A class of estimators of finite population variance (S_y^2) using auxiliary information has been proposed under simple random sampling without replacement (SRSWOR) scheme. An attempt has been made to derive the minimum variance unbiased estimator of finite population variance from the proposed class of unbiased estimators. The efficiency of the class of estimators under optimality is compared with the usual unbiased estimator (t_{V0}=s_y^2), ratio type estimator (t_{VR}), product type estimator{\ (t}_{VP}), regression type estimator {(t}_{Vlr}), exponential ratio type estimator{\ (t}_{VER}), exponential product type estimator {\ (t}_{VEP}), and ratio-in-regression estimator (t_s), both theoretically and empirically under general conditions and under bivariate normality. The proposed class of estimator performs better than these estimators under certain realistic conditions. The proposed class of estimators is generalized for the case of multi-auxiliary variables.
simple random sampling without replacement (SRSWOR), unbiased estimator, auxiliary variable, population variance, efficiency
Black, K., (2009). Business Statistics for Contemporary Decision Making, 6th Edition. John Wiley and Sons, Inc., New York, USA.
Cebrian, A. A., Garcia, M. R., (1997). Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator. Metrika, Vol. 45, pp. 171–178.
Cochran, W. G., (1977). Contribution to Theory of Sampling, 3rd Edition. Wiley Eastern Limited, India.
Das, A. K., Tripathi, T. P., (1978). Use of auxiliary information in estimating the finite population variance. Sankhya C, Vol. 40, pp. 139–148.
Dash, P. R., Sunani, K., (2019). Estimation of Finite Population Variance Using A Family of Exponential Estimators. International Journal of Research and Analytical Reviews, Vol. 6(6), pp. 1200–1206.
Draper, N. R., Smith, H., (1966). Applied Regression Analysis, 1st Edition, John Wiley and Sons Inc., New York, USA.
Dubey, V., Sharma, H. K., (2008). On estimating population variance using auxiliary information. Statist. Trans. New Ser., 9(1), pp. 7–18.
Evans, D., (1951). On the variance estimators of SD and Variance. Jour. Amer. Stat. Assoc., 46, pp. 220–224.
Hardle, W., Hlavka, Z., (2007). Multivariate Statistics: Exercise and Solutions. Springer Science+Business Media, LLC, New York, USA.
Isaki, C. T., (1983). Variance estimation using auxiliary information. Jour. Amer. Stat. Assoc., Vol. 78(381), pp. 117–123.
Jobson, J. D., (1992). Applied Multivariate Data Analysis Volume II: Categorical and Multivariate Methods. Springer Science+Business Media, LLC, New York, USA.
Kadilar, C., Cingi, H., (2007). Improvement in Variance Estimation in Simple Random Sampling. Communications in Statistics-Theory & Methods, Vol. 36(11), pp. 2075– 2081.
Liu, T. P., (1974). A generalized unbiased estimator for the variance of a finite population. Sankhya C, Vol. 36, pp. 23–32.
Maddala, G. S., (1992). Introduction to Econometrics, 2nd Edition. Macmillan Publishing Company, New York, USA.
Murthy, M. N., (1967). Sampling Theory and Methods. Statistical Publishing Society, Calcutta, India.
Prasad, B., Singh, H. P., (1990). Some improved ratio-type estimators of finite population variance in sample surveys. Communications in Statistics-Theory & Methods, Vol. 19(3), pp. 1127–1139.
Prasad, B., Singh, H. P., (1992). Unbiased estimators of finite population variance using auxiliary information in sample surveys. Communications in Statistics-Theory & Methods, Vol. 21(5), pp. 1367–1376.
Shabbir, J., Gupta, S., (2007). On improvement in variance estimation using auxiliary information. Communications in Statistics-Theory & Methods, Vol. 36(12), pp. 2177–2185.
Singh, H. P., Biradar, R. S., (1994). Estimation of finite population variance using auxiliary information. Jour. Ind. Soc. Statist. Operas. Res., Vol. 15(1–4), pp. 47– 63.
Singh, H. P., Upadhyaya, L. N. and Namjoshi, U. D., (1988). Estimation of finite population variance. Current Science, Vol. 57, pp. 1331–1334.
Singh, H. P., (1986). A note on the estimation of variance of sample mean using the knowledge of coefficient of variation in normal population. Communications in Statistics-Theory & Methods, Vol. 15(12), pp. 3737–3746.
Singh, H., Singh, A. and Solanki, R., (2014). Estimation of finite population variance using auxiliary information in sample surveys. Statistica, Vol. 74(1), pp. 99-116.
Singh, H. P. Solanki, R. S. (2013a). A new procedure for variance estimation in simple random sampling using auxiliary information. Statistical Papers, Vol. 54(2), pp. 479–497.
Singh, H. P. Solanki, R. S., (2013b). Improved estimation of finite population variance using auxiliary information. Communications in Statistics-Theory & Methods, Vol. 42(15), pp. 2718–2730.
Singh, R., Chauhan, P., Sawan, N. and Smarandache, F., (2009). Improved exponential estimator for population variance using two auxiliary variables. Octogon Mathematical Magazine, Vol. 17(2), pp. 667–674.
Srivastava, S. K., Jhajj, H. S., (1980). A class of estimators using auxiliary information for estimating finite population variance. Sankhya C, Vol. 42, pp. 87–96.
Stevens, J. P., (2009). Applied Multivariate Statistics for the Social Sciences, 5th Edition. Routledge, New York, USA.
Swain, A. K. P. C., Mishra, G., (1994a). Estimation of population variance under unequal probability sampling. Sankhya B, Vol. 56, pp. 374–384.
Swain, A. K. P. C., Mishra, G., (1992). Unbiased estimators of finite population variance using auxiliary information. Metron, L-n, 3–4, pp. 201–216.
Swain, A. K. P. C., Mishra, G., (1994b). Limiting distribution of the ratio estimator of finite population variance. Sankhya B, Vol. 56, pp. 11–17.
Swain, A. K. P. C., (2015). Generalized Estimator of Finite population Variance. Journal of Statistical Theory and Applications, Vol. 14(1), pp. 45–51.
Upadhyaya, L. N., Singh H. P., (1983). Use of auxiliary information in the estimation of population variance. Mathematical Forum, Vol. VI(2), pp. 33–36.
Wakimoto, K., ( 1971 ). Stratified random sampling (I): Estimation of population variance. Ann. Inst. Statist. Math., Vol. 23, pp. 233–252 .
Wu, C. F., (1982). Estimation of variance of the ratio estimator. Biometrika, Vol. 69(1), pp. 183–189.
Yadav, R., Upadhyaya, L. N., Singh, H. P., Chatterjee, S., (2013). A generalized family of transformed ratio-product estimators for variance in sample surveys. Communications in Statistics-Theory & Methods, Vol. 42(10), pp. 1839–1850.