B. B. Khare , R. R. Sinha
ARTICLE

(English) PDF

ABSTRACT

Two classes of estimators for the population mean of the study character using multi-auxiliary characters with known population means in presence of nonresponse have been proposed. The expressions for bias, mean square error and conditions for attaining minimum mean square error of the proposed classes of estimators have been obtained. An empirical study has also been given in support of the problem.

KEYWORDS

Population Mean, Bias, Mean square error, Non-response

REFERENCES

HANSEN, M.H. and HURWITZ, W.N. (1946): The problem of nonresponse in sample surveys. Jour. Amer. Statist. Assoc., 41, 517–529.

KHARE, B.B. (1983): Some problems of estimation using auxiliary character. Ph.D. Thesis submitted to B.H.U., Varanasi, India.

KHARE, B.B. (2002): A class of estimators for population mean using auxiliary character in presence of soft core observations. Prog. of Maths., 36 (1 & 2), 1–9.

KHARE, B.B. and SRIVASTAVA, S.R. (1980): On an efficient estimator of population mean using two auxiliary variables. Proc. Nat. Acad. Scie., India, 50(A), 209–214.

KHARE, B.B. and SRIVASTAVA, S.R. (1981): A generalized regression ratio estimator for the population mean using two auxiliary variables. Aligarh Jour. Statist., 1(1), 43–51.

KHARE, B.B. and SRIVASTAVA, S. (1996): Transformed product type estimators for population mean in presence of softcore observations. Proc. Math. Soc. BHU, 12, 29–34.

KHARE, B.B. and SRIVASTAVA, S. (1997): Transformed ratio type estimators for the population mean in the presence of non-response. Commun. Statis.- Theory. Math., 26(7), 1779–1791.

KHARE, B.B. and SRIVASTAVA, S. (2000): Generalised estimators for population mean in presence of nonresponse, Internal. J. Math. & Statist. Sci. 9(1), 75–87.

KHARE, B.B. and SRIVASTAVA, S. (2002): Study of two phase sampling ratio type estimators for population mean in presence of non-response under superpopulation model approach. Proc. Nat. Acad. Sci. India, 72 (A) IV, 331–337.

MOHANTI, S. (1967): Combination of regression and ratio estimate. Jour. Ind. Stat. Assoc., 5, 16–29.

MOHANTY, S. (1970): Contribution to the theory of sampling. Ph.D. thesis submitted to I.A.S.R.I., New Delhi.

OLKIN, I. (1958): Multivariate ratio estimation for finite populations. Biometrika, 45, 154–165.

RAO, P.S.R.S. (1986): Ratio estimation with subsampling the nonrespondents. Survey Methodology, 12(2), 217–230.

RAO, P.S.R.S. (1990): Regression estimators with subsampling of nonrespondents. In-Data Quality Control, Theory and Pragmatics, (Eds.) Gunar E. Liepins and V.R.R. Uppuluri, Marcel Dekker, New York, (1990), pp. 191–208.

RAO, P.S.R.S. and MUDHOLKAR, G.S. (1967): Generalized multivariate estimators for the mean of a finite population. Jour. Amer. Statist. Assoc., 62, 1009–1012.

REDDY, V.N. (1978): A study of use of prior knowledge on certain population parameters in estimation. Sankhya, C, 40, 29–37.

SAHOO, L.N. (1986): On a class of unbiased estimators using multi-auxiliary information. Jour. Ind. Soc. Agri. Statist., 38, 379–382.

SAMPATH, S. (1989): On the optimal choice of unknowns in Ratio-Type estimators. J. Indian Soc. Agricultural Statist., 41, 166–172.

SHUKLA, G.K. (1965): Multivariate regression estimate. Jour. Ind. Stat. Assoc., 3, 202–211.

SHUKLA, G.K. (1966): An alternate multivariate ratio estimate for finite population. Cal. Stat. Assoc. Bull., 15, 127–134.

SRIVASTAVA, S.K. (1971): A generalized estimator for the mean of a finite population using multiauxiliary information. Jour. Amer. Statist. Assoc., 66, 404–407.

SRIVASTAVA, S.K, and JHAJJ, H.S. (1983): A class of estimators of the population mean using multi-auxiliary information. Cal. Stat. Assoc. Bull., 32, 47–56.

Back to top
© 2019–2025 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0