In the paper methods of reducing the so-called boundary effects, which appear in the estimation of certain functional characteristics of a random variable with bounded support, are discussed. The methods of the cumulative distribution function estimation, in particular the kernel method, as well as the phenomenon of increased bias estimation in boundary region are presented. Using simulation methods, the properties of the modified kernel estimator of the distribution function are investigated and an attempt to compare the classical and the modified estimators is made.
boundary effects, cumulative distribution function, kernel method, bounded support.
BASZCZYŃSKA, A., (2015). Bias Reduction in Kernel Estimator of Density Function in Boundary Region, Quantitative Methods in Economics, XVI, 1.
DOMAŃSKI, C., PEKASIEWICZ, D., BASZCZYŃSKA, A., WITASZCZYK, A., (2014). Testy statystyczne w procesie podejmowania decyzji [Statistical Tests in the Decision Making Process], Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
HÄRDLE, W., (1994). Applied Nonparametric Regression, Cambridge University Press, Cambridge.
LI, Q., RACINE, J. S., (2007). Nonparametric Econometrics. Theory and Practice, Princeton University Press, Princeton and Oxford.
JONES, M. C., (1993). Simple Boundary Correction for Kernel Density Estimation, Statistics and Computing, 3, pp. 135–146.
JONES, M. C., FOSTER, P. J., (1996). A Simple Nonnegative Boundary Correction Method for Kernel Density Estimation, Statistica Sinica, 6, pp. 1005–1013.
KARUNAMUNI, R. J., ALBERTS, T., (2005). On Boundary Correction in Kernel Density Estimation, Statistical Methodology, 2, pp. 191–212.
KARUNAMUNI, R. J., ZHANG, S., (2008). Some Improvements on a Boundary Corrected Kernel Density Estimator, Statistics and Probability Letters, 78, pp. 497–507.
KOLÁČEK, J., KARUNAMUNI, R. J., (2009). On Boundary Correction in Kernel Estimation of ROC Curves, Australian Journal of Statistics, 38, pp. 17–32.
KOLÁČEK, J., KARUNAMUNI, R. J., (2012). A Generalized Reflection Method for Kernel Distribution and Hazard Function Estimation, Journal of Applied Probability and Statistics, 6, pp. 73–85.
KULCZYCKI, P., (2005). Estymatory jądrowe w analizie systemowej [Kernel Estimators in Systems Analysis], Wydawnictwa Naukowo-Techniczne, Warszawa.
HOROVA, I., KOLÁČEK, J., ZELINKA, J., (2012). Kernel Smoothing in MATLAB. Theory and Practice of Kernel Smoothing, World Scientific, New Jersey.
SILVERMAN, B.W., (1996). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.
TENREIRO, C., (2013). Boundary Kernels for Distribution Function Estimation, REVSTAT Statistical Journal, 11, 2, pp. 169–190.
TENREIRO, C., (2015). A Note on Boundary Kernels for Distribution Function Estimation, http://arxiv.org/abs/1501.04206 [14.11.2015].
WAND, M. P., JONES, M.C., (1995). Kernel Smoothing, Chapman and Hall, London