Amal S. Hassan https://orcid.org/0000-0003-4442-8458 , E. A. Elsherpieny https://orcid.org/0000-0002-2635-8081 , Wesal E. Aghel https://orcid.org/0009-0000-7246-7660

© Amal S. Hassan, E. A. Elsherpieny, Wesal. E. Aghel. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The dynamic weighted cumulative residual (DWCR) entropy is regarded as an additional measure of uncertainty related to the residual lifetime function in several disciplines, including survival analysis and reliability. This article presents the DWCR formula based on Havarda and Charvat. This measurement is called the DWCR Havarda and Charvat entropy (DWCRHCE). This work uses progressive Type II censoring to investigate the implications of DWCR Tsallis entropy (DWCRTE), DWCR Rényi entropy (DWCRRE), and DWCRHCE for the Burr XII distribution. Both classical and Bayesian methods are used to derive the estimators of these entropy metrics. Assuming independent gamma priors, we get the Bayes estimator of the suggested measures. Due to the lack of explicit forms, the Metropolis- Hastings approach was offered to determine the Bayes estimates for symmetric and asymmetric loss functions. To determine the efficacy of the suggested estimating techniques, several simulations were run for different censoring schemes. The simulation analysis leads us to the conclusion that, under a precautionary loss function followed by a linear exponential loss function, the Bayesian estimates of DWCRTE are generally more effective than the DWCRHCE or DWCRRE. Compared to maximum likelihood estimates, Bayesian estimates are preferred for different metrics. After that, a detailed explanation of the process is provided by looking at real data. The analysis of real-world data, specifically the Shasta reservoir water capacity data, aligns with the findings from simulated data. Notably, these findings have crucial implications for effective water resource management decisions.

KEYWORDS

Burr XII distribution, dynamic weighted cumulative residual entropy, Bayesian estimators, precautionary loss function

REFERENCES

Abd-Elfattah, A. M., Hassan, A. S. and Nassr, S. G., (2008). Estimation in step-stress partially accelerated life tests for the Burr Type XII distribution using type I censoring. Statistical Methodology, 5(6), pp. 502–514.

Abo-Eleneen, Z. A., (2011). The entropy of progressively censored samples. Entropy, 13 (2), pp. 437–49.

Ahmadini, A. H., Hassan, A. S., Zaky, A. N. and Alshqaq, S. S., (2020). Bayesian inference of dynamic cumulative residual entropy from Pareto II distribution with Application to COVID-19. AIMS Mathematics, 6(3), pp. 2196–2216.

Al-Babtain, A. A., Hassan, A.S., Zaky, A. N., Elbatal, I. and Elgarhy, M., (2021). Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods. AIMS Mathematics, 6(3), pp. 3889–3914.

AlmarashiI, M., Algarni, A., Hassan, A. S., Zaky, A. S. and Elgarhy, M., (2021). Bayesian analysis of dynamic cumulative residual entropy for Lindley distribution. Entropy, 23, 1256. https://doi.org/10.3390/ e23101256.

Alyami, S. A., Hassan, A. S., Elbatal, I., Elgarhy, M., A. R. and El-Saeed, A. R., (2023). Bayesian and non- Bayesian estimates of the DCRTE for moment exponential distribution under progressive censoring type II. Open Physics. 21, 20220264.

Asadi, M., Zohrevand, Y., (2007). On the dynamic cumulative residual entropy. Journal of Statistical Planning and Inference, 137, pp. 1931–1941.

Balakrishnan, N., Aggrawala, R., (2000). Progressive Censoring, Theory, Methods and Applications. Birkhauser, Boston.

Baratpour, S., Ahmadi, J. and Arghami, N. R., (2007). Entropy properties of record statistics. Statistical Papers, 48, pp. 197–213.

Belis, M., Guiasu, S., (1968). A quantitative-qualitative measure of information in cybernetic systems. IEEE Transactions on Information Theory, IT-4, pp. 593–594.

Burr, W. I., (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13(2), pp. 215?232.

Belzunce, F., Navarro, J., Runiz, J. M. and Aguila, Y., (2004). Some results on residual entropy function. Metrika, 59, pp. 147–161.

Cho, Y., Sun, H. and Lee, K., (2015). Estimating the entropy of a Weibull distribution under generalized progressive hybrid censoring. Entropy, 17, pp. 102–122.

Cohen, A. C., (1963). Progressively censored samples in life testing. Technometrics, 5(3), pp. 327–339.

Di Crescenzo, A. D, Longobardi, M., (2006). On weighted residual and past entropies, Scientiae Mathematicae Japonicae, 64(3), pp. 255–266.

Evans, R. A., Simons, G., (1975). Research on statistical procedures in reliability engineering. ARL TR 75-0154, AD A013687.

Guiasu, S., (1986). Grouping data by using the weighted entropy. Journal of Statistical Planning and Inference, 15, pp. 63–69.

Gupta, P. L., Gupta, R. C. and Lvin, S. J., (1996). Analysis of failure time data by Burr distribution. Communications in Statistics-Theory and Methods, 25, pp. 2013–2024.

Hassan, A. S., Zaky, A. N., (2021). Entropy Bayesian estimation for Lomax distribution based on record. Thailand Statistician,19(1), pp. 96–115.

Hassan, A. S., Zaky, A. N., (2019). Estimation of entropy for inverse Weibull distribution under multiple censored data. Journal of Taibah University for Science, 13, pp. 331–337.

Hassan, A. S., Assar, S. M. and Ali, K.A., (2024a). Efficient estimation of the Burr XII distribution in presence of progressive censored samples with Binomial random removal. Thailand Statistician, 22(1), pp. 121–141.

Hassan, A. S., Alsadat, N., Balogu, O. S. and Helmy, B. A., (2024b). Bayesian and non- Bayesian estimation of some entropy measures for a Weibull distribution. AIMS Mathematics, 9(11), 32646–32673. DOI: 10.3934/math.20241563

Hassan, A. S., Elsherpieny, E. A. and Mohamed, R. E., (2022). Estimation of information measures for power-function distribution in presence of outliers and their applications. Journal of Information and Communication Technology, 21 (1), pp. 1–25.

Havrda, J., Charvat, F., (1967). Quantification method of classification process: Concept of structural ?-entropy, Kybernetika, 3, pp. 30–35.

Helmy, B.A., Hassan, A. S. and El-Kholy, A. K., (2021). Analysis of uncertainty measure using unified hybrid censored data with applications. Journal of Taibah University for Science, 15(1), pp. 1130–1143.

Helmy, B. A., Hassan, A. S. and El-Kholy, A. K., (2023). Analysis of Uncertainty Weighted Measures for Pareto II distribution. Reliability Theory & Applications, 18(3), pp. 81–196.

Kayal, S., Balakrishnan, N., (2023). Weighted fractional generalized cumulative past entropy and its properties. Methodology Computing Applied Probability, 25, p 61. https://doi.org/10.1007/s11009-023-100350

Khammar, A.H., Jahanshahi, A. M. A., (2018). On weighted cumulative residual Tsallis entropy and its dynamic version. Physica A: Statistical Mechanics, 491, pp. 678–692.

Lee, K., (2017). Estimation of entropy of the inverse Weibull distribution under generalized progressive hybrid censored data. Journal of the Korean Data & Information Science Society, 28(3), pp. 659–668.

Li, X., Shi, Y., Wei, J. and Chai, J., (2007). Empirical Bayes estimators of reliability performances using LINEX loss under progressively type-II censored samples. Mathematics and Computers in Simulation, 73(5), pp. 320–326.

Misagh, F., Yari, G. H., (2011). On weighted interval entropy. Statistics & Probability Letters, 81, pp. 188–194.

Mohamed, M. S., (2022). On cumulative residual Tsallis entropy and its dynamic version of concomitants of generalized order statistics. Communications in Statistics- Theory and Methods, 51(8), pp. 2534–2551.

Mousa, M. A., Jaheen, Z. F., (2002). Statistical inference for the Burr model base on progressively censored data. Computers & Mathematics with Applications, 43, pp. 1441–1449.

Nair, R. S., Sathar and E. I. A., (2024). Bivariate dynamic weighted cumulative residual entropy. Japanese Journal of Statistics and Data Science, 7, pp. 83–100 (2024). https://doi.org/10.1007/s42081-023-00232-z

Nanda, A. K., Paul, P., (2006). Some results on generalized residual entropy, Information Sciences, 176, pp. 27–47.

Nadar, M., Papadopoulos and A. Kizilaslan, F., (2013). Statistical analysis for Kumaraswamy?s distribution based on record data. Statistical Papers, 54, pp. 355– 369.

Navarro, J., Del Aguila, Y. and Ruiz, J. M., (2001). Characterizations through reliability measures from weighted distributions. Statistical Papers, 42, pp. 395–402.

Panahi, H., Sayyareh, A., (2014). Parameter estimation and prediction of order statistics for the Burr type XII distribution with type II censoring, Journal of Applied Statistics, 41, pp. 215–232.

Qin, X., Gui, W., (2020). Statistical inference of Burr-XII distribution under progressive type-II censored competing risks data with binomial removals. Journal of Computational and Applied Mathematics, 378, 112922.

Rao, M., Chen, Y., Vemuri, B. C. and Wang, F., (2004). Cumulative residual entropy: a new measure of information. IEEE Transactions Information Theory, 50, pp. 1220– 1228.

Renjini, K. R., Abdul Sathar, E. I. and Rajesh, G., (2016a). Bayes estimation of dynamic cumulative residual entropy for Pareto distribution under type-II right censored data. Applied Mathematical Modelling, 40, pp. 8424–8434.

Renjini, K. R., Abdul Sathar, E. I. and Rajesh, G., (2016b). A study of the effect of loss functions on the Bayes estimates of dynamic cumulative residual entropy for Pareto distribution under upper record values. Journal of Statistical Computation and Simulation, 86, pp. 324–339.

Renjini, K. R., Abdul Sathar, E. I. and Rajesh, G., (2018). Bayesian estimation of dynamic cumulative residual entropy for classical Pareto distribution. American Journal of Mathematical and Management Sciences, 37, pp. 1–13.

Rény, A., (1961). On measures of entropy and information in proceeding of the fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press: Berkeley, CA, USA, 1, pp. 547–561.

Sati, M. M., Gupta, N., (2015). Some characterization results on dynamic cumulative residual Tsallis entropy, Journal of Probability and Statistics. 23 http://dx.doi.org/10.1155/2015/694203.ArticleID 694203, p. 8.

Shannon, C. E., (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379–423.

Smitha, S., Sudheesh, K. K. and Sreedevi, E. P., (2024). Dynamic cumulative residual entropy generating function and its properties. Communications in Statistics - Theory and Methods, 53(16), pp. 5890–5909.

Soliman, A. A., (2005). Estimation of parameters of life from progressively censored data using Burr-XII model. IEEE Transactions on Reliability, 54(1), pp. 34–42.

Sunoj, S.M., Linu, M. N., (2012). Dynamic cumulative residual Rényi's entropy. Statistics, 46(1), pp. 41–56.

Sunoj, S.M., Maya, S. S., (2006). Some properties of weighted distribution in the context of repairable systems. Communications in Statistics—Theory and Methods, 35(2), pp. 223–228.

Tsallis, C., (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, pp. 479– 487.

Wang, M-C., (1996). Hazards regression analysis for length-biased data. Biometrika, 83, pp. 343–354.

Wang, X., Gui, W., (2021). Bayesian estimation of entropy for Burr Type XII distribution under progressive Type-II censored data. Mathematics, 9, p. 313. https://doi. org/10.3390/math9040313.

Wingo, D. R., (1993). Maximum likelihood methods for fitting the Burr type XII distribution to multiply (progressively) censored life test data. Metrika, 40, pp. 203–210.

Wu, J. W., Yu, H. Y., (2005). Statistical inference about the shape parameter of the Burr type XII distribution under the failure-censored sampling plan. Applied Mathematics and Computation, 163(1), pp. 443–482.

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0