorithm
and simulated annealing which may have similar or even better performance compared with
our recommended directly optimization method (Givens and Hoeting, 2012; Xu, 2023). The
search of optimization methods which directly maximizes L(β ) is not the objective of this
article. Instead, we intend to develop methods not in this category of methods, i.e. methods
not directly maximizing L(β ).

2.3. Expectation Maximization Algorithm

As an optimization problem maxβ L(β ), β ∈ R p, its performance will become worse
when the number of predictors p increases. The objective function L(β ) is a complicated
likelihood function so that we consider whether it is possible to circumvent or avoid the
direct optimization of L(β ).

We noticed that the “usual” logistic regression, i.e. logistic regression when X and Y are



STATISTICS IN TRANSITION new series, March 2025 5

at the “same” level, is numerically stable and relatively easy to calculate. However, for our
data situation, the usual logistic regression is infeasible because individual-level X is not
available. To address this issue, we view our problem as a missing value problem where the
latent variable is individual-level Y and we adopt an EM algorithm to substitute it. In each
iteration of the EM algorithm, the usual logistic regression is conducted with individual-
level Y , i.e. Yi j, substituted with its expectation given current-iteration parameter estimate,
i.e. E(Yi j|Yi,β

(k)), where β (k) is the estimated value of parameter β in iteration k.
Illuminated by the materials of EM algorithm in Hastie et al. (2009) and Givens and

Hoeting (2012), we developed the EM algorithm for our problem. The EM algorithm is de-
scribed as Algorithm 1 in the following page. The estimator obtained via the EM algorithm
is named as the EM estimator.

One advantage of EM estimator is that it can avoid the direct optimization of the com-
plicated nonlinear likelihood function L(β ). EM algorithm conducts the usual weighted
logistic regression in each iteration. EM estimator is expected to have similar performance
or even potentially slightly better performance compared with our MLE estimator in Xu
(2023), which directly maximizes L(β ).

Another advantage of EM estimator is that it views our problem in a different perspec-
tive, i.e. missing values and data augmentation. This makes our method easily adapted
and extensible for some applications. Potential applications which our EM algorithm may
solve after modifications include (1) the situation where X are at mixed levels, i.e. different
predictors are at levels, (2) the situation where there are missing values in X and Y , (3) the
situation where individual-level X and Y is described by a generalized linear model (GLM),
and (4) the situation where the objective is to use a variational Bayes to find a posteriori
estimation (MAP) and make use of prior information (Bernardo et al., 2003).

3. Simulation Studies

3.1. Simulation Setups

We conducted simulation studies to evaluate the performance of the following four es-
timators. Estimator 1, named as “individual-LR”, is the logistic regression estimator based
on individual-level X and individual-level Y . This estimator is infeasible in our data sit-
uation where only aggregate-level Y is available. Because aggregate-level Y contains less
information compared to individual-level Y , we expect that this infeasible estimator can
provide an upper bound for the performance of feasible estimators based on aggregate-level
Y . Estimator 2, named as “naive–LR”, is the logistic regression estimator based on the
aggregate-level X , which is the mean of X in each group, and the aggregate-level Y , i.e.
Yi ∼ Binomial(ni,∑

ni
j=1 Xi j/ni), i = 1,2, . . . ,M. This estimator can provide a rough approx-

imate estimation. Estimators 3 is our previously recommended MLE estimator via Nelder-
Mead optimization (Xu, 2023). Estimator 4 is our proposed EM estimator as described
above. The performances of these estimators were compared under three scenarios. In each
scenario, simulations were conducted with the number of groups (M = 300,500,1000), and
equal group sizes (ni = 5,10, i = 1,2, . . . ,M). The setup of data generation is specified as
follows:
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Algorithm 1 EM Algorithm for Logistic Regression Based on Individual-Level X and
Aggregate-Level Y

1. Start with initial value for the parameter β , i.e. β̂ (0), where the initial value is obtained
from the following values: (1) estimated value by the usual logistic regression of
aggregate-level Y on aggregate-level X , (2) MLE estimate in Xu (2023), (3) the zero
vector (0,0, . . . ,0) ∈ R p, (4) the unit vector (1,1, . . . ,1) ∈ R p, and (5) the vector
(−1,−1, . . . ,−1) ∈ R p.

2. Expectation Step: at the j-th step, compute

Q(β ′, β̂ ( j)) = E(l(β ′;{Yi j})|{Yi}, β̂ ( j)) (4)

=
M

∑
i=1

ni

∑
j=1

{E(Yi j|Yi, β̂
( j)) ln(πi j)+(1−E(Yi j|Yi, β̂

( j))) ln(1−πi j)}

as a function of the dummy argument β ′. The expected value of latent value Yi j is
computed via the formula

E(Yi j|Yi = y, β̂ ( j)) (5)

= P(Yi j = 1|Yi = y, β̂ ( j)) =
P(Yi j = 1)P(Yi −Yi j = y−1)

P(Yi = y)

=
πi j ×PoissonBinomial(y−1;ni −1,πi1, . . . ,πi, j−1,πi, j+1, . . . ,πini)

PoissonBinomial(y−1;ni,πi1,πi2, . . . ,πini)
,

where PoissonBinomial(.) is the probability mass function of a Poisson binomial dis-
tribution, and πi j = exp(XT

i j β
′)/(1+ exp(XT

i j β
′)). As the convention in regression

analysis, we can treat X as fixed. For random X , we can use the argument of condi-
tioning Y on X and this conditioning is equivalent to treating X as fixed (Hastie et al.,
2009; Givens and Hoeting, 2012).

3. Maximization Step: determine the new estimate β̂ ( j+1) as the maximizer of
Q(β ′, β̂ ( j)) over β ′. This step is obtained by conducting weighted logistic regres-
sion with the likelihood function specified in Equation 4. To be more specific,
our dataset has N observations of individual-level X , i.e. Xi j, i = 1,2, . . . ,M,
j = 1,2, . . . ,ni, N = ∑

M
i=1 ni. A pseudo-dataset of 2N pseudo-observations is cre-

ated with the pseudo-observation represented as (X̃i jk,Ỹi jk,W̃i jk), i = 1,2, . . . ,M,
j = 1,2, . . . ,ni, k = 0,1, where X̃ , Ỹ and W̃ are respectively the predictor vector,
response and weight in the pseudo-dataset. For each observation Xi j, two pseudo-
observations, i.e. (X̃i j0,Ỹi j0,W̃i j0) and (X̃i j1,Ỹi j1,W̃i j1), are created as follows:

X̃i j0 = Xi j, Ỹi j0 = 0, W̃i j0 = 1−E(Yi j|Yi, β̂
( j))

X̃i j1 = Xi j, Ỹi j1 = 1, W̃i j1 = E(Yi j|Yi, β̂
( j)).

Weighted logistic regression is conducted based on the pseudo-dataset.

4. Iterate steps 2 and 3 until convergence.
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• In Scenario 1, p = 5, (Xi1,Xi2) ∼ multinormal2(02×1,Σ2×2), 02×1 = (0,0)T , Σ2×2 =

(σi j) where σi j = 1 for i = j and σi j = 0.6 for i ̸= j. Xi3 ∼ t(df = 2),
Xi4 ∼ Bernoulli(0.5), Xi = (1,Xi1,Xi2,Xi3,Xi4)

T ∈ R p,
Yi ∼ Bernoulli(eXT

i β/(1+ eXT
i β )), β = (−0.5,1,−0.5,2,−1.6)T .

• In Scenario 2, p = 10, (Xi1,Xi2,Xi3,Xi4) ∼ multinormal4(04×1,Σ4×4),
04×1 = (0,0,0,0)T , Σ4×4 = (σi j) where σi j = 1 for i= j and σi j = 0.6 for i ̸= j. Xi5 ∼
t(df = 2), Xi6 ∼ t(df = 4), Xi7 ∼ chi-square(df = 2), Xi8 ∼ chi-square(df = 3), Xi9 ∼
Bernoulli(0.5), Xi = (1,Xi1,Xi2, . . . ,Xi9)

T ∈ R p, Yi ∼ Bernoulli(eXT
i β/(1+ eXT

i β )),
β = (−0.5,1,−2.5,2,−1.6,0.7,0.9,−2.4,0.5,−1.3)T .

• In Scenario 3, p = 20, (Xi1,Xi2, . . . ,Xi10) ∼ multinormal10(010×1,Σ10×10), 010×1 =

(0,0, . . . ,0)T , Σ10×10 = (σi j) where σi j = 1 for i = j and σi j = 0.6 for i ̸= j. Xi11 ∼
t(df = 2), Xi12 ∼ t(df = 4), Xi13 ∼ t(df = 6), Xi14 ∼ chi-square(df = 2),
Xi15 ∼ chi-square(df = 3), Xi16 ∼ chi-square(df = 4), Xi17 ∼ Bernoulli(0.3), Xi18 ∼
Bernoulli(0.5), Xi19 ∼ Bernoulli(0.7), Xi = (1,Xi1,Xi2, . . . ,Xi19)

T ∈ R p,
Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )), β = (−0.5,−0.8969,0.1848,1.5878,−1.1304,

−0.0803,0.1324,0.7080,−0.2397,1.9845,−0.1388,0.4177,0.9818,−0.3927,
−1.0397,1.7822,−2.311,0.8786,0.036,1.013)T . Note that the values of the 19 slope
coefficients, i.e. β1, . . . ,β19, were generated as standard normal random variables,
and the generation of the values of the 19 slope coefficients was implemented in R
language using the command: “set.seed(2); rnorm(19)”. The value of the intercept
parameter, i.e. β0, was fixed at -0.5.

3.2. Performance Evaluation Metrics

The squared bias, variance, mean square error (MSE), and mean absolute deviation
(MAD) of each of the four estimators’ (E1 to E4) model parameters (β0, ...,βp−1) ∈ R p

were calculated. Denote the bias, variance, MSE, and MAD of the q-th estimator of β j as
Bias(β̂ j,Eq),Var(β̂ j,Eq), MSE(β̂ j,Eq), and MAD(β̂ j,Eq). The average squared bias, variance,

MSE, and MAD of the q-th estimator were calculated as Bias2(Eq)= (1/p)∑
p−1
j=0 Bias2(β̂ j,Eq),

Var(Eq) = (1/p)∑
p−1
j=0 Var(β̂ j,Eq), MSE(Eq) = (1/p)∑

p−1
j=0 MSE(β̂ j,Eq), and MAD(Eq) =

(1/p)∑
p−1
j=0 MAD(β̂ j,Eq).

3.3. Simulation Results

In Table 1, we report the average squared biases and variances for the four estima-
tors (Individual-LR, Naive-LR, MLE and EM) under different scenarios, sample sizes, and
group sizes. Regarding bias, the infeasible individual-LR shows smallest bias and the naive-
LR shows biggest bias. The reason for individual-LR to have smallest bias is that individual-
LR conducts the usual logistic regression based on individual-level X and individual-level Y
which makes use of more information than available in our data situation where individual-
level Y is not available. Naive-LR is found to have the biggest bias, which was explained by
the fact that logistic regression model uses a “non-linear” logit link function and Naive-LR
conducts a naive rough approximate using the mean of X , which ignores the nonlinearity in
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the link function, so that Naive-LR can induce a big bias. The biases of MLE estimator and
EM estimator are found to be between the two extremes, i.e. individual-LR and naive-LR.

Regarding variance, individual-LR and naive-LR have relatively smaller variance, com-
pared with MLE estimator and EM estimator. We explained that the smaller variance in
individual-LR is because it uses more information than available in our data situation where
individual-level Y is not available. The smaller variance in naive-LR is also reasonable. As
a poor rough approximate estimator, naive-LR can have big bias and small variance. For ex-
ample, suppose that a toy estimator always reports a constant value as its estimate. This toy
estimator will have zero variance and a big bias. Thus, we put more focus on mean square
error (MSE) and mean absolute deviation (MAD) instead of bias and variance in evaluating
estimators.

Next, we check MSE and MAD of the four estimators. In Table 2, we report average
MSE and average MAD. The infeasible individual-LR estimator shows the best performance
in terms of both MSE and MAD. This is because individual-LR estimators makes use of
more information than available in our data situation where individual Y is latent. The
naive-LR estimator shows the worst performance in terms of both MSE and MAD. This is
because naive-LR is a naive rough approximate estimator which can lead to a big bias due
to non-linearity in link function. In terms of MSE and MAD, we found our MLE estimator
and EM estimator are between the two extremes (individual-LR and naive-LR). Our MLE
and EM estimator show similar performance with EM estimator having potentially slightly
better performance.

We add a cautionary note that simulation studies cannot substitute theoretical verifica-
tion. Simulation studies cannot fully assess theoretical properties of estimators. Theoretical
properties of MLE estimators and EM estimators have to be inferred based on theoretical
literature on MLE and EM.

4. Real Data-Based Studies

We used real data to illustrate the use of our EM estimator and compare it with dif-
ferent estimators in the literature. Two real data-based studies are shown. One study is
wine quality modeling based on physico-chemical tests. The other study is maternal health
risk modeling. Both studies used the datasets from UC Irvine machine learning repository
(https://archive.ics.uci.edu/).

4.1. Wine Quality Modeling

We obtained two datasets of wine quality from UC Irvine machine learning repository
(Cortez and Reis, 2009). The two datasets are related to red and white verde wine samples,
from the north of Portugal. Due to privacy and logistic issues, only physicochemical (inputs,
i.e. X) and sensory (the output, i.e. Y ) variables are available. The output variable sensory
wine quality score is a score between 1 and 10. This wine quality score was dichotomized
into a binary variable, which takes the value of 1 (high-quality) or 0 (low-quality) depend-
ing on whether the score is between 6 and 10, or between 1 and 5. Thus, as specified in
UC Irvine machine learning repository, the wine quality datasets can be used for both clas-
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Table 1: Average Squared Bias and Variance of Estimator E1 (Individual-LR), E2 (Naive-
LR), E3 (MLE) and E4 (EM). In the columns for average squared bias and average variance,
the unit is 0.001.

Average Squared Bias Average Variance

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1 300 5 0.08 718 0.68 0.37 15.8 21.1 35.3 34.0

1 300 10 0.11 788 3.16 0.74 7.4 16.5 48.3 34.5

1 500 5 0.20 717 0.36 0.90 9.0 11.3 30.7 27.6

1 500 10 0.03 788 0.96 1.12 4.8 13.3 36.4 25.7

1 1000 5 0.03 729 0.29 0.31 4.8 8.3 19.3 12.8

1 1000 10 0.01 799 3.57 0.05 2.3 5.9 23.0 11.2

2 300 5 0.72 1007 6.48 4.39 34.3 24.3 91.2 57.5

2 300 10 0.43 1064 25.23 5.08 13.6 23.0 134.9 46.2

2 500 5 0.43 1021 19.14 0.25 14.6 14.3 63.2 26.4

2 500 10 0.18 1063 49.26 1.54 7.8 11.6 96.0 27.0

2 1000 5 0.18 1018 17.67 0.57 7.8 7.7 57.2 15.1

2 1000 10 0.06 1078 49.59 0.37 4.0 6.8 81.5 11.7

3 300 5 6.25 658 178.2 14.39 48.0 27.6 86.3 78.6

3 300 10 2.15 683 282.9 10.05 22.3 25.3 63.8 65.3

3 500 5 1.08 667 200.2 3.23 28.7 15.2 70.0 43.6

3 500 10 0.40 693 300.0 2.46 13.1 14.4 47.5 33.5

3 1000 5 0.40 668 192.5 0.96 13.1 7.5 59.3 20.3

3 1000 10 0.13 689 306.2 1.03 6.4 6.5 35.1 16.0

sification problem (Y is the binary wine quality variable) and regression problem (Y is the
wine quality score which is between 1 and 10). There are 11 continuous features/predictors
in X . They are (1) fixed acidity, (2) volatile acidity, (3) citric acid, (4) residual sugar, (5)
chlorides, (6) free sulfur dioxide, (7) total sulfur dioxide, (8) density, (9) pH, (10) sulphates
and (11) alcohol. For more details in the wine quality datasets, please refer to Cortez and
Reis (2009).

We used the wine quality datasets to illustrate the use of logistic regression under the
data situation of aggregate-level Y and individual-level X . In practice, there are multiple
reasons which can contribute to the situation that Y is available at aggregate level instead
of individual level. One reason is confidentiality. For example, suppose the objective is
to predict or model wine quality provided by some specific wine association or agency.
However, the wine association or agency wants to keep its evaluation in confidentiality
and do not want its evaluation to be easily modeled or predicted. In addition, the wine
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Table 2: Average Mean Squared Error (MSE) and Mean Absolute Deviation (MAD) of
Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and E4 (EM). In the columns for
average MSE and average MAD, the unit is 0.001.

Average MSE Average MAD

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1 300 5 15.9 739 36.0 34.4 95.5 680.7 146.5 140.1

1 300 10 7.5 804 51.5 35.2 63.7 714.5 169.4 146.4

1 500 5 9.2 729 31.0 28.5 74.6 676.7 137.1 130.7

1 500 10 4.9 801 37.4 26.8 53.6 708.0 140.4 125.3

1 1000 5 4.9 738 19.6 13.1 53.6 685.0 100.2 89.0

1 1000 10 2.3 805 26.6 11.3 37.4 715.0 113.7 82.4

2 300 5 35.0 1032 97.7 61.9 136.9 865.6 228.7 188.2

2 300 10 14.0 1087 160.2 51.3 87.5 885.9 290.2 166.8

2 500 5 15.1 1035 82.3 26.7 90.5 869.1 205.7 122.5

2 500 10 8.0 1075 145.2 28.5 65.2 886.7 264.9 126.0

2 1000 5 8.0 1026 74.9 15.6 65.2 868.5 186.5 91.5

2 1000 10 4.1 1084 131.1 12.0 46.2 897.6 248.6 84.0

3 300 5 54.2 685 264.5 93.0 176.7 645.6 401.8 233.7

3 300 10 24.5 709 346.7 75.3 119.1 658.1 465.2 207.6

3 500 5 29.8 682 270.2 46.8 127.9 643.7 413.7 163.8

3 500 10 13.5 708 347.6 36.0 89.6 658.2 472.1 143.3

3 1000 5 13.5 675 251.8 21.3 89.6 639.1 401.4 112.1

3 1000 10 6.6 695 341.3 17.0 61.2 647.9 466.3 98.3

association is interested in ranking wineries or wine firms based on multiple wine samples
submitted by each winery or firm. The rule is that each winery or firm is allowed to submit
samples from multiple brands the winery or firm owns. The wine association will only
specify how many samples are in high-quality in their submission and does not disclose
wine quality of each individual wine sample. In this way, the firms will compete with
aggregate-level Y available instead of individual-level Y , and the wine association or agency
keep its evaluation result of individual samples to be confidential.

We illustrated the use of our EM estimator and other estimators (infeasible individual-
LR, naive aggregate-LR, and MLE estimator in Xu (2023)) in the literature for wine quality
modeling. There are 4898 observations in white wine data, and 1599 observations in red
wine data. We conducted random aggregation with equal group size ni = 5 and 10. For
white wine data, there are 979 = 4895/5 groups of size ni = 5 formed, and 489 = 4890/10
groups of size ni = 10 formed. Thus, there are 4895 and 4890 observations used in our data
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situation ni = 5 and ni = 10 for white wine data. For red wine data, there are 319 = 1595/5
groups of size ni = 5 formed, and 159 = 1590/10 groups of size ni = 10 formed. Thus,
there are 1595 and 1590 observations used in our data situation ni = 5 and ni = 10 for red
wine data.

We showed the estimated values of the estimators based on our data sets with random ag-
gregation. The estimators are: (1) individual-LR, which conducts logistic regression based
on individual-level X and individual-level Y . Individual-LR is considered to be the best
estimator since it uses more information (individual-level Y ) than the information avail-
able in our data situation where aggregate-level Y instead of individual-level Y is available.
Thus, individual-LR is infeasible. (2) naive-LR, which conducts logistic regression based
on aggregate-level X and aggregate-level Y . (3) our previously proposed MLE in Xu (2023).
(4) our EM estimator proposed in this article. We illustrated the use of each estimator based
on wine quality data and report the estimated values of parameters for white wine data in
Table 3 and the estimated values of parameters for red wine data in Table 4. As shown in
Table 3 and 4, these estimators reported numerically different values. We recommend the
use of EM estimator and MLE estimator, since individual-LR is infeasible and naive-LR can
induce a big bias. Because there is no ground truth (true values) of logistic model param-
eters known in the real data, no statistical performances (such as bias and variance) were
evaluated based on the real data.

Table 3: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On White Wine Quality Data.

ni = 5 ni = 10

Variable E1 E2 E3 E4 E1 E2 E3 E4

β0 0.920 0.719 0.910 0.923 0.920 0.703 0.913 0.917

β1 0.032 0.048 0.075 0.018 0.033 0.026 0.065 0.042

β2 -0.651 -0.456 -0.627 -0.636 -0.650 -0.459 -0.645 -0.658

β3 0.015 0.066 0.075 0.090 0.015 -0.028 0.010 -0.001

β4 0.865 0.395 0.599 0.451 0.866 0.984 1.435 1.359

β5 0.020 -0.066 -0.058 -0.075 0.019 -0.131 -0.078 -0.082

β6 0.163 0.170 0.170 0.223 0.164 0.214 0.264 0.285

β7 -0.056 -0.066 -0.019 -0.045 -0.057 -0.141 -0.101 -0.112

β8 -0.812 -0.267 -0.473 -0.212 -0.814 -0.789 -1.202 -1.086

β9 0.166 0.131 0.172 0.139 0.167 0.217 0.347 0.323

β10 0.205 0.159 0.209 0.191 0.206 0.182 0.397 0.387

β11 0.915 0.840 1.056 1.210 0.911 0.536 0.681 0.749
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Table 4: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On Red Wine Quality Data.

ni = 5 ni = 10

Variable E1 E2 E3 E4 E1 E2 E3 E4

β0 0.239 0.143 0.239 0.226 0.237 0.141 0.291 0.295

β1 0.247 0.367 0.382 0.693 0.251 0.853 0.880 1.000

β2 -0.585 -0.337 -0.500 -0.571 -0.588 -0.454 -0.702 -0.771

β3 -0.248 -0.379 -0.371 -0.532 -0.252 -0.282 -0.356 -0.413

β4 0.079 -0.043 -0.003 0.108 0.080 0.028 -0.137 -0.296

β5 -0.183 0.083 -0.023 0.052 -0.180 -0.114 -0.144 -0.161

β6 0.233 0.337 0.260 0.309 0.230 0.273 0.352 0.083

β7 -0.539 -0.574 -0.684 -0.721 -0.535 -0.288 -0.317 -0.110

β8 -0.104 0.051 -0.020 -0.197 -0.104 -0.491 -0.478 -0.544

β9 -0.052 -0.101 -0.217 -0.117 -0.053 0.159 0.079 0.190

β10 0.475 0.224 0.296 0.326 0.469 0.550 0.643 0.642

β11 0.917 0.688 0.993 0.973 0.917 0.451 0.805 0.876

4.2. Maternal Health Risk Modeling

We obtained the dataset of maternal health risk from UC Irvine machine learning repos-
itory (Ahmed, 2023; Ahmed et al., 2020). The data were collected through the IoT-based
risk monitoring system from a range of hospitals, community clinics, maternal health care
in the rural areas of Bangladesh (Ahmed, 2023). The response variable is the binary ma-
ternal health risk level (low risk or high risk). The predictors are (1) age, (2) systolic blood
pressure, (3) diastolic blood pressure, (4) blood glucose, (5) body temperature, and (6) heart
rate. All these predictors are the responsible and significant risk factors for maternal mortal-
ity (Ahmed et al., 2020). UC Irvine machine learning repository specify it as a classification
problem since the response variable is binary. There are 1013 individual observations in the
dataset. For more details in the maternal health risk data, please refer to Ahmed et al. (2020)
and Ahmed (2023).

We conducted random aggregation on the data. There are 202=1010/5 groups of size
ni = 5 and 101=1010/10 groups of size ni = 10 formed. Thus, there are 1010 observations
in our study of maternal health risk modeling.

Based on the maternal health risk data with random aggregation, we conducted individual-
LR, naive-LR, MLE in Xu (2023) and EM estimator proposed in the article. The estimated
values of these estimators are shown in Table 5. There is numerical difference in the esti-
mated values of different estimators. We recommend the use of our proposed EM estimator
and our previously proposed MLE estimator in the study.
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Table 5: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On Maternal Health Risk Data.

ni = 5 ni = 10

Variable E1 E2 E3 E4 E1 E2 E3 E4

β0 0.913 0.544 0.785 0.784 0.913 0.546 0.592 0.669

β1 -0.079 -0.062 -0.075 -0.079 -0.079 -0.075 -0.019 -0.113

β2 1.116 2.014 1.060 1.059 1.116 3.413 1.138 1.102

β3 -0.365 -0.551 -0.346 -0.345 -0.365 -1.205 -0.357 -0.433

β4 1.631 0.717 1.333 1.329 1.631 0.460 0.640 1.032

β5 0.668 0.998 0.652 0.650 0.668 1.388 0.746 0.594

β6 0.272 0.177 0.213 0.214 0.272 -0.104 0.433 0.228

5. Discussion

There are at least two categories of methods to solve the problem of logistic regression
based on individual-level X and aggregate-level Y . The first category is directly maximizing
the complicated likelihood function L(β ), β ∈ R p to find MLE as we previously proposed
in Xu (2023). The second category is to avoid the direct optimization of the likelihood func-
tion L(β ), β ∈ R p using the EM algorithm as we propose in this article. In theory, both
categories of methods are valid. Similar but slightly different performances are expected
theoretically. We note that the two categories of methods are generic so that there are a range
of ways in each category. Along the first category, i.e. obtaining MLE by directly maximiz-
ing L(β ), β ∈R p, there can be a range of optimization methods with slightly better or worse
performance. A non-exhaustive list of these methods includes: (1) Nelder and Mead’s sim-
plex method (NM) (Nelder and Mead, 1965), (2) the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method (Fletcher, 1970), (3) the conjugate gradient (CG) method (Fletcher and
Reeves, 1964), (4) simulated annealing (Brooks and Morgan, 2018), and (5) evolutional
algorithm (Lambora et al., 2019), and their combinations or variants such as Generalized
simulated annealing (GSA) and variable step size generalized simulated annealing (VGSA)
(Kalivas, 1992). Along the second category avoiding directly maximization of likelihood
function L(β ), β ∈ R p, there can be a range of methods including (1) the standard EM
(McLachlan and Krishnan, 2007), (2) Monte Carlo EM (Wei and Tanner, 1990), and (3)
variational Bayes EM (Bernardo et al., 2003).

Both categories of methods have their own advantages and are necessary for the logistic
regression based on individual-level X and aggregate-level Y . Which category of methods
to use in practice depends on the specific problem. The advantages of the second category
of methods, including EM algorithms, Bayes methods and their variants, are the conve-
nience in solving a range of data situations including missing values. Along this category
of methods, methods can be potentially adapted to solve data situations such as (1) the sit-
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uation where X and Y are at mixed-levels, (2) the situation where X and Y contain missing
values, (3) the situation where prior information is preferred to use or consider, (4) the sit-
uation where individual-level X and individual-level Y is described by a generalized linear
model, which can be a linear model, logistic model, Poisson model or other generalized lin-
ear models. In comparison, the advantages of the first category of methods include (1) there
are a range of optimization methods to try, (2) the potential further extension of methods
to penalized likelihood functions which will add a penalty term such as Lp norm of model
parameter β with 1 ≤ p ≤ 2 to the current complex likelihood function (Hastie et al., 2009),
and (3) likelihood-based statistical inferences such as likelihood ratio test, score test, stan-
dard errors, and confidence intervals. Studies of these extensions are beyond the scope of
this article and are under development as future work.

The dimension p, i.e. the number of predictors, influences the performance of EM esti-
mator and MLE estimator. Given the sample size n, both EM performance and MLE perfor-
mance are expected to decrease when p increases. The deterioration of both performances
with the increase in p is as expected since the optimization problem maxL(β ), β ∈ R p in
theory will decrease when p increases, given a fixed sample size n. Both EM and MLE will
maximize L(β ), either indirectly or directly.

However, we need to note although EM algorithms always have likelihood non-decreasing
in each step, EM may converge to a local maximum of the observed likelihood function for
some starting values instead of a global maximum so that EM estimators may not converge
to MLE (Givens and Hoeting, 2012). Our EM estimator is a standard EM estimator, suffer-
ing from the (common) limitations of EM estimators while enjoying the (common) benefits
and advantages of EM estimators.

In logistic regression, both continuous predictors and categorical predictors can be in-
cluded. Our simulation studies used both types of predictors. However, for categorical
predictors, we only used binary predictors. A categorical predictor with K levels can lead to
or amount to K −1 binary predictors, which will increase the number of predictors, i.e. p.
As the number of levels K increases, the number of predictors, i.e. p, increases, which will
make estimation performance become worse. Thus, a categorical predictor with multiple
levels may decrease estimation performance of our estimators. Future studies can be on the
influence of categorical predictors with more than two levels.

There are some assumptions in our model setup. Firstly, we only consider independent
individual-level data, i.e. (Xi,Yi), i = 1,2, · · · ,n, in this article. In practice, individual-level
observations can be correlated or dependent. Secondly, we only consider the situation of
“grouping completely at random”, which means that the grouping mechanism is completely
random, and is not influenced by the values of X and Y . In practice, grouping may not
be completely random such as the situation where individuals with similar values in X or
Y are more likely to be grouped together. Further studies can be conducted for grouping
not completely at random. Thirdly, only summation aggregation Yi = ∑

ni
j=1 Yi j is studied.

Other aggregations, such as Yi = 1(∑ni
j=1 Yi j > 0) used in group testing of infectious disease,

are not studied in this article, since the group-testing problem with Yi = 1(∑ni
j=1 Yi j > 0) for

logistic regression has been well studied in bio-statistics and epidemiology.
Although the method is proposed for a logistic regression (logistic link function) to deal

with binary response variable Y , other link functions can also be used to handle the binary
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response. For example, the tobit regression which uses a probit link function can also be
used to analyze individual-level X and aggregate-level Y . In addition, the current article is
based on the binary response variable Y . A follow-up study to extend our method to handle
responses with more than two levels are under development.

6. Conclusions

We proposed an EM estimator for logistic regression based on individual-level pre-
dictors (X) and aggregate-level response (Y ). We conducted simulation studies to evalu-
ate the performance of the EM estimator and compare it with estimators in the literature
(individual-LR, naive-LR and MLE). We then conducted two real data-based studies, i.e.
wine quality modeling and maternal health risk modeling, to illustrate the use of differ-
ent estimators. Both the simulation studies and real data-based studies have shown the
use of our EM estimator in conducting logistic regression based on individual-level X and
aggregate-level Y . We think both categories of methods (MLE category of methods or EM
category of methods) work and are necessary for the problem of logistic regression based
on individual-level X and aggregate-level Y . Similar and slightly different performances are
expected for estimators along the two categories of methods.
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Appendix

A. Additional Real Data Study Using Data in Xu (2023)

We conducted additional real data study based on the same data as used in Xu (2023).
The dataset is “Social-Network-Ads” data in Kaggle Machine Learning Forum (https:
//www.kaggle.com). The dataset is a categorical dataset to determine whether a user
purchases a particular product. It contains 400 observations. Two predictors are age and
salary, after data standardization. The same as in Xu (2023), we impose data aggregation on
this dataset with the group size equal to 3, 5 and 7. We conducted (1) infeasible individual-
level logistic regression, (2) naive logistic regression, (3) MLE estimator in Xu (2023),
and (4) our proposed EM estimator in this manuscript. Because true parameter values are
unknown, we illustrate the use of different estimators and report estimated values using
different estimators in Table 6.

Table 6: Estimated Values of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and
E4 (EM) Based On Social Network Ads Data.

ni = 3 ni = 5 ni = 7

Var E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

β0 -1.14 -0.71 -1.17 -1.17 -1.14 -0.68 -1.25 -1.24 -1.13 -0.64 -1.27 -1.27

β1 2.45 1.67 2.53 2.53 2.45 1.61 2.79 2.79 2.44 1.59 2.97 2.97

β2 1.22 0.79 1.47 1.47 1.22 0.64 1.54 1.54 1.22 0.53 1.26 1.26

B. Additional Simulation Study Using Xu (2023)’s Setup

We conducted additional simulation study using Xu (203)’s simulation setup as follows.
In each scenario, simulations were conducted with sample sizes (K = 300,500,100), equal
group sizes (ng = 7,30), and different parameter values. Data were generated as follows:

• In Scenario 1, Xi1 ∼ N(0,1), Xi = (1,Xi1)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )),

β = (1,−2)T (Scenario 1A) or (1,3) (Scenario 1B).
• In Scenario 2, Xi1 ∼ N(0,1), Xi2 ∼ t(d f = 5), Xi = (1,Xi1,Xi2)

T ,
Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )), β = (−1,1,2)T (Scenario 2A) or

(0,−2,1) (Scenario 2B).
• In Scenario 3, (Xi1,Xi2) ∼ BivariateNormal(0,2,1,4,ρ = 0.5), Xi3 ∼ Cauchy(0,1),

Xi = (1,Xi1,Xi2,Xi3)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β )),

β = (−1,1,0,−1)T (Scenario 3A) or (0,−2,1,1) (Scenario 3B).

We reported squared bias and variance of four estimators (E1: Individual-LR, E2: Naive-
LR, E3: MLE and E4: EM) in Table 7. We reported MSE and MAD of the four estimators
in Table 8. Results obtained from additional simulation studies confirm our findings based
on simulation studies. The same findings were obtained.



STATISTICS IN TRANSITION new series, March 2025 19

Table 7: Average Squared Bias and Variance of Estimator E1 (Individual-LR), E2 (Naive-
LR), E3 (MLE) and E4 (EM) Based On Simulation Setup in Xu (2023). In the columns for
average squared bias and average variance, the unit is 0.001.

Average Squared Bias Average Variance

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1A 300 7 0.28 310.34 0.76 0.86 7.69 6.84 23.74 22.58

1A 300 30 0.09 343.26 0.53 0.82 1.43 6.81 30.52 24.37

1A 500 7 0.02 317.16 0.00 0.00 3.56 3.49 11.45 10.60

1A 500 30 0.01 356.36 0.01 0.07 0.91 2.70 11.68 11.33

1A 1000 7 0.08 302.01 0.20 0.26 2.14 1.83 6.90 6.99

1A 1000 30 0.01 352.87 0.24 0.22 0.42 1.76 6.29 6.21

1B 300 7 0.01 1256.06 0.36 0.54 10.90 6.91 37.38 35.02

1B 300 30 0.17 1376.61 1.90 3.24 2.96 5.12 38.64 30.50

1B 500 7 0.16 1264.86 0.35 0.51 6.86 3.30 16.90 16.43

1B 500 30 0.00 1401.36 0.00 0.02 1.58 2.32 23.51 19.81

1B 1000 7 0.02 1267.42 0.05 0.07 3.00 1.74 10.07 10.04

1B 1000 30 0.00 1400.68 0.37 0.07 0.69 1.23 13.19 6.68

2A 300 7 0.00 485.55 0.12 0.14 6.09 6.33 17.56 17.33

2A 300 30 0.02 547.58 0.32 0.23 1.37 4.72 27.61 26.45

2A 500 7 0.09 487.78 0.05 0.08 4.19 3.95 12.23 12.35

2A 500 30 0.01 540.78 0.07 0.13 0.89 3.48 13.58 11.83

2A 1000 7 0.04 484.78 0.04 0.04 1.86 1.70 6.49 6.33

2A 1000 30 0.00 540.90 0.02 0.00 0.47 1.65 7.32 6.88

2B 300 7 0.04 304.21 0.35 0.40 5.37 5.82 17.33 17.08

2B 300 30 0.03 339.23 0.35 0.39 1.25 4.09 18.77 18.82

2B 500 7 0.04 304.27 0.11 0.18 3.21 3.18 10.89 10.67

2B 500 30 0.00 334.51 0.16 0.23 0.80 2.48 12.16 11.68

2B 1000 7 0.06 304.24 0.06 0.09 1.62 1.44 5.31 4.99

2B 1000 30 0.00 333.05 0.12 0.16 0.37 1.38 6.51 6.09

3A 300 7 0.06 336.15 0.55 0.58 4.46 6.19 13.40 12.67

3A 300 30 0.02 336.61 0.60 0.91 0.83 6.34 14.10 13.88

3A 500 7 0.03 342.89 0.12 0.08 2.04 3.22 7.70 7.67

3A 500 30 0.00 345.45 0.74 0.55 0.64 3.39 8.91 7.21

3A 1000 7 0.02 343.02 0.27 0.21 1.24 2.40 4.98 4.38

3A 1000 30 0.00 350.84 0.18 0.01 0.27 1.75 4.83 3.26

3B 300 7 0.27 587.43 0.48 0.62 6.67 4.84 17.43 16.45

3B 300 30 0.04 605.00 0.27 1.11 1.24 3.65 17.57 13.91

3B 500 7 0.10 588.20 0.15 0.18 3.12 2.85 11.54 8.89

3B 500 30 0.01 611.21 0.12 0.36 0.67 2.20 17.26 13.13

3B 1000 7 0.01 592.02 0.03 0.14 1.67 1.46 6.01 4.82

3B 1000 30 0.01 615.74 0.28 0.06 0.33 1.22 6.56 4.26
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Table 8: Average Mean Squared Error (MSE) and Average Mean Absolute Deviation
(MAD) of Estimator E1 (Individual-LR), E2 (Naive-LR), E3 (MLE) and E4 (EM) Based
On Simulation Setup in Xu (2023). In the columns for average MSE and average MAD, the
unit is 0.001.

Average MSE Average MAD

Scenario M ni E1 E2 E3 E4 E1 E2 E3 E4

1A 300 7 7.98 317.18 24.50 23.44 67.78 529.08 116.88 113.94

1A 300 30 1.53 350.07 31.05 25.19 30.39 558.73 118.68 107.82

1A 500 7 3.58 320.65 11.45 10.60 48.31 534.84 80.78 77.99

1A 500 30 0.92 359.06 11.69 11.40 24.30 567.55 76.76 76.65

1A 1000 7 2.22 303.84 7.10 7.25 35.76 523.73 60.91 61.97

1A 1000 30 0.43 354.63 6.53 6.42 16.33 565.64 56.66 55.27

1B 300 7 10.91 1262.97 37.74 35.56 79.25 1003.77 138.60 135.89

1B 300 30 3.13 1381.73 40.54 33.74 42.20 1051.67 139.06 129.85

1B 500 7 7.03 1268.16 17.25 16.95 66.24 1006.76 97.60 96.12

1B 500 30 1.58 1403.67 23.52 19.84 30.15 1059.46 106.15 99.14

1B 1000 7 3.02 1269.16 10.12 10.11 43.39 1007.77 74.67 73.13

1B 1000 30 0.69 1401.91 13.55 6.75 19.30 1059.49 73.50 59.47

2A 300 7 6.09 491.88 17.68 17.47 62.82 634.87 102.26 101.07

2A 300 30 1.38 552.30 27.93 26.68 29.40 675.59 121.24 117.04

2A 500 7 4.28 491.72 12.27 12.43 51.44 635.26 83.97 83.86

2A 500 30 0.90 544.26 13.65 11.96 23.51 673.15 87.50 82.35

2A 1000 7 1.90 486.48 6.53 6.37 34.90 636.25 62.12 61.98

2A 1000 30 0.47 542.56 7.35 6.89 17.05 671.85 64.59 62.78

2B 300 7 5.40 310.03 17.68 17.48 58.39 444.51 101.07 100.09

2B 300 30 1.28 343.31 19.11 19.21 27.81 460.20 93.87 93.62

2B 500 7 3.26 307.45 11.00 10.85 45.17 441.17 75.70 75.21

2B 500 30 0.80 336.99 12.32 11.91 22.86 458.86 78.42 77.51

2B 1000 7 1.68 305.68 5.37 5.07 31.61 437.72 55.62 53.87

2B 1000 30 0.37 334.43 6.63 6.25 14.96 455.67 56.98 55.07

3A 300 7 4.52 342.34 13.95 13.26 51.25 475.14 89.68 87.77

3A 300 30 0.85 342.95 14.70 14.79 22.81 471.88 90.96 91.01

3A 500 7 2.06 346.11 7.81 7.75 36.19 478.33 66.02 66.15

3A 500 30 0.64 348.84 9.65 7.76 19.24 479.12 72.57 66.37

3A 1000 7 1.27 345.42 5.25 4.59 26.67 474.11 53.40 51.13

3A 1000 30 0.28 352.59 5.00 3.27 12.73 482.34 50.64 43.76

3B 300 7 6.94 592.27 17.91 17.07 62.77 648.17 98.15 96.75

3B 300 30 1.28 608.65 17.84 15.02 27.56 653.18 93.76 88.13

3B 500 7 3.23 591.06 11.70 9.07 41.68 646.40 78.30 70.34

3B 500 30 0.68 613.41 17.38 13.48 20.27 656.09 86.77 79.63

3B 1000 7 1.68 593.48 6.04 4.97 31.43 646.77 55.45 51.70

3B 1000 30 0.34 616.96 6.84 4.32 13.78 657.31 54.93 45.06


