Atanu Bhattacharjee , Dilip Chandra Nath
ARTICLE

(English) PDF

ABSTRACT

The longitudinal and survival analyses are useful tools in the exploration of drug trial data. In both cases the challenge is to deal with correlated repeated observations. Here, the joint modelling for longitudinal and survival data has been carried out via Markov chain Monte Carlo (MCMC) method in type 2 diabetes clinical trials to compare different combinations of drugs, viz. Metformin plus Pioglitazone and Gliclazide plus Pioglitazone. Despite the complexity of the model it has been found relatively easier to implement with WinBugs software. The results have been computed and compared with software R. In both types of the analyses it has been found that no estimates of treatment appear to have significant effect on the evolution of the matter of HBA1c, neither on the longitudinal part nor on the survival one. The Bayesian approach has been considered as an extended tool with classical approach for estimation of clinical trial data analysis.

KEYWORDS

random effects, semi-parametric survival model, Weibull distribution, linked sub-models.

REFERENCES

AMERICAN DIABETES ASSOCIATION (2010).Diagnosis and classification of diabetes mellitus. Diabetes Care, 33 (Suppl 1), S62–S69.

ANAND, S. S., RAZAK, F., VUKSAN, V., GERSTEIN, H. C., MALMBERG, K., YI., Q., TEO, K. K., YUSUF, S., (2003). Diagnostic strategies to detect glucose intolerance in a multiethnic population, Diabetes Care, 26(2), 290–296.

CARLIN, B. P., LOUIS, T. A., (2000). Bayes and Empirical Bayes Methods for Data Analysis (2nd ed.), Boca Raton, FL: Chapman and Hall/CRC Press.

CELEUX, G., FORBES, F., ROBERT, C. P., TITTERINGTON, D. M., (2006). Deviance information criteria for missing data models, Bayesian Analysis, 4, 651–674.

CHEN, M. H., (2006). Comments on article by celeux et al., Bayesian Analysis, 4, 677–680.

CHI, Y. Y., IBRAHIM, J. G., (2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics. 62(2), 432–445.

COX, D. R., D. OAKES, (1984). Analysis of Survival Data, London: Chapman and Hall.

DCCT STUDY GROUP, (1995). The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial, Diabetes, 44(8), 968–983.

DEGRUTTOLA, V., TU, X. M., (1994). Modeling progression of cd4 lymphocyte count and its relationship to survival time, Biometrics, 50, 1003–1014.

DESLANDES, E., CHEVRET, S., (2010). Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: Application to ICU data, BMC Med Res Methodology, 2010, 10, 69.

ELASHOFF, R., LI, G., LI, N., (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types, Biometrics, 64, 762–771.

GHAZANFARI, Z., HAGHDOOST, A. K., ALIZADEH, S. M., ATAPOUR, J., ZOLALA, F., (2010). Comparison of HbA1c and Fasting Blood Sugar Tests in General Population. International Journal of Preventive Medicine, 1(3),187–194.

GINDE, A. A., CAGLIERO, E., NATHAN D. M., CAMARGO, C. A., J. R., (2008). Value of risk stratification to increase the predictive validity of HbA1c in screening for undiagnosed diabetes in the US population. J Gen Intern Med, 23(9), 1346–1353.

GUO, X. U., CARIN BRADLEY, P., (2004). Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages, The American Statistician, February 2004, Vol. 58, No. 1, 1–9.

HENDERSON, R., DIGGLE, P. J., DOBSON, A., (2000). Joint Modeling of Longitudinal Measurements and Event Time Data, Biostatistics, 1, 465–480.

HOGAN, J. W., LAIRD, N. M., (1997). Model-based approaches to analysing incomplete longitudinal and failure time data, Statistics in Medicine, 16, 259–272.

HOLMAN, R. R., THORNE, K. I., FARMER, A. J., DAVIES, M. J., KEENAN, J. F., PAUL, S., LEVY, J. C., (2007). Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med, 357, 1716–1730.

HOLMAN, R. R., FARMER, A. J., DAVIES, M. J., LEVY, J. C.,DARBYSHIRE, J. L., KEENAN, J. F., PAUL, S. K., (2009). Three-year efficacy of complex insulin regimens in type 2 diabetes. N Engl J Med, 361,1736–1747.

KILPATRICK, E. S., (2008). Haemoglobin A1c in the diagnosis and monitoring of diabetes mellitus, J Clin Pathol, 61(9), 977–82.

LITTLE, R. J. A., (1995). “Modeling the drop out mechanism in repeated measures studies,” Journal of the American Statistical Association, 90, 1112–1121.

LIND, M, ODEN, A., FAHLÉN, M., ELIASSON, B., (2008). A Systematic Review of HbA1c Variables Used in the Study of Diabetic Complications, Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 282–293.

LAIRD, N. M., WARE, J. H., (1982). Random-Effects Models for Longitudinal Data, Biometrics, 38, 963–974.

LI, L., HU, B., GREENE, T., (2009). A semi-parametric joint model for longitudinal and survival data with application to hemodialysis study. Biometrics. 65(3), 972–986.

MENEGHINI, L. F., ROSENBERG, K. H., KOENEN, C., MERILAINEN, M. J., LÜDDEKE H. J., (2007). Insulin detemir improves glycaemic control with less hypoglycaemia and no weight gain in patients with type 2 diabetes who were insulin naive or treated with NPH or insulin glargine: clinical practice experience from a German subgroup of the predictive study. Diabetes Obes Metab. 9, 418–427.

MIRZAZADEH, A., BARADARAN, H. R., HAGHDOOST, A. A., SALARI, P.,(2009). Related factors to disparity of diabetes care in Iran, Med Science Monit, 15(5), H32–H36.

NATHAN, D. M., BUSE, J. B., DAVIDSON, M. B., FERRANNINI, E., HOLMAN, R. R., SHERWIN, R., ZINMAN, B.,(2009). Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care. 32, 193–203.

NATH, D. C., BHATTACHARJEE, A., (2011). A Bayesian Approach in Autoregressive models in Longitudinal Data Analysis: An Application to Type 2 Diabetes Drug Comparison, Asian Journal of Applied Science, 4(6),640–648.

SCHLUCHTER, M. D., (1992). Methods for the analysis of informatively censored longitudinal data, Statistics in Medicine, 11, 1861–1870.

SPIEGELHALTER, D. J., NICOLA, G. BEST, CARLIN, B. P., LINDE, A. V. D., (2002). Bayesian measures of model complexity and fit .Journal of the Royal Statistical Society: Series B (Statistical Methodology. 64, 4, 583–639.

STRATTON, I. M., ADLER, A. I., NEIL, H. A., MATTHEWS, D. R.,MANLEY, S. E., CULL, C. A., HADDEN, D., TURNER R. C., HOLMAN, R. R., (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study, British Medical Journal, 2000; Aug 12; 321(7258), 405–412.

The International Expert Committee (2009).The International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. Diabetes Care, 32(7), 1327–1334.

TSIATIS, A. A., DEGRUTTOLA, V., ANDWULFSOHN, M. S., (1995). Modeling the Relationship of Survival to Longitudinal Data Measured with Error, Applications to Survival and CD4 Counts in Patients with AIDS, Journal of the American Statistical Association, 90, 27–37.

WILLIAMSON, P. R., Kolamunnage-Dona, R., Philipson, P., Marson, A. G., (2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine. 27(30), 6426–6438

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0