Ranjita Pandey , Anoop Chaturvedi
ARTICLE

(English) PDF

ABSTRACT

The present work explores panel data set-up in a Bayesian state space model. The conditional posterior densities of parameters are utilized to determine the marginal posterior densities using the Gibbs sampler. An efficient one step ahead predictive density mechanism is developed to further the state of art in prediction based decision making.

KEYWORDS

Bayesian analysis, Gibbs sampler, conditional posterior densities, predictive distribution.

REFERENCES

BALTAGI, B. H., (2008). Econometric analysis of panel data. Wiley.

CHAMBERLAIN, G., (1982). Multivariate regression models for panel data, Journal of Econometrics 18, No. 1.

HAUSMAN, J., (1978). Specification tests in econometrics. Econometrica 46, No. 6.

HAUSMAN, J., TAYLOR, W., (1981). Panel data and unobservable individual effects. Econometrica 49, No. 6.

MADDALA, G. S., (1971). The use of variance components models in pooling cross-section and time series data. Econometrica 39, No. 2.

MUNDLAK, Y., (1978). On the pooling of time series and cross section data. Econometrica 46, No. 1.

TIWARI, R. C., YANG, Y., ZALKIKAR, J. N., (1996). Time series analysis of BOD data using the Gibbs sampler. Enviormetrics 7: 567-78

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0