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Confidence bands for a distribution function with
merged data from multiple sources

Takumi Saegusa1

ABSTRACT

We consider nonparametric estimation of a distribution function when data are col-
lected from multiple overlapping data sources. Main statistical challenges include (1)
heterogeneity of data sets, (2) unidentified duplicated records across data sets, and (3)
dependence due to sampling without replacement from a data source. The proposed
estimator is computable without identifying duplication but corrects bias from dupli-
cated records. We show the uniform consistency of the proposed estimator over the
real line and its weak convergence to a Gaussian process. Based on these asymptotic
properties, we propose a simulation-based confidence band that enjoys asymptotically
correct coverage probability. The finite sample performance is evaluated through a
simulation study. A Wilms tumor example is provided.
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1. Introduction

We consider nonparametric estimation of a distribution function F of a random
variable X when data are collected from multiple overlapping data sources. Inference on
F is a rather simple problem if data are independent and identically distributed (i.i.d.).
When data sets are merged from various sources, this basic question faces a significant
challenge from both theoretical and methodological perspectives. Statistical issues we
address in this paper is (1) heterogeneity of data sources, (2) unidentified duplicated
records in multiple data sets, and (3) finite population sampling from each data source.
Without proper care, these issues yield bias in estimation and wrong quantification of
uncertainty.

The following setting (schematically shown in Figure 1) is considered:
• The variables of interest for data integration is a random vector W = (X ,Y ) taking
values in a measurable space (W ,A ). In this paper, we focus on inference regarding X
but inference on X and Y is of general interest in data integration.
• Let V =(W̃ ,Z)∈V where W̃ is a coarsening of W and Z is a vector of auxiliary variables.
The variables Z do not involve inference on W but help to create data sources. The space
V is composed of J overlapping population data sources V (1), . . . ,V (J) with V =∪ jV ( j)

and V ( j)∩V (k) �= /0 for some ( j,k). Values of V determine membership of data sources.
• Data collection is carried out in a two-stage framework. First, a large i.i.d. sample of
V1, . . . ,VN is collected from a population. The unit i is distributed to data source j if
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Vi ∈ V ( j). Because data sources overlap, the unit i may belong to multiple sources. The
sample size of data source V ( j) is denoted as N( j).
• Next, a random sample of size n( j) is selected without replacement from data source
V ( j). The selection probability for this data source is π( j)(Vi) = (n( j)/N( j))I{Vi ∈ V ( j)}
where I is the indicator function. For selected items, variables Wi are observed.
• The above procedure is repeated for all data sources. Data sets from each data source
are then combined and statistical analysis is conducted. If the unit i is selected multiple
times, its duplication is not identified.

Figure 1: Sampling scheme for merged data from multiple sources with J = 2.

This two-stage formulation is essential in describing duplicated records in multiple
data sets. Duplication naturally occurs in public health data integration. Clinical studies
have their own target populations defined by the inclusion and exclusion criteria. When
these studies are combined with national disease registries, a patient in a study is also
in a national database. Duplicated records are difficult to identify in practice because
key identifiers such as names and addresses are often not disclosed for privacy protection
in public health data. Instead, the membership of selected items in the final sample is
assumed known (e.g., the selected item i from source V ( j) is also known to belong to
V (k)). This is plausible because one can compare inclusion and exclusion criteria. For
more detailed discussion on practical issues of our setting, see SAEGUSA (2019).

The final sample is a biased and dependent sample with duplication. There are two
sources of bias in our setting. Certain data sources are over/under-represented in the fi-
nal sample due to biased sampling with different selection probabilities π( j). Duplicated
records from overlapping data sources enter statistical analysis without identification.
Dependence also comes from two sources. Multiple data sets are dependent through
duplicated records while items in the same data source are dependent due to sam-
pling without replacement. These characteristics well capture the challenging issue of
heterogeneity in data integration problems. Our framework covers the number of exam-
ples including opinion polls (BRICK et al., 2006), public health surveillance (HU et al.,
2011), and health interview surveys (CERVANTES et al., 2006), and the synthesis of
existing clinical and epidemiological studies with surveys, disease registries, and health-
care databases (CHATTERJEE et al., 2016; KEIDING and LOUIS, 2016; METCALF
and SCOTT, 2009).

In this paper, we propose and study a nonparametric estimator of the distribution
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function F . Our estimator is motivated by Hartley’s estimator for multiple-frame surveys
in sampling theory (HARTLEY, 1962, 1974). We provide a rigorous asymptotic theory
to its uniform consistency over the real line and weak convergence to a Gaussian process.
Based on the limiting distribution, we propose a Monte Carlo based method to construct
confidence bands for F . We verify the validity of our methodology theoretically and
through a simulation study for both continuous and discrete random variables.

Recently SAEGUSA (2019) studied the same data integration setting and derived the
law of large numbers and the central limit theorem. Asymptotic results are then applied
to infinite-dimensional M-estimation to study the Cox proportional hazards model (COX,
1972). These results are useful to compute the limiting distribution of our estimator but
not sufficient for constructing confidence bands.

Typically, confidence bands for F are obtained from a rather simple limiting distri-
bution or bootstrap. In the i.i.d. setting, the Kolmogorov-Smirnov statistic is used to
compute confidence bands for continuous random variables. Its limiting distribution is the
supremum of Brownian bridge, whose quantile is analytically obtained (KOLMOGOROV,
1933; SMIRNOV, 1944). For non-continuous random variables, confidence bands can be
obtained by inverting the Dvoretzky–Kiefer–Wolfowitz inequality (DVORETZKY et al.,
1956) with a tight constant obtained by MASSART (1990). An alternative way explored
by BICKEL and FREEDMAN (1981) is to bootstrap the Kolmogorov-Smirnov statistic
to estimate its quantiles. For stratified sampling from a finite population where Xi is
treated as fixed, BICKEL and KRIEGER (1989) apply bootstrap methods for finite popu-
lation sampling to the weighted Kolmogorov-Smirnov statistic to obtain valid confidence
bands. These bootstrap methods cover the distribution function for non-continuous
random variables.

In our data integration setting, randomness comes from (1) sampling from population
and (2) subsequent sampling from data sources. A valid confidence band should reflect
both types of uncertainty. The previous methods described above focus on randomness
due to either sampling from population or finite population sampling, and cannot be
applied to our data integration problem. The corresponding limiting distribution in our
setting is the supremum of the linear combination of independent Gaussian processes.
This process cannot be reduced to other well-known processes in general. Also, our
formulation of the data integration problem is rather new and a valid bootstrap method
is not available.

Methods for confidence bands for the distribution function have been studied in
various ways other than analytical computation of quantiles of the limiting distribu-
tion and bootstrap. Confidence bands for parametric models are considered for normal
distributions (KANOFSKY and SRINIVASAN, 1972), Weibull distributions (SCHAFER
and ANGUS, 1979), and the location scale parameter model (CHENG and ILES, 1983).
Bayesian approach with the Dirichlet prior was studied by BRETH (1978). OWEN (1995)
considered inverting a nonparametric likelihood test of uniformity by BERK and JONES
(1978). FREY (2008) proposed the narrowness criterion to derive optimal confidence
bands. WANG et al. (2013) developed a smooth confidence band based on the kernel
smoothed estimator of a distribution function.

The rest of the paper is organized as follows. In Section 2, we introduce our esti-
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mator of F and derive its limiting distribution. We present the algorithm to compute
the confidence band and study its asymptotic property in Section 3. We extend our
methodology to conditional distribution functions in Section 4. The performance of the
proposed method is evaluated through a simulation study in Section 5. We discuss a
data example from the national Wilms tumor study in Section 6. All proofs are deferred
to the appendix.

2. Estimator and its asymptotic properties

We introduce additional notation for our estimator. Let R( j)
i ∈ {0,1} be the selec-

tion indicator from data source V ( j). The item i has a vector of selection indicators
Ri = (R(1)

i , . . . ,R(J)
i ) but R( j)

i = 0 if the item i does not belongs to source V ( j). For
the items i in data source j (i.e., Vi ∈ V ( j)), R( j)

i s follow the distribution of sampling
without replacement where n( j) is selected out of N( j). Since data collection procedures
are carried out independently, selection indicators (R( j)

1 , . . . ,R( j)
N ) and (R(k)

1 , . . . ,R(k)
N ) are

conditionally independent given V1, . . . ,VN if j �= k. For V ∈V ( j), we assume the selection
probability π( j)(V ) = n( j)/N( j) converges to p( j) > 0 as N → ∞. We write the member-
ship probability in source V ( j) as ν( j) = P(V ∈ V ( j)) and the conditional expectation
given membership in source V ( j) as E( j).

The desirable properties that an estimator of F in our data integration setting should
satisfy are that (1) the estimator corrects bias due to biased sampling and duplication,
and that (2) the estimator is computable without identification of duplicated records.
To describe our estimator, we begin with J = 2 data sources. The key component of our
estimator is

ρ(v) = (ρ(1)(v),ρ(2)(v))≡
⎧⎨
⎩

(1,0) if v ∈ V (1) and v /∈ V (2),

(0,1) if v /∈ V (1) and v ∈ V (2),

(c(1),c(2)) if v ∈ V (1)∩V (2),

for positive constants c(1),c(2) with c(1) + c(2) = 1. The evaluation of this function only
requires the membership in the mutually exclusive subsets of V based on data sources
V (1) and V (2). We can compute the value of ρ for selected items because we assume
information on data source membership is available for selected items. The choice of ρ
is at the disposal of a data analyst. The optimal choice of ρ is considered by SAEGUSA
(2019) and we use them in a simulation study and data example below.

Using the function ρ, we propose the following estimator of F given by

FN(x) =
1
N

N

∑
i=1

(
R(1)

i

π(1)(Vi)
ρ(1)(Vi)+

R(2)
i

π(2)(Vi)
ρ(2)(Vi)

)
I{Xi ≤ x}.

Here we use the convention 0/0 = 0 for the inverse probability weighting R( j)/π( j)(V ).
This estimator is unbiased for F because inverse probability weighting R( j)/π( j)(V ) has
conditional expectation 1 given V1, . . . ,VN and X1, . . . ,XN and because ρ(1)(v)+ρ(2)(v) =
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1 for every v. Moreover, the estimator can be computed separately based on two sub-
samples through the expression

FN(x) =
1
N

N

∑
i=1

R(1)
i ρ(1)(Vi)

π(1)(Vi)
I{Xi ≤ x}+ 1

N

N

∑
i=1

R(2)
i ρ(2)(Vi)

π(2)(Vi)
I{Xi ≤ x}.

The proposed estimator can be considered as the weighted empirical distribution with
weights computed from the selection probability and the function ρ. A difference from
the empirical distribution is that our estimator may not have FN(x) = 1 for x greater
than the largest selected Xi unless all the items i in V (1) ∩V (2) selected from source
V (1) are also selected from V (2). If FN(x)> 1 we can modify our estimator to F̃N(x) =
min{FN(x),1}. For brevity of the presentation, we study FN(x) but all properties below
are satisfied for F̃N(x).

The extension to more than two data sources is straightforward. Let ρ =(ρ(1), . . . ,ρ(J)) :
V 	→ [0,1]J where

ρ( j)(v) =

⎧⎪⎪⎨
⎪⎪⎩

1, v ∈ V ( j)∩
(
∪m�= jV

(m)
)c

,

c( j)
k1,...,kl

, v ∈ V ( j)∩
(
∩l

m=1V
(km)
)
∩
(
∪m/∈{ j,k1,...,kl}V

(m)
)c

,

0, v /∈ V ( j),

with j,k1, . . . ,kl all different and ∑J
j=1 ρ( j)(v) = 1. The proposed estimator is

FN(x) =
1
N

N

∑
i=1

J

∑
j=1

R( j)
i ρ( j)(Vi)

π( j)(Vi)
I{Xi ≤ x}.

Now, we develop asymptotic properties of our estimator. As the uniform consistency
of the empirical distribution follows from the Glivenko-Cantelli theorem, the uniform
consistency for our estimator follows from the uniform law of large numbers for data
integration (SAEGUSA, 2019).

Theorem 2.1. The estimator FN is uniformly consistent for F over R. That is,

sup
x∈R

|FN(x)−F(x)| →P 0.

As the Donsker theorem yields the weak convergence of the empirical distribution
to the Brownian bridge process, the weak convergence for our estimator follows from
the uniform central limit theorem for data integration (SAEGUSA, 2019). Its limiting
distribution is still a Gaussian process, but not the Brownian bridge process.

Theorem 2.2. Let D(R) be the class of cadlag functions on R. Our estimator
√

N(FN −
F) weakly converges to the Gaussian process G in D(R) given by

G=G0 +
J

∑
j=1

√
ν( j)

√
1− p( j)

p( j)
G j,
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where G j, j = 0,1, . . . ,J, are independent Gaussian processes with covariance functions

k(0)(s, t) = F(s∧ t)−F(s)F(t),

k( j)(s, t) = E( j)
[{

ρ( j)(V )
}2

I{X ≤ s∧ t}
]

−E( j)
[
ρ( j)(V )I{X ≤ s}

]
E( j)

[
ρ( j)(V )I{X ≤ t}

]
,

for s, t ∈ R and j = 1, . . . ,J.

An immediate consequence of this theorem is that
√

N(FN(x)− F(x)) converges
in distribution to the zero-mean normal random variable with variance as the sum of
P(X ≤ x){1−P(X ≤ x)} and

J

∑
j=1

(
ν( j) 1− p( j)

p( j)
E( j)

[{
ρ( j)(V )

}2
I{X ≤ x}

]
−
{

E( j)
[
ρ( j)(V )I{X ≤ x}

]}2
)
.

Note that P(X ≤ x){1−P(X ≤ x)} is asymptotic variance which we would obtain from
the analysis of i.i.d. data. Merging samples from overlapping sources increases additional
uncertainty in our estimator. If we select all items from each source without identifying
duplication, then p( j) = 1, j = 1, . . . ,J, yield the same variance as in the i.i.d. case. Hence,
we see that the additional variance comes from additional selection, not duplication. The
effect of duplication appear only through the variable ρ( j)(V ). Uncertainty in large data
source (i.e., ν( j) = P(V ∈ V ( j)) contributes more to the asymptotic variance.

3. Confidence band

The basic idea to obtain a confidence band is to obtain q1−α such that

P
(

sup
x∈R

√
N |FN(x)−F(x)| ≤ q1−α

)
→ 1−α, n → ∞,

from which the large sample 100(1−α)% confidence band is obtained as

FN(x)−q1−α/
√

N ≤ F(x)≤ FN(x)+q1−α/
√

N, all x ∈ R.

One potential approach is to use an analytical expression of quantiles of the limiting
distribution of supx∈R

√
N |FN(x)−F(x)| but this limiting distribution supx∈R |G(x)| ob-

tained from Theorem 2.1 is the supremum of the complicated Gaussian process whose
quantiles cannot be analytically derived in general. Another approach is to estimate q1−α
by nonparametrically bootstrapping supx∈R

√
N |FN(x)−F(x)| but there is no known valid

bootstrap method for our setting. Generating data from FN would be another alterna-
tive but it is not clear how to simultaneously generate V to mimic the data integration
process.

The proposed methodology does not analytically compute q1−α from the limiting
distribution nor simulating data generating mechanism. Instead, we directly simulate
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the limiting distribution to estimate its quantiles. The distribution of the zero-mean
Gaussian process G is completely determined by the unknown covariance function

k(s, t) = k(0)(s, t)+
J

∑
j=1

ν( j) 1− p( j)

p( j)
k( j)(s, t).

We estimate this covariance function k(s, t) as follows. For data source membership
probability ν( j) and selection probability p( j), we estimate them by N( j)/N and n( j)/N( j)

respectively. For k(0)(s, t), an obvious estimator is FN(s∧ t)−FN(s)FN(t). For k( j)(s, t),
conditional expectations given membership in V ( j) are estimated by inverse probability
weighting based on a sample selected from source V ( j) (i.e., items i with R( j)

i = 1).
Specifically, the first term in k( j)(s, t) is estimated by

1
N( j)

N

∑
i=1

R( j)
i

π( j)(Vi)
{ρ( j)(Vi)}2I{Xi ≤ s∧ t},

and the second term in k( j)(s, t) is estimated by{
1

N( j)

N

∑
i=1

R( j)
i

π( j)(Vi)
ρ( j)(Vi)I{Xi ≤ s}

}{
1

N( j)

N

∑
i=1

R( j)
i

π( j)(Vi)
ρ( j)(Vi)I{Xi ≤ t}

}
.

We denote our estimator of k(s, t) by k̂N(s, t).
The zero-mean Gaussian process ĜN with covariance function k̂N(s, t) weakly con-

verges to the limiting process G. However, the supremum of |G(x)| may have a jump
at the lower end of the support of X (TSIRELSON, 1975). To avoid the possibility that
the jump occurs at its 100(1−α)%tile, we assume the following condition. The same
condition is imposed by BICKEL and KRIEGER (1989) for finite population sampling.

Condition 3.1. The distribution of supx∈R |G(x)| is continuous.

Under this condition, we have the following result.

Theorem 3.1. Let q ∈ R. Let ĜN be the zero-mean Gaussian process with covariance
function k̂N(s, t), Under Condition 3.1, as N → ∞,

P
(

sup
x∈R

|ĜN(x)| ≤ q
)
→ P

(
sup
x∈R

|G(x)| ≤ q
)
.

We propose the following procedure to construct a confidence band of F :

• Generate the first zero-mean Gaussian process ĜN with covariance function k̂N(s, t),
and compute the supremum s1 of |ĜN |

• Repeat this procedure B times to obtain s1, . . . ,sB, and compute their 100(1−
α)%tile q̂1−α .
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• Compute the 100(1−α)% confidence band of F by

FN(x)− q̂1−α/
√

N ≤ F(x)≤ FN(x)+ q̂1−α/
√

N, all x ∈ R. (1)

The proposed confidence band has the correct coverage probability asymptotically.

Theorem 3.2. Under Condition 3.1, as N,B → ∞,

P
(
FN(x)− q̂1−α/

√
N ≤ F(x)≤ FN(x)+ q̂1−α/

√
N, all x ∈ R

)
→ 1−α.

4. Extension to conditional distribution given discrete variables

In practice, it is of interest to compare different groups through graphical comparison
of distribution functions. An extension of our method to conditional distributions given
a discrete random variable is straightforward. Let U be a discrete random variable. First,
we estimate the sub-distribution function F(x,u) = P(X ≤ x,U = u) by

FN(x,u) =
1
N

N

∑
i=1

(
R(1)

i

π(1)(Vi)
ρ(1)(Vi)+

R(2)
i

π(2)(Vi)
ρ(2)(Vi)

)
I{Xi ≤ x,Ui = u}.

The limiting distribution is similar to the one in Theorem 2.2 but covariance functions
are now

k(0)u (s, t) = P(X ≤ s∧ t,U = u)−P(X ≤ s,U = u)P(X ≤ t,U = u),

k( j)
u (s, t) = E( j)

[{
ρ( j)(V )

}2
I{X ≤ s∧ t,U = u}

]

−E( j)
[
ρ( j)(V )I{X ≤ s,U = u}

]
E( j)

[
ρ( j)(V )I{X ≤ t,U = u}

]
.

This covariance function can be similarly estimated and the same procedure described
above yields the confidence band given by

FN(x,u)− q̂1−α,u/
√

N ≤ F(x,u)≤ FN(x,u)+ q̂1−α,u/
√

N, all x ∈ R.

Since F(x|u) = P(X ≤ x|U = u) = P(X ≤ x,U = u)/P(U = u), we estimate pu = P(U = u)
by a consistent estimator

p̂u =
1
N

N

∑
i=1

(
R(1)

i

π(1)(Vi)
ρ(1)(Vi)+

R(2)
i

π(2)(Vi)
ρ(2)(Vi)

)
I{U = u}.

Now we propose the confidence band for F(x|u) given by

FN(x,u)
p̂u

− q̂1−α,u

N1/2 p̂u
≤ F(x|u)≤ FN(x,u)

p̂u
+

q̂1−α,u

N1/2 p̂u
, all x ∈ R. (2)
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Table 1: Sample sizes for three scenarios.

Scenario 1 & 2 Scenario 3
N 100 250 500 100 250 500
N(1) 79 197 395 78 197 395
N(2) 51 127 255 51 127 255
N(3) 28 70 141
n(1) 16 40 80 16 40 80
n(2) 16 38 77 16 38 77
n(3) 14 35 71
Duplication (2 sources) 2 5 9 6 2 27
Duplication (3 sources) 0 1 1

This confidence band has the correct coverage probability asymptotically. The proof is
similar to that of Theorem 3.2, and omitted.

5. Simulation study

We carry out a simulation study to evaluate the finite-sample performance of the
proposed confidence band. We consider three different scenarios. The first two scenar-
ios concern two partially overlapping data sources. The third scenario deals with three
data sources with one data source contained in other two. The distributions consid-
ered are mixtures of beta distributions, Poisson distributions, and normal distributions,
respectively.

In the first scenario, the variable Y is a Bernoulli random variable with p = 0.3. The
variable X of interest follows the beta distribution with α = 5 and β = 2 if Y = 0 and
the beta distribution with α = 2 and β = 5 if Y = 1. The variables W = (X ,Y ) are not
available at the first stage of sampling. The auxiliary binary variable V is correlated with
Y with sensitivity 0.9 and specificity 0.9. Data sources are created by values of V . If
V = 0, the item belongs to data source 1 and if V = 1 it belongs to data source 2. In
both situations, the item belongs to the intersection of two data sources with probability
0.3. Selection probabilities are 0.2 from data source 1 and 0.3 from data source 2. The
second scenario is the same as the first except that the variable X follows the Poisson
distribution with λ = 2 if Y = 0 and the Poisson distribution with λ = 4 if Y = 1. In
the third scenario, variables Y and V and data sources 1 and 2 are similarly generated
as in the other two cases. The variable X follows the normal distribution with μ = 1
and σ2 = 1 if Y = 0 and the normal distribution with μ = 3 and σ2 = 1 if Y = 1. The
data source 3 consists of items with X ∈ [1,2]. Selection probabilities are 0.2 from data
source 1, 0.3 from data source 2, and 0.5 from data source 3.

Data were generated 500 times in each scenario with sample size N = 100, N = 250,
and N = 500. In each data set, the 95% confidence band was constructed based on
2000 simulated Gaussian processes with the formula (1). Table 1 summarizes average
sample sizes for each data source before and after the selection into the final sample.
Note that the proposed estimator is based on 30 items for scenarios 2 and 3, and 40
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Table 2: Simulated coverage probabilities for the confidence bands.

Scenario 1 Scenario 2 Scenario 3
Coverage Width Coverage Width Coverage Width

N = 100 0.940 0.454 0.936 0.442 0.920 0.464
N = 250 0.944 0.295 0.954 0.286 0.956 0.304
N = 500 0.952 0.211 0.944 0.203 0.956 0.217

items for scenario 3 on average without duplication when N = 100. Table 2 shows
simulated coverage probabilities and average width based on 500 data simulated data
sets. Coverage probabilities are close to the nominal level in all scenarios when N is
greater than 250 while we see under-coverage when N = 100. Confidence bands are wide
for N = 100 but the width becomes reasonable as N increases. Overall, our methodology
shows reasonable performance for a practical use.

6. Application

We illustrate the proposed method using data from the national Wilms tumor study
(D’ANGIO et al., 1989). Wilms tumor is a rare kidney cancer for children. The predictor
of relapse includes histology of cancer, age at diagnosis, and tumor diameter. Data for
all 3915 patients are available and were used to compare different designs (BRESLOW
and CHATTERJEE, 1999; BRESLOW et al., 2009; SAEGUSA, 2019). In our analysis,
we check if the empirical distributions based on the entire cohort are contained in the
proposed confidence bands based on a smaller biased sample with duplication. Three
data source are deceased patients, patients with unfavorable histology measured at the
hospital, and the entire cohort. Selection probabilities 100%, 50%, and 10%, respectively,
yielding the sample size 1027 in the final sample (885 patients without duplication).
For selected patients, tumor diameter is measured and histology is re-examined at the
central reference laboratory. Our goal is to create two distribution functions of tumor
diameter based on the histology information measured at the second time. Among
selected patients, 646 (603 without duplication) patients have favorable histology and
382 (282 without duplication) patients have unfavorable histology.

Figure 2 shows the confidence bands for the conditional distributions of tumor diag-
meter given histology based on the formula (2). The solid line is smoothed empirical
distribution based on the entire cohort of size 3915. Our estimators are close to empirical
distributions. Moreover, the proposed confidence bands successfully contain empirical
distributions. The difference in sample sizes based on histology is reflected in the differ-
ence of widths. The confidence band for favorable histology has width 0.133 while the
band for unfavorable histology has width 0.307. Graphical comparison of both estima-
tors with the help of confidence bands shows that there is no striking difference between
distributions of tumor diameter in different histology groups. In fact, empirical quar-
tiles of tumor diameter for both groups agree well. A similar analysis (not shown here)
conditional on survival status led to the same conclusion. In the proportional hazards
regression analysis, SAEGUSA (2019) shows that tumor diameter has a small effect on
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Figure 2: Confidence bands for conditional distribution functions of tumor diameter given
favorable histology (left panel) and unfavorable histology (right panel).

tumor relapse while histology is statistically significant.
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APPENDIX

Proof of Theorem 2.1. Because the class of functions F = { ft(x) = I(x ≤ t) : t ∈ R} is
a Glivenko-Cantelli class, apply the uniform law of large numbers for data integration
(Theorem 3.1 of SAEGUSA (2019)) to F to obtain the desired result.

Proof of Theorem 2.2. Because the class of functions F = { ft(x) = I(x ≤ t) : t ∈ R}
is also a Donsker class, apply the uniform central limit theorem for data integration
(Theorem 3.2 of SAEGUSA (2019)) to F . The computation of the covariance function
is straightforward.

Proof of Theorem 3.1. We show the weak convergence of ĜN to G. First we consider
the finite dimensional convergence of ĜN to G. As in the proof of Theorem 2.1, the law
of large numbers for data integration yields

sup
s,t∈R

|FN(s∧ t)−FN(s)FN(t)− k(0)(s, t)| →P 0.

For k( j)(s, t), j = 1, . . . ,J, the law of large numbers for sampling without replacement
(Theorem 5.1 of SAEGUSA and WELLNER (2013)) yields the uniform consistency over
s, t ∈ R. Since n( j)/N( j) → p( j) by assumption and N( j)/N →P ν( j) by the weak law of
large numbers, we conclude

sup
s,t∈R

|k̂N(s, t)− k(s, t)| →P 0.

This implies the desired finite dimensional convergence.
Second, we consider asymptotic equicontinuity and total boundedness of R with

respect to a constant multiple of

d(0)(s, t) = k(0)(s,s)+ k(0)(t, t)−2k(0)(s, t).

Note that the intrinsic metric d(s, t) = k(s,s)+k(t, t)−2k(s, t) to the limiting process G is
equivalent to d(0)(s, t) (i.e.,C1d(s, t)≤ d(0)(s, t)≤C2d(s, t) for some constants C1,C2 > 0)
because ρ( j)(v) is bounded. Also, on the event A that sups,t∈R |k̂N(s, t)−k(s, t)|<C3 for
some small fixed constant C3 > 0, d̂N(s, t) = k̂N(s,s)+ k̂N(t, t)−2k̂N(s, t) is equivalent to
d(s, t) since d(s, t) is bounded over R

2. These observations imply that the process G

and ĜN are sub-Gaussian processes with respect to Cd(0)(s, t) for some constant C > 0
on the event A. As a consequence, the property of the sub-Gaussian process (see e.g.
Theorem 2.3.7 of GINÉ and NICKL (2016)) implies that

E

[
sup

d(0)(s,t)≤δ

∣∣ĜN(s)− ĜN(t)
∣∣> ε

∣∣∣∣∣A
]
≤ K

∫ δ

0

√
log2N(R,Cd(0),ε)dε (3)
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for some constant K > 0 as long as the integral on the right hand side is finite. Here
N(R,Cd(0),ε) is the covering number of R with respect to the metric Cd(0) with radius
ε.

For asymptotic equicontinuity, let η > 0 be arbitrary. We have

limsup
n→∞

P

(
sup

d(0)(s,t)≤δ

∣∣ĜN(s)− ĜN(t)
∣∣> η

)

≤ limsup
n→∞

P

(
sup

d(0)(s,t)≤δ

∣∣ĜN(s)− ĜN(t)
∣∣> η ,A

)
+P(Ac).

where Ac is the complement of A. Since P(Ac) → 0, we bound the first term by the
Markov inequality and the inequality (3) to obtain

limsup
n→∞

P

(
sup

d(0)(s,t)≤δ

∣∣ĜN(s)− ĜN(t)
∣∣> η

∣∣∣∣∣A
)

P(A)

≤ limsup
n→∞

η−1K
∫ δ

0

√
log2N(R,Cd(0),ε)dε → 0, as δ ↓ 0,

assuming the integral on the right hand side is finite for any δ , which we will show next.
To compute the covering number with radius ε, create l subintervals [Ii, Ii+1] of [0,1]

with length less than ε with I0 = 0 < I1 < · · ·< ll+1 = 1. Note that we do not consider
ε ≥ 1 since we take δ ↓ 0. Let qi = F−1(Ii). Then F(qi+1)−F(qi) ≤ ε. If t ∈ [Ii, Ii+1),
we have

d(0)(qi, t) = F(qi){1−F(qi)}+F(t){1−F(t)}−2{F(qi)−F(qi)F(t)} ≤ 4ε.

This means t is in the d(0)-ball with center qi and radius 4ε. This implies that the
covering number with radius ε is proportional to 1/ε, and hence the entropy integral
converges. This computation also shows that R is totally bounded with respect to d(0).
Because asymptotic equicontinuity and total boundedness imply asymptotic tightness,
we now conclude the weak convergence of ĜN to G.

The continuous mapping theorem yields that supx∈R |ĜN(x)| converges in distribution
to supx∈R |G(x)|. Thus, the desired result follows from Condition 3.1.

Proof of Theorem 3.2. Theorem 2.2 and continuous mapping theorem imply
supx∈R

√
N|FN(x)−F(x)| converges in distribution to supx∈R |G(x)|. Theorem 3.1 im-

plies that q̂1−α converges in probability to the 100(1−α)%tile q1−α of supx∈R |G(x)|.
Combining these results completes the proof.


