Tetyana Chala http://orcid.org/0000-0001-7499-0308 , Oleksiy Korepanov http://orcid.org/0000-0002-8499-0819 , Iuliia Lazebnyk http://orcid.org/0000-0002-2567-9764 , Daryna Chernenko http://orcid.org/0000-0001-8655-0019 , Georgii Korepanov http://orcid.org/0000-0001-7724-9339

© T. Chala, O. Korepanov, I. Lazebnyk, D. Chernenko, G. Korepanov. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The article addresses the problems related to the functioning of the worldwide market of wheat and meslin. The authors identify the countries that over the past 17 years have been among the top 10 world leaders in terms of the value of export and import of wheat and meslin. The structure of wheat export by Ukrainian regions is analysed in comparison with the total export. The localisation coefficient is applied to measure the regional unevenness of the distribution of wheat export volumes and the total export by regions of the country. The modelling and forecasting of the volumes and prices of export of wheat and meslin from Ukraine are based on Singular Spectrum Analysis. The study particularly focuses on the individual components of time series, such as trend, annual, semi-annual, four-month, three-month seasonal components. The reliability of the forecast is confirmed by the calculation of the MAPE forecast error and Henry Theil’s inequality coefficient. The article proposes an algorithm for calculating the relative indicators of the structure for the individual components of the reconstructed time series, identified through the singular spectral analysis.

KEYWORDS

export, forecasting, singular spectrum analysis, Ukraine, wheat and meslin.

REFERENCES

Agricultural markets and international trade, (2022). EU Science Hub. URL: https://joint-research-centre.ec.europa.eu/scientific-activities-z/agriculturalmarkets- and-international-trade_en

Armstrong, J., Green, K., (2018). Forecasting methods and principles: Evidence-based checklists. Journal of Global Scholars of Marketing Science, 28(2), pp. 103–159. doi: 10.1080/21639159.2018.1441735. URL: https://www.researchgate.net/publication/323754973_Forecasting_methods _and_principles_Evidence-based_checklists

Cameron, A., (2022). Agricultural overview: March quarter 2022. URL: https://www.awe.gov.au/abares/research-topics/agriculturaloutlook/ agriculture-overview

Cook, S., (2019). Forecast Evaluation using Theil’s Inequality Coefficients. The Economic Network, University of Bristol. URL: https://www.economicsnetwork.ac.uk/showcase/cook_theil.

Dama, F., Sinoquet, C., (2021). Time Series Analysis and Modeling to Forecast: a Survey. arXiv preprint arXiv:2104.00164. URL: https://arxiv.org/pdf/2104.00164.pdf

Durisin, M., Parija, P., Anghel, I., (2022). The $120 Billion Global Grain Trade is Being Redrawn by Russia's War in Ukraine. URL: https://www.bloomberg.com/news/features/2022-04-05/will-russia-s-war-inukraine- cause-wheat-shortages-raise-food-prices-more

Europe and Central Asia Economic Update, Spring 2022 : War in the Region, (2022). URL: https://openknowledge.worldbank.org/handle/10986/37268

Flores, A., Solis, Sheila Y., Álvarez-Aros, É. L., (2020). Contextualization of economic activity and innovation perspective in Reynosa, Mexico: A shift-share analysis 2004-2014. Revista ESPACIOS. ISSN 0798 1015. 2020. Vol. 41 (No03), 21 p. URL: http://www.revistaespacios.com/a20v41n03/a20v41n03p21.pdf

Golyandina, N., Korobeynikov, A., Zhigljavsky, A., (2018). Singular Spectrum Analysis with R. Use R! Springer, Berlin, Heidelberg. URL: https://vdoc.pub/documents/singular-spectrum-analysis-with-r-5e7h239knpf0

Golyandina, N., Zhigljavsky, A., (2020). Singular Spectrum Analysis for Time Series. Springer Nature, 146 ?. URL: https://books.google.lv/books?id=BwgLEAAAQBAJ&dq=GOLYANDINA,+N.,+ KOROBEYNIKOV,+A.,+ZHIGLJAVSKY,+A.+(2018).+SSA+Analysis+of+One- Dimensional+Time+Series&hl=uk&source=gbs_navlinks_s

Golyandina, N., Zhigljavsky, A., (2013). Singular spectrum analysis for time series. Springer briefs in statistics. Springer. URL: http://doi.org/10.1007/978-3-642- 34913-3

Hassani, H., (2007). Singular Spectrum Analysis: Methodology and Comparison. Journal of Data Science. Volume 5, pp. 239–257. URL: https://www.jdsonline. com/files/JDS-396.pdf

Isard, W., (1960). Notes on the Use of Regional Science Methods in Economic History. The Journal of Economic History, 20 (4). ??. 597–600. URL: https://doi:10.1017/s0022050700109878

Kozera-Kowalska, ?., Uglis, J., (2021). Agribusiness as an Attractive Place to Work – A Gender Perspective. URL: https://www.mdpi.com/2077-0472/11/3/202/htm

Kwas, M., Paccagnini, A. and Rubaszek, M., (2022). Common factors and the dynamics of cereal prices. A forecasting perspective. Journal of Commodity Markets, 100240. https://doi.org/10.1016/j.jcomm.2021.100240. URL: https://www.sciencedirect.com/science/article/abs/pii/ S2405851321000738

Maeda, E., Abera, T., Siljander, M., Heiskanen, J., (2021). Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. URL: https://www.pnas.org/doi/10.1073/pnas.2023787118

Obrębalski, M., Walesiak, M., (2015). Functional structure of polish regions in the period 2004-2013 – measurement via HHI index, Florence’s coefficient of localization and cluster analysis. STATISTICS IN TRANSITION new series. 2015. Vol. 16, No. 2, pp. 223–242. URL: https://www.exeley.com/ statistics_in_transition/pdf/10.21307/stattrans-2015-012

Petropoulos, F., Apiletti, D., Assimakopoulos, V., at al, (2022). Forecasting: theory and practice. International Journal of Forecasting. Vol. 38, pp. 705–871. doi: https://doi.org/10.1016/j.ijforecast.2021.11.001. URL: https://www.sciencedirect.com/science/article/pii/S0169207021001758

RAMON – Reference and Management of Nomenclatures. Eurostat's Metadata Server. URL: https://ec.europa.eu/eurostat/ramon/index.cfm?TargetUrl= DSP_PUB_WELC

Rubalcaba, L., Gallego, J., Gallo, M. T. and Garrido, R., (2013). Business services location and market factors in major European cities. Cities. Vol. 31, pp. 258–266. doi: http://dx.doi.org/10.1016/j.cities.2012.06.022. URL: https://www.pmf.unizg.hr/_download/repository/Business_service_ location.pdf

Sayago-Gomez, J., T., Stair, C., (2017). Location Quotient, Coefficient of Specialization and Shift-Share. Applications on Matlab. Regional Research Institute. URL: https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article= 1005&context=rri_tech_docs

State Customs Service of Ukraine. BI – foreign trade Indicators of Ukraine. URL: https://bi.customs.gov.ua/uk/trade/

State Statistics Service of Ukraine, (2022). “Rehiony Ukrainy 2021. Statystychnyj zbirnyk” [Regions of Ukraine 2021. Statistical yearbook] (in Ukrainian), section 2, Derzhkomstat, ?yiv, Ukraine. URL: https://ukrstat.org/uk/druk/publicat/kat_u/2021/zb/12/Regionu_20_pdf.zip

Sukhanova, E., Shirnaeva, N, Zaychikova, N., (2019). Modeling And Forecasting Financial Performance Of A Business: Statistical And Econometric Approach. TheEuropean Proceedings of Social & Behavioural Sciences. pp. 487–496. doi: https://dx.doi.org/10.15405/epsbs.2019.03.48. URL: https://www.researchgate.net/publication/331905290_Modeling_And_Forecasting_ Financial_Performance_Of_A_Business_Statistical_And_Econometric_Approach

Suvoryj eksport 2022: iak pid chas vijny prodaty ukrains'ke zerno ta zapobihty prodovol'chij katastrofi u sviti? [Strict export 2022: how to sell Ukrainian grain during the war and prevent food catastrophe in the world?] (in Ukrainian). URL: https://latifundist.com/spetsproekt/969-suvorij-eksport-2022-yak-pid-chas-vijniprodati- ukrayinske-zerno-ta-zapobigti-prodovolchij-katastrofi-u-sviti

Theil, H., (1966). Applied Economic Forecasting. Study in Mathematics & Managerial Economics, v. 4. Amsterdam, North-Holland Pub. Co.; Chicago, Rand McNally. 503 p. URL: https://www.goodreads.com/book/show/ 40666634-appliedeconomic- forecasting

Theil, H., (1961). Economic forecasts and policy. Amsterdam. The Netherlands: North-Holland, 567 p. URL: http://garfield.library.upenn.edu/classics1990/ A1990CY29300001.pdf

UCGFEA – Ukrainian Classification of Goods for Foreign Economic Activity (2020). Verkhovna Rada. URL: https://zakon.rada.gov.ua/laws/show/674-20#Text

UN Comtrade Database. United Nations. Department of Economic and Social Affairs. Statistics Division. Trade Statistics. URL: https://comtrade.un.org/data/

Wang, S., & Chaovalitwongse, W., (2011). Evaluating and comparing forecasting models. Wiley Encyclopedia of Operations Research and Management Science. pp. 1–16. doi: 10.1002/9780470400531.eorms0307. URL: https://www.researchgate.net/publication/313991989_Evaluating_and_ Comparing_Forecasting_Models

Wickham, H., Chang, W., (2017). Devtools: Tools to Make Developing R Packages Easier. URL: http://CRAN.R-project.org/package=devtools

Yerina, A., (2001). Statystychne modeliuvannia ta prohnozuvannia [Statistical modeling and forecasting] (in Ukrainian): navch. posib., KNEU, Kyiv, Ukraine, 170 p.

Yerina, A., Yerin, D., (2014). Statystychne modeliuvannia ta prohnozuvannia [Statistical modeling and forecasting] (in Ukrainian): navch. posib., KNEU, Kyiv, Ukraine, 348 p.

Back to top
© 2019–2024 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0