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Small area estimation: its evolution
in five decades

Malay Ghosh1

ABSTRACT

The paper is an attempt to trace some of the early developments of small area esti-
mation. The basic papers such as the ones by Fay and Herriott (1979) and Battese,
Harter and Fuller (1988) and their follow-ups are discussed in some details. Some of
the current topics are also discussed.
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1. Prologue

Small area estimation is witnessing phenomenal growth in recent years. The vastness of
the area makes it near impossible to cover each and every emerging topic. The review
articles of Ghosh and Rao (1994), Pfeffermann (2002, 2013) and the classic text of
Rao (2003) captured the contemporary research of that time very successfully. But the
literature continued growing at a very rapid pace. The more recent treatise of Rao and
Molina (2015) picked up many of the later developments. But then there came many
other challenging issues, particularly with the advent of “big data”, which started moving
the small area estimation machine faster and faster. It seems real difficult to cope up
with this super-fast development.

In this article, I take a very modest view towards the subject. I have tried to trace the
early history of the subject up to some of the current research with which I am familiar.
It is needless to say that the topics not covered in this article far outnumber those that
are covered. Keeping in mind this limitation, I will make a feeble attempt to trace the
evolution of small area estimation in the past five decades.

2. Introduction

The first and foremost question that one may ask is “what is small area estimation”?
Small area estimation is any of several statistical techniques involving estimation of pa-
rameters in small ‘sub-populations’ of interest included in a larger ‘survey’. The term
‘small area’ in this context generally refers to a small geographical area such as a county,
census tract or a school district. It can also refer to a ‘small domain’ cross-classified by
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several demographic characteristics, such as age, sex, ethnicity, etc. I want to emphasize
that it is not just the area, but the ‘smallness’ of the targeted population within an area
that constitutes the basis for small area estimation. For example, if a survey is targeted
towards a population of interest with prescribed accuracy, the sample size in a particular
subpopulation may not be adequate to generate similar accuracy. This is because if a
survey is conducted with sample size determined to attain prescribed accuracy in a large
area, one may not have the resources available to conduct a second survey to achieve
similar accuracy for smaller areas.

A domain (area) specific estimator is ‘direct’ if it is based only on the domain-specific
sample data. A domain is regarded as ‘small’ if domain-specific sample size is not large
enough to produce estimates of desired precision. Domain sample size often increases
with population size of the domain, but that need not always be the case. This requires
use of ‘additional’ data, be it either administrative data not used in the original survey,
or data from other related areas. The resulting estimates are called ‘indirect’ estimates
that ‘borrow strength’ for the variable of interest from related areas and/or time periods
to increase the ‘effective’ sample size. This is usually done through the use of models,
mostly ‘explicit’, or at least ‘implicit’ that links the related areas and/or time periods.

Historically, small area statistics have long been used, albeit without the name “small
area” attached to it. For example, such statistics existed in eleventh century England
and seventeenth century Canada based on either census or on administrative records.
Demographers have long been using a variety of indirect methods for small area estima-
tion of population and other characteristics of interest in postcensal years. I may point
out here that the eminent role of administrative records for small area estimation cannot
but be underscored even today. A very comprehensive review article in this regard is due
to Erciulescu, Franco and Lahiri (2020).

In recent years, the demand for small area statistics has greatly increased worldwide. The
need is felt for formulating policies and programs, in the allocation of government funds
and in regional planning. For instance, legislative acts by national governments have
created a need for small area statistics. A good example is SAIPE (Small Area Income
and Poverty Estimation) mandated by the US Legislature. Demand from the private
sector has also increased because business decisions, particularly those related to small
businesses, rely heavily on local socio-economic conditions. Small area estimation is of
particular interest for the transition economics in central and eastern European countries
and the former Soviet Union countries. In the 1990’s these countries have moved away
from centralized decision making. As a result, sample surveys are now used to produce
estimates for large areas as well as small areas.

3. Examples

Before tracing this early history, let me cite a few examples that illustrate the ever in-
creasing current day importance of small area estimation. One important ongoing small
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area estimation problem at the U.S. Bureau of the Census is the small area income and
poverty estimation (SAIPE) project. This is a result of a Bill passed by the US House
of Representatives requiring the Secretary of Commerce to produce and publish at least
every two years beginning in 1996, current data related to the incidence of poverty in
the United States. Specifically, the legislation states that “to the extent feasible”, the
secretary shall produce estimates of poverty for states, counties and local jurisdictions
of government and school districts. For school districts, estimates are to be made of
the number of poor children aged 5-17 years. It also specifies production of state and
county estimates of the number of poor persons aged 65 and over.

These small area statistics are used by a broad range of customers including policy mak-
ers at the state and local levels as well as the private sector. This includes allocation of
Federal and state funds. Earlier the decennial census was the only source of income dis-
tribution and poverty data for households, families and persons for such small geographic
areas. Use of the recent decennial census data pertaining to the economic situation is
unreliable especially as one moves further away from the census year. The first SAIPE
estimates were issued in 1995 for states, 1997 for counties and 1999 for school districts.
The SAIPE state and county estimates include median household income number of poor
people, poor children under age 5 (for states only), poor children aged 5-17, and poor
people under age 18. Also starting 1999, estimates of the number of poor school-aged
children are provided for the 14,000 school districts in the US (Bell, Basel and Maples,
2016).

Another example is the Federal-State Co-Operative Program (FSCP). It started in 1967.
The goal was to provide high-quality consistent series of post-censal county population
estimates with comparability from area to area. In addition to the county estimates,
several members of FSCP now produce subcounty estimates as well. Also, the US Cen-
sus Bureau used to provide the Treasury Department with Per Capita Income (PCI)
estimates and other statistics for state and local governments receiving funds under the
general revenue sharing program. Treasury Department used these statistics to determine
allocations to local governments within the different states by dividing the correspond-
ing state allocations. The total allocation by the Treasury Dept. was $675 billion in 2017.

United States Department of Agriculture (USDA) has long been interested in prediction
of areas under corn and soybeans. Battese, Harter and Fuller (JASA, 1988) considered
the problem of predicting areas under corn and soybeans for 12 counties in North-Central
Iowa based on the 1978 June enumerative survey data as well as Landsat Satellite Data.
The USDA statistical reporting Service field staff determined the area of corn and soy-
beans in 37 sample segments of 12 counties in North Central Iowa by interviewing farm
operators. In conjunction with LANDSAT readings obtained during August and Septem-
ber 1978, USDA procedures were used to classify the crop cover for all pixels in the 12
counties.
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There are many more examples. An important current day example is small area “poverty
mapping” initiated by Elbers, Lanjouw and Lanjouw (2003). This was extended as well
as substantially refined by Molina and Rao (2010) and many others.

4. Synthetic Estimation

An estimator is called ‘Synthetic’ if a direct estimator for a large area covering a small
area is used as an indirect estimator for that area. The terminology was first used by the
U.S. National Center for Health Statistics. These estimators are based on a strong un-
derlying assumption is that the small area bears the same characteristic for the large area.

For example, if y1, · · · ,ym are the direct estimates of average income for m areas with
population sizes N1, · · · ,Nm, we may use the overall estimate ȳs = ∑m

j=1 Njy j/N for a
particular area, say, i ,where N = ∑m

j=1 Nj. The idea is that this synthetic estimator has
less mean squared error (MSE) compared to the direct estimator yi if the bias ȳs− yi is
not too strong. On the other hand, a heavily biased estimator can affect the MSE as well.

One of the early use of synthetic estimation appears in Hansen, Hurwitz and Madow
(1953, pp 483-486). They applied synthetic regression estimation in the context of radio
listening. The objective was to estimate the median number of radio stations heard dur-
ing the day in each of more than 500 counties in the US. The direct estimate yi of the
true (unknown) median Mi was obtained from a radio listening survey based on personal
interviews for 85 county areas. The selection was made by first stratifying the popula-
tion county areas into 85 strata based on geographical region and available radio service
type. Then one county was selected from each stratum with probability proportional to
the estimated number of families in the counties. A subsample of area segments was
selected from each of the sampled county areas and families within the selected area
segments were interviewed.

In addition to the direct estimates, an estimate xi of Mi, obtained from a mail survey was
used as a single covariate in the linear regression of yi on xi. The mail survey was first
conducted by sampling 1,000 families from each county area and mailing questionnaires.
The xi were biased due to nonresponse (about 20% response rate) and incomplete cov-
erage, but were anticipated to have high correlation with the Mi. Indeed, it turned out
that Corr(yi,xi) = .70. For nonsampled counties, regression synthetic estimates were
M̂i = .52+ .74xi.

Another example of Synthetic Estimation is due to Gonzalez and Hoza (JASA, 1978, pp
7-15). Their objective was to develop intercensal estimates of various population char-
acteristics for small areas. They discussed synthetic estimates of unemployment where
the larger area is a geographic division and the small area is a county.

Specifically, let pi j denote the proportion of labor force in county i that corresponds
to cell j ( j = 1, · · · ,G). Let u j denote the corresponding unemployment rate for cell j
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based on the geographic division where county i belongs. Then, the synthetic estimate
of the unemployment rate for county i is given by u∗i = ∑G

j=1 pi ju j. These authors also
suggested synthetic regression estimate for unemployment rates.

While direct estimators suffer from large variances and coefficients of variation for small
areas, synthetic estimators suffer from bias, which often can be very severe. This led
to the development of composite estimators, which are weighted averages of direct and
synthetic estimators. The motivation is to balance the design bias of synthetic estima-
tors and the large variability of direct estimators in a small area.

Let yi j denote the characteristic of interest for the jth unit in the ith area; j = 1, · · · ,Ni; i=
1, · · · ,m. Let xi j denote some auxiliary characteristic for the jth unit in the ith local area.
Note that the population means are Ȳi = ∑Ni

j=1 yi j/Ni and X̄i = ∑Ni
j=1 xi j/Ni. We denote

the sampled observations as yi j, j = 1, · · · ,ni with corresponding auxiliary variables xi j,
j = 1, · · · ,ni. Let x̄i = ∑ni

j=1 xi j/ni. x̄i is obtained from the sample. In addition, one needs
to know X̄i, the population average of auxiliary variables.

A Direct Estimator (Ratio Estimator) of Ȳi is ȳR
i = (ȳi/x̄i)X̄i. The corresponding Ratio

Synthetic Estimator of Ȳi is (ȳs/x̄s)X̄i, where ȳs = ∑m
i=1 Niȳi/∑m

i=1 Ni and
x̄s = ∑m

i=1 Nix̄i/∑m
i=1 Ni. A Composite Estimator of Ȳi is

(ni/Ni)ȳi +(1−ni/Ni)(ȳs/x̄s)X̄ ′i ,

where X̄ ′i = (Ni−ni)
−1 ∑Ni

j=ni+1 xi j/(Ni−ni). Note NiX̄i = nix̄i+(Ni−ni)X̄ ′i . All one needs
to know is the population average X̄i in addition to the already known sample average x̄i

to find X̄ ′i . Several other weights in forming a linear combination of direct and synthetic
estimators have also been proposed in the literature.

The Composite Estimator proposed in the previous paragraph can be given a model-

based justification as well. Consider the model yi j
ind∼ (bxi j,σ2xi j). Best linear unbised

estimator of b is obtained by minimizing ∑m
i=1 ∑ni

j=1(yi j − bxi j)
2/xi j. The solution is

b̂= ȳs/x̄s. Now estimate Ȳi = (∑ni
j=1 yi j+∑Ni

j=ni+1 yi j)/Ni by ∑ni
j=1 yi j/Ni+ b̂∑Ni

j=ni+1 xi j/Ni.
This simplifies to the expression given in the previous paragraph. Holt, Smith and
Tomberlin (1979) provided more general model-based estimators of this type.

5. Model-Based Small Area Estimation

Small area models link explicitly the sampling model with random area specific effects.
The latter accounts for between area variation beyond that is explained by auxiliary
variables. We classify small area models into two broad types. First, the “area level”
models that relate small area direct estimators to area-specific covariates. Such models
are necessary if unit (or element) level data are not available. Second, the “unit level”
models that relate the unit values of a study variable to unit-specific covariates. Indirect
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estimators based on small area models will be called “model-based estimators”.

The model-based approach to small area estimation offers several advantages. First,
“optimal” estimators can be derived under the assumed model. Second, area specific
measures of variability can be associated with each estimator unlike global measures
(averaged over small areas) often used with traditional indirect estimators. Third, mod-
els can be validated from the sample data. Fourth, one can entertain a variety of models
depending on the nature of the response variables and the complexity of data structures.
Fifth, the use of models permits optimal prediction for areas with no samples, areas
where prediction is of utmost importance.

In spite of the above advantages, there should be a cautionary note regarding poten-
tial model failure. We will address this issue to a certain extent in Section 7 when
we discuss benchmarking. Another important issue that has emerged in recent years,
is design-based evaluation of small area predictors. In particular, design-based mean
squared errors (MSE’s) is of great appeal to practitioners and users of small area predic-
tors, because of their long-standing familiarity with the latter. Two recent articles ad-
dressing this issue are Pfeffermann and Ben-Hur (2018) and Lahiri and Pramanik (2019).

The classic small area model is due to Fay and Herriot (JASA, 1979) with Sampling
Model: yi = θi + ei, i = 1, . . . ,m and Linking Model: θi = xT

i b+ ui, i = 1, . . . ,m. The
target is estimation of the θi, i = 1, . . . ,m. It is assumed that ei are independent (0,Di),
where the Di are known and the ui are iid (0,A), where A is unknown. The assumption
of known Di can be put to question because they are, in fact, sample estimates. But
the assumption is needed to avoid nonidentifiablity in the absence of microdata. This
is evident when one writes yi = xT

i b+ ui + ei. In the presence of microdata, it is pos-
sible to estimate the Di as well. An example appears in Ghosh, Myung and Moura (2018).

A few notations are needed to describe the Fay-Herriot procedure. Let y = (y1, . . . ,ym)
T ;

θ =(θ1, . . . ,θm)
T : e=(e1, . . . ,em)

T ; u=(u1, . . . ,um)
T ; XT =(x1, . . . ,xm); b=(b1, . . . ,bp)

T .
We assume X has rank p(< m). In vector notations, we write y = θ +e and θ = Xb+u.

For known A, the best linear unbiased predictor (BLUP) of θi is (1−Bi)yi+BixT
i b̃ where

b̃ = (XTV−1X)−1XTV−1y, V = Diag(D1 +A, · · · ,Dm +A) and Bi = Di/(A+Di). The
BLUP is also the best unbiased predictor under assumed normality of y and θ .

It is possible to give an alternative Bayesian formulation of the Fay-Herriott model. Let

yi|θi
ind∼ N(θi,Di); θi|b ind∼ N(xT

i b,A). Then the Bayes estimator of θi is (1−Bi)yi+BixT
i b,

where Bi = Di/(A+Di). If instead we put a uniform(Rp) prior for b, the Bayes estimator
of θi is the same as its BLUP. Thus, there is a duality between the BLUP and the Bayes
estimator.
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However, in practice, A is unknown. A hierarchical prior joint for both b and A is
π(b,A) = 1. (Morris, 1983, JASA). Otherwise, estimate A to get the resulting empirical
Bayes or empirical BLUP. We now describe the latter.

There are several methods for estimation of A. Fay and Herriot (1979) suggested solv-
ing iteratively the two equations (i) b̃ = (XTV−1X)−1XTV−1y and (ii) ∑m

i=1(yi−xT
i b̃)2 =

m− p. The motivation for (i) comes from the fact that b̃ is the best linear unbiased
estimator (BLUE) of b when A is known. The second is a method of moments equation
noting that the expectation of the left hand side equals m− p.

The Fay-Herriot method does not provide an explicit expression for A. Prasad and Rao
(1990, JASA) suggested instead a unweighted least squares approach, which provides
an exact expression for A. Specifically, they proposed the estimator b̂L = (XT X)−1XT y.
Then E||y−Xb̂L||2 = (m− p)A+∑m

i=1 Di(1− ri), ri = xT
i (X

T X)−1xi, i = 1, · · · ,m. This

leads to ÂL = max
(

0, ||y−Xb̂L||2−∑m
i=1 Di(1−ri)

m−p

)
and accordingly B̂L

i = Di/(ÂL +Di). The

corresponding estimator of θ is θ̂ EB
i = (1− B̂L

i )yi + B̂L
i xT

i b̃(ÂL), where

b̃(ÂL) = [XTV−1(ÂL)X ]−1XTV−1(ÂL)y.

Prasad and Rao also found an approximation to the mean squared eror (Bayes risk) of

their EBLUP or EB estimators. Under the subjective prior θi
ind∼ N(xT

i b,A), the Bayes esti-
mator of θi is θ̂ B

i =(1−Bi)yi+BixT
i b, Bi =Di/(A+Di). Also, write θ̃ EB

i (A)= (1−Bi)yi+

BixT
i b̃(A). Then E(θ̂ EB

i − θi)
2 = E(θ̂ B

i − θi)
2 +E(θ̃ EB

i (A)− θ̂i
B
)2 +E(θ̂ EB

i − θ̃ EB
i (A))2.

The cross-product terms vanish due to their method of estimation of A, by a result of
Kackar and Harville (1984). The first term is the Bayes risk if both b and A were known.
The second term is the additional uncertainty due to estimation of b when A is known.
The third term accounts for further uncertainty due to estimation of A.

One can get exact expressions E(θi− θ̂ B
i )

2 = Di(1−Bi) = g1i(A), say and E(θ̂ EB
i (A)−

θ̂ B
i )

2 = B2
i xT

i (X
TV−1X)−1xi = g2i(A), say. However, the third term, E(θ̂ EB

i − θ̂ EB
i (A))2

needs an approximation. An approximate expression correct up to O(m−1), i.e. the
remainder term is of o(m−1), as given in Prasad and Rao, is 2B2

i (Di +A)−1A2 ∑m
i=1(1−

Bi)
2/m2 = g3i(A), say. Further, an estimator of this MSE correct up to O(m−1) is

g1i(Â)+g2i(Â)+2g3i(Â). This approximation is justified by noticing E[g1i(Â)] = g1i(A)−
g3i(A)+o(m−1).

A well-known example where this method has been applied is estimation of median in-
come of four-person families for the 50 states and the District of Columbia in the United
States. The U.S. Department of Health and Human Services (HHS) has a direct need for
such data at the state level in formulating its energy assistance program for low-income
families. The basic source of data is the annual demographic supplement to the March
sample of the Current Population Survey (CPS), which provides the median income of
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four-person families for the preceding year. Direct use of CPS estimates is usually un-
desirable because of large CV’s associated with them. More reliable results are obtained
these days by using empirical and hierarchical Bayesian methods.

Here sample estimates of the state medians for the current year (c) as obtained from the
Current Population Survey (CPS) were used as dependent variables. Adjusted census
median (c) defined as the base year (the recent most decennial census) census median
(b) times the ratio of the BEA PCI (per capita income as provided by the Bureau of
Economic Analysis of the United States Bureau of the Census) in year (c) to year (b) was
used as an independent variable. Following the suggestion of Fay (1987), Datta, Ghosh,
Nangia and Natarajan (1996) used the census median from the recent most decennial
census as a second independent variable. The resulting estimates were compared against
a different regression model employed earlier by the US Census Bureau.

The comparison was based on four criteria recommended by the panel on small area
estimates of population and income set up by the US committee on National Statistics.
In the following, we use ei as a generic notation for the ith small area estimate, and ei.T R

the “truth”, i.e. the figure available from the recent most decennial census. The panel
recommended the following four criteria for comparison.
Average Relative Absolute Bias = (51)−1 ∑51

i=1 |ei− ei,T R|/ei,T R.
Average Squared Relative Bias = (51)−1 ∑51

i=1(ei− ei,T R)
2/e2

i,T R.
Average Absolute Bias = (51)−1 ∑51

i=1 |ei− ei,T R|.
Average Squared Deviation = (51)−1 ∑51

i=1(ei− ei,T R)
2.

Table 1 compares the Sample Median, the Bureau Estimate and the Empirical BLUP
according to the four criteria as mentioned above.

Table 1. Average Relative Absolute Bias, Average Squared Relative Bias, Average
Absolute Bias and Average Squared Deviation (in 100,000) of the Estimates.

Bureau Estimate Sample Median EB
Aver. rel. bias 0.325 0.498 0.204
Aver. sq. rel bias 0.002 0.003 0.001
Aver. abs. bias 722.8 1090.4 450.6
Aver. sq. dev. 8.36 16.31 3.34

There are other options for estimation of A. One due to Datta and Lahiri (2000) uses
the MLE or the residual MLE (RMLE). With this estimator, gDL

3i is approximated by
2D2

i (A+Di)
−3[∑m

i=1(A+Di)
−2]−1, while g1i and g2i remain unchanged. Finally, Datta,

Rao and Smith (2005), went back to the original Fay-Herriot method of estimation of
A, and obtained gDRS

3i = 2D2
i (A+Di)

−3m[∑m
i=1(A+Di)

−2]−1.

The string of inequalities

m−1
m

∑
i=1

(A+Di)
2 ≥ [m−1

m

∑
i=1

(A+Di)]
2 ≥ m2[

m

∑
i=1

(A+Di)
−1]2
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leads to gPR
3i ≥ gDRS

3i . Another elementary inequality ∑m
i=1(A+Di)

−2 ≥ m−1[∑m
i=1(A+

Di)
−1]2 leads to gDRS

3i ≥ gDL
3i . All three expressions for g3i equal when D1 = . . .= Dm. It

is also pointed out in Datta, Rao and Smith that while both Prasad-Rao and REML esti-
mators of A lead to the same MSE estimator correct up to O(m−1), a further adjustment
to this estimator is needed when one uses either the the ML or the Fay-Herriot estimator
of A. The simulation study undertaken in Datta, Rao and Smith also suggests that the
ML, REML and Fay-Herriot methods of estimation of A perform quite similarly in regards
to the MSE of the small area estimators, but the Prasad-Rao approach usually leads to a
bigger MSE. However, they all perform far superior to the MSE’s of the direct estimators.

Over the years, other approaches to MSE estimation have appeared, some quite ap-
pealing as well as elegant. The two most prominent ones appear to be the ones due
to Jackknife and Bootstrap. Jiang and Lahiri (2001), Jiang, Lahiri and Wan (2002),
Chen and Lahiri (2002), Das, Jiang and Rao (2004) all considered Jackknife estima-
tion of the MSE that avoid the detailed Taylor series expansion of the MSE. A detailed
discussion paper covering many aspects of related methods appears in Jiang and Lahiri
(2006). Pfeffermann and Tiller (2005), Butar and Lahiri (2003) considered bootstrap
estimation of the MSE. More recently, Yoshimori and Lahiri (2014) considered adjusted
likelihood estimation of A. Booth and Hobert (1998) introduced a conditional approach
for estimating the MSE. In a different vein, Lahiri and Rao (1995) dispensed with the
normality assumption of the random effects, assuming instead its eighth moment in the
Fay-Herriot model.

Pfeffermann and Correa (2012) proposed an approach which they showed to perform
much better than the “classical” jackknife and bootstrap methods. Pfeffermann and
Ben-Hur (2018) used a similar approach for estimating the design-based MSE of model-
based predictors.

Small area estimation problems have also been considered for the general exponential
family model. Suppose yi|θi are independent with f (yi|θi) = exp[yiθi−ψ(θi)+ h(yi)],
i = 1, . . . ,m. An example is the Bernoulli (pi) where θi = logit(pi) = log(pi/(1− pi))

and Poisson(λi) where θi = log(λi). One models the θi as independent N(xT
i b,A) and

proceeds. Alternately, use beta priors for the pi and gamma priors for the λi.

The two options are to estimate the prior parameters either using an empirical Bayes
approach or alternately using a hierarchical Bayes approach assigning distributions to the
prior parameters. The latter was taken by Ghosh et al. (1998) in a general framework.
Other work is due to Raghunathan (1993) and Malec et al. (1997). A method for MSE
estimation in such contexts appears in Jiang and Lahiri (2001).
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Jiang, Nguyen and Rao (2011) evaluated the performance of a BLUP or EBLUP using

only the sampling model yi
ind∼ (θi,Di). Recall Bi = Di/(A+Di). Then

E[{(1−Bi)yi +BixT
i b−θi}2|θi] = (1−Bi)

2Di +B2
i (θi− xT

i b)2.

Noting that E[(yi− xT
i b)2|θi] = Di + (θi− xT

i b)2, an unbiased estimator of the above
MSE is (1−Bi)

2Di−B2
i Di +B2

i (yi−xT
i b)2. When one minimizes the above with respect

to b and A, then the resulting estimators of of b and A are referred to as observed
best predictive estimators. The corresponding estimators of the θi are referred to as the
“observed best predictors”. These authors suggested Fay-Herriot or Prasad-Rao method
for estimation of b and A.

6. Model Based Small Area Estimation: Unit Specific Models

Unit Specific Models are those where observations are available for the sampled units
in the local areas. In addition, unit-specific auxiliary information is available for these
sampled units, and possibly for the non-sampled units as well.

To be specific, consider m local areas where the ith local area has Ni units with a sample
of size ni. We denote the sampled observations by yi1, . . . ,yini , i = 1, . . . ,m. Consider the
model

yi j = xT
i jb+ui + ei j, j = 1, . . . .Ni, i = 1, . . . ,m.

The ui’s and ei j’s are mutually independent with the ui iid (0,σ2
u ), and the ei j independent

(0,σ2ψi j).

The above nested error regression model was considered by Battese, Harter and Fuller
(BHF, 1988), where yi j is the area devoted to corn or soybean for the jth segment in
the ith county; xi j = (1,xi j1,xi j2)

T , where xi j1 denotes the no. of pixels classified as
corn for the jth segment in the ith county and xi j2 denotes the no. of pixels classified
as soybean for the jth segment in the ith county; b = (b0,b1,b2)

T is the vector of re-
gression coefficients. BHF took ψi j = 1. The primary goal of BHF was to estimate the
Ȳi = N−1

i ∑Ni
j=1 yi j, the population average of area under corn or soybean for the 12 areas

in North Central Iowa, Ni denoting the population size in area i.

A second example appears in Ghosh and Rao (1994). Here yi j denotes wages and salaries
paid by the jth business firm in the ith census division in Canada and xi j = (1,xi j)

T ,
where xi j is the gross business income of the jth business firm in the ith census division.
In this application, ψi j = xi j was found more appropriate than the usual model involving
homoscedasticity.

I consider in some detail the BHF model. Their ultimate goal was to estimate the
population means Ȳi = (Ni)

−1 ∑Ni
j=1 yi j, In matrix notation, we write yi = (yi1, . . . ,yini)

T ,
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Xi = (xi1, . . . ,xini)
T , ei = (ei1, . . . ,eini)

T , i = 1, . . . ,m. Thus, the model is rewritten as

yi = Xib+ui1ni + ei, i = 1, . . . ,m.

Clearly, E(yi) = Xib and V i =V (yi) = σ2
e Ini +σ2

u Jni , where Jni denote the matrix with all
elements equal to 1. Write x̄i = ∑ni

j=1 xi j/ni and ȳi = ∑ni
j=1 yi j/ni. The target is estimation

of X̄T
i b+ui1ni , where X̄ i = N−1

i ∑Ni
j=1 xi j, i = 1, . . . ,m.

For known σ2
u and σ2

e , the BLUP of x̄T
i b + ui1ni is (1− Bi)yi + Bix̄T

i b̃, where Bi =

(σ2
e /ni)/(σ2

e /ni + σ2
u ) and b̃ = (∑m

i=1 XT
i V−1

i X i)
−1(∑m

i=1 XT
i V−1

i yi). Hence, the BLUP
of X̄T

i b+ui1ni is [(1−Bi)[ȳi +(X̄ i− x̄i)
T b̃]+BiX̄

T
i b̃.

BHF used method of moment estimation to get unbiased estimators of unknown σ2
u and

σ2
e . The EBLUP of X̄T

i b+ui is now found by substituting these estimates of σ2
u and σ2

e
in the BLUP formula. Estimation of σ2

e is based on the moment identity

E[
m

∑
i=1

ni

∑
j=1

(yi j− ȳi− (xi j− x̄i)
T b̃]2 = (n−m− p1),

where p1 is the number of non-zero x deviations. The second moment identity is given
by

E[
m

∑
i=1

ni

∑
j=1

(yi j− xi j)
T b̂)2] = (n− p)σ2

e +σ2
u [m−

m

∑
i=1

n2
i x̄T

i (X
T X)−1x̄i],

where b̂ = (XT X)−1XT y, y = (yT
1 , . . . ,y

T
m)

T . If this results in a negative estimator of σ2
u ,

they set the estimator equal to zero.

Of course, the method of moments estimators can be replaced by maximum likelihood,
REML or other estimators as discussed in the previous section. Alternately, one can
adopt a hierarchical Bayesian approach as taken in Datta and Ghosh (1991). First, it
may be noted that if the variance components σ2

e and σ2
u were known, a uniform prior

on b leads to a HB estimator of X̄T
i b+ ui, which equals its BLUP. Another interesting

observation is that the BLUP of X̄T
i b+ui depends only on the variance ratio σ2

u /σ2
e = λ ,

say. Rather than assigning priors separately for σ2
u and σ2

e , it suffices to assign a prior
to λ . This is what was proposed in Datta and Ghosh (1991), who assigned a Gamma
prior to λ . The Bayesian approach of Datta and Ghosh (1991) did also acccommodate
the possibility of multiple random effects.

7. Benchmarking

The model-based small area estimates, when aggregated, may not equal the correspond-
ing estimated for the larger area. On the other hand, the direct estimate for a larger
area, for example, a national level estimate, is quite reliable. Moreover, matching the
latter may be a good idea, for instance to maintain consistency in publication, and very
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often for protection against model failure. The latter may not always be achieved, for
example in time series models, as pointed out by Wang, Fuller and Qu (2008).

Specifically, suppose θi is the ith area mean and θT = ∑m
i=1 wiθi is the overall mean,

where w j may be the known proportion of units in the jth area. The direct estimate for
θT is ∑m

i=1 wiθ̂i. Also, let θ̃i denote an estimator of θi based on a certain model. Then
∑m

i=1 wiθ̃i is typically not equal to ∑m
i=1 wiθ̂i

In order to address this, people have suggested (i) ratio adjusted estimators

θ̂ RA
i = θ̂ G

i (
m

∑
j=1

w jθ̂ j)/(
m

∑
j=1

w jθ̂ G
j )

and (ii) difference adjusted estimator θ̂ DA
i = θ̂ G

i +∑m
j=1 w jθ̂ j−∑m

j=1 w jθ̂ G
j , where θ̂ G

j is
some generic model-based estimator of θ j.

One criticism against such adjustments is that a common adjustment is used for all small
areas regardless of their precision. Wang, Fuller and Qu (2008) proposed instead mini-
mizing ∑m

j=1 φ jE(e j−θ j)
2 for some specified weights φ j(> 0) subject to the constraint

∑m
j=1 w je j = θ̂T . The resulting estimator of θi is

θ̂WFQ
i = θ̂ BLUP

i +λi(
m

∑
j=1

w jθ̂ j−
m

∑
j=1

w jθ̂ BLUP
j ),

where λi = wiφ−1
i /(∑m

j=1 w2
jφ
−1
j ).

Datta, Ghosh, Steorts and Maples (2011) took instead a general Bayesian approach and
minimized ∑m

j=1 φ j[E(e j − θ j)
2|data] subject to ∑m

j=1 w je j = θ̂T and obtained the esti-
mator θ̂ AB

i = θ̂ B
i +λi(∑m

j=1 w jθ̂ j−∑m
j=1 w jθ̂ B

j ), with the same λi. This development is
similar in spirit to those of Louis (1984) and Ghosh (1992) who proposed constrained
Bayes and empirical Bayes estimators to prevent overshrinking. The approach of Datta,
Ghosh, Steorts and Maples extends readily to multiple benchmarking constraints. In a
frequentist context. Bell, Datta and Ghosh (2013) extended the work of Wang, Fuller
and Qu (2008) to multiple benchmarking constraints.

There are situations also when one needs two-stage benchmarking. A current example is
the cash rent estimates of the Natural Agricultural Statistics Service (NASS), where one
needs the dual control of matching the aggregate of county level cash rent estimates to
the corresponding agricultural district (comprising of several counties) level estimates,
and the aggregate of the agricultural district level estimates to the final state level es-
timate. Berg, Cecere and Ghosh (2014) adopted an approach of Ghosh and Steorts
(2013) to address the NASS problem.
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Second order unbiased MSE estimators are not typically available for ratio adjusted
benchmarked estimators. In contrast, second order unbiased MSE estimators are avail-
able for difference adjusted benchmarked estimators, namely, θ̂ DB

i = θ̂ EB
i +(∑m

j=1 w jθ̂ j−
∑m

j=1 w jθ̂ EB
j ). Steorts and Ghosh (2013) have shown that MSE(θ̂ DB

i ) = MSE(θ̂ EB
i )+

g4(A) + o(m−1), where MSE(θ̂ EB
i ) is the same as the one given in Prasad and Rao

(1990), and

g4(A) =
m

∑
i=1

w2
i B2

i (Di +A)−
m

∑
i=1

m

∑
j=1

wiw jBiB jxT
i (X

TV−1x j).

We may recall that Bi =Di/(A+Di), XT = (x1, . . . ,xm) and V =Diag(A+D1, . . . ,A+Dm)

in the Fay-Herriot model. A second order unbiased estimator of the benchmarked EB
estimator is thus g1i(Â)+g2i(Â)+2g3i(Â)+g4i(Â).

There are two available approaches for self benchmarking that do not require any ad-
justment to the EBLUP estimators. The first, proposed in You and Rao (2002) for
the Fay-Herriot model replaces the estimator b̂ in the EBLUP by an estimator which
depends both on b̂ as well as the weights wi. This changes the MSE calculation. Re-
call the Prasad-Rao MSE of the EBLUP given by MSE(θ̂ EB

i ) = g1i + g2i + g3i, where
g1i =Di(1−Bi), g2i =B2

i xT
i (X

TV−1X)−1xi and g3i = 2D2
i (A+Di)

−3m−2{∑m
j=1(A+D j)

2}.
For the Benchmarked EBLUP, g2i changes.

The second approach is by Wang, Fuller and Qu (2008) and it uses an augmented model
with new covariates (xi,wi,Di). This second approach was extended by Bell, Datta and
Ghosh (2013) to accommodate multiple benchmarking constraints.

8. Fixed versus Random Area Effects

A different but equally pertinent issue has recently surfaced in the small area literature.
This concerns the need for random effects in all areas, or whether even fixed effects
models would be adequate for certain areas. Datta, Hall and Mandal (DHM, 2011) were
the first to address this problem. They suggested essentially a preliminary test-based
approach, testing the null hypothesis that the common random effect variance was zero.
Then they used a fixed or a random effects model for small area estimation based on
acceptance or rejection of the null hypothesis. This amounted to use of synthetic or
regression estimates of all small area means upon acceptance of the null hypothesis, and
composite estimates which are weighted averages of direct and regression estimators
otherwise. Further research in this area is due to Molina, Rao and Datta (2015).

The DHM procedure works well when the number of small areas is moderately large, but
not necessarily when the number of small areas is very large. In such situations, the null
hypothesis of no random effects is very likely to be rejected. This is primarily due to a
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few large residuals causing significant departure of direct estimates from the regression
estimates. To rectify this, Datta and Mandal (2015) proposed a Bayesian approach with
“spike and slab” priors. Their approach amounts to taking δiui instead of ui for random
effects where the δi and the ui are independent with δi iid Bernoulli(γ) and ui iid N(0,σ2

u ).

In contrast to the spike and slab priors of Datta and Mandal (2015), Tang, Ghosh, Ha
and Sedransk (2018) considered a different class of priors that meets the same objective.
as the spike and slab priors, but uses instead absolutely continuous priors. These priors
allow different variance components for different small areas, in contrast to the priors
of Datta and Mandal, who considered prior variances to be either zero or else common
across all small areas. This seems to be particularly useful when the number of small
areas is very large, for example, when one considers more than 3000 counties of the US,
where one expects a wide variation in the county effects. The proposed class of priors, is
usually referred to as “global-local shrinkage priors” (Carvalho, Polson and Scott (2010);
Polson and Scott (2010)).

The global-local priors, essentially scale mixtures of normals, are intended to capture
potential “sparsity”, which means lack of significant contribution by many of the ran-
dom effects, by assigning large probabilities to random effects close to zero, but also
identifying random effects which differ significantly from zero. This is achieved by em-
ploying two levels of parameters to express prior variances of random effects. The first,
the “local shrinkage parameters”, acts at individual levels, while the other, the “global
shrinkage parameter” is common for all random effects. This is in contrast to Fay and
Herriot (1979) who considered only one global parameter. These priors also differ from
those of Datta and Mandal (2015), where the variance of random effects is either zero
or common across all small areas.

Symbolically, the random effects ui have independent N(0,λ 2
i A) priors. While the global

parameter A tries to cause an overall shrinking effect, the local shrinkage parameters λ 2
i

are useful in controlling the degree of shrinkage at the local level. If the mixing den-
sity corresponding to local shrinkage parameters is appropriately heavy-tailed, the large
random effects are almost left unshrunk. The class of “global-local” shrinkage priors
includes the three parameter beta normal (TPBN) priors (Armagon, Clyde and Dun-
son, 2011) and Generalized Double Pareto priors (Armagon, Dunson and Lee, 2012).
TPBN includes the now famous horseshoe (HS) priors (Scott and Berger, 2010) and the
normal-exponential-gamma priors (Griffin and Brown, 2005).

As an example, consider estimation of 5-year (2007–2011) county-level overall poverty
ratios in the US. There are 3,141 counties in the data set. The covariates are foodstamp
participation rates. The map given in Figure 1 gives the poverty ratios for all the coun-
ties of US. Some salient findings from these calculations are given below.

(i) Estimated poverty ratios are between 3.3% (Borden County, TX) and 47.9% (Shan-
non County, SD). The median is 14.7%.



STATISTICS IN TRANSITION new series, Special Issue, August 2020 15

0.
1

0.
2

0.
3

0.
4

Figure 1: Map of posterior means of θ ’s.

(ii) In Mississippi, Georgia, Alabama and New Mexico, 55%+ counties have poverty
rates > the third quartile (18.9%).
(iii) In New Hampshire, Connecticut, Rhode Island, Wyoming, Hawaii and New Jersey,
70%+ counties have poverty rates < the first quartile (11.1%).
(iv) Examples of counties with high poverty ratios are Shannon, SD; Holmes, MS; East
Carroll, LA; Owsley, KY; Sioux, IA.
(v) Examples of counties with large random effects are Madison, ID; Whitman, WA;
Harrisonburg, VA; Clarke, GA; Brazos, TX.

Dr. Pfeffermann suggested splitting the counties, whenever possible, into a few smaller
groups, and then use the same global-local priors for estimating the random effects
separately for the different groups. From a pragmatic point of view, this may sometimes
be necessary for faster implementation. It seems though that the MCMC implementation
even for such a large number of counties was quite easy since all the conditionals were
standard disributions, and samples could be generated easily from these distributions at
each iteration.

9. Variable Transformation

Often the normality assumption can be justified only after transformation of the original
data. Then one performs the analysis based on the transformed data, but transform back
properly to the original scale to arrive at the final predictors. One common example is
transformation of skewed positive data, for example, income data where log transfor-
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mation gets a closer normal approximation. Slud and Maiti (2006) and Ghosh and
Kubokawa (2015) took this approach, providing final results for the back-transformed
original data.

For example, consider a multiplicative model yi = φiηi with zi = log(yi), θi = log(φi)

and ei = log(ηi). Consider the Fay-Herriott (1979) model (i) zi|θi
ind∼ N(θi,Di) and (ii)

θi
ind∼ N(xT

i β ,A). θi has the N(θ̂ B
i ,Di(1−Bi)) posterior with θ̂ B

i = (1−Bi)zi +BixT
i β ,

Bi = Di/(A+Di). Now E(φi|zi) = E[exp(θi)|zi] = exp[θ̂ B
i +(1/2)Di(1−Bi)].

Another interesting example is the variance stabilizing transformation. For example,

suppose yi
ind∼ Bin(ni, pi). The arcsine transformation is given by pi = sin−1(2pi− 1).

The back transformation is pi = (1/2)[1+ sin(θi)].

A third example is the Poisson model for count data. There yi
ind∼ Poisson(λi). Then one

models zi = y1/2
i as independent N(θi,1/4) where where θi = λ 1/2

i . An added advantage
in the last two examples is that the assumption of known sampling variance, which is
really untrue, can be avoided.

10. Final Remarks

As acknowledged earlier, the present article leaves out a large number of useful current
day topics in small area estimation. I list below a few such topics which are not covered
at all here. But there are are many more. People interested in one or more of the topics
listed below and beyond should consult the book of Rao and Molina (2015) for their
detailed coverage of small area estimation and an excellent set of references for these
topics.

• Design consistency of small area estimators.

• Time series models.

• Spatial and space-time models.

• Variable Selection.

• Measurement errors in the covariates.

• Poverty counts for small areas.

• Empirical Bayes confidence intervals.

• Robust small area estimation.

• Misspecification of linking models.
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• Informative sampling.

• Constrained small area estimation.

• Record Linkage.

• Disease Mapping.

• Etc, Etc., Etc.
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