In the paper the method of parameters estimation using hierarchical Bayes (HB) method in the case of known model hyperparameters for a priori conditionals was presented. This approach has some advantage in comparison with subjective model parameters selection because of more simulation stability and allows obtaining estimates that has more regular distribution. As an example the data about average per capita income from Polish Household Budget Survey for counties (NUTS4) and auxiliary variables from Polish Tax Register (POLTAX) were used. The computation was done using WinBUGS software and R-project environment with R2WinBUGS package, which control the simulations in WinBUGS, and coda package, which allows performing the analysis of simulation results. In the paper sample code in R-project that can be used as a pattern for further similar applications was also presented. The efficiency of hierarchical Bayes estimation with other small area methods was compared. Such comparison was done for HB and EBLUP techniques, for which some consistency related to the precision of estimates obtained using both techniques was achieved.
Small area estimation, hierarchical Bayes estimation, WinBUGS.
BRACHA, CZ., LEDNICKI, B, WIECZORKOWSKI, R. (2003). Data Estimation for Polish Labour Force Survey for counties in 1995-2002 (in Polish -Estymacja danych z Badania Aktywności Ekonomicznej Ludności na poziomie powiatów dla lat 1995-2002), GUS, Warszawa.
BRACHA, CZ., LEDNICKI, B., WIECZORKOWSKI, R. (2004). Application of Complex Estimation Methods to the Disaggregation of data from Polish Labour Force Survey in 2003 (in Polish - Wykorzystanie złożonych metod estymacji do dezagregacji danych z Badania Aktywności Ekonomicznej Ludności w roku 2003), GUS, Warszawa, seria „Z prac Zakładu Badań Statystyczno-Ekonomicznych”, z.299 .
CENTRAL STATISTICAL OFFICE (2000-2011). Household Budget Surveys (years 1999-2010) Statistical Information and Elaborations (in Polish Budżety gospodarstw domowych, (lata 1999-2010) Informacje i opracowania statystyczne), Warszawa, http://www.stat.gov.pl/gus/5840_3467_PLK_HTML.htm.
CENTRAL STATISTICAL OFFICE (2010). Polish Household Budget Survey Methodology (in Polish Metodologia Badania Budżetów Gospodarstw Domowych, Zeszyt metodologiczny zaopiniowany przez Komisję Metodologiczną GUS). Warszawa. http://www.stat.gov.pl/cps/rde/xbcr/gus/PUBL_WZ_meto_badania_bud__gospod__dom.pdf.
DEHNEL, G., (2003). Small Area Statistics as a Tool for Assessment of Regions Economic Development (In Polish: Statystyka małych obszarów, jako narzędzie oceny rozwoju ekonomicznego regionów), Wydawnictwo Akademii Ekonomicznej, Poznań.
DOMAŃSKI, CZ., PRUSKA, K. (2001). Methods of Small Area Statistics (in Polish - Metody statystyki małych obszarów), Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
GOŁATA, E. (2004). Indirect Estimation of Unemployment for the Local Labor Market (In Polish: Estymacja pośrednia bezrobocia na lokalnym rynku pracy), Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań.
GOMEZ-RUBIO, V. (2008). "Small Area Estimation with R Unit 5: Bayesian Small Area Estimation", useR! 2008 11 August 2008, Dortmund (Germany), http://www.bias-project.org.uk/SAE_tutorial/useR08-tutorial.tgz.
KALTON, G., KORDOS, J., and PLATEK, R. (1993). Small Area Statistics and Survey Designs Vol. I: Invited Papers: Vol. 11: Contributed Papers and Panel Discussion, Warszawa, Główny Urząd Statystyczny.
KUBACKI, J. (2004). Application of the Hierarchical Bayes Estimation to the Polish Labour Force Survey, Statistics in Transition, Vol. 6, No. 5, 785-796. http://www.stat.gov.pl/cps/rde/xbcr/gus/PTS_sit_6_5.pdf.
KUBACKI, J. (2006). The Problems of Small Area Parameters Estimation in Polish Labor Force Survey (In Polish: Problematyka szacowania parametrów dla małych obszarów w badaniu aktywności ekonomicznej ludności), unpublished PhD thesis prepared in connection of PhD Studies in the College of Economic Analysis, Warsaw School of Economics.
KUBACKI, J., JĘDRZEJCZAK, A., PIASECKI, T. (2011). Application of Small Area Statistics Methods in Elaboration of Sample Surveys Results, Report from methodological study 3.065, Statistical Office in Łódź (in Polish Wykorzystanie metod statystyki małych obszarów do opracowania wyników badań statystycznych, Raport z pracy metodologicznej 3.065), Ośrodek Statystyki Matematycznej, Urząd Statystyczny w Łodzi.
KUBACKI, J., JĘDRZEJCZAK, A. (2011). The Comparison of Generalized Variance Function with Other Methods of Precision Estimation for Polish Household Budget Survey, Studia Ekonomiczne, Uniwersytet Ekonomiczny w Katowicach (in preparation).
LIU, B. (2009). Hierarchical Bayes Estimation and Empirical Best Prediction of Small Area Proportions, Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, http://drum.lib.umd.edu/bitstream/1903/9149/1/Liu_umd_0117E_10245.pdf.
LONGFORD, N.T. (2005). Missing Data and Small-Area Estimation. Modern Analytical Equipment for the Survey Statistician, Springer-Verlag, New York.
MUKHOPADHYAY, P. (1998). Small Area Estimation in Survey Sampling, Narosa Pub House.
PLUMMER, M., BEST, N., COWLES, K. and VINES, K. (2006). CODA: Convergence Diagnosis and Output Analysis for MCMC, R News, vol. 6, 7-11.
RAO, J.N.K. (2003). Small Area Estimation, Wiley Interscience, Hoboken, New Jersey.
SALVATI, N., GÓMEZ-RUBIO, V. (2006). SAE: Small Area Estimation with R. R package version 0.07,http://www.bias-project.org.uk/software/SAE_0.07.zip.
SPIEGELHALTER, D.J., THOMAS, A., BEST, N., and LUNN, D. (2003). WinBUGS User Manual, Version 1.4.
STURTZ, S., LIGGES, U., and GELMAN, A. (2005). R2WinBUGS: A Package for Running WinBUGS from R., Journal of Statistical Software, 12(3), 1-16.
VENABLES, W.N. RIPLEY, B.D. (2002). Modern Applied Statistics with S, Fourth Edition. Springer, New York.
VOGT, M. (2010). Bayesian Spatial Modeling: Propriety and Applications to Small Area Estimation with Focus on the German Census 2011, PhD Thesis, University of Trier,http://ubt.opus.hbz-nrw.de/volltexte/2010/578/pdf/Dissertation_Martin_Vogt.pdf.
ŻĄDŁO, T. (2008). Elements of small area statistics with R software (in Polish -Elementy statystyki małych obszarów z programem R), Akademia Ekonomiczna Katowice