María Guadarrama , Isabel Molina , J. N. K. Rao
ARTICLE

(English) PDF

ABSTRACT

We review main small area estimation methods for the estimation of general nonlinear parameters focusing on FGT family of poverty indicators introduced by Foster, Greer and Thorbecke (1984). In particular, we consider direct estimation, the Fay-Herriot area level model (Fay and Herriot, 1979), the method of Elbers, Lanjouw and Lanjouw (2003) used by the World Bank, the empirical Best/Bayes (EB) method of Molina and Rao (2010) and its extension, the Census EB, and finally the hierarchical Bayes proposal of Molina, Nandram and Rao (2014). We put ourselves in the point of view of a practitioner and discuss, as objectively as possible, the benefits and drawbacks of each method, illustrating some of them through simulation studies.

KEYWORDS

area level model, non-linear parameters, empirical best estimator, herarchical Bayes, poverty mapping, unit level models.

REFERENCES

BATES, D., MAECHLER M., BOLKER, B., WALKER, S., (2014). lme4: Linearmixed-effects models using Eigen and S4. R package version 1.1–7.

BATTESE, G.E., HARTER, R.M., FULLER, W.A., (1988). An error-components model for prediction of county crop areas using survey and satellite data, Jour nal of American Statistical Association, 83, 28–36.

CORREA, L., MOLINA, I., RAO, J.N.K., (2012). Comparison of methods for estimation of poverty indicators in small areas. Unpublished report.

DIALLO, M., RAO, J.N.K., (2014). Small Area Estimation of Complex Parameters Under Unit-level Models with Skew-Normal Errors. Proceedings of the Survey Research Section, American Statistical Association.

ELBERS, C., LANJOUW, J. O., LANJOUW, P., (2003). Micro-level Estimation of Poverty and Inequality. Econometrica, 71(1), 355–364.

FAY, R., HERRIOT R., (1979). Estimates of income for small places: An applica tion of James-Stein procedures to census data. Journal of American Statistical Association, 74, 269–277.

FOSTER, J., GREER, J., THORBECKE, E., (1984). A class of decomposable poverty measures. Econometrica, 52, 761–766.

GONZÁLEZ-MANTEIGA, W., LOMBARDÍA, M. J., MOLINA, I., MORALES,D., and SANTAMARÍA, L., (2008). Bootstrap mean squared error of a small area EBLUP. Journal of Statistical Computation and Simulation, 78, 443–462.

GRAFF, M., MARÍN, J.M., MOLINA, I., (2015). Estimation of poverty indicators in small areas under skewed distributions, Unpublished manuscript.

MOLINA, I., MORALES, D., (2009). Small area estimation of poverty indicators. Boletín de Estadística e Investigación Operativa, 25, 318–325.

MOLINA, I., MARHUENDA, Y., (2015), Sae: An R Package for Small Area Estimation, R Journal, in print.

MOLINA, I., RAO, J.N.K., (2010). Small area estimation of poverty indicators. The Canadian Journal of Statistics, 38, 369–385.

MOLINA, I. NANDRAM, B. and RAO, J.N.K., (2014). Small area estimation of general parameters with application to poverty indicators: a hierarchical Bayes approach. The Annals of Applied Statistics, 8(2), 852–885.

PFEFFERMANN, D., (2013). New important developments on small area estima tion. Statistical Science, 28, 40–68.

RAO, J.N.K., (2003). Small Area Estimation. Hoboken, NJ: Wiley.

RAO, J.N.K., MOLINA, I., (2015). Small Area Estimation, Second Edition. Hobo ken, NJ: Wiley, in print.

SINHA, S., RAO, J.N.K., (2009). Robust small area estimation. The Canadian Journal of Statistics, 37, 381–399.

VAN der WEIDE, R., ELBERS, C. (2013). Estimation of normal mixtures in a nested error model with an application to small area estimation of welfare. Speech presented at the SAE Conference 2013, Bangkok, Thailand

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0