This paper explores classical and Bayesian approaches to the estimation of unknown parameters and reliability functions for the power Rayleigh distribution. The maximum likelihood estimator (MLE) method is considered in classical estimation. The Bayesian estimation, on the other hand uses several loss functions under informative and non-informative prior distributions, utilizing the Lindley technique and Markov chain Monte Carlo (MCMC) methods for Bayesian computations. Approximate confidence i ntervals a re e stablished based on the MLEs using the delta technique, while Bayes credible intervals are determined using the MCMC method. A simulation study is conducted to compare the performance of these methods in terms of biases and mean square errors, revealing that Bayesian estimators outperform their classical counterparts. Additionally, two real datasets are presented for illustrative purposes.
Power Rayleigh distribution, delta method, Lindley approximation, Metropolis- Hasting algorithm, highest posterior density credible intervals, Monte Carlo simulation, coverage probability, goodness of fit.
Ahamad, A., Ahmad, S. P. and Reshi, J. A., (2013). Bayesian analysis of Rayleigh distribution. International Journal of Scientific and Research Publications, 3(10), pp. 1–9.
Ahmed, A. A. J., Batah, F. S. M., (2023). The Estimation reliability for parallel system of stress–Strength model of power Rayleigh distribution. AIP Conference Proceedings, Vol. 2839(1). AIP Publishing.
Al-Aqtash, R., Lee, C. and Famoye, F., (2014). Gumbel-Weibull distribution: properties and applications. Journal of Modern Applied Statistical Methods, 13, pp. 201-225.
Soliman, A. A., Al-Aboud, F. M., (2008). Bayesian inference using record values from Rayleigh model with application. European Journal of Operational Research, 185(2), pp. 659–672.
Bhat, A. A., Ahmad, S. P., (2020). A New Generalization of Rayleigh Distribution: Properties and Applications. Pakistan journal of statistics, 36(3), pp. 225–250.
Calabria, R., Pulcini, G., (1994). An Engineering Approach to Bayes Estimation for the Weibull Distribution. Micro-electron Reliability 34(5), pp. 789–802.
Dey, S., (2009). Comparison of Bayes Estimators of the Parameter and Reliability Function for Rayleigh Distribution under Different Loss Functions. Malaysian Journal of Mathematical Sciences, 3(2), pp. 249–266.
Ghazal, M. G. M., Hasaballah, H. M., (2017). Exponentiated Rayleigh distribution: A Bayes study using MCMC approach based on unified hybrid censored data. Journal of Advance in Mathematics, 12(12), pp. 6863–6880.
Greene,W. H., (2003). Econometric analysis. 7th ed. Pearson Prentice-Hall, Upper Saddle River.
Hastings, W. K., (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, pp. 97–109.
Irfan, M., Sharma, A. K., (2024). Bayesian Estimation and Prediction for Inverse Power Maxwell Distribution with Applications to Tax Revenue and Health Care Data. Journal of Modern Applied Statistical Methods, 23.
Irfan, M., Sharma, A. K., (2023, February). Bayesian Modeling for a Shape Parameter of Weibull-Lomax Distribution with an Application to Health Data. In International Conference on Biomedical Engineering Science and Technology (pp. 284-299). Cham: Springer Nature Switzerland.
Kilany, N. M., Mahmoud, M. A. and El-Refai, L. H., (2023). Power Rayleigh Distribution for Fitting Total Deaths of Covid-19 in Egypt. Journal of Statistics Applications & Probability, Vol. 12(3), pp. 1073–1085.
Long, B., (2023). Estimation and prediction for the Rayleigh distribution based on double Type-I hybrid censored data. Communications in Statistics-Simulation and Computation, 52(8), pp. 3553–3567.
Lindley, D. V., (1980). Approximate Bayesian methods. Trabajos de estadística y de investigaciónoperativa, 31(1), pp. 223–245.
Mahanta, J., Talukdar, M. B. A., (2019). A Bayesian approach for estimating parameter of Rayleigh distribution. Journal of Scientific Research, 11(1), pp. 23–39.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), pp. 1087–1092.
Migdadi, H. S., Al-Olaimat, N. M. and Meqdadi, O., (2023). Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 20(12), pp. 21407–21431.
Migdadi, H. S., Al-Olaimat, N. M., Mohiuddin, M. and Meqdadi, O., (2023). Statistical inference for the Power Rayleigh distribution based on adaptive progressive Type-II censored data. AIMS Mathematics, 8(10), pp. 22553–22576.
Mahmoud, M. A. W., Kilany, N. M. and El-Refai, L. H., (2020). Inference of the lifetime performance index with power Rayleigh distribution based on progressive firstfailure– censored data. Quality and Reliability Engineering International, 36(5), pp. 1528–1536.
Soliman, A. A., (2000). Comparison of linex and quadratic Bayes estimators for the Rayleigh distribution. Communication in statistics - Theory and Method, 291(1), pp. 95–107.
Varian, H. R., (1975). A Bayesian Approach to Real Estate Assessment. Econometrics and Statistics in Honor of Leonard J. Savage, Stephen, E. Fienberg; Arnold Zellner. Amsterdam, North Holland, pp. 195–208.
Yilmaz, A.; Kara, M., (2022). Reliability estimation and parameter estimation for inverseWeibull distribution under different loss functions. Kuwait Journal of Science, 49, pp. 1–24.