Ipek Deveci Kocakoç https://orcid.org/0000-0001-9155-8269 , Istem Köymen Keser https://orcid.org/0000-0003-2123-188X

© Ipek Deveci Kocakoç, Istem Köymen Keser. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The coefficient of the variation function is a useful descriptive statistic, especially when comparing the variability of more than two curve groups, even when they have significantly different mean curves. Since the coefficient of variation function is the ratio of the mean and standard deviation functions, its particular property is that it shows the acceleration more explicitly than the standard deviation function. The aim of the study is twofold: to show that the functional coefficient of variation is more sensitive to abrupt changes than the functional standard deviation and to propose the utilisation of the functional coefficient of variation as an outlier detection tool. Several simulation trials have shown that the coefficient of the variation function allows the effects of outliers to be seen explicitly.

KEYWORDS

coefficient of variation function, outlier detection, functional data analysis

REFERENCES

Arribas-Gil, A., Romo, J., (2014). Shape outlier detection and visualization for functional data: the outliergram. Biostatistics, 15, pp. 603–619.

de Pinedo, Á. R., Couplet, M., Marie, N., Marrel, A., Merle-Lucotte, E., and Sueur, R., (2020). Functional outlier detection through probabilistic modelling. In: Aneiros G., Horová I., Hušková M., Vieu P. (eds) Functional and high-dimensional statistics and related fields. IWFOS 2020. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-47756-1_30.

Dass, M., Shropshire, C., (2012). Introducing functional data analysis to managerial science. Organizational Research Methods, 15(4), pp. 693-721.

Febrero, M., Galeano, P., and Gonzalez-Manteiga, W., (2007). A functional analysis of NOx levels: Location and scale estimation and outlier detection. Computational Statistics, 22(3), pp. 411–427.

Febrero, M., Galeano, P., and Gonzalez-Manteiga, W., (2008). Outlier detection in functional data by depth measures, with application to identify abnormal NOX levels. Environmetrics, 19(4), pp. 331–345.

Fraiman, R., Svarc, M., (2013). Resistant estimates for high dimensional and functional databased on random projections. Computational Statistics & Data Analysis, 58, pp. 326–338.

Gervini, D., (2012). Outlier detection and trimmed estimation for general functional data. Statistica Sinica, 22(4), pp. 1639–1660.

Ghumman, A. R., Alodah, A., Haider, H., and Shafiquzzaman, M., (2020). Evaluating the impact of climate change on stream flow: integrating GCM, hydraulic modelling and functional data analysis. Arabian Journal of Geosciences, 13(17), pp. 1–15.

Hubert, M., Rousseeuw, P. J., and Segaert, P., (2015). Multivariate functional outlier detection. Statistical Methods & Applications, 24(2), pp. 177–202.

Hyndman, R. J., Ullah, M. S., (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis, 51(10), pp. 4942–4956.

Hyndman,R. J., Shang, H. L., (2010). Rainbow plots, bagplots, and boxplots for functional data. Journal of Computational and Graphical Statistics, 19, pp. 29–49.

Krzysko, M., Smaga L., (2019). A multivariate coefficient of variation for functional data, Statistics and Its Interface, 12(4), pp. 647–658.

Keser, I. K., Kocakoç, I. D., and Şehirlioglu, A. K., (2016). A new descriptive statistic for functional data: functional coefficient of variation. Alphanumeric Journal, 4(2), pp. 1–10.

Martínez Torres, J., Pastor Pérez, J., Sancho Val, J., McNabola, A., Martínez Comesana, M., and Gallagher, J., (2020). A functional data analysis approach for the detection of air pollution episodes and outliers: A case study in Dublin, Ireland. Mathematics, 8(2), p. 225.

Ramsay J. O., (1982). When the data are functions. Psychometrika, 47, pp. 379–396.

Ramsay, J. O., Dalzell, C. J., (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B (Methodological), 53(3), pp. 539–561.

Ramsay J. O, Silverman B. W., (1997). Functional data analysis. Springer-Verlag, New- York.

Rice John A., Silverman B. W., (1991). Estimating the mean and covariance structure when the data are curves. Journal of the Royal Statistical Society, Series B., Vol. 53, No.1, pp. 233–243.

Ullah S., Finch C. F. (2013). Applications of functional data analysis: A systematic review. BMC Medical Research Methodology, 13(43), pp. 539–572.

Sawant, P., Billor, N., and Shin H., (2012). Functional outlier detection with robust functional principal component analysis. Computational Statistics, 27, pp. 83–102.

Shang, H. L., (2015). Resampling techniques for estimating the distribution of descriptive statistics of functional data. Communications in Statistics – Simulation and Computation, 44(3), pp. 614–635, doi: 10.1080/03610918.2013.788703.

Sun Y., Genton M. G., (2011). Functional boxplots. Journal of Computational and Graphical Statistics, 20, pp. 316–334.

Sun, Y., Genton M. G., (2012). Adjusted functional boxplots for spatio-temporal data visualization and outlier detection. Environmetrics, 23(1), pp. 54–64.

Tang, C., Wang, T., and Zhang, P., (2020). Functional data analysis: An application to COVID-19 data in the United States, arXiv preprint arXiv:2009.08363.

Wang, D., Li, X., Tian, S., He, L., Xu, Y., and Wang, X., (2021). Quantifying the dynamics between environmental information disclosure and firms’ financial performance using functional data analysis. Sustainable Production and Consumption, 28, pp. 192–205.

Back to top
© 2019–2024 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0