Poverty is one of the most important global socio-economic problems. Despite a strong interest in this phenomenon, there is no unified concept for measuring it. It is difficult to quantify due to the diversity of the dimensions of perceived poverty, particularly subjective ones. Thus, the aim of the research described in the article is to propose a comprehensive procedure for constructing a synthetic measure of subjective poverty in households. This involves aggregating factors describing the present, future, and past, which make it easier to grasp the feeling of deprivation. Methods such as fuzzy TOPSIS and fuzzy hierarchical analysis (FHA) based on the fuzzy sets theory were used for this purpose, which is not standardly used for this type of research. This innovative procedure was applied to assess the level of subjective household poverty in Poland. The analyses are based on data from primary research carried out in three stages in 2020 using the CAWI method. The results show that the assessment of households’ current socio-economic situation is also influenced by past events as well as projections of future developments. Changes in the values of the synthetic index illustrate the trajectory of switching from panic to negation, and attempting to cope with the situation or, alternatively, switching to a state of irritation. The research results can form the basis for formulating policies and strategies to combat poverty.
fuzzy TOPSIS, fuzzy hierarchical analysis (FHA), MCDM, subjective poverty, household, CAWI
Aaberge, R., Brandolini, A., (2015). Multidimensional poverty and inequality. In A. B. Atkinson, & F. Bourguignon (Eds.), Handbook of income distribution (Vol. 2, pp. 141–216). Elsevier. https://doi.org/10.1016/B978-0-444-59428-0.00004-7.
Ahuvia, A., (2008). Wealth, consumption and happiness. In A. Lewis (Ed.), The Cambridge handbook of psychology and economic behaviour (pp. 199–226). Cambridge University Press.
Alem, Y., Köhlin, G. and Stage, J., (2014). The persistence of subjective poverty in urban Ethiopia. World Development, 56, pp. 51–61. https://doi.org/10.1016/j.worlddev.2013.10.017.
Aristondo, O., Ciommi, M., (2017). The orness value for rank-dependent welfare functions and rank-dependent poverty measures. Fuzzy Sets Systems, 325, pp. 114– 136. https://doi.org/10.1016/j.fss.2017.04.003.
Asfaw, A. A., (2021). The effect of income support programs on job search, workplace mobility and COVID-19: International evidence. Economics & Human Biology, 41, Article 100997. https://doi.org/10.1016/j.ehb.2021.100997.
Belhadj, B., (2011). New fuzzy indices of poverty by distinguishing three levels of poverty. Research in Economics, 65(3), pp. 221–231. https://doi.org/10.1016/j.rie.2010.10.002.
Belhadj, B., Limam, M., (2012). Unidimensional and multidimensional fuzzy poverty measures: New approach. Economic Modelling, 29(4), pp. 995–1002.https://doi.org/10.1016/j.econmod.2012.03.009.
Betti, G., Cheli, B., Lemmi, A. and Verma, V., (2008). The fuzzy set approach to multidimensional poverty: The case of Italy in the 1990s. In N. Kakwani, & J. Silber (Eds.), Quantitative approaches to multidimensional poverty measurement (pp. 30–48). Palgrave Macmillan. https://doi.org/10.1057/9780230582354_2.
Betti, G., Mangiavacchi, L. and Piccoli, L., (2017). Individual poverty measurement using a fuzzy intrahousehold approach (IZA Discussion Paper, No. 11009). https://ftp.iza.org/dp11009.pdf.
Blank, R. M., (1997). It takes a nation: A new agenda for fighting poverty. Russell Sage Foundation, Princeton University Press.
Blank, R. M., (2003). Selecting among anti-poverty policies: Can an economics be both critical and caring? Review of Social Economy, 61(4), pp. 447–471. https://doi.org/10.1080/0034676032000160949.
Boender, C. G. E., De Graan, J. G. and Lootsma, F. A., (1989). Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets and Systems, 29, pp. 133–143. https://doi.org/10.1016/0165-0114(89)90187-5.
Bradshaw, T. K., (2007). Theories of poverty and anti-poverty programs in community development. Community Development, 38(1), pp. 7–25. https://doi.org/10.1080/15575330709490182.
Brady, D., (2019). Theories of the causes of poverty. Annual Review of Sociology, 45(1), pp. 155–175. https://doi.org/10.1146/annurev-soc-073018-022550.
Brandt, L., (1908). The causes of poverty. Political Science Quarterly, 23(4), 637-651. https://doi.org/10.2307/2140866.
Buckley, J. J., Feuring, T. and Hayashi, Y., (2001). Fuzzy hierarchical analysis revisited. European Journal of Operational Research, 129(1), pp. 48–64. https://doi.org/10.1016/S0377-2217(99)00405-1.
Cerioli, A., Zani, S., (1990). A fuzzy approach to the measurement of povert y. In C. Dagum, & M. Zenga (Eds.), Income and wealth distribution, inequality and poverty (pp. 272–284). Springer. https://doi.org/10.1007/978-3-642-84250-4_18.
Chen, C. T., (2000), Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Set Syst, 114, pp. 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1 .
Chen, S.-M., (1996). Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets and Systems, 77(3), pp. 265–276. https://doi.org/10.1016/0165-0114(95)00096-8.
Chiappero-Martinetti, E. (1994). A new approach to evaluation of well-being and poverty by Fuzzy Set Theory. Giornale degli Economisti e Annali di Economia. Nuova Serie, 53(7–9), pp. 367–388.
Chou C.-H., Liang G.-S. and Chang H.-C., (2013). A fuzzy AHP approach based on the concept of possibility extent. Quality & Quantity, 47, pp. 1–14. https://doi.org/10.1007/s11135-011-9473-6.
Ciani, M., Gagliardi, F., Riccarelli, S. and Betti, G., (2019). Fuzzy measures of multidimensional poverty in the Mediterranean Area: A focus on financial dimension. Sustainability, 11(1), Article 143. https://doi.org/10.3390/su11010143.
Csutora, R., Buckley, J. J., (2001). Fuzzy hierarchical analysis: The Lambda-Max method. Fuzzy Sets and Systems, 120(2), pp. 181–195. https://doi.org/10.1016/S0165-0114(99)00155-4.
Deleeck, H., Van den Bosch, K., (1990). The measurement of poverty in a comparative context: Empirical evidence and methodological evaluation of four poverty lines in seven EC countries. In R. Teekens, & B. M. S. van Praag (Eds.), Analysing poverty in the European Community: Policy issues, research options and data sources (pp. 153–186), (Eurostat News spec. ed., 1–1990). Paper presented at the seminar ‘Poverty statistics in the European Community’. https://op.europa.eu/en/publication-detail/-/publication/a74627b5-3b6f-4ec3-992f-5a104b68dccf.
Dudek, H., (2008). Subjective aspects of economic poverty: Ordered response model approach (Working Paper, No. 8–08). Department of Applied Econometrics Warsaw School of Economics. https://ssl-kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZES/Documents/Working_Papers/aewp08-08.pdf.
Dudek, H., Szczesny, W., (2021). Multidimensional material deprivation in Poland: A focus on changes in 2015–2017. Quality & Quantity, 55(2), pp. 741–763. https://doi.org/10.1007/s11135-020-01024-3.
Easterlin, R. A., (1974). Does economic growth improve the human lot? Some empirical evidence. In P. A. David, & M. W. Reder (Eds.), Nations and households in economic growth: Essays in honor of Moses Abramovitz (pp. 89–125). Academic Press. https://doi.org/10.1016/B978-0-12-205050-3.50008-7.
Ghiatis, A., (1990). Low income groups obtained by enhanced processing of the Household Budget Surveys in the EC: Summary figures for Italy and The Netherlands. In R. Teekens, & B. M. S. van Praag (Eds.), Analysing poverty in the European Community: Policy issues, research options and data sources (pp. 117– 137), (Eurostat News spec. ed., 1–1990). Paper presented at the seminar ‘Poverty statistics in the European Community’. https://op.europa.eu/en/publicationdetail/-/publication/a74627b5-3b6f-4ec3-992f-5a104b68dccf.
Gupta, J., Bavinck, M., Ros-Tonen, M., Asubonteng, K., Bosch, H., Van Ewijk, E., Hordijk, M.,Van Leynseele, Y., Lopes Cardozo, M., Miedema, E., Pouw, N., Rammelt, C., Scholtens, J., Vegelin, C. and Verrest, H., (2021). COVID-19, poverty and inclusive development. World Development, 145. Article 105527. https://doi.org/10.1016/j.worlddev.2021.105527.
Hagenaars, A. J. M., Van Praag, B. M. S., (1985). A synthesis of poverty line definitions. Review of Income and Wealth, 31, pp. 139–153. https://doi.org/10.1111/j.1475-4991.1985.tb00504.x.
Haveman, R. H., (2015). Poverty: Measurement and analysis. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., pp. 741– 746). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.71035-X.
Hwang C. L.; Yoon K., (1981): Multiple attribute decision making: methods and applications. Springer-Verlag, New York.
Jennings, J., (1999). Persistent poverty in the United States: Review of theories and explanations. In L. Kushnick, & J. Jennings (Eds.), A new introduction to poverty: The role of race, power, and politics (pp. 13-38). New York University Press.
Kalinowski, S., (2015). Poziom życia ludności wiejskiej o niepewnych dochodach [The living standards of the rural population with uncertain income]. PWN.
Kalinowski, S., (2020a). Od paniki do negacji: Zmiana postaw wobec COVID-19 [From panic to denial: Changing attitudes towards Covid-19]. Wieś i Rolnictwo, 3(188), pp. 45–65. https://doi.org/10.7366/wir032020/03.
Kalinowski, S., (2020b). Poverty in rural areas: An outline of the problem. Acta Scientiarum Polonorum. Oeconomia, 19(4), pp. 69–78. https://doi.org/10.22630/ASPE.2020.19.4.42.
Kalinowski, S., Wyduba, W., (2020). Moja sytuacja w okresie koronawirusa: Raport końcowy z badań [My situation during the coronavirus period: Final research report]. Instytut Rozwoju Wsi i Rolnictwa PAN. https://doi.org/10.53098/9788389900609.
Kapteyn, A., Kooreman, P. and Willemse, R., (1988). Some methodological issues in the implementation of subjective poverty definitions. Journal of Human Resources, 23(2), pp. 222–242. https://doi.org/10.2307/145777.
Kordos, M., Skwarczyński, M. and Zawadowski, W., (Eds.) (1993). Leksykon matematyczny [Mathematical lexicon]. Wydawnictwo Wiedza Powszechna.
Łuczak A., Kalinowski S. (2022). Measuring Subjective Poverty: Methodological and Application Aspects. In: Jajuga, K., Dehnel, G., Walesiak, M. (eds) Modern Classification and Data Analysis. SKAD 2021. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-031-10190-8_18.
Łuczak, A., Wysocki, F., (2008). Wykorzystanie rozmytej metody TOPSIS opartej na zbiorach ?-poziomów do porządkowania liniowego obiektów [Application of fuzzy TOPSIS method based on ?-level sets to linear ordering of objects]. In K. Jajuga, & M. Walesiak (Eds.), Klasyfikacja i analiza danych – teoria i zastosowania (pp. 337– 345), (Taksonomia 15; Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu 1207). Uniwersytet Ekonomiczny we Wrocławiu.
Michoń, P., (2010). Ekonomia szczęścia: Dlaczego ludzie odmawiają wpasowania się w modele ekonomiczne [Happiness economics: Why people refuse to fit into economic models]. Dom Wydawniczy Harasimowicz. https://www.wbc.poznan.pl/dlibra/publication/242598.
Mill, J. S., (1907). On social freedom: Or the necessary limits of individual freedom arising out of the conditions of our social life. The Oxford and Cambridge Review, 1, pp. 57–83. https://archive.org/details/the-oxford-and-cambridge-review 1/page/n13/mode/2up.
Montrone, S., Campobasso, F., Perchinunno, P. and Fanizzi, A., (2010). A fuzzy approach to the small area estimation of poverty in Italy. In G. Phillips-Wren, L. C.
Jain, K. Nakamatsu, & R. J. Howlett (Eds.), Advances in intelligent decision technologies (pp. 309–318), (Smart Innovation, Systems and Technologies 4). Springer. https:// doi.org/10.1007/978-3-642-14616-9_30.
Mowafi, M., (2004). The meaning and measurement of poverty: A look into the global debate. http://www.sas.upenn.edu/~dludden/Mowafi_Poverty_Measurement_Debate.pdf.
Neff, D., (2013). Fuzzy set theoretic applications in poverty research. Policy and Society, 32(4), 319-331. https://doi.org/10.1016/j.polsoc.2013.10.004.
Nettle, D., (2005). Happiness: The science behind your smile. Oxford University Press. Orshansky, M., (1969). How poverty is measured. Monthly Labor Review, 92(2), pp. 37– 41. http://www.jstor.org/stable/41837556.
Pouw, N., (2020). Wellbeing economics: How and why economics needs to change? Amsterdam University Press.
Ravallion, M., (2012). Poor, or just feeling poor? On using subjective data in measuring poverty (Policy Research Working Paper No. 5968). The World Bank. https://ssrn.com/abstract=2004930.
Ravallion, M., Lokshin, M., (2002). Self-rated economic welfare in Russia. European Economic Review, 46(8), pp. 1453–1473. https://doi.org/10.1016/S0014-2921(01)00151-9.
Ravallion, M., Himelein, K. and Beegle, K., (2016). Can subjective questions on economic welfare be trusted? Economic Development and Cultural Change, 64(4), pp. 697–726. https://doi.org/10.1086/686793.
Rayo, L., Becker, G. S., (2007). Evolutionary efficiency and happiness. Journal of Political Economy, 115(2), pp. 302–337. https://doi.org/10.1086/516737.
Rodgers, H. R., Jr., (2000). American poverty in a new era of reform. M. E. Sharp.
Rowntree, B. S., (1901). Poverty: A study of town life. Macmillan.
Runciman, W. G., (1966). Relative deprivation and social justice: A study of attitudes to social inequality in twentieth-century England. Routledge and Kegan Paul.
Saaty, T. L., (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw- Hill International Book Company.
Schiller, B. R., (1989). The economics of poverty and discrimination (5th ed.). Prentice Hall.
Shaw, W., (1996). The geography of United States poverty: Patterns of deprivation, 1980-1990. Garland Publishing.
Stanny, M., Rosner, A. and Komorowski, Ł., (2018). Monitoring rozwoju obszarów wiejskich. Etap III. Struktury społeczno-gospodarcze, ich przestrzenne zróżnicowanie i dynamika [Monitoring of rural areas developmnet. III Stage. Socio-economic structures, their spatial diversity and dynamics]. Europejski Fundusz Rozwoju Wsi Polskiej, IRWiR PAN.
Stiglitz, J. E., Sen, A. and Fitoussi, J. P., (2009). Report by the Commission on the Measurement of Economic Performance and Social Progress. CMEPSP. https://www.socioeco.org/bdf_fiche-document-2339_en.html.
Thurow, L. C., (1967). The causes of poverty. The Quarterly Journal of Economics, 81(1), pp. 39–57. https://doi.org/10.2307/1879672.
Townsend, P., (1979). Poverty in the United Kingdom: A survey of household resources and standards of living. Penguin Books. https://www.poverty.ac.uk/system/files/townsend-book-pdfs/PIUK/piuk-whole.pdf.
Valentine, C. A., (1968). Culture and poverty: Critique and counter-proposals. University of Chicago Press.
van Praag, B. M. S., (1971). The welfare function of income in Belgium: An empirical investigation. European Economic Review, 2(3), pp. 337–369. https://doi.org/10.1016/0014-2921(71)90045-6.
van Praag, B., Ferrer-i-Carbonell, A., (2008). A multidimensional approach to subjective poverty. In N. Kakwani, & J. Silber (Eds.), Quantitative approaches to multidimensional poverty measurement (pp. 135–154). Palgrave Macmillan. https://doi.org/10.1057/9780230582354_8.
van Praag, B., Goedhart, T. and Kapteyn, A., (1980). The poverty line – a pilot survey in Europe. The Review of Economics and Statistics, 62(3), pp. 461–465. https://doi.org/10.2307/1927116.
Wang, J.-W., Cheng, C.-H. and Kun-Cheng, H., (2009). Fuzzy hierarchical TOPSIS for supplier selection. Applied Soft Computing, 9(1), pp. 377–386. https://doi.org/10.1016/j.asoc.2008.04.014.
Zadeh, L. A., (1975a). The concept of a linguistic variable and its application to approximate reasoning – I. Information Sciences, 8(3), pp. 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
Zadeh, L. A., (1975b). The concept of a linguistic variable and its application to approximate reasoning – II. Information Sciences, 8(4), pp. 301–357. https://doi.org/10.1016/0020-0255(75)90046-8.
Zadeh, L. A., (1975c). The concept of a linguistic variable and its application to approximate reasoning – III. Information Sciences, 9(1), pp. 43–80. https://doi.org/10.1016/0020-0255(75)90017-1.