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Model selection in radon data fusion
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ABSTRACT

Fitting parametric models or the use of the empirical cumulative distribution function
are problematic when it comes to the estimation of tail probabilities from small samples.
A possible remedy is to fuse or combine the small samples with additional data from
external sources and base the inference on the so called density ratio model with variable
tilt functions, which widens the support of the estimated distribution of interest. This
approach is illustrated using residential radon concentration data collected from western
Pennsylvania.
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1. Introduction

In general, the estimation of tail probabilities requires large samples. However, in

many cases the available samples are relatively small, a problem which can be overcome

to a reasonable extent by fusing the available data from several independent sources.

This is illustrated here using residential radon concentration data collected from counties

in western Pennsylvania (PA). We used county-level indoor radon concentrations based

on records collected by the Pennsylvania Department of Environmental Protection (PA

DEP), Bureau of Radiation Protection, Radon Division. For more details about the data

see Zhang, Pyne, and Kedem (ZPK) (2019), and the appropriate references including PA

Department of Environmental Protection, Rack-Amber (2013), Wikipedia contributors

(2019).

The range of values of a small sample may not be large enough to shed light on

the tail behavior of the distribution which gave rise to the sample. In that case more

data are needed. However, in many cases, more data are not available. Our goal is

to demonstrate that the problem can be ameliorated to a reasonable extent when the

sample is fused or combined with data from other sources, as the range of values of the

combined data is larger. Technically, this can be achieved by appealing to the so called

density ratio model (DRM), where the distributions of the various sources are connected

by fixed tilt functions. The novelty of the paper is the use of variable tilts obtained by

model selection.
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In this paper, we apply a data fusion method in the estimation of residential radon

levels in Forest County, located in the Appalachian Plateau in western PA. Its population

is small, with 2000 households as per the 2010 census, yielding a small sample of 47

homes only, insufficient for the estimation of tail probabilities, and hence qualifying it

as a “small area” problem. To overcome the small sample size, we fuse the Forest data

with samples from the two adjacent counties Elk and Warren whose populations are

much larger. Tail probabilities can then be estimated by using the density ratio model

(DRM) with variable tilt functions ZPK (2019). This formulation requires the selection

of optimal models out of a large number of models. In ZPK (2019), the selection of

tilt function was done via a long process of hypothesis testing while here we use a more

efficient model selection advocated in Fokianos (2007). The DRM is discussed in detail

in Kedem, De Oliveira and Sverchkov (KDS) (2017) and Qin (2017).

Fusing data from Forest, Elk, and Warren counties is sensible as they share the

geographical features of the “High Plateau Section” in northwestern PA in the region of

Appalachian Plateau (Rack-Amber 2013, Wikipedia contributors 2019).

Radon is an odorless cancer-causing radioactive gas released from decaying uranium,

thorium and radium in rocks and soil, and is the cause of thousands of deaths each

year (Rack-Amber 2013). Approximately 40% of PA homes have radon levels exceeding

EPA’s action guideline of 4 picocuries (pCi) per liter (PA Department of Environmental

Protection).

Therefore, it is of great importance to public health and policy that the residential

radon exposure data be analyzed to produce robust tail or exceedance probabilities.

The organization of the paper is as follows. Section 2 deals with the semi-parametric

estimation of the parameters and the probability densities of the density ratio model. It

also addresses the selection of the tilt functions. A case in point in terms of residential

radon is discussed in Section 3. A summary is provided in Section 4.

2. Methodology

2.1. Density Ratio Model

To make use of the data from neighboring counties, a multi-sample DRM is proposed

to fuse the data from the county of interest and its m neighbors such that

gk(x)
g(x)

= exp(αk +βT
k hk(x)) k = 1, . . . ,m (1)

where g represents the density of residential radon levels of the county of interest and

g1, . . . ,gm represent the densities of its m neighbors.

The semi-parametric estimation of the parameters and densities in (1) is discussed

in the next section using the empirical likelihood (Owen 2001). Model (1) was found

adequate by a graphical goodness of fit test discussed briefly in Section 3. The model

is discussed extensively in the recent books by KDS (2017) and in Qin (2017), which

also describe quite a few applications from case-control tests of equidistribution to time

series prediction.
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Instead of making parametric assumptions on these densities, we propose a para-

metric structure of their ratios by DRM (KDS 2017, Qin 2017). A proper choice of the

tilt functions hk’s is imperative since misspecification of the tilt functions leads to bias,

large standard errors, and power loss (Fokianos and Kaimi 2006). We shall commence

with a possibly redundant or “global” tilt and then select a reduced form of this tilt.

Such a tilt function is specified in section 3.

2.2. Estimation and Asymptotic Result

Let X0, . . . ,Xm be the samples from the county of interest and its m neighbors with

sample sizes n0, . . . ,nm, respectively. The sampleX0 is referred to as the reference sample

and we shall denote by G the corresponding reference cumulative distribution function

(CDF). The fused sample is defined as t= (XT
0 , . . . ,X

T
m)

T , with size n = ∑m
k=0 nk.

Inference can be based on the following empirical likelihood obtained from the fused

sample t:

L(α,β,G) =
n

∏
i=1

pi

m

∏
k=1

nk

∏
j=1

exp(αk +βT
k hk(Xk j)) (2)

where pi = dG(ti) and the estimates α̃, β̃ and hence the p̃i’s, are obtained by maximizing

(2) with constraints

n

∑
i=1

pi = 1
n

∑
i=1

pi exp(αk +βT
k hk(ti)) = 1 k = 1, . . . ,m. (3)

Subsequently, we obtain the estimated reference CDF G̃(t) = ∑n
i=1 p̃iI[ti ≤ t] and the

asymptotic result

√
n(G̃(t)−G(t)) d→ N(0,σ(t)), as n→ ∞. (4)

The expression of σ(t) and other details regarding estimation and asymptotic result can

be found in KDS (2017), Qin (2017) and ZPK (2019). Therefore, we can construct a

95% confidence interval of the tail probability 1−G(T ) for a given threshold T based

on (4)

(1− G̃(T )− z0.025

√
σ̃(t)

n
,1− G̃(T )+ z0.025

√
σ̃(t)

n
). (5)

2.3. Model Selection

As mentioned in 2.1, we aim to select tilt functions that can better specify the density

ratio structure. Such selection can be made based on the AIC criterion given by

−2logL(α̃, β̃, G̃)+2q (6)

where q is the number of free parameters in the model (Fokianos 2007). Note that the

number of free parameters is equal to the number of β ’s due to the constraints (3).
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3. Illustrative Example: Forest County Radon Data Fusion

Here Forest county is the county of interest. Denote the Forest sample by X0 and

its size by n0. The sample size n0 = 47 is relatively small so that the empirical estimate

of the CDF Ĝ(t) = 1
n0

∑n0
i=1 I[X0i ≤ t] may not be satisfactory for the estimation of tail

probabilities. That is, we cannot make inference about G based on Ĝ outside of the

range of X0. Also, a smaller sample size leads to higher standard errors and hence

wider confidence intervals, and may not be adequate for the estimation of small tail

probabilities.

We wish to mitigate these issues by fusing X0 with samples from its two neighboring

counties Warren and Elk to obtain an estimate of the reference CDF G̃ based on the

DRM (1). The samples from Warren and Elk are denoted as X1 and X2, respectively.

The corresponding sample sizes are n1 = 837 and n2 = 1191.

Observing that the data in the three counties are positive and right skewed, the global

or redundant tilt function (x, log(x), log2(x))T is a sensible choice based on ZPK (2019).

Hence, we initially assume that hk = (x, log(x), log2(x))T for k = 1,2, and then curtail it

using the AIC model selection criterion. The AIC values corresponding to different tilts

are shown in Table 1.

Table 1: AIC values of models based on different tilt choices. A hyphen “-” indicates that
hk(x)≡ 0 and therefore g0 and gk are identical.

h2

AIC h1
- x log(x) log2(x) (x, log(x)) (x, log2(x)) (log(x), log2(x)) (x, log(x), log2(x))

- 31696.52 31697.86 31694.68 31697.54 31686.85 31682.73 31694.35 31684.24

x 31698.24 31691.11 31695.63 31699.20 31680.96 31677.07 31696.32 31678.58

log(x) 31693.46 31685.55 31695.07 31692.86 31687.35 31683.05 31694.81 31684.70

log2(x) 31695.67 31680.36 31696.67 31694.28 31680.14 31680.10 31691.31 31681.62

(x, log(x)) 31693.43 31684.21 31695.04 31694.63 31682.37 31679.01 31696.63 31680.02

(x, log2(x)) 31693.13 31682.36 31695.03 31691.36 31681.38 31678.75 31690.98 31680.26

(log(x), log2(x)) 31695.11 31681.91 31696.71 31693.58 31680.03 31682.06 31691.40 31681.93

(x, log(x), log2(x)) 31694.44 31683.83 31696.05 31692.66 31680.67 31680.48 31690.13 31682.01

It is observed that the smallest AIC value of 31677.07 is achieved by the model with tilts

h1(x) = (x, log2(x)) and h2(x) = x.

We proceed to estimate the parameters and reference CDF according to 2.2 with

the chosen tilts. The confidence intervals of the tail probabilities for different thresholds

obtained from both G̃ and Ĝ are shown in Table 2.
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Table 2: Tail probability 1−G(T ) estimates and 95% confidence intervals for threshold
T = 5,10,25,50,100,150,200,250.

T 1− G̃(T ) 95% CI Length of CI

5 0.4447 (0.3773,0.5121) 0.1349

10 0.2790 (0.2004,0.3577) 0.1573

25 0.1482 (0.0693,0.2271) 0.1578

50 0.0915 (0.0201,0.1629) 0.1429

100 0.0548 (−0.0041,0.1138) 0.1178

150 0.0303 (−0.0125,0.0732) 0.0857

200 0.0264 (−0.0135,0.0662) 0.0798

250 0.0121 (−0.0142,0.0384) 0.0526

T 1− Ĝ(T ) 95% CI Length of CI

5 0.3191 (0.1859,0.4524) 0.2665

10 0.2553 (0.1307,0.3800) 0.2493

25 0.1277 (0.0323,0.2231) 0.1908

50 0.0851 (0.0053,0.1649) 0.1595

100 0.0851 (0.0053,0.1649) 0.1595

150 0.0426 (−0.0152,0.1003) 0.1154

200 0.0213 (−0.0200,0.0625) 0.0825

250 0.0000 - -

From Table 2, it is readily seen that the lengths of the confidence intervals obtained

by the DRM are significantly shorter than those obtained by the empirical CDF for a

given threshold T . The slightly negative lower bounds are due to computational problems

with small probabilities and should be replaced by 0’s.

It is worth noting that 1− Ĝ(250) = 0 while 1− Ĝ(50) = 1− Ĝ(100). This is due to

the fact that X0 does not contain observations between (50,100) or larger than 207.

However, we can make inferences on these regions based on G̃ since X1 and X2 do

contain observations between (50,100) or larger than 207.

Remark: The use of the DRM requires a justification in terms of goodness-of-fit tests

discussed in KDS (2017) and in Qin (2017). As argued in Voulgaraki, Kedem, and

Graubard (VKG) (2012), the DRM may not be valid for heavy tailed distributions.

Examples include attempts to fit the model to data from two Cauchy distributions and

from Cauchy and uniform distributions.

The graphical checking technique proposed in VKG (2012) is applied to check the

goodness-of-fit of the selected model. From Figure 1, it is readily seen that the points

roughly form a 45◦-line, indicating the closeness of Ĝ and G̃ and hence an adequate

DRM. A simulation of fusing absolute data from three Cauchy distributions, Cauchy(0,1),

Cauchy(1,2) and Cauchy(2,3) with respective sample sizes 47, 837, 1191, and tilts

h1(x) = (x, log2(x)) and h2(x) = x, has been conducted where the reference sample

contains the absolute data from Cauchy(0,1). These are the sample sizes and tilts used

in the analysis of the Forest radon data. It is observed in Figure 2 that the points are

far away from a 45◦-line, which indicates that the DRM is inappropriate. Such a result

agrees with the examples in VKG (2012) mentioned above.
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Figure 1: Pairs (G̃(T ),Ĝ(T )) from the se-
lected radon data model
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Figure 2: Pairs (G̃(T ),Ĝ(T )) from the
DRM fit using absolute data from the
three Cauchy distributions

4. Summary

When the size of a sample is relatively small, the empirical CDF might be inadequate

for inference on distributions, while making parametric assumptions on the distributions

can lead to misspecification. The DRM enables us to make semi-parametric inference

about the reference distribution based on more observations, that is, based on fused

samples with parametric assumptions on the ratios of the densities. These assumptions

are generally weaker than the parametric assumptions on the distribution (ZPK 2019).

Furthermore, an AIC based model selection renders the assumptions more sensible and

hence it mitigates the problem of misspecification.

In the present residential radon application, we have seen that the lengths of the

confidence intervals for tail probabilities obtained by the DRM are shorter than those

obtained by the empirical CDF for a given threshold T .
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