Paweł Strawiński
ARTICLE

(English) PDF

ABSTRACT

Nowadays, matching is a widely used technique to estimate program net effects. The goal of the method is to establish a counterfactual state by choosing from the control pool a group that is similar to those in the treatment group. In this article we propose a modification of the matching with caliper procedure. The novelty in our approach is setting the caliper value as a fraction of estimated propensity score. The simulation results and examples are presented. Using Deheija and Wahba (1999) data benefits of the proposed approach are stressed. The obtained results indicate that proposed approach is more efficient than the one traditionally used.

KEYWORDS

matching, propensity score, caliper, evaluation.

REFERENCES

AUSTIN P. (2009) „Some methods of Propensity Score Matching Had Superior Performance to Others: Result of an Empirical Investigation and Monte Carlo Simulations.”, Biometrical Journal, vol. 5, pp. 171-184.

BLUNDELL R., COSTA-DIÁS M. (2000) „Evaluation Methods for Non Experimental Data”, Fiscal Studies, vol. 21/4, pp. 427-468.

COCHRANE, RUBIN (1973) „Controling Bias in Observational Studies. A Review”, Sankhya, vol. 35, pp. 417-466.

DEHEJIA R., WAHBA S. (1999) „Causal Effects in Nonexperimental studies: Reevaluating the Evaluation of Training Program”, Journal of American Statistical Association, vol. 94, no 448.

DEHEJIA R., WAHBA S. (2002) „Propensity score matching methods for nonexperimental causal studies”, Journal of the American Statistical Association, vol. 84, pp. 151-161.

HECKMAN J., HOTZ J. (1989) „Choosing among alternative nonexperimental methods for estimating the impact of social programs: the case of manpower training”, Journal of the American Statistical Association, vol. 84(408), pp. 862-880.

HECKMAN J., ICHIMURA H., TODD P. (1997) „Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme”, The Review of Economic Studies, vol. 64/4, pp. 605-654.

LEE M-J. (2005) „Micro-Econometrics for Policy, Program, and Treatment Effects”, Oxford University Press.

ROSENBAUM P., RUBIN D. (1983) „The Central Role of the Propensity Score in Observational Studies for Causal Effects“, Biometrika, vol. 70/1, pp. 41-55.

RUBIN D. (1973) „Matching to Remove Bias in Observational Studies”, Biometrics, vol. 29, pp. 159-183.

SMITH J., TODD P. (2005) „Does Matching Overcome LaLonde’s Critique of nonexperimental estimators?”, Journal of Econometrics, vol. 125, str. 305-353.

STRAWIŃSKI P. (2007) „Causality, selection and engodenuous effects”[Przyczynowość, selekcja i endogeniczne oddziaływanie], Przegląd Statystyczny nr 4/2007, pp. 49-61.

STRAWIŃSKI P. (2009) „Matching with Dynamic Caliper. Preliminary Results”[Łączenie danych z dynamicznym obcięciem. Wyniki wstępne], Metody Ilościowe w Badaniach Ekonomicznych X, pp. 232-242.

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0