Nonlinear regression models are extensively applied across various scientific disciplines. It is vital to accurately fit the optimal nonlinear model while considering the biases of the Bayesian optimal design. We present a Bayesian optimal design by utilising the Dirichlet process as a prior. The Dirichlet process serves as a fundamental tool in the exploration of Nonparametric Bayesian inference, offering multiple representations that are well-suited for application. This research paper introduces a novel one-parameter model, referred to as the ’Unit-Exponential distribution’, specifically designed for the unit interval. Additionally, we employ a stick-breaking representation to approximate the D-optimality criterion considering the Dirichlet process as a functional tool. Through this approach, we aim to identify a Nonparametric Bayesian optimal design.
D-optimal design, Bayesian optimal design, Unit Exponential model (UE), Dirichlet process, stick-breaking prior, nonparametric Bayesian.
Abdollahi, A., H. Jafari and S.Khazaei, (2024). Locally, Bayesian and Nonparametric Bayesian optimal designs for Unit Exponential regression model. Journal of Communications in Statistics – Theory and Methods, doi.org/10.1080/03610926.2024.2328182.
Aminnejad, M., Jafari H., (2017). Bayesian A and D-optimal designs for gamma regression model with inverse link function. Communications in Statistics-Simulation and Computation, 46 (10), pp. 8166–89, doi:10.1080/03610918.2016.1271888.
Atkinson, A. C., A. N. Donev and R. D. Tobias, (2007). Optimum experimental design, with SAS. Oxford, UK: Oxford University Press.
Burghaus, I., Dette H., (2014). Optimal designs for nonlinear regression models with respect to non-informative priors. Journal of Statistical Planning and Inference, 154, pp. 12–25, doi:10.1016/ j.jspi.2014.05.009.
Burkner P. C., Schwabe R., Holling H., (2019). Optimal designs for the generalized partial credit model. British Journal of Mathematical and Statistical Psychology, doi:10.1111/ bmsp. 12148.
Braess, D., Dette, H., (2007). On the number of support points of maximin and Bayesian optimal designs. The Annals of Statistics, 35(2), pp. 772–792.
Chernoff, H., (1953). Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics, 24 (4), pp. 586–602, doi:10.1214/aoms/1177728915.
Chaloner, K. M., Duncan, G. T., (1983). Assessment of a beta prior distribution:PM elicitation. The Statistician, pp. 174–180.
Chaloner, K., Verdinelli, I., (1995). Bayesian experimental design: a review. Statistical Science, 10, pp. 273–304.
Chaloner, K., Larntz, K., (1989). Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference, 21, pp. 191–208.
Dette, H., Melas, V. B. and Wong, W. K., (2006). Locally D-optimal designs for exponential regression Statistica Sinica, 16, pp. 789–803.
Dette, H., Neugebauer, H. M., (1996). Bayesian optimal one point designs for one parameter nonlinear models. Journal of Statistical Planning and Inference, 52(1), pp. 17–31.
Dette, H., Neugebauer, H. M., (1997). Bayesian D-optimal designs for exponential regression models. Journal of Statistical Planning and Inference, 60(2), pp. 331–349.
Fedorov V, Hackl P., (2012). Model-Oriented Design of Experiments. Springer Science and Business Media, Vol. 125, doi:10.1007/978-1-4612-0703-0.
Fedorov V. V., Leonov S. L., (2013). Optimal design for nonlinear response models. CRC Press. bability Letters, 82 (5), pp. 916–24, doi:10.1016/j.spl.2012.01.020.
Ferguson, T. S., (1973). A bayesian analysis of some nonparametric problems. The Annals of Statistics, 1 (2), pp. 209–30, doi:10.1214/aos/1176342360.
Firth D, Hinde J., (1997). On Bayesian D-optimum Design Criteria and the Equivalence Theorem in Non-linear Models. Journal of the Royal Statistical Society B, 59(4), pp. 793–797, doi:10.1111/1467-9868.00096.
Folland, G. B., (1999). Real analysis: modern techniques and their applications. John Wiley and Sons.
Ford, I., Torsney, B. and Wu, C. F. J., (1992). The use of a canonical form in theconstruction of locally optimal designs for non-linear problems. J. Roy. Statist. Soc. (Ser.) B, 54, pp. 569–583.
Ghitany M. E. , Atieh B., Nadarajah S., (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, pp. 493–506.
Goudarzi, M., H. Jafari and Khazaei S., (2019). Nonparametric Bayesian optimal designs for exponential regression model. Communications in Statistics-Simulation and Computation, doi:10.1080/03610918.2019.1593454.
Grashoff U., Holling H., Schwabe R., (2012). Optimal designs for the Rasch model. Psychometrika, 77(4), pp. 710–723, doi:10.1007/s11336-012-9276-2.
Kiefer, J., (1959). Optimum experimental designs. J. R. Statist. Soc. B., 21, pp. 272–319.
Kiefer, J., Wolfowitz, J., (1959). Optimum designs in regression problems. The Annals of Mathematical Statistics, 30(2), pp. 271–294.
Kiefer, J., (1974). General equivalence theory for optimum designs (approximate theory). The Annals of Statistics, 2 (5), pp. 849–79, doi:10.1214/aos/1176342810.
Mukhopadhyay, S., Haines, L. M., (1995). Bayesian D-optimal designs for the exponential growth model. Journal of Statistical Planning and Inference, 44(3), 385–397.
Nadar M., Papadopoulos A., Kizilaslan F., (2013). Statistical analysis for Kumaraswamy’s distribution based on record data. Stat Pap, 54, pp. 355–369.
Parsamaram, P., Jafari H., (2016). Bayesian D-optimal Design for the logistic regression model with exponential distribution for random intercept. textitJournal of Statistical Computation and Simulation, 86, pp. 1856–68, doi:10.1080/00949655.2015.1087525.
Pronzato, L, E. walter, (1985). Robust experiment design via stochastic approximation. Mathematical BIOSCIENCES, doi.org/10.1016/0025-5564(85)90068-9.
Rodriguez-Torreblanca C., Rodríguez-Díaz J. M., (2007). Locally D- and c-optimal designs for Poisson and negative binomial regression models. Metrika, Vol. 66, pp 161–172.
Sethuraman, J., (1994). A Constructive De nition of Dirichlet Priors. Statistica Sinica 4, p. 639, p. 650.
Zarepour, Mahmoud and Al Labadi, Luai, (2012). On a rapid simulation of the Dirichlet process. Statistics and Probability Letters 82.5, p. 916, p. 924.