Grzegorz Kończak https://orcid.org/0000-0002-4696-8215

© Grzegorz Kończak. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The article presents a proposal for a goodness-of-fit test for multivariate normality. The idea of the test is based on the empty cells test, which is well known in the literature. In the empty cells test, the area of the random variable's variability is divided into m disjoint cells. Assuming the truth of hypothesis H0, which proclaims the multivariate normality of the distribution with given parameters, disjoint cells are arranged in such a way that random values with equal probabilities are in each cell. Based on the n-element sample, the number of empty cells, i.e. the cells without any elements from the sample, is determined. Crucial to the proposed procedure is the division of the multidimensional area of variation into disjoint cells. The advantage of this test is that it can be used for relatively small samples. In the article, a simulation comparison of the proposed test's properties and the Kolmogorov-Smirnov test's multivariate version is carried out.

KEYWORDS

multivariate normality, inferential statistics, empty cells test, Monte Carlo study

REFERENCES

Anderson, T. W., Darling, D. A., (1952). Asymptotic Theory of Certain Nonparametric Tests, Annals of Mathematical Statistics, t. 23, 3, pp. 193–212.

Cramer, D., Howitt, D., (2004). The Sage dictionary of statistics: A practical resource for students in the social sciences. Sage Publications.

David, F. N., (1950). Order Statistics. J. Wiley & Sons Inc. New York.

Domański, C., (2009). Attempt to Assess Multivariate Normality Tests. Acta Universitatis Lodziensis. Folia Oeconomica, 225, pp. 76–90.

Domański, C., (2011). Własności testu Davida-Hellwiga. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 165, pp. 40–49.

Domański, C., (2012). Statistical Tests based on Empty Cells. Acta Universitatis Lodziensis. Folia Oeconomica, 269, pp. 39–47.

Domański Cz., Gadecki H. and Wagner W. (1989). Wartości krytyczne uogólnionego testu normalności Shapiro-Wilka. Przegląd Statystyczny, 36, pp. 107–112.

Domański, Cz., Pruska, K., (2000). Nieklasyczne metody statystyczne. Polskie Wydawnictwo Ekonomiczne, Warszawa.

Doornik, J. A., Hansen, H., (2008). An Omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, pp. 927–939.

Ebner, B., Henze, N., (2020). Tests for Multivariate Normality – a Critical Review with Emphasis on Weighted L2-Statistics. TEST (2020), 29, pp. 845–892, https://doi.org/10.1007/s11749-020-00740-0

Hanusz, Z., Tarasińska, J. and Zieliński, W., (2012). Adaptation of Shapiro-Wilk Test to the Case of Known Mean. Colloquium Biometricum, 42, pp. 43–50.

Hellwig, Z., (1965). Test zgodności dla małej próby. Przegląd Statystyczny, 12, pp. 99–112.

Hernandez, H., (2021). Testing for Normality: What is the Best Method?

Henze, N., Zirkler, B., (1990). A Class of Invariant Consistent Tests for Multivariate Normality. Commun. Statist.-Theor. Meth., 19(10), pp. 35953618.

Jarque, C. M., Bera, A. K., (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 1980, pp. 255–259.

Joenssen, D. W., Vogel, J., (2014). A power study of goodness-of-fit tests for multivariate normality implemented in R. Journal of Statistical Computation and Simulation, 84(5), pp. 1055–1078. https://doi.org/10.1080/00949655.2012.739620.

Kankainen, A, Taskinen, S. and Oja, H., (2007). Tests of multinormality based on location vectors and scatter matrices. Statistical Methods & Applications, 16, pp. 357–379.

Kesemen, O., Ti˙Ryaki˙, B. K., Tezel, Ö. and Özkul, E., (2021). A new goodness of fit test for multivariate normality. Hacettepe Journal of Mathematics and Statistics, 50(3), pp. 872–894.

Kołmogorov A., (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano degli Attuari, 4, pp. 83–91.

Kończak, G., (2005). On the Modification of David-Hellwig Test. [in:] Innovation in classification, data science and information systems. Proceedings of the 27th Annual Conference of the Gesellschaft fur Klassifikation, Brandenburg University of Technology, Cottbus, March 12-14, 2003, pp. 138–145.

Kończak, G., (2008). On the Multivariate Goodness-of-Fit test. Compstat. Proceedings in Computational Statistics. 18th Symposium held in Porto, Portugal. Physica- Verlag, pp. 751–758.

Korkmaz, S., Goksuluk, D. and Zararsiz, G., (2014). MVN: An R Package for Assessing Multivariate Normality. The R Journal, 6(2), 151. https://doi.org/10.32614/RJ-2014-031

Koziol, J. A., (1993). Probability Plots for Assessing Multivariate Normality. The Statistician, 42(2), 161. https://doi.org/10.2307/2348980.

Liang, J., Ng, K. W., (2009). A Multivariate Normal Plot to Detect Nonnormality. Journal of Computational and Graphical Statistics, 18(1), pp. 52–72. https://doi.org/10.1198/jcgs.2009.0004.

Liang, J., He, P. and Yang, J., (2022). Testing Multivariate Normality Based on t-Representative Points. Axioms, 11(11), p. 587. https://doi.org/10.3390/axioms11110587.

Lilliefors, H. W., (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), pp. 399–402.

Lin, C.-C., Mudholkar, G. S., (1980). A simple test for normality against asymmetric alternatives. Biometrika, 67, pp. 455–61.

Malkovich, J. F., Afifi, A. A., (1973). On Tests for Multivariate Normality. Journal of the American Statistical Association, 68(31), pp. 176–179.

Mardia, K. V., (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhy A, 36, pp. 115–128.

Mardia, K. V., (1975). Assessment of Multinormality and the Robustness of Hotelling's T2 Test. Journal of the Royal Statistical Society. Series C (Applied Statistics), 24(2), pp. 163–171.

Mardia, K. V., (2024). Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies.

McAssey, M. P., (2013). An empirical goodness-of-fit test for multivariate distributions. Journal of Applied Statistics, 40(5), pp. 1120–1131. https://doi.org/10.1080/02664763.2013.780160.

Móri, T. F., Székely, G. J. and Rizzo, M. L., (2021). On energy tests of normality, Journal of Statistical Planning and Inference, Vol. 213, pp. 1–15, https://doi.org/10.1016/j.jspi.2020.11.001.

Mudholkar, G. S., McDermo, M. and Srivastava, D. K., (2024). A Test of p-Variate Normality.

Mvtnorm, (2025). https://cran.r-project.org/web/packages/mvtnorm/mvtnorm.pdf[25.05.2025].

Rizzo M. L., Székely G. J., (2016). Energy Distance. WIRES Computational Statistics, Wiley, Vol. 8, Issue 1, pp. 27–38.

Romeu, J. L., Özturk, A., (1993). A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality. Journal of Multivariate Analysis, 46(2), pp. 309–334. https://doi.org/10.1006/jmva.1993.1063.

Royston, J. P., (1982). An Extension of Shapiro and Wilks W Test for Normality to Large Samples. Applied Statistics, 31(2), p. 115124.

Royston, J. P., (1983). Some Techniques for Assessing Multivariate Normality Based on the Shapiro-Wilk W. Applied Statistics, 32(2).

Shapiro, S. S., Wilk, M. B., (1965). An Analysis of Variance Test for Normality. Biometrika, Vol. 52, No. 3/4, pp. 591–611.

Smirnow, N., (1939). Estimate of the goodness of fit for a continuous distribution. Bulletin de l’Académie des Sciences de l’URSS. Série Mathématique, 7, pp. 2–14.

Székely, G. J., Rizzo, M. L., (2013). Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference.

Székely, G. J., Rizzo, M. L., (2017). The Energy of Data. The Annual Review of Statistics and Its Application, 4, pp. 447–79. https://doi.org/10.1146/annurev-statistics-060116-054026.

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0