Soleiman Khazaei https://orcid.org/0000-0003-2537-9232 , Soghra Bohlourihajjar https://orcid.org/0000-0001-9803-5823

© S. Khazaei, S. Bohlourihajjar. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

In this paper, we develop a Bayesian nonparametric approach for analyzing weighted survival data. Specifically, we employ the Dirichlet Process Burr XII Mixture Model (DPBMM) to estimate the underlying density and survival functions when the observed data are weighted. Parameters are inferred using Markov chain Monte Carlo (MCMC) methods, and the Metropolis- Hastings algorithm is applied to obtain de-biased samples from the weighted observations. Numerical illustrations are provided using both simulated and real lifetime data, including the presence of censored observations. The performance of the proposed method is compared with classical kernel density estimates to demonstrate its flexibility in modeling complex and heavy-tailed distributions.

KEYWORDS

Bayesian nonparametric, weighted data, Dirichlet process, mixture model, Burr XII distribution, survival data.

REFERENCES

Ahmad, A., Ahmad, S. P. and Ahmed, A., (2016). Length-biased weighted Lomax distribution: statistical properties and application. Pakistan Journal of Statistics and Operation Research, 12(2), pp. 245–255.

Bohlourihajjar, S., Khazaei, S., (2018). Bayesian nonparametric survival analysis using mixture of Burr XII distributions. Communications in Statistics-Simulation and Computation, 47(9), pp. 2724–2738.

52 S. Khazaei, S. Bohlourihajjar: Bayesian nonparametric model for weighted ... Blumenthal, S., (1967). Proportional sampling in life length studies. Technometrics, 9(2), 205–218.

Burr, I. W., (1942). Cumulative frequency functions. The Annals of Mathematical Statistics, 13(2), 215–232.

Cheng, N., Yuan, T., (2013). Nonparametric Bayesian lifetime data analysis using Dirichlet process lognormal mixture model. Naval Research Logistics (NRL), 60(3), pp. 208–221.

Damien, P., Walker, S., (2002). A Bayesian Non-parametric Comparison of Two Treatments. Scandinavian Journal of Statistics, 29(1), pp. 51–56.

Escobar, M. D., West, M., (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90(430), pp. 577–588.

Ferguson, T. S., (1983). Bayesian density estimation by mixtures of normal distributions. In Recent advances in statistics, pp. 287–302, Academic Press.

Fisher, R. A., (1934). The effect of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics, 6(1), pp. 13–25.

Ghosh, J. K., Ramamoorthi, R. V., (2003). Bayesian nonparametrics. Springer Series in Statistics. Springer-Verlag, New York.

Gupta, R. C., Kirmani, S. N. U. A., (1990). The role of weighted distributions in stochastic modeling. Communications in Statistics-Theory and Methods, 19(9), pp. 3147–3162.

Hassan, et al., (2021). E-Bayesian estimation of Burr Type XII model based on adaptive Type-II progressive hybrid censored data. International Journal of Computing Science and Mathematics, 14(3), pp. 233–248.

Hatjispyros, S. J., Nicoleris, T., Walker, S. G., (2017). Bayesian nonparametric density estimation under length bias. Communications in Statistics-Simulation and Computation, 46(10), pp. 8064–8076.

Kilany, N. M., (2016). Weighted Lomax distribution. SpringerPlus, 5(1), p. 1862. Hajji Joudaki, et al., (2024). Survival Analysis Using Dirichlet Process Mixture Model with a Three-Parameter Burr XII Kernel. Communications in Statistics - Simulation and Computation, 53(5), pp. 2406–2424.

Kottas, A., (2006). Nonparametric Bayesian survival analysis using mixtures of Weibull distributions. Journal of Statistical Planning and Inference, 136(3), 578–596.

Lanjoni, B. R., Ortega, E. M. and Cordeiro, G. M., (2016). Extended Burr XII regression models: theory and applications. Journal of Agricultural, Biological, and Environmental Statistics, 21(1), pp. 203–224.

Lee, E. T.,Wang, J., (2003). Statistical methods for survival data analysis (Vol. 476). John Wiley & Sons.

Lo, A. Y., (1984). On a class of Bayesian nonparametric estimates: I. Density estimates. The Annals of Statistics, pp. 351–357.

Mahafoud, M., Patil, G. P., (1982). On weighted distributions. In Statistics and Probability: Essays in honor of C. R. Rao, pp. 383–405.

McLachlan, G., Peel, D., (2004). Finite mixture models. John Wiley & Sons.

Michael, J., et al., (2023). Dirichlet Process Mixture Models for the Analysis of Repeated Attempt Designs. Biometrics, 79(4), 3907–3915.

Müller, P., Quintana, F. A., (2004). Nonparametric Bayesian data analysis. Statistical Science, pp. 95–110.

Muttlak, H. A., McDonald, L. L., (1990). Ranked set sampling with size-biased probability of selection. Biometrics, pp. 435–445.

Neal, R. M,. (2003). Slice sampling. The Annals of Statistics, 31(3), pp. 705–767.

Nurul, A. B., et al., (2024). Clustering Mixed-Type Data via Dirichlet Process Mixture Models with Cluster-Specific Covariance Matrices. Symmetry, 16(6), pp. 712–732.

Patil, G. P., Rao, C. R., (1977). The weighted distributions: A survey of their applications. Applications of Statistics, 383.

Patil, G. P., Rao, C. R., (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, pp. 179–189.

Rao, C. R., (1985). Weighted distributions arising out of methods of ascertainment: What population does a sample represent? In A celebration of statistics, pp. 543–569. Springer, New York, NY.

Rao, C. R., (1965). On discrete distributions arising out of methods of ascertainment. Sankhya: The Indian Journal of Statistics, Series A, pp. 311–324.

Rao, G. S., Aslam, M. and Kundu, D., (2015). Burr-XII distribution parametric estimation and estimation of reliability of multicomponent stress-strength. Communications in Statistics - Theory and Methods, 44(23), pp. 4953–4961.

Rodriguez, R. N., (1977). A guide to the Burr type XII distributions. Biometrika, 64(1), pp. 129–134.

Sethuraman, J., (1994). A constructive definition of Dirichlet priors. Statistica Sinica, pp. 639–650.

Walker, S. G., (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics - Simulation and Computation, 36(1), pp. 45–54.

Zelen, M., Feinleib, M., (1969). On the theory of screening for chronic diseases. Biometrika, 56(3), pp. 601–614.

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0