R. R. Sinha https://orcid.org/0000-0001-6386-1973 , Bharti https://orcid.org/0009-0009-5787-4298

© R. R. Sinha, Bharti. Article available under the CC BY-SA 4.0 licence

ARTICLE

(English) PDF

ABSTRACT

The present study concerns the issue of estimating the population mean and presents novel and improved regressed exponential estimators using different parameters of an auxiliary character based on sub-sampling non-respondents. The bias and mean square error (MSE) of the proposed estimators for the most pragmatic simple random sampling without replacement (SRSWOR) scheme have been derived up to the first order of approximation (i.e. the expression containing errors up to the power of two so that the expectation comes only in terms of the mean, variance and covariance). The optimum value of the MSE of the estimators is found, along with the necessary conditions for optimising the MSE. The effectiveness of the suggested estimators, outperforming the existing ones in terms of their MSE, has been studied theoretically, while the empirical as well as the simulation studies have confirmed these findings.

KEYWORDS

population mean, bias, mean square error, auxiliary character

REFERENCES

Bethlehem, J., Cobben, F., Schouten, B., (2011). Handbook of non-response in household surveys. John Wiley and Sons.

Cochran, W. G., (1940). The estimation of the yields of the cereal experiments by sampling for the ratio of grain to total produce, Jour. Agri. Sci., pp. 262–275.

Hansen, M. H., Hurwitz, W. N., (1946). The problem of non-response in sample surveys, Jour. Amer. Stat. Assoc., Vol. 41, pp. 517–529.

Kadilar, C., Cingi, H., (2004). Ratio estimators in simple random sampling, Appl. Math. Comp., Vol. 151, pp. 893–902.

Khare, B. B., Srivastava, S., (1993). Estimation of population mean using auxiliary character in presence of non-response, Nat. Acad. Sci. Lett., Vol. 16, pp. 111–114.

Khare, B. B., Srivastava, S., (1995). Study of conventional and alternative two phase sampling ratio, product and regression estimators in presence of non-response, Proc. Nat. Acad. Sci., Vol. 65(A) II, pp. 195–203.

Khare, B. B., Srivastava, S., (1997). Transformed ratio type estimators for the population mean in the presence of non-response, Comm. Stat. –Theo. Meth., Vol. 26(7), pp. 1779–1791.

Khare, B. B., Srivastava, S., (2000). Generalized estimators for population mean in presence of non-response, Inter. Jour. Math. Stat., Vol. 9, pp. 75–87.

Khare, B. B., Sinha, R. R., (2002). Estimation of the ratio of two population means using auxiliary character with unknown population mean in presence of non-response, Prog. Math. BHU, Vol. 36, pp. 337–348.

Khare, B. B., (2003). Use of auxiliary information in sample surveys up to 2000– A review, Proc. Bio. Sci. India: M/S Centre of Bio-Mathematical Studies, pp. 76–87.

Khare, B. B., Sinha, R. R., (2009). On class of estimators for population mean using multi-auxiliary characters in the presence of non-response, Stat. Trans. new series, Vol. 10(1), pp. 3–14.

Khare, B. B., Sinha, R. R., (2011). Estimation of population mean using multi-auxiliary characters with sub sampling the non-respondents, Stat. Trans. new series, Vol. 12(1), pp. 45–56.

Koyuncu, N., (2012). Efficient estimators of population mean using auxiliary attributes, App. Math. Comp., Vol. 218(22), pp. 10900–10905.

Kumar, K., Kumar, A., (2019). Estimation of population mean using auxiliary attribute in the presence of non-response, Int. J. Comp. Theo. Stat., Vol. 6(1), pp. 43–49.

Rao, P. S. R. S., (1986). Ratio estimation with sub-sampling the non-respondents, Survey Methodology, Vol. 12, pp. 217–230.

Rao, P. S. R. S., (1990). Regression estimators with sub-sampling of non-respondents, In-Data Quality Control, Theory and Pragmatics, (Eds.) Gunar E. Liepins and V.R.R. Uppuluri, Marcel Dekker, New York, pp. 191–208.

Reddy, V. N., (1978). A study on the use of prior knowledge on certain population parameters in estimation, Sankhya C, Vol. 40, pp. 29–37.

Riaz, S., Darda, M. A., (2016). Some classes of estimators in the presence of non-response using auxiliary attribute, Springer Plus, Vol. 5(1), pp. 1–14.

Singh, H. P., Tailor, R., (2003). Use of known correlation coefficient in estimating the finite population mean, Stat. Trans. new series, Vol. 6(4), pp. 555–560.

Singh, H. P., Kumar, S., (2009). A general class of estimators of the population mean in survey sampling using auxiliary information with sub-sampling the non-respondents, Korean Jour. Appl. Stat., Vol. 22(2), pp. 387–402.

Singh, R., Mishra, P., Bouza, C., (2019). Estimation of Population Mean using information on auxiliary attribute: A Review, Ranked Set Sampling, Elsevier.

Singh, H. P., Solanki, R. S., (2012). Improved estimation of population mean in simple random sampling using information on auxiliary attribute, App Math. Comp., Vol. 218, pp. 7798–7812.

Sinha, R. R., Bharti, (2021). Regress exponential estimators for estimating the population mean via auxiliary attribute, Int. Jour. App. Math. Stat., Vol. 60(2), pp. 18–29.

Sinha, R. R., Bharti, (2022) Ameliorate estimation of mean using skewness and kurtosis of auxiliary character, Jour. Stat. Manag. Sys., DOI: 10.1080/09720510.2021. 1966956.

Sinha, R. R., Kumar, V., (2011). Generalized estimators for population mean with sub sampling the non-respondents, Aligarh Jour. Stat., Vol. 31, pp. 53–62.

Sinha, R. R., Kumar, V., (2013). Improved estimators for population mean using attributes and auxiliary characters under incomplete information, Inter. Jour. Math. Stat., Vol. 14, pp. 43–54.

Sinha, R. R., Kumar, V., (2014). Improved classes of estimators for population mean using information on auxiliary character under double sampling the non-respondents, Nat. Acad. Sci. Lett., Vol. 37(1), pp. 71–79.

Srivastava, S. K., Jhajj, H. S., (1983). A class of estimators of population mean using multi-auxiliary information, Cal. Stat. Assoc. Bull., Vol. 32, pp. 47–56.

Tripathi, T. P., Das, A. K., Khare, B. B., (1994). Use of auxiliary information in sample surveys – A review, Aligarh Jour. Stat., Vol. 14, pp. 79–134.

Yadav, S. K., Zaman, T., (2021). Use of some conventional and non-conventional parameters for improving the efficiency of ratio-type estimators. Jour. Stat. Manag. Sys., Vol. 24(5), pp. 1077–1100.

Zaman, T., (2020). Generalized exponential estimators for the finite population mean. Statistics in Transition. New Series, Vol. 21(1), pp. 159–168.

Zaman, T., Kadilar, C., (2019). Novel family of exponential estimators using information of auxiliary attribute. Jour. Stat. Manag. Sys., Vol. 22(8), pp. 1499–1509.

Zaman, T., Kadilar, C., (2021 a). Exponential ratio and product type estimators of the mean in stratified two-phase sampling. AIMS Mathematics, Vol. 6(5), pp. 4265–4279.

Zaman, T., Kadilar, C., (2021 b). New class of exponential estimators for finite population mean in two-phase sampling. Comm. Stat. –Theo. Meth., Vol. 50(4), pp. 874–889.

Back to top
© 2019–2024 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0