In the paper we propose a generalized formula for aggregative price indexes which satisfies most of the postulates coming from axiomatic price index theory. It is shown, that the ideal Fisher index and Lexis index are special cases of the proposed formula. Moreover, using the generalized formula we can easily define new indexes, which also satisfy given postulates.
aggregative price indexes, Laspeyres index, Paasche index, Fisher index, Lexis index.
BALK M. (1995), Axiomatic Price Index Theory: A Survey, International Statistical Review 63, p. 69–95.
BIAŁEK J. (2005), Indeks Törnqvista jako alternatywa dla idealnego indeksu Fishera, Wiadomości Statystyczne, Wydawnictwo GUS, Warszawa, p. 9–21.
DIEWERT W. (1978), Superlative Index Numbers and Consistency in Aggregation, „Econometrica” 46, p. 883–900.
DOMAŃSKI CZ.., red. (2001), Metody statystyczne. Teoria i zadania, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
DUMAGAN J. (2002), Comparing the superlative Törnqvist and Fisher ideal indexes, Economic Letters 76, p. 251–258.
FISHER I. (1922), The Making of Index Numbers, Boston: Houghton Mifflin.
FISHER F. M.(1972), The Economic Theory of Price Indexes, Academic Press, New York Krzysztofiak M., Luszniewicz A. (1997), Statystyka, PWE, Warszawa.
MARTINI M. (1992), A General Function of Axiomatic Index Numbers, Journal of the Italian Statistics Society, 1 (3), p. 359–376.
MOUTLON B., SESKIN E. (1999), A preview of the 1999 comprehensive revision of the national income an product accounts, Survey of Current Business No. 79.
SHELL K. (1998), Economics Analysis of Production Price Indexes, Cambridge University Press, UK.
TÖRNQVIST L. (1936), The Bank of Finland’s consumption price index, Bank of Finland Monthly Bulletin 10, p. 1–8.
VON DER LIPPE P. (2007), Index Theory and Price Statistics, Peter Lang, Frankfurt, Germany.
ZAJĄC K. (1994), Zarys metod statystycznych, PWN, W-wa.