Kumar Prabhash , Vijay M Patil , Vanita Noronha , Amit Joshi , Atanu Bhattacharjee
ARTICLE

(English) PDF

ABSTRACT

The Cox proportional hazards model (CPH) is normally applied in clinical trial data analysis, but it can generate severe problems with breaking the proportion hazard assumption. An accelerated failure time (AFT) is considered as an alternative to the proportional hazard model. The model can be used through consideration of different covariates of interest and random effects in each section. The model is simple to fit by using OpenBugs software and is revealed to be a good fit to the Chemotherapy data.

KEYWORDS

Survival Analysis, Faliure Time, Metronomic, Cisplatin.

REFERENCES

ANDERSON, J. E., LOUIS, T. A., (1995). Survival analysis using a scale change random effects model. Journal of the American Statistical Asso ciation, 90, 669–679.

AGGARWAL, S. K. (1998). Calcium modulation of toxicities due to Cis platin. Met Based Drugs, 5, 77–81.

BUCKLEY ,J., JAMES, I., (1979). Linear Regression with Censored Data.Biometrika, 66 (3), 429–436.

CHIOU, S. H., KANG, S., KIM, J., YAN, J., (2014a). Marginal Semipara metric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations. Lifetime Data Analysis, 24 (4), 599–618.CHIOU, S. H., KANG, S., KIM, J., YAN, J., (2014b). Fast Accelerated Failure Time Modeling for Case-Cohort Data. Statistics and Comput ing, 24 (4), 559–568.

CELMINS, A., (1987). Least squares model fitting to fuzzy vector data.Fuzzy sets and systems, 22 (3), 245–269.

CHRISTENSEN, C., JOHNSON, J. W., (1988). Modelling accelerated fail ure time with a Dirichlet process. Biometrika, 75, 693–704.

CLAVEL, M., VERMORKEN, J. B., COGNETTI, F., et al., (1994). Ran domized comparison of cisplatin, methotrexate, bleomycin and vincristine (CABO) versus cisplatin and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck A phase III study of the EORTC Head and Neck Cancer Cooperative Group. Annals of Oncology, 5 (6), 521–526.

COX, D. R., (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34 (2), 187–220.

DAVID, C., (2003). Modelling Survival Data in Medical Research. Chap man Hall/CRC Texts in Statistical Science.

FOLKMAN, J., (1971). Tumor angiogenesis: therapeutic implications NEngl J Med, 285, 1182–1186.

GHOSH, S. K., GHOSAL, S., (2006). Semiparametric Accelerated Failure Time Models for Censored Data. Bayesian Statistics and Its Applica tions. Anamaya Publishers.

HANSON, T., JOHNSON, W. O., (2004). A Bayesian semiparametric aft model for interval-censored data. J. Comput. Graph. Statist, 13, 341–361.

HANAHAN, D., FOLKMAN, J., (1996). Patterns and emerging mecha nisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.

HANAHAN, D., BERGERS, G., BERGSLAND, E., (2000). Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor an gioˇngenesis in mice., J Clin Invest, 105, 1045–1047.

HOROWITZ, J. L., (1999). Semiparametric estimation of a proportional hazard model with unobserved heterogeneity. Econometrica, 67, 1001–1028.

HOUGAARD, P., MYGLEGAARD, P., JOHNSEN, K. B., (1994). Het erogeneity models of disease susceptibility with application to diabetic nephropathy. Biometrics, 50, 1178–1188.

JIN, Z., HUANG, L., (2007). lss: An S-PLUS/R Program for the Accel erated Failure Time Model to Right Censored Data Based on Least Squares Principle. Computer Methods and Programs in Biomedicine,86 (1), 45–50.

KALBEISCH, J. D., PRENTICE, R. L., (2002). The Statistical Analysis of Failure Time Data. John Wiley Sons.

KOMAREK, A., E. LESAFFRE, E., (2008). Bayesian Accelerated Fail ure Time Model With Multivariate Doubly Interval-Censored Data and Flexible Distributional Assumptions. Journal of the American Statisti cal Association, 103 (482), 523–533.

KOMAREK, A., LESAFFRE, E., (2007). Bayesian Accelerated Failure Time Model for Correlated Interval-Censored Data with a Normal Mix ture as Error Distribution. Statistica Sinica, 7, 549–569.

KOMAREK, A., HILTON, J. F., (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. J. Comput.Graph. Statis, 14, 726–745.

KLEMENT, G., HUANG, P., MAYER, B., GREEN, S. K., MAN, S.,

BOHLEN, P., HICKLIN, D., KERBEL, R. S., (2002). Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-vegfr-2 antibody in multidrug-resistant human breast cancer xeno grafts. Clin Cancer Res, 8 (1), 221–232.

KLEIN, J. P., PELZ, C., ZHANG, M., (1999). Modeling random effects for censored data by a multivariate normal regression model. Biometrics,54, 497–506.

MORTON, R. P., RUGMAN, F., DORMAN, E. B., STONEY, P. J., WIL SON, J. A., MCCORMICK, M., VEEVERS, A., STELL, P. M., (1985).Cisplatinum and bleomycin for advanced or recurrent squamous cell car cinoma of the head and neck: a randomised factorial phase III controlled trial. Cancer chemotherapy and pharmacology, 15 (3), 283–289.

MUNOZ , R., MAN, S., SHAKED, Y., LEE, C. R., WONG, J., G., FRAN CIA AND KERBEL, R. S. (2006). Highly efficacious nontoxic preclini cal treatment for advanced metastatic breast cancer using combination oral uft-cyclophosphamide metronomic chemotherapy. Cancer Res, 66,3386–3391.

NGUYEN, HUNG, T., WU, (2006). Fundamentals of statistics with fuzzy data. Berlin Springer.

POLVERINI, P. J., NOVAK, R. F., (1986). Inhibition of angiogenesis by the antineoplastic agents mitoxantrone and bisantrene. Biochem Biophys Res Comunication, 140, 901–907.

PRENTICS, R. L., (1978). Linear Rank Tests with Right Censored Data.Biometrika, 65 (1), 167–180.

PAN, W., (2001). Using frailties in the accelerated failure time model. Life time Data Analysis, 7, 55–64.

PICKLES, A., CROUCHLEY, R., (1995). A comparison of frailty models for multivariate survival data. Statistics in Medicine, 14, 1447–1461.

SARGENT, D. J., (1998). A general framework for random effects survival analysis in the Cox proportional hazards setting. Biometrics, 54, 1486–1497.

WALKER, S., MALLICK, B. K., (1999). A Bayesian Semiparametric Ac celerated Failure Time Model. Biometrics, 55 (2), 477–483.

WALKER, S. G., MALLICK, B. K., (1997). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical, Society B , 59, 845–860.

WALKER, S., MALLICK, B. K., (1999). A Bayesian Semiparametric Ac celerated Failure Time Model. Biometrics, 55 (2), 447–483.

SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. P., LINDEVAN, D.A., (2002). Bayesian measures of model complexity and fit. J. Roy.Statist. Soc. Ser. B., 64, 583–616.

SURENDIRAN, A., BALAMURUGAN, N., GUNASEELAN, K., AKHTAR,S., REDDY, K. S., ADITHAN, C., (2010). Adverse drug reaction profile of cisplatin-based chemotherapy regimen in a tertiary care hospital in India: An evaluative study. Indian J Pharmacol, 42 (1), 40–43.

THERNEAU, T., (2014). ”survival: A Package for Survival Analysis in S.R package version”. R package version 2, 37–7.

TSIATIS, A. A., (1990). Estimating Regression Parameters Using Linear Rank Tests for Censored Data. The Annals of Statistics, 18 (1), 354–372.

WITTES, R. E., CVITKOVIC, E., SHAH, J., GEROLD, F. P., STRONG,E. W., (1976). CIS-Dichlorodiammineplatinum (II) in the treatment of epidermoid carcinoma of the head and neck. Cancer treatment reports,61 (3), 359–366.

YABUUCHI, Y., WATADA, JUNZO, NAKAMORI, Y., (1997). Fuzzy prin cipal component analysis for fuzzy data. Fuzzy Systems, 1997., Proceed ings of the Sixth IEEE International Conference on, 2, 1127–113

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0